ETH Price: $2,731.60 (+3.42%)

Transaction Decoder

Block:
22542672 at May-23-2025 02:45:23 AM +UTC
Transaction Fee:
0.001143560317914108 ETH $3.12
Gas Used:
415,637 Gas / 2.751343884 Gwei

Emitted Events:

196 KryllToken.Transfer( from=[Sender] 0x5a56367c167007de9617882693c5a2659a4a2b88, to=[Receiver] L1ChugSplashProxy, value=3500000000000000000000 )
197 L1ChugSplashProxy.0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396( 0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396, 0x000000000000000000000000464ebe77c293e473b48cfe96ddcf88fcf7bfdac0, 0x0000000000000000000000002ed6222cb75e353b8789bec7bb443b7ec9022021, 0x0000000000000000000000005a56367c167007de9617882693c5a2659a4a2b88, 0000000000000000000000005a56367c167007de9617882693c5a2659a4a2b88, 0000000000000000000000000000000000000000000000bdbc41e0348b300000, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
198 L1ChugSplashProxy.0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf( 0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf, 0x000000000000000000000000464ebe77c293e473b48cfe96ddcf88fcf7bfdac0, 0x0000000000000000000000002ed6222cb75e353b8789bec7bb443b7ec9022021, 0x0000000000000000000000005a56367c167007de9617882693c5a2659a4a2b88, 0000000000000000000000005a56367c167007de9617882693c5a2659a4a2b88, 0000000000000000000000000000000000000000000000bdbc41e0348b300000, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
199 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x00000000000000000000000036bde71c97b33cc4729cf772ae268934f7ab70b2, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 000000000000000000000000000000000000000000000000000000000000024d, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000007e57600d764ad0b00010000000000000000000000000000000000, 0000000000000000000002ae2100000000000000000000000099c9fc46f92e8a, 1c0dec1b1747d010903e884be100000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000030d4000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000001040166a07a0000000000000000000000002ed622, 2cb75e353b8789bec7bb443b7ec9022021000000000000000000000000464ebe, 77c293e473b48cfe96ddcf88fcf7bfdac00000000000000000000000005a5636, 7c167007de9617882693c5a2659a4a2b880000000000000000000000005a5636, 7c167007de9617882693c5a2659a4a2b88000000000000000000000000000000, 0000000000000000bdbc41e0348b300000000000000000000000000000000000, 00000000000000000000000000000000c0000000000000000000000000000000, 000000000000000000000000000000000b737570657262726964676500000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
200 Lib_ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000080, 000100000000000000000000000000000000000000000000000000000002ae21, 0000000000000000000000000000000000000000000000000000000000030d40, 0000000000000000000000000000000000000000000000000000000000000104, 0166a07a0000000000000000000000002ed6222cb75e353b8789bec7bb443b7e, c9022021000000000000000000000000464ebe77c293e473b48cfe96ddcf88fc, f7bfdac00000000000000000000000005a56367c167007de9617882693c5a265, 9a4a2b880000000000000000000000005a56367c167007de9617882693c5a265, 9a4a2b880000000000000000000000000000000000000000000000bdbc41e034, 8b30000000000000000000000000000000000000000000000000000000000000, 000000c000000000000000000000000000000000000000000000000000000000, 0000000b73757065726272696467650000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
201 Lib_ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x25ace71c...4F7ab5fA1
(Optimism: Proxy OVM L1 Cross Domain Messenger)
0x464eBE77...cF7bFDAC0
(Titan Builder)
7.877464604239872794 Eth7.877855174208147576 Eth0.000390569968274782
0x5a56367C...59A4a2b88
0.983839757935016683 Eth
Nonce: 3641
0.982696197617102575 Eth
Nonce: 3642
0.001143560317914108
0x99C9fc46...03E884bE1
(Optimism: Gateway)
0xbEb5Fc57...e41f106Ed
(Optimism: Portal)

Execution Trace

L1ChugSplashProxy.838b2520( )
  • ProxyAdmin.STATICCALL( )
  • L1StandardBridge.depositERC20To( _l1Token=0x464eBE77c293E473B48cFe96dDCf88fcF7bFDAC0, _l2Token=0x2ed6222CB75E353b8789bec7Bb443b7eC9022021, _to=0x5a56367C167007de9617882693c5A2659A4a2b88, _amount=3500000000000000000000, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
    • KryllToken.01ffc9a7( )
    • KryllToken.01ffc9a7( )
    • KryllToken.transferFrom( _from=0x5a56367C167007de9617882693c5A2659A4a2b88, _to=0x99C9fc46f92E8a1c0deC1b1747d010903E884bE1, _value=3500000000000000000000 ) => ( True )
    • Lib_ResolvedDelegateProxy.3dbb202b( )
      • Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x5D5a095665886119693F0B41d8DFeE78da033e8B )
      • L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x0166A07A0000000000000000000000002ED6222CB75E353B8789BEC7BB443B7EC9022021000000000000000000000000464EBE77C293E473B48CFE96DDCF88FCF7BFDAC00000000000000000000000005A56367C167007DE9617882693C5A2659A4A2B880000000000000000000000005A56367C167007DE9617882693C5A2659A4A2B880000000000000000000000000000000000000000000000BDBC41E0348B30000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B7375706572627269646765000000000000000000000000000000000000000000, _minGasLimit=200000 )
        • Proxy.e9e05c42( )
          • OptimismPortal2.depositTransaction( _to=0x4200000000000000000000000000000000000007, _value=0, _gasLimit=517494, _isCreation=False, _data=0xD764AD0B000100000000000000000000000000000000000000000000000000000002AE2100000000000000000000000099C9FC46F92E8A1C0DEC1B1747D010903E884BE1000000000000000000000000420000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030D4000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000001040166A07A0000000000000000000000002ED6222CB75E353B8789BEC7BB443B7EC9022021000000000000000000000000464EBE77C293E473B48CFE96DDCF88FCF7BFDAC00000000000000000000000005A56367C167007DE9617882693C5A2659A4A2B880000000000000000000000005A56367C167007DE9617882693C5A2659A4A2B880000000000000000000000000000000000000000000000BDBC41E0348B30000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B737570657262726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
            • Proxy.STATICCALL( )
              File 1 of 10: L1ChugSplashProxy
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              import { iL1ChugSplashDeployer } from "./interfaces/iL1ChugSplashDeployer.sol";
              /**
               * @title L1ChugSplashProxy
               * @dev Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               * functions `setCode` and `setStorage` for changing the code or storage of the contract. Nifty!
               *
               * Note for future developers: do NOT make anything in this contract 'public' unless you know what
               * you're doing. Anything public can potentially have a function signature that conflicts with a
               * signature attached to the implementation contract. Public functions SHOULD always have the
               * 'proxyCallIfNotOwner' modifier unless there's some *really* good reason not to have that
               * modifier. And there almost certainly is not a good reason to not have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /*************
                   * Constants *
                   *************/
                  // "Magic" prefix. When prepended to some arbitrary bytecode and used to create a contract, the
                  // appended bytecode will be deployed as given.
                  bytes13 constant internal DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                  bytes32 constant internal IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  // bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                  bytes32 constant internal OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /***************
                   * Constructor *
                   ***************/
                  
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(
                      address _owner
                  ) {
                      _setOwner(_owner);
                  }
                  /**********************
                   * Function Modifiers *
                   **********************/
                  /**
                   * Blocks a function from being called when the parent signals that the system should be paused
                   * via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(
                              iL1ChugSplashDeployer.isUpgrading.selector
                          )
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(
                              ret == 0,
                              "L1ChugSplashProxy: system is currently being upgraded"
                          );
                      }
                      _;
                  }
                  /**
                   * Makes a proxy call instead of triggering the given function when the caller is either the
                   * owner or the zero address. Caller can only ever be the zero address if this function is
                   * being called off-chain via eth_call, which is totally fine and can be convenient for
                   * client-side tooling. Avoids situations where the proxy and implementation share a sighash
                   * and the proxy function ends up being called instead of the implementation one.
                   *
                   * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If there's a
                   * way for someone to send a transaction with msg.sender == address(0) in any real context then
                   * we have much bigger problems. Primary reason to include this additional allowed sender is
                   * because the owner address can be changed dynamically and we do not want clients to have to
                   * keep track of the current owner in order to make an eth_call that doesn't trigger the
                   * proxied contract.
                   */
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /*********************
                   * Fallback Function *
                   *********************/
                  fallback()
                      external
                      payable
                  {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Sets the code that should be running behind this proxy. Note that this scheme is a bit
                   * different from the standard proxy scheme where one would typically deploy the code
                   * separately and then set the implementation address. We're doing it this way because it gives
                   * us a lot more freedom on the client side. Can only be triggered by the contract owner.
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(
                      bytes memory _code
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(
                          DEPLOY_CODE_PREFIX,
                          _code
                      );
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed."
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * Modifies some storage slot within the proxy contract. Gives us a lot of power to perform
                   * upgrades in a more transparent way. Only callable by the owner.
                   * @param _key Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(
                      bytes32 _key,
                      bytes32 _value
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * Changes the owner of the proxy contract. Only callable by the owner.
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(
                      address _owner
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      _setOwner(_owner);
                  }
                  /**
                   * Queries the owner of the proxy contract. Can only be called by the owner OR by making an
                   * eth_call and setting the "from" address to address(0).
                   * @return Owner address.
                   */
                  function getOwner()
                      proxyCallIfNotOwner
                      public
                      returns (
                          address
                      )
                  {
                      return _getOwner();
                  }
                  /**
                   * Queries the implementation address. Can only be called by the owner OR by making an
                   * eth_call and setting the "from" address to address(0).
                   * @return Implementation address.
                   */
                  function getImplementation()
                      proxyCallIfNotOwner
                      public
                      returns (
                          address
                      )
                  {
                      return _getImplementation();
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Sets the implementation address.
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(
                      address _implementation
                  )
                      internal
                  {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * Queries the implementation address.
                   * @return Implementation address.
                   */
                  function _getImplementation()
                      internal
                      view
                      returns (
                          address
                      )
                  {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * Changes the owner of the proxy contract.
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(
                      address _owner
                  )
                      internal
                  {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * Queries the owner of the proxy contract.
                   * @return Owner address.
                   */
                  function _getOwner()
                      internal
                      view 
                      returns (
                          address
                      )
                  {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * Gets the code hash for a given account.
                   * @param _account Address of the account to get a code hash for.
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(
                      address _account
                  )
                      internal
                      view
                      returns (
                          bytes32
                      )
                  {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
                  /**
                   * Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall()
                      onlyWhenNotPaused
                      internal
                  {
                      address implementation = _getImplementation();
                      require(
                          implementation != address(0),
                          "L1ChugSplashProxy: implementation is not set yet"
                      );
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /**
               * @title iL1ChugSplashDeployer
               */
              interface iL1ChugSplashDeployer {
                  function isUpgrading()
                      external
                      view
                      returns (
                          bool
                      );
              }
              

              File 2 of 10: KryllToken
              pragma solidity ^0.4.23;
              
              // File: zeppelin/contracts/ownership/Ownable.sol
              
              /**
               * @title Ownable
               * @dev The Ownable contract has an owner address, and provides basic authorization control
               * functions, this simplifies the implementation of "user permissions".
               */
              contract Ownable {
                  address public owner;
              
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              
                  /**
                   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                   * account.
                   */
                  constructor() public {
                      owner = msg.sender;
                  }
              
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(msg.sender == owner);
                      _;
                  }
              
                  /**
                   * @dev Allows the current owner to transfer control of the contract to a newOwner.
                   * @param newOwner The address to transfer ownership to.
                   */
                  function transferOwnership(address newOwner) public onlyOwner {
                      require(newOwner != address(0));
                      emit OwnershipTransferred(owner, newOwner);
                      owner = newOwner;
                  }
              }
              
              // File: zeppelin/contracts/math/SafeMath.sol
              
              /**
               * @title SafeMath
               * @dev Math operations with safety checks that throw on error
               */
              library SafeMath {
              
                  /**
                  * @dev Multiplies two numbers, throws on overflow.
                  */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      uint256 c = a * b;
                      assert(c / a == b);
                      return c;
                  }
              
                  /**
                  * @dev Integer division of two numbers, truncating the quotient.
                  */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      // assert(b > 0); // Solidity automatically throws when dividing by 0
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                      return c;
                  }
              
                  /**
                  * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
                  */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      assert(b <= a);
                      return a - b;
                  }
              
                  /**
                  * @dev Adds two numbers, throws on overflow.
                  */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      assert(c >= a);
                      return c;
                  }
              }
              
              // File: zeppelin/contracts/token/ERC20/ERC20Basic.sol
              
              /**
               * @title ERC20Basic
               * @dev Simpler version of ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/179
               */
              contract ERC20Basic {
                  function totalSupply() public view returns (uint256);
                  function balanceOf(address who) public view returns (uint256);
                  function transfer(address to, uint256 value) public returns (bool);
                  event Transfer(address indexed from, address indexed to, uint256 value);
              }
              
              // File: zeppelin/contracts/token/ERC20/BasicToken.sol
              
              /**
               * @title Basic token
               * @dev Basic version of StandardToken, with no allowances.
               */
              contract BasicToken is ERC20Basic {
                  using SafeMath for uint256;
              
                  mapping(address => uint256) balances;
              
                  uint256 totalSupply_;
              
                  /**
                  * @dev total number of tokens in existence
                  */
                  function totalSupply() public view returns (uint256) {
                      return totalSupply_;
                  }
              
                  /**
                  * @dev transfer token for a specified address
                  * @param _to The address to transfer to.
                  * @param _value The amount to be transferred.
                  */
                  function transfer(address _to, uint256 _value) public returns (bool) {
                      require(_to != address(0));
                      require(_value <= balances[msg.sender]);
              
                      // SafeMath.sub will throw if there is not enough balance.
                      balances[msg.sender] = balances[msg.sender].sub(_value);
                      balances[_to] = balances[_to].add(_value);
                      emit Transfer(msg.sender, _to, _value);
                      return true;
                  }
              
                  /**
                  * @dev Gets the balance of the specified address.
                  * @param _owner The address to query the the balance of.
                  * @return An uint256 representing the amount owned by the passed address.
                  */
                  function balanceOf(address _owner) public view returns (uint256 balance) {
                      return balances[_owner];
                  }
              
              }
              
              // File: zeppelin/contracts/token/ERC20/ERC20.sol
              
              /**
               * @title ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              contract ERC20 is ERC20Basic {
                  function allowance(address owner, address spender) public view returns (uint256);
                  function transferFrom(address from, address to, uint256 value) public returns (bool);
                  function approve(address spender, uint256 value) public returns (bool);
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              // File: zeppelin/contracts/token/ERC20/StandardToken.sol
              
              /**
               * @title Standard ERC20 token
               *
               * @dev Implementation of the basic standard token.
               * @dev https://github.com/ethereum/EIPs/issues/20
               * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
               */
              contract StandardToken is ERC20, BasicToken {
              
                  mapping (address => mapping (address => uint256)) internal allowed;
              
              
                  /**
                   * @dev Transfer tokens from one address to another
                   * @param _from address The address which you want to send tokens from
                   * @param _to address The address which you want to transfer to
                   * @param _value uint256 the amount of tokens to be transferred
                   */
                  function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
                      require(_to != address(0));
                      require(_value <= balances[_from]);
                      require(_value <= allowed[_from][msg.sender]);
              
                      balances[_from] = balances[_from].sub(_value);
                      balances[_to] = balances[_to].add(_value);
                      allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
                      emit Transfer(_from, _to, _value);
                      return true;
                  }
              
                  /**
                   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                   *
                   * Beware that changing an allowance with this method brings the risk that someone may use both the old
                   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
                   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   * @param _spender The address which will spend the funds.
                   * @param _value The amount of tokens to be spent.
                   */
                  function approve(address _spender, uint256 _value) public returns (bool) {
                      allowed[msg.sender][_spender] = _value;
                      emit Approval(msg.sender, _spender, _value);
                      return true;
                  }
              
                  /**
                   * @dev Function to check the amount of tokens that an owner allowed to a spender.
                   * @param _owner address The address which owns the funds.
                   * @param _spender address The address which will spend the funds.
                   * @return A uint256 specifying the amount of tokens still available for the spender.
                   */
                  function allowance(address _owner, address _spender) public view returns (uint256) {
                      return allowed[_owner][_spender];
                  }
              
                  /**
                   * @dev Increase the amount of tokens that an owner allowed to a spender.
                   *
                   * approve should be called when allowed[_spender] == 0. To increment
                   * allowed value is better to use this function to avoid 2 calls (and wait until
                   * the first transaction is mined)
                   * From MonolithDAO Token.sol
                   * @param _spender The address which will spend the funds.
                   * @param _addedValue The amount of tokens to increase the allowance by.
                   */
                  function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
                      allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
                      emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
                      return true;
                  }
              
                  /**
                   * @dev Decrease the amount of tokens that an owner allowed to a spender.
                   *
                   * approve should be called when allowed[_spender] == 0. To decrement
                   * allowed value is better to use this function to avoid 2 calls (and wait until
                   * the first transaction is mined)
                   * From MonolithDAO Token.sol
                   * @param _spender The address which will spend the funds.
                   * @param _subtractedValue The amount of tokens to decrease the allowance by.
                   */
                  function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
                      uint oldValue = allowed[msg.sender][_spender];
                      if (_subtractedValue > oldValue) {
                          allowed[msg.sender][_spender] = 0;
                      } else {
                          allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
                      }
                      emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
                      return true;
                  }
              
              }
              
              // File: contracts/TransferableToken.sol
              
              /**
                  Copyright (c) 2018 Cryptense SAS - Kryll.io
              
                  Kryll.io / Transferable ERC20 token mechanism
                  Version 0.2
                  
                  Permission is hereby granted, free of charge, to any person obtaining a copy
                  of this software and associated documentation files (the "Software"), to deal
                  in the Software without restriction, including without limitation the rights
                  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                  copies of the Software, and to permit persons to whom the Software is
                  furnished to do so, subject to the following conditions:
              
                  The above copyright notice and this permission notice shall be included in
                  all copies or substantial portions of the Software.
              
                  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
                  THE SOFTWARE.
              
                  based on the contracts of OpenZeppelin:
                  https://github.com/OpenZeppelin/zeppelin-solidity/tree/master/contracts
              **/
              
              pragma solidity ^0.4.23;
              
              
              
              
              /**
               * @title Transferable token
               *
               * @dev StandardToken modified with transfert on/off mechanism.
               **/
              contract TransferableToken is StandardToken,Ownable {
              
                  /** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
                  * @dev TRANSFERABLE MECANISM SECTION
                  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/
              
                  event Transferable();
                  event UnTransferable();
              
                  bool public transferable = false;
                  mapping (address => bool) public whitelisted;
              
                  /**
                      CONSTRUCTOR
                  **/
                  
                  constructor() 
                      StandardToken() 
                      Ownable()
                      public 
                  {
                      whitelisted[msg.sender] = true;
                  }
              
                  /**
                      MODIFIERS
                  **/
              
                  /**
                  * @dev Modifier to make a function callable only when the contract is not transferable.
                  */
                  modifier whenNotTransferable() {
                      require(!transferable);
                      _;
                  }
              
                  /**
                  * @dev Modifier to make a function callable only when the contract is transferable.
                  */
                  modifier whenTransferable() {
                      require(transferable);
                      _;
                  }
              
                  /**
                  * @dev Modifier to make a function callable only when the caller can transfert token.
                  */
                  modifier canTransfert() {
                      if(!transferable){
                          require (whitelisted[msg.sender]);
                      } 
                      _;
                 }
                 
                  /**
                      OWNER ONLY FUNCTIONS
                  **/
              
                  /**
                  * @dev called by the owner to allow transferts, triggers Transferable state
                  */
                  function allowTransfert() onlyOwner whenNotTransferable public {
                      transferable = true;
                      emit Transferable();
                  }
              
                  /**
                  * @dev called by the owner to restrict transferts, returns to untransferable state
                  */
                  function restrictTransfert() onlyOwner whenTransferable public {
                      transferable = false;
                      emit UnTransferable();
                  }
              
                  /**
                    @dev Allows the owner to add addresse that can bypass the transfer lock.
                  **/
                  function whitelist(address _address) onlyOwner public {
                      require(_address != 0x0);
                      whitelisted[_address] = true;
                  }
              
                  /**
                    @dev Allows the owner to remove addresse that can bypass the transfer lock.
                  **/
                  function restrict(address _address) onlyOwner public {
                      require(_address != 0x0);
                      whitelisted[_address] = false;
                  }
              
              
                  /** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
                  * @dev Strandard transferts overloaded API
                  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/
              
                  function transfer(address _to, uint256 _value) public canTransfert returns (bool) {
                      return super.transfer(_to, _value);
                  }
              
                  function transferFrom(address _from, address _to, uint256 _value) public canTransfert returns (bool) {
                      return super.transferFrom(_from, _to, _value);
                  }
              
                /**
                 * Beware that changing an allowance with this method brings the risk that someone may use both the old
                 * and the new allowance by unfortunate transaction ordering. We recommend to use use increaseApproval
                 * and decreaseApproval functions instead !
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263555598
                 */
                  function approve(address _spender, uint256 _value) public canTransfert returns (bool) {
                      return super.approve(_spender, _value);
                  }
              
                  function increaseApproval(address _spender, uint _addedValue) public canTransfert returns (bool success) {
                      return super.increaseApproval(_spender, _addedValue);
                  }
              
                  function decreaseApproval(address _spender, uint _subtractedValue) public canTransfert returns (bool success) {
                      return super.decreaseApproval(_spender, _subtractedValue);
                  }
              }
              
              // File: contracts/KryllToken.sol
              
              /**
                  Copyright (c) 2018 Cryptense SAS - Kryll.io
              
                  Kryll.io / KRL ERC20 Token Smart Contract    
                  Version 0.2
              
                  Permission is hereby granted, free of charge, to any person obtaining a copy
                  of this software and associated documentation files (the "Software"), to deal
                  in the Software without restriction, including without limitation the rights
                  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                  copies of the Software, and to permit persons to whom the Software is
                  furnished to do so, subject to the following conditions:
              
                  The above copyright notice and this permission notice shall be included in
                  all copies or substantial portions of the Software.
              
                  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
                  THE SOFTWARE.
              
                  based on the contracts of OpenZeppelin:
                  https://github.com/OpenZeppelin/zeppelin-solidity/tree/master/contracts
              **/
              
              pragma solidity ^0.4.23;
              
              
              
              
              contract KryllToken is TransferableToken {
              //    using SafeMath for uint256;
              
                  string public symbol = "KRL";
                  string public name = "Kryll.io Token";
                  uint8 public decimals = 18;
                
              
                  uint256 constant internal DECIMAL_CASES    = (10 ** uint256(decimals));
                  uint256 constant public   SALE             =  17737348 * DECIMAL_CASES; // Token sale
                  uint256 constant public   TEAM             =   8640000 * DECIMAL_CASES; // TEAM (vested)
                  uint256 constant public   ADVISORS         =   2880000 * DECIMAL_CASES; // Advisors
                  uint256 constant public   SECURITY         =   4320000 * DECIMAL_CASES; // Security Reserve
                  uint256 constant public   PRESS_MARKETING  =   5040000 * DECIMAL_CASES; // Press release
                  uint256 constant public   USER_ACQUISITION =  10080000 * DECIMAL_CASES; // User Acquisition 
                  uint256 constant public   BOUNTY           =    720000 * DECIMAL_CASES; // Bounty (ICO & future)
              
                  address public sale_address     = 0x29e9535AF275a9010862fCDf55Fe45CD5D24C775;
                  address public team_address     = 0xd32E4fb9e8191A97905Fb5Be9Aa27458cD0124C1;
                  address public advisors_address = 0x609f5a53189cAf4EeE25709901f43D98516114Da;
                  address public security_address = 0x2eA5917E227552253891C1860E6c6D0057386F62;
                  address public press_address    = 0xE9cAad0504F3e46b0ebc347F5bf591DBcB49756a;
                  address public user_acq_address = 0xACD80ad0f7beBe447ea0625B606Cf3DF206DafeF;
                  address public bounty_address   = 0x150658D45dc62E9EB246E82e552A3ec93d664985;
                  bool public initialDistributionDone = false;
              
                  /**
                  * @dev Setup the initial distribution addresses
                  */
                  function reset(address _saleAddrss, address _teamAddrss, address _advisorsAddrss, address _securityAddrss, address _pressAddrss, address _usrAcqAddrss, address _bountyAddrss) public onlyOwner{
                      require(!initialDistributionDone);
                      team_address = _teamAddrss;
                      advisors_address = _advisorsAddrss;
                      security_address = _securityAddrss;
                      press_address = _pressAddrss;
                      user_acq_address = _usrAcqAddrss;
                      bounty_address = _bountyAddrss;
                      sale_address = _saleAddrss;
                  }
              
                  /**
                  * @dev compute & distribute the tokens
                  */
                  function distribute() public onlyOwner {
                      // Initialisation check
                      require(!initialDistributionDone);
                      require(sale_address != 0x0 && team_address != 0x0 && advisors_address != 0x0 && security_address != 0x0 && press_address != 0x0 && user_acq_address != 0 && bounty_address != 0x0);      
              
                      // Compute total supply 
                      totalSupply_ = SALE.add(TEAM).add(ADVISORS).add(SECURITY).add(PRESS_MARKETING).add(USER_ACQUISITION).add(BOUNTY);
              
                      // Distribute KRL Token 
                      balances[owner] = totalSupply_;
                      emit Transfer(0x0, owner, totalSupply_);
              
                      transfer(team_address, TEAM);
                      transfer(advisors_address, ADVISORS);
                      transfer(security_address, SECURITY);
                      transfer(press_address, PRESS_MARKETING);
                      transfer(user_acq_address, USER_ACQUISITION);
                      transfer(bounty_address, BOUNTY);
                      transfer(sale_address, SALE);
                      initialDistributionDone = true;
                      whitelist(sale_address); // Auto whitelist sale address
                      whitelist(team_address); // Auto whitelist team address (vesting transfert)
                  }
              
                  /**
                  * @dev Allows owner to later update token name if needed.
                  */
                  function setName(string _name) onlyOwner public {
                      name = _name;
                  }
              
              }

              File 3 of 10: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }
              

              File 4 of 10: Lib_ResolvedDelegateProxy
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor () internal {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* External Imports */
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @title Lib_AddressManager
               */
              contract Lib_AddressManager is Ownable {
                  /**********
                   * Events *
                   **********/
                  event AddressSet(
                      string indexed _name,
                      address _newAddress,
                      address _oldAddress
                  );
                  /*************
                   * Variables *
                   *************/
                  mapping (bytes32 => address) private addresses;
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Changes the address associated with a particular name.
                   * @param _name String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(
                      string memory _name,
                      address _address
                  )
                      external
                      onlyOwner
                  {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(
                          _name,
                          _address,
                          oldAddress
                      );
                  }
                  /**
                   * Retrieves the address associated with a given name.
                   * @param _name Name to retrieve an address for.
                   * @return Address associated with the given name.
                   */
                  function getAddress(
                      string memory _name
                  )
                      external
                      view
                      returns (
                          address
                      )
                  {
                      return addresses[_getNameHash(_name)];
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Computes the hash of a name.
                   * @param _name Name to compute a hash for.
                   * @return Hash of the given name.
                   */
                  function _getNameHash(
                      string memory _name
                  )
                      internal
                      pure
                      returns (
                          bytes32
                      )
                  {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* Library Imports */
              import { Lib_AddressManager } from "./Lib_AddressManager.sol";
              /**
               * @title Lib_ResolvedDelegateProxy
               */
              contract Lib_ResolvedDelegateProxy {
                  /*************
                   * Variables *
                   *************/
                  // Using mappings to store fields to avoid overwriting storage slots in the
                  // implementation contract. For example, instead of storing these fields at
                  // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
                  // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
                  // NOTE: Do not use this code in your own contract system.
                  //      There is a known flaw in this contract, and we will remove it from the repository
                  //      in the near future. Due to the very limited way that we are using it, this flaw is
                  //      not an issue in our system.
                  mapping (address => string) private implementationName;
                  mapping (address => Lib_AddressManager) private addressManager;
                  /***************
                   * Constructor *
                   ***************/
                  /**
                   * @param _libAddressManager Address of the Lib_AddressManager.
                   * @param _implementationName implementationName of the contract to proxy to.
                   */
                  constructor(
                      address _libAddressManager,
                      string memory _implementationName
                  ) {
                      addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
                      implementationName[address(this)] = _implementationName;
                  }
                  /*********************
                   * Fallback Function *
                   *********************/
                  fallback()
                      external
                      payable
                  {
                      address target = addressManager[address(this)].getAddress(
                          (implementationName[address(this)])
                      );
                      require(
                          target != address(0),
                          "Target address must be initialized."
                      );
                      (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                      if (success == true) {
                          assembly {
                              return(add(returndata, 0x20), mload(returndata))
                          }
                      } else {
                          assembly {
                              revert(add(returndata, 0x20), mload(returndata))
                          }
                      }
                  }
              }
              

              File 5 of 10: ProxyAdmin
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @custom:legacy
               * @title AddressManager
               * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
               *         system to manage a registry of string names to addresses. We now use a more standard
               *         proxy system instead, but this contract is still necessary for backwards compatibility
               *         with several older contracts.
               */
              contract AddressManager is Ownable {
                  /**
                   * @notice Mapping of the hashes of string names to addresses.
                   */
                  mapping(bytes32 => address) private addresses;
                  /**
                   * @notice Emitted when an address is modified in the registry.
                   *
                   * @param name       String name being set in the registry.
                   * @param newAddress Address set for the given name.
                   * @param oldAddress Address that was previously set for the given name.
                   */
                  event AddressSet(string indexed name, address newAddress, address oldAddress);
                  /**
                   * @notice Changes the address associated with a particular name.
                   *
                   * @param _name    String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(_name, _address, oldAddress);
                  }
                  /**
                   * @notice Retrieves the address associated with a given name.
                   *
                   * @param _name Name to retrieve an address for.
                   *
                   * @return Address associated with the given name.
                   */
                  function getAddress(string memory _name) external view returns (address) {
                      return addresses[_getNameHash(_name)];
                  }
                  /**
                   * @notice Computes the hash of a name.
                   *
                   * @param _name Name to compute a hash for.
                   *
                   * @return Hash of the given name.
                   */
                  function _getNameHash(string memory _name) internal pure returns (bytes32) {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title IL1ChugSplashDeployer
               */
              interface IL1ChugSplashDeployer {
                  function isUpgrading() external view returns (bool);
              }
              /**
               * @custom:legacy
               * @title L1ChugSplashProxy
               * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
               *
               *         Note for future developers: do NOT make anything in this contract 'public' unless you
               *         know what you're doing. Anything public can potentially have a function signature that
               *         conflicts with a signature attached to the implementation contract. Public functions
               *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
               *         reason not to have that modifier. And there almost certainly is not a good reason to not
               *         have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /**
                   * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                   *         contract, the appended bytecode will be deployed as given.
                   */
                  bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice Blocks a function from being called when the parent signals that the system should
                   *         be paused via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                      }
                      _;
                  }
                  /**
                   * @notice Makes a proxy call instead of triggering the given function when the caller is
                   *         either the owner or the zero address. Caller can only ever be the zero address if
                   *         this function is being called off-chain via eth_call, which is totally fine and can
                   *         be convenient for client-side tooling. Avoids situations where the proxy and
                   *         implementation share a sighash and the proxy function ends up being called instead
                   *         of the implementation one.
                   *
                   *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                   *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                   *         real context then we have much bigger problems. Primary reason to include this
                   *         additional allowed sender is because the owner address can be changed dynamically
                   *         and we do not want clients to have to keep track of the current owner in order to
                   *         make an eth_call that doesn't trigger the proxied contract.
                   */
                  // slither-disable-next-line incorrect-modifier
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(address _owner) {
                      _setOwner(_owner);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Sets the code that should be running behind this proxy.
                   *
                   *         Note: This scheme is a bit different from the standard proxy scheme where one would
                   *         typically deploy the code separately and then set the implementation address. We're
                   *         doing it this way because it gives us a lot more freedom on the client side. Can
                   *         only be triggered by the contract owner.
                   *
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(bytes memory _code) external proxyCallIfNotOwner {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed"
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                   *         perform upgrades in a more transparent way. Only callable by the owner.
                   *
                   * @param _key   Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(address _owner) external proxyCallIfNotOwner {
                      _setOwner(_owner);
                  }
                  /**
                   * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                   *         making an eth_call and setting the "from" address to address(0).
                   *
                   * @return Owner address.
                   */
                  function getOwner() external proxyCallIfNotOwner returns (address) {
                      return _getOwner();
                  }
                  /**
                   * @notice Queries the implementation address. Can only be called by the owner OR by making an
                   *         eth_call and setting the "from" address to address(0).
                   *
                   * @return Implementation address.
                   */
                  function getImplementation() external proxyCallIfNotOwner returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(address _owner) internal {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal onlyWhenNotPaused {
                      address implementation = _getImplementation();
                      require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getOwner() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * @notice Gets the code hash for a given account.
                   *
                   * @param _account Address of the account to get a code hash for.
                   *
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              import { Proxy } from "./Proxy.sol";
              import { AddressManager } from "../legacy/AddressManager.sol";
              import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
              /**
               * @title IStaticERC1967Proxy
               * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
               */
              interface IStaticERC1967Proxy {
                  function implementation() external view returns (address);
                  function admin() external view returns (address);
              }
              /**
               * @title IStaticL1ChugSplashProxy
               * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
               */
              interface IStaticL1ChugSplashProxy {
                  function getImplementation() external view returns (address);
                  function getOwner() external view returns (address);
              }
              /**
               * @title ProxyAdmin
               * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
               *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
               *         with the various types of proxies that have been deployed by Optimism in the past.
               */
              contract ProxyAdmin is Ownable {
                  /**
                   * @notice The proxy types that the ProxyAdmin can manage.
                   *
                   * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
                   * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
                   * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
                   */
                  enum ProxyType {
                      ERC1967,
                      CHUGSPLASH,
                      RESOLVED
                  }
                  /**
                   * @notice A mapping of proxy types, used for backwards compatibility.
                   */
                  mapping(address => ProxyType) public proxyType;
                  /**
                   * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
                   *         manually kept up to date with changes in the AddressManager for this contract
                   *         to be able to work as an admin for the ResolvedDelegateProxy type.
                   */
                  mapping(address => string) public implementationName;
                  /**
                   * @notice The address of the address manager, this is required to manage the
                   *         ResolvedDelegateProxy type.
                   */
                  AddressManager public addressManager;
                  /**
                   * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
                   */
                  bool internal upgrading;
                  /**
                   * @param _owner Address of the initial owner of this contract.
                   */
                  constructor(address _owner) Ownable() {
                      _transferOwnership(_owner);
                  }
                  /**
                   * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
                   *         proxy types.
                   *
                   * @param _address Address of the proxy.
                   * @param _type    Type of the proxy.
                   */
                  function setProxyType(address _address, ProxyType _type) external onlyOwner {
                      proxyType[_address] = _type;
                  }
                  /**
                   * @notice Sets the implementation name for a given address. Only required for
                   *         ResolvedDelegateProxy type proxies that have an implementation name.
                   *
                   * @param _address Address of the ResolvedDelegateProxy.
                   * @param _name    Name of the implementation for the proxy.
                   */
                  function setImplementationName(address _address, string memory _name) external onlyOwner {
                      implementationName[_address] = _name;
                  }
                  /**
                   * @notice Set the address of the AddressManager. This is required to manage legacy
                   *         ResolvedDelegateProxy type proxy contracts.
                   *
                   * @param _address Address of the AddressManager.
                   */
                  function setAddressManager(AddressManager _address) external onlyOwner {
                      addressManager = _address;
                  }
                  /**
                   * @custom:legacy
                   * @notice Set an address in the address manager. Since only the owner of the AddressManager
                   *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
                   *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
                   *
                   * @param _name    Name to set within the AddressManager.
                   * @param _address Address to attach to the given name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      addressManager.setAddress(_name, _address);
                  }
                  /**
                   * @custom:legacy
                   * @notice Set the upgrading status for the Chugsplash proxy type.
                   *
                   * @param _upgrading Whether or not the system is upgrading.
                   */
                  function setUpgrading(bool _upgrading) external onlyOwner {
                      upgrading = _upgrading;
                  }
                  /**
                   * @custom:legacy
                   * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
                   *
                   * @return Whether or not there is an upgrade going on. May not actually tell you whether an
                   *         upgrade is going on, since we don't currently plan to use this variable for anything
                   *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
                   */
                  function isUpgrading() external view returns (bool) {
                      return upgrading;
                  }
                  /**
                   * @notice Returns the implementation of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the implementation of.
                   *
                   * @return Address of the implementation of the proxy.
                   */
                  function getProxyImplementation(address _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).implementation();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.getAddress(implementationName[_proxy]);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Returns the admin of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the admin of.
                   *
                   * @return Address of the admin of the proxy.
                   */
                  function getProxyAdmin(address payable _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).admin();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getOwner();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.owner();
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Updates the admin of the given proxy address.
                   *
                   * @param _proxy    Address of the proxy to update.
                   * @param _newAdmin Address of the new proxy admin.
                   */
                  function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).changeAdmin(_newAdmin);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                      } else if (ptype == ProxyType.RESOLVED) {
                          addressManager.transferOwnership(_newAdmin);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   */
                  function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeTo(_implementation);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setStorage(
                              // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                              bytes32(uint256(uint160(_implementation)))
                          );
                      } else if (ptype == ProxyType.RESOLVED) {
                          string memory name = implementationName[_proxy];
                          addressManager.setAddress(name, _implementation);
                      } else {
                          // It should not be possible to retrieve a ProxyType value which is not matched by
                          // one of the previous conditions.
                          assert(false);
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
                   *         with some given data. Useful for atomic upgrade-and-initialize calls.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   * @param _data           Data to trigger the new implementation with.
                   */
                  function upgradeAndCall(
                      address payable _proxy,
                      address _implementation,
                      bytes memory _data
                  ) external payable onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                      } else {
                          // reverts if proxy type is unknown
                          upgrade(_proxy, _implementation);
                          (bool success, ) = _proxy.call{ value: msg.value }(_data);
                          require(success, "ProxyAdmin: call to proxy after upgrade failed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              

              File 6 of 10: L1StandardBridge
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { StandardBridge } from "src/universal/StandardBridge.sol";
              // Libraries
              import { Predeploys } from "src/libraries/Predeploys.sol";
              // Interfaces
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              /// @custom:proxied true
              /// @title L1StandardBridge
              /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
              ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
              ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
              ///         stored within this contract. After Bedrock, ETH is instead stored inside the
              ///         OptimismPortal contract.
              ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
              ///         of some token types that may not be properly supported by this contract include, but are
              ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
              contract L1StandardBridge is StandardBridge, ISemver {
                  /// @custom:legacy
                  /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of ETH deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of ETH withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 deposit is initiated.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of the ERC20 deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ERC20DepositInitiated(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 withdrawal is finalized.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of the ERC20 withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ERC20WithdrawalFinalized(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Semantic version.
                  /// @custom:semver 2.3.0
                  string public constant version = "2.3.0";
                  /// @notice Address of the SuperchainConfig contract.
                  ISuperchainConfig public superchainConfig;
                  /// @custom:legacy
                  /// @custom:spacer systemConfig
                  /// @notice Spacer taking up the legacy `systemConfig` slot.
                  address private spacer_51_0_20;
                  /// @notice Constructs the L1StandardBridge contract.
                  constructor() StandardBridge() {
                      _disableInitializers();
                  }
                  /// @notice Initializer.
                  /// @param _messenger        Contract for the CrossDomainMessenger on this network.
                  /// @param _superchainConfig Contract for the SuperchainConfig on this network.
                  function initialize(ICrossDomainMessenger _messenger, ISuperchainConfig _superchainConfig) external initializer {
                      superchainConfig = _superchainConfig;
                      __StandardBridge_init({
                          _messenger: _messenger,
                          _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                      });
                  }
                  /// @inheritdoc StandardBridge
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  receive() external payable override onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into the sender's account on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into a target account on L2.
                  ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
                  ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
                  ///         successfully replayed by increasing the amount of gas supplied to the call. If the
                  ///         call will fail for any amount of gas, then the ETH will be locked permanently.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                      _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20(
                      address _l1Token,
                      address _l2Token,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                      onlyEOA
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20To(
                      address _l1Token,
                      address _l2Token,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ETH from L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of ETH to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeETHWithdrawal(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                      payable
                  {
                      finalizeBridgeETH(_from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
                  /// @param _l1Token   Address of the token on L1.
                  /// @param _l2Token   Address of the corresponding token on L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of the ERC20 to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeERC20Withdrawal(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                  {
                      finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Retrieves the access of the corresponding L2 bridge contract.
                  /// @return Address of the corresponding L2 bridge contract.
                  function l2TokenBridge() external view returns (address) {
                      return address(otherBridge);
                  }
                  /// @notice Internal function for initiating an ETH deposit.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                      _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Internal function for initiating an ERC20 deposit.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateERC20Deposit(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
                  ///         This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                      super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                      super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              // Libraries
              import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
              import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { EOA } from "src/libraries/EOA.sol";
              // Interfaces
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { IOptimismMintableERC20 } from "interfaces/universal/IOptimismMintableERC20.sol";
              import { ILegacyMintableERC20 } from "interfaces/legacy/ILegacyMintableERC20.sol";
              import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
              /// @custom:upgradeable
              /// @title StandardBridge
              /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
              ///         the core bridging logic, including escrowing tokens that are native to the local chain
              ///         and minting/burning tokens that are native to the remote chain.
              abstract contract StandardBridge is Initializable {
                  using SafeERC20 for IERC20;
                  /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
                  uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
                  /// @custom:legacy
                  /// @custom:spacer messenger
                  /// @notice Spacer for backwards compatibility.
                  bytes30 private spacer_0_2_30;
                  /// @custom:legacy
                  /// @custom:spacer l2TokenBridge
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_1_0_20;
                  /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
                  mapping(address => mapping(address => uint256)) public deposits;
                  /// @notice Messenger contract on this domain.
                  /// @custom:network-specific
                  ICrossDomainMessenger public messenger;
                  /// @notice Corresponding bridge on the other domain.
                  /// @custom:network-specific
                  StandardBridge public otherBridge;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
                  ///         would be a multiple of 50.
                  uint256[45] private __gap;
                  /// @notice Emitted when an ETH bridge is initiated to the other chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ETH bridge is finalized on this chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeInitiated(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Emitted when an ERC20 bridge is finalized on this chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeFinalized(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
                  ///         calling code within their constructors, but also doesn't really matter since we're
                  ///         just trying to prevent users accidentally depositing with smart contract wallets.
                  modifier onlyEOA() {
                      require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
                      _;
                  }
                  /// @notice Ensures that the caller is a cross-chain message from the other bridge.
                  modifier onlyOtherBridge() {
                      require(
                          msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                          "StandardBridge: function can only be called from the other bridge"
                      );
                      _;
                  }
                  /// @notice Initializer.
                  /// @param _messenger   Contract for CrossDomainMessenger on this network.
                  /// @param _otherBridge Contract for the other StandardBridge contract.
                  function __StandardBridge_init(
                      ICrossDomainMessenger _messenger,
                      StandardBridge _otherBridge
                  )
                      internal
                      onlyInitializing
                  {
                      messenger = _messenger;
                      otherBridge = _otherBridge;
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  ///         Must be implemented by contracts that inherit.
                  receive() external payable virtual;
                  /// @notice Getter for messenger contract.
                  ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
                  /// @return Contract of the messenger on this domain.
                  /// @custom:legacy
                  function MESSENGER() external view returns (ICrossDomainMessenger) {
                      return messenger;
                  }
                  /// @notice Getter for the other bridge contract.
                  ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
                  /// @return Contract of the bridge on the other network.
                  /// @custom:legacy
                  function OTHER_BRIDGE() external view returns (StandardBridge) {
                      return otherBridge;
                  }
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
                  /// @notice Sends ETH to the sender's address on the other chain.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                      _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
                  ///         smart contract and the call fails, the ETH will be temporarily locked in the
                  ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
                  ///         replayed with any amount of gas (call always reverts), then the ETH will be
                  ///         permanently locked in the StandardBridge on the other chain. ETH will also
                  ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
                  ///         in that case.
                  /// @param _to          Address of the receiver.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                      _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to the sender's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                      onlyEOA
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20To(
                      address _localToken,
                      address _remoteToken,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH being bridged.
                  /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
                  ///                   not be triggered with this data, but it will be emitted and can be used
                  ///                   to identify the transaction.
                  function finalizeBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      payable
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                      require(_to != address(this), "StandardBridge: cannot send to self");
                      require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                      bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                      require(success, "StandardBridge: ETH transfer failed");
                  }
                  /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 being bridged.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function finalizeBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          IOptimismMintableERC20(_localToken).mint(_to, _amount);
                      } else {
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                          IERC20(_localToken).safeTransfer(_to, _amount);
                      }
                      // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of ETH being bridged.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                      messenger.sendMessage{ value: _amount }({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      require(msg.value == 0, "StandardBridge: cannot send value");
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          IOptimismMintableERC20(_localToken).burn(_from, _amount);
                      } else {
                          IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                      }
                      // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      messenger.sendMessage({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(
                              this.finalizeBridgeERC20.selector,
                              // Because this call will be executed on the remote chain, we reverse the order of
                              // the remote and local token addresses relative to their order in the
                              // finalizeBridgeERC20 function.
                              _remoteToken,
                              _localToken,
                              _from,
                              _to,
                              _amount,
                              _extraData
                          ),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
                  ///         Just the way we like it.
                  /// @param _token Address of the token to check.
                  /// @return True if the token is an OptimismMintableERC20.
                  function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                      return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                          || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
                  }
                  /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
                  ///         Calls can be saved in the future by combining this logic with
                  ///         `_isOptimismMintableERC20`.
                  /// @param _mintableToken OptimismMintableERC20 to check against.
                  /// @param _otherToken    Pair token to check.
                  /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
                  function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                      if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                          return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                      } else {
                          return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                      }
                  }
                  /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
                  ///         when an ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
                  ///         ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
              //          This excludes the preinstalls (non-protocol contracts).
              library Predeploys {
                  /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                  uint256 internal constant PREDEPLOY_COUNT = 2048;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  ///         Not embedded into new OP-Stack chains.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH contract.
                  address internal constant WETH = 0x4200000000000000000000000000000000000006;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the OperatorFeeVault predeploy.
                  address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @notice Address of the CrossL2Inbox predeploy.
                  address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                  /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                  address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                  /// @notice Address of the SuperchainWETH predeploy.
                  address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                  /// @notice Address of the ETHLiquidity predeploy.
                  address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                  /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                  /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                  // TODO: Precalculate the address of the implementation contract
                  /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                  /// @notice Address of the SuperchainTokenBridge predeploy.
                  address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                  /// @notice Returns the name of the predeploy at the given address.
                  function getName(address _addr) internal pure returns (string memory out_) {
                      require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                      if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                      if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                      if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                      if (_addr == WETH) return "WETH";
                      if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                      if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                      if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                      if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                      if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                      if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                      if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                      if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                      if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                      if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                      if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                      if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                      if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                      if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                      if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                      if (_addr == EAS) return "EAS";
                      if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                      if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                      if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                      if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                      if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                      if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                      if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                      revert("Predeploys: unnamed predeploy");
                  }
                  /// @notice Returns true if the predeploy is not proxied.
                  function notProxied(address _addr) internal pure returns (bool) {
                      return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                  }
                  /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                  function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                      return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                          || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                          || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                          || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                          || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                          || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                          || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                          || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                          || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                  }
                  function isPredeployNamespace(address _addr) internal pure returns (bool) {
                      return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                  }
                  /// @notice Function to compute the expected address of the predeploy implementation
                  ///         in the genesis state.
                  function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                      require(
                          isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                      );
                      return address(
                          uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ICrossDomainMessenger {
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  event Initialized(uint8 version);
                  event RelayedMessage(bytes32 indexed msgHash);
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  function MESSAGE_VERSION() external view returns (uint16);
                  function MIN_GAS_CALLDATA_OVERHEAD() external view returns (uint64);
                  function MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR() external view returns (uint64);
                  function MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR() external view returns (uint64);
                  function OTHER_MESSENGER() external view returns (ICrossDomainMessenger);
                  function RELAY_CALL_OVERHEAD() external view returns (uint64);
                  function RELAY_CONSTANT_OVERHEAD() external view returns (uint64);
                  function RELAY_GAS_CHECK_BUFFER() external view returns (uint64);
                  function RELAY_RESERVED_GAS() external view returns (uint64);
                  function TX_BASE_GAS() external view returns (uint64);
                  function FLOOR_CALLDATA_OVERHEAD() external view returns (uint64);
                  function ENCODING_OVERHEAD() external view returns (uint64);
                  function baseGas(bytes memory _message, uint32 _minGasLimit) external pure returns (uint64);
                  function failedMessages(bytes32) external view returns (bool);
                  function messageNonce() external view returns (uint256);
                  function otherMessenger() external view returns (ICrossDomainMessenger);
                  function paused() external view returns (bool);
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes memory _message
                  )
                      external
                      payable;
                  function sendMessage(address _target, bytes memory _message, uint32 _minGasLimit) external payable;
                  function successfulMessages(bytes32) external view returns (bool);
                  function xDomainMessageSender() external view returns (address);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
              pragma solidity ^0.8.0;
              import "./IERC165.sol";
              /**
               * @dev Library used to query support of an interface declared via {IERC165}.
               *
               * Note that these functions return the actual result of the query: they do not
               * `revert` if an interface is not supported. It is up to the caller to decide
               * what to do in these cases.
               */
              library ERC165Checker {
                  // As per the EIP-165 spec, no interface should ever match 0xffffffff
                  bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
                  /**
                   * @dev Returns true if `account` supports the {IERC165} interface,
                   */
                  function supportsERC165(address account) internal view returns (bool) {
                      // Any contract that implements ERC165 must explicitly indicate support of
                      // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                      return
                          _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                          !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
                  }
                  /**
                   * @dev Returns true if `account` supports the interface defined by
                   * `interfaceId`. Support for {IERC165} itself is queried automatically.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                      // query support of both ERC165 as per the spec and support of _interfaceId
                      return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
                  }
                  /**
                   * @dev Returns a boolean array where each value corresponds to the
                   * interfaces passed in and whether they're supported or not. This allows
                   * you to batch check interfaces for a contract where your expectation
                   * is that some interfaces may not be supported.
                   *
                   * See {IERC165-supportsInterface}.
                   *
                   * _Available since v3.4._
                   */
                  function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                      internal
                      view
                      returns (bool[] memory)
                  {
                      // an array of booleans corresponding to interfaceIds and whether they're supported or not
                      bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                      // query support of ERC165 itself
                      if (supportsERC165(account)) {
                          // query support of each interface in interfaceIds
                          for (uint256 i = 0; i < interfaceIds.length; i++) {
                              interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                          }
                      }
                      return interfaceIdsSupported;
                  }
                  /**
                   * @dev Returns true if `account` supports all the interfaces defined in
                   * `interfaceIds`. Support for {IERC165} itself is queried automatically.
                   *
                   * Batch-querying can lead to gas savings by skipping repeated checks for
                   * {IERC165} support.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                      // query support of ERC165 itself
                      if (!supportsERC165(account)) {
                          return false;
                      }
                      // query support of each interface in _interfaceIds
                      for (uint256 i = 0; i < interfaceIds.length; i++) {
                          if (!_supportsERC165Interface(account, interfaceIds[i])) {
                              return false;
                          }
                      }
                      // all interfaces supported
                      return true;
                  }
                  /**
                   * @notice Query if a contract implements an interface, does not check ERC165 support
                   * @param account The address of the contract to query for support of an interface
                   * @param interfaceId The interface identifier, as specified in ERC-165
                   * @return true if the contract at account indicates support of the interface with
                   * identifier interfaceId, false otherwise
                   * @dev Assumes that account contains a contract that supports ERC165, otherwise
                   * the behavior of this method is undefined. This precondition can be checked
                   * with {supportsERC165}.
                   * Interface identification is specified in ERC-165.
                   */
                  function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                      // prepare call
                      bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                      // perform static call
                      bool success;
                      uint256 returnSize;
                      uint256 returnValue;
                      assembly {
                          success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                          returnSize := returndatasize()
                          returnValue := mload(0x00)
                      }
                      return success && returnSize >= 0x20 && returnValue > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title EOA
              /// @notice A library for detecting if an address is an EOA.
              library EOA {
                  /// @notice Returns true if sender address is an EOA.
                  /// @return isEOA_ True if the sender address is an EOA.
                  function isSenderEOA() internal view returns (bool isEOA_) {
                      if (msg.sender == tx.origin) {
                          isEOA_ = true;
                      } else if (address(msg.sender).code.length == 23) {
                          // If the sender is not the origin, check for 7702 delegated EOAs.
                          assembly {
                              let ptr := mload(0x40)
                              mstore(0x40, add(ptr, 0x20))
                              extcodecopy(caller(), ptr, 0, 0x20)
                              isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                          }
                      } else {
                          // If more or less than 23 bytes of code, not a 7702 delegated EOA.
                          isEOA_ = false;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              /// @title IOptimismMintableERC20
              /// @notice This interface is available on the OptimismMintableERC20 contract.
              ///         We declare it as a separate interface so that it can be used in
              ///         custom implementations of OptimismMintableERC20.
              interface IOptimismMintableERC20 is IERC165 {
                  function remoteToken() external view returns (address);
                  function bridge() external returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              /// @custom:legacy
              /// @title ILegacyMintableERC20
              /// @notice This interface was available on the legacy L2StandardERC20 contract.
              ///         It remains available on the OptimismMintableERC20 contract for
              ///         backwards compatibility.
              interface ILegacyMintableERC20 is IERC165 {
                  function l1Token() external view returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC165 standard, as defined in the
               * https://eips.ethereum.org/EIPS/eip-165[EIP].
               *
               * Implementers can declare support of contract interfaces, which can then be
               * queried by others ({ERC165Checker}).
               *
               * For an implementation, see {ERC165}.
               */
              interface IERC165 {
                  /**
                   * @dev Returns true if this contract implements the interface defined by
                   * `interfaceId`. See the corresponding
                   * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                   * to learn more about how these ids are created.
                   *
                   * This function call must use less than 30 000 gas.
                   */
                  function supportsInterface(bytes4 interfaceId) external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              

              File 7 of 10: Lib_AddressManager
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor () internal {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* External Imports */
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @title Lib_AddressManager
               */
              contract Lib_AddressManager is Ownable {
                  /**********
                   * Events *
                   **********/
                  event AddressSet(
                      string indexed _name,
                      address _newAddress,
                      address _oldAddress
                  );
                  /*************
                   * Variables *
                   *************/
                  mapping (bytes32 => address) private addresses;
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Changes the address associated with a particular name.
                   * @param _name String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(
                      string memory _name,
                      address _address
                  )
                      external
                      onlyOwner
                  {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(
                          _name,
                          _address,
                          oldAddress
                      );
                  }
                  /**
                   * Retrieves the address associated with a given name.
                   * @param _name Name to retrieve an address for.
                   * @return Address associated with the given name.
                   */
                  function getAddress(
                      string memory _name
                  )
                      external
                      view
                      returns (
                          address
                      )
                  {
                      return addresses[_getNameHash(_name)];
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Computes the hash of a name.
                   * @param _name Name to compute a hash for.
                   * @return Hash of the given name.
                   */
                  function _getNameHash(
                      string memory _name
                  )
                      internal
                      pure
                      returns (
                          bytes32
                      )
                  {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              

              File 8 of 10: L1CrossDomainMessenger
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
              // Libraries
              import { Predeploys } from "src/libraries/Predeploys.sol";
              // Interfaces
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              import { IOptimismPortal2 as IOptimismPortal } from "interfaces/L1/IOptimismPortal2.sol";
              /// @custom:proxied true
              /// @title L1CrossDomainMessenger
              /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
              ///         for sending and receiving data on the L1 side. Users are encouraged to use this
              ///         interface instead of interacting with lower-level contracts directly.
              contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
                  /// @notice Contract of the SuperchainConfig.
                  ISuperchainConfig public superchainConfig;
                  /// @notice Contract of the OptimismPortal.
                  /// @custom:network-specific
                  IOptimismPortal public portal;
                  /// @custom:legacy
                  /// @custom:spacer systemConfig
                  /// @notice Spacer taking up the legacy `systemConfig` slot.
                  address private spacer_253_0_20;
                  /// @notice Semantic version.
                  /// @custom:semver 2.6.0
                  string public constant version = "2.6.0";
                  /// @notice Constructs the L1CrossDomainMessenger contract.
                  constructor() {
                      _disableInitializers();
                  }
                  /// @notice Initializes the contract.
                  /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
                  /// @param _portal Contract of the OptimismPortal contract on this network.
                  function initialize(ISuperchainConfig _superchainConfig, IOptimismPortal _portal) external initializer {
                      superchainConfig = _superchainConfig;
                      portal = _portal;
                      __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
                  }
                  /// @notice Getter function for the OptimismPortal contract on this chain.
                  ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
                  /// @return Contract of the OptimismPortal on this chain.
                  /// @custom:legacy
                  function PORTAL() external view returns (IOptimismPortal) {
                      return portal;
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                      portal.depositTransaction{ value: _value }({
                          _to: _to,
                          _value: _value,
                          _gasLimit: _gasLimit,
                          _isCreation: false,
                          _data: _data
                      });
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isOtherMessenger() internal view override returns (bool) {
                      return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isUnsafeTarget(address _target) internal view override returns (bool) {
                      return _target == address(this) || _target == address(portal);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Libraries
              import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer0
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
              ///         tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer0 {
                  /// @custom:legacy
                  /// @custom:spacer libAddressManager
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_0_0_20;
              }
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer1
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
              ///         the third contract in the inheritance tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer1 {
                  /// @custom:legacy
                  /// @custom:spacer ContextUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         ContextUpgradable.
                  uint256[50] private spacer_1_0_1600;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's _owner
                  /// @notice Spacer for backwards compatibility.
                  ///         Come from OpenZeppelin OwnableUpgradeable.
                  address private spacer_51_0_20;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         OwnableUpgradeable.
                  uint256[49] private spacer_52_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's _paused
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  bool private spacer_101_0_1;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  uint256[49] private spacer_102_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                  /// @notice Spacer for backwards compatibility.
                  uint256 private spacer_151_0_32;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility.
                  uint256[49] private spacer_152_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer blockedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_201_0_32;
                  /// @custom:legacy
                  /// @custom:spacer relayedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_202_0_32;
              }
              /// @custom:upgradeable
              /// @title CrossDomainMessenger
              /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
              ///         cross-chain messenger contracts. It's designed to be a universal interface that only
              ///         needs to be extended slightly to provide low-level message passing functionality on each
              ///         chain it's deployed on. Currently only designed for message passing between two paired
              ///         chains and does not support one-to-many interactions.
              ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
              abstract contract CrossDomainMessenger is
                  CrossDomainMessengerLegacySpacer0,
                  Initializable,
                  CrossDomainMessengerLegacySpacer1
              {
                  /// @notice Current message version identifier.
                  uint16 public constant MESSAGE_VERSION = 1;
                  /// @notice Constant overhead added to the base gas for a message.
                  uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                  /// @notice Numerator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                  /// @notice Denominator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                  /// @notice Extra gas added to base gas for each byte of calldata in a message.
                  uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                  /// @notice Gas reserved for performing the external call in `relayMessage`.
                  uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                  /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                  uint64 public constant RELAY_RESERVED_GAS = 40_000;
                  /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                  ///         call in `relayMessage`.
                  uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                  /// @notice Base gas required for any transaction in the EVM.
                  uint64 public constant TX_BASE_GAS = 21_000;
                  /// @notice Floor overhead per byte of non-zero calldata in a message. Calldata floor was
                  ///         introduced in EIP-7623.
                  uint64 public constant FLOOR_CALLDATA_OVERHEAD = 40;
                  /// @notice Overhead added to the internal message data when the full call to relayMessage is
                  ///         ABI encoded. This is a constant value that is specific to the V1 message encoding
                  ///         scheme. 260 is an upper bound, actual overhead can be as low as 228 bytes for an
                  ///         empty message.
                  uint64 public constant ENCODING_OVERHEAD = 260;
                  /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                  ///         be present in this mapping if it has successfully been relayed on this chain, and
                  ///         can therefore not be relayed again.
                  mapping(bytes32 => bool) public successfulMessages;
                  /// @notice Address of the sender of the currently executing message on the other chain. If the
                  ///         value of this variable is the default value (0x00000000...dead) then no message is
                  ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                  ///         error if this is the case.
                  address internal xDomainMsgSender;
                  /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                  ///         messageNonce getter which will insert the message version into the nonce to give you
                  ///         the actual nonce to be used for the message.
                  uint240 internal msgNonce;
                  /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                  ///         executed at least once. A message will not be present in this mapping if it
                  ///         successfully executed on the first attempt.
                  mapping(bytes32 => bool) public failedMessages;
                  /// @notice CrossDomainMessenger contract on the other chain.
                  /// @custom:network-specific
                  CrossDomainMessenger public otherMessenger;
                  /// @notice Reserve extra slots in the storage layout for future upgrades.
                  ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                  ///         would be 1 plus a multiple of 50.
                  uint256[43] private __gap;
                  /// @notice Emitted whenever a message is sent to the other chain.
                  /// @param target       Address of the recipient of the message.
                  /// @param sender       Address of the sender of the message.
                  /// @param message      Message to trigger the recipient address with.
                  /// @param messageNonce Unique nonce attached to the message.
                  /// @param gasLimit     Minimum gas limit that the message can be executed with.
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                  ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                  /// @param sender Address of the sender of the message.
                  /// @param value  ETH value sent along with the message to the recipient.
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  /// @notice Emitted whenever a message is successfully relayed on this chain.
                  /// @param msgHash Hash of the message that was relayed.
                  event RelayedMessage(bytes32 indexed msgHash);
                  /// @notice Emitted whenever a message fails to be relayed on this chain.
                  /// @param msgHash Hash of the message that failed to be relayed.
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  /// @notice Sends a message to some target address on the other chain. Note that if the call
                  ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                  ///         permanently locked. The same will occur if the target on the other chain is
                  ///         considered unsafe (see the _isUnsafeTarget() function).
                  /// @param _target      Target contract or wallet address.
                  /// @param _message     Message to trigger the target address with.
                  /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                  function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                      // Triggers a message to the other messenger. Note that the amount of gas provided to the
                      // message is the amount of gas requested by the user PLUS the base gas value. We want to
                      // guarantee the property that the call to the target contract will always have at least
                      // the minimum gas limit specified by the user.
                      _sendMessage({
                          _to: address(otherMessenger),
                          _gasLimit: baseGas(_message, _minGasLimit),
                          _value: msg.value,
                          _data: abi.encodeWithSelector(
                              this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                          )
                      });
                      emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                      emit SentMessageExtension1(msg.sender, msg.value);
                      unchecked {
                          ++msgNonce;
                      }
                  }
                  /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                  ///         be executed via cross-chain call from the other messenger OR if the message was
                  ///         already received once and is currently being replayed.
                  /// @param _nonce       Nonce of the message being relayed.
                  /// @param _sender      Address of the user who sent the message.
                  /// @param _target      Address that the message is targeted at.
                  /// @param _value       ETH value to send with the message.
                  /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                  /// @param _message     Message to send to the target.
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes calldata _message
                  )
                      external
                      payable
                  {
                      // On L1 this function will check the Portal for its paused status.
                      // On L2 this function should be a no-op, because paused will always return false.
                      require(paused() == false, "CrossDomainMessenger: paused");
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                      // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                      // to check that the legacy version of the message has not already been relayed.
                      if (version == 0) {
                          bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                          require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                      }
                      // We use the v1 message hash as the unique identifier for the message because it commits
                      // to the value and minimum gas limit of the message.
                      bytes32 versionedHash =
                          Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                      if (_isOtherMessenger()) {
                          // These properties should always hold when the message is first submitted (as
                          // opposed to being replayed).
                          assert(msg.value == _value);
                          assert(!failedMessages[versionedHash]);
                      } else {
                          require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                          require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                      }
                      require(
                          _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                      );
                      require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                      // If there is not enough gas left to perform the external call and finish the execution,
                      // return early and assign the message to the failedMessages mapping.
                      // We are asserting that we have enough gas to:
                      // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                      //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                      // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                      //
                      // If `xDomainMsgSender` is not the default L2 sender, this function
                      // is being re-entered. This marks the message as failed to allow it to be replayed.
                      if (
                          !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                              || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                      ) {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                          return;
                      }
                      xDomainMsgSender = _sender;
                      bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                      xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      if (success) {
                          // This check is identical to one above, but it ensures that the same message cannot be relayed
                          // twice, and adds a layer of protection against rentrancy.
                          assert(successfulMessages[versionedHash] == false);
                          successfulMessages[versionedHash] = true;
                          emit RelayedMessage(versionedHash);
                      } else {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                      }
                  }
                  /// @notice Retrieves the address of the contract or wallet that initiated the currently
                  ///         executing message on the other chain. Will throw an error if there is no message
                  ///         currently being executed. Allows the recipient of a call to see who triggered it.
                  /// @return Address of the sender of the currently executing message on the other chain.
                  function xDomainMessageSender() external view returns (address) {
                      require(
                          xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                      );
                      return xDomainMsgSender;
                  }
                  /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                  ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                  /// @return CrossDomainMessenger contract on the other chain.
                  /// @custom:legacy
                  function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                      return otherMessenger;
                  }
                  /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                  ///         bytes of the message nonce. Message version allows us to treat messages as having
                  ///         different structures.
                  /// @return Nonce of the next message to be sent, with added message version.
                  function messageNonce() public view returns (uint256) {
                      return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                  }
                  /// @notice Computes the amount of gas required to guarantee that a given message will be
                  ///         received on the other chain without running out of gas. Guaranteeing that a message
                  ///         will not run out of gas is important because this ensures that a message can always
                  ///         be replayed on the other chain if it fails to execute completely.
                  /// @param _message     Message to compute the amount of required gas for.
                  /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                  /// @return Amount of gas required to guarantee message receipt.
                  function baseGas(bytes memory _message, uint32 _minGasLimit) public pure returns (uint64) {
                      // Base gas should really be computed on the fully encoded message but that would break the
                      // expected API, so we instead just add the encoding overhead to the message length inside
                      // of this function.
                      // We need a minimum amount of execution gas to ensure that the message will be received on
                      // the other side without running out of gas (stored within the failedMessages mapping).
                      // If we get beyond the hasMinGas check, then we *must* supply more than minGasLimit to
                      // the external call.
                      uint64 executionGas = uint64(
                          // Constant costs for relayMessage
                          RELAY_CONSTANT_OVERHEAD
                          // Covers dynamic parts of the CALL opcode
                          + RELAY_CALL_OVERHEAD
                          // Ensures execution of relayMessage completes after call
                          + RELAY_RESERVED_GAS
                          // Buffer between hasMinGas check and the CALL
                          + RELAY_GAS_CHECK_BUFFER
                          // Minimum gas limit, multiplied by 64/63 to account for EIP-150.
                          + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                      );
                      // Total message size is the result of properly ABI encoding the call to relayMessage.
                      // Since we only get the message data and not the rest of the calldata, we use the
                      // ENCODING_OVERHEAD constant to conservatively account for the remaining bytes.
                      uint64 totalMessageSize = uint64(_message.length + ENCODING_OVERHEAD);
                      // Finally, replicate the transaction cost formula as defined after EIP-7623. This is
                      // mostly relevant in the L1 -> L2 case because we need to be able to cover the intrinsic
                      // cost of the message but it doesn't hurt in the L2 -> L1 case. After EIP-7623, the cost
                      // of a transaction is floored by its calldata size. We don't need to account for the
                      // contract creation case because this is always a call to relayMessage.
                      return TX_BASE_GAS
                          + uint64(
                              Math.max(
                                  executionGas + (totalMessageSize * MIN_GAS_CALLDATA_OVERHEAD),
                                  (totalMessageSize * FLOOR_CALLDATA_OVERHEAD)
                              )
                          );
                  }
                  /// @notice Initializer.
                  /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                  function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                      // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                      // meaning that this is a fresh contract deployment.
                      // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                      // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                      if (xDomainMsgSender == address(0)) {
                          xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      }
                      otherMessenger = _otherMessenger;
                  }
                  /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @param _to       Recipient of the message on the other chain.
                  /// @param _gasLimit Minimum gas limit the message can be executed with.
                  /// @param _value    Amount of ETH to send with the message.
                  /// @param _data     Message data.
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                  /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @return Whether the message is coming from the other messenger.
                  function _isOtherMessenger() internal view virtual returns (bool);
                  /// @notice Checks whether a given call target is a system address that could cause the
                  ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                  ///         addresses. This is ONLY used to prevent the execution of messages to specific
                  ///         system addresses that could cause security issues, e.g., having the
                  ///         CrossDomainMessenger send messages to itself.
                  /// @param _target Address of the contract to check.
                  /// @return Whether or not the address is an unsafe system address.
                  function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
              //          This excludes the preinstalls (non-protocol contracts).
              library Predeploys {
                  /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                  uint256 internal constant PREDEPLOY_COUNT = 2048;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  ///         Not embedded into new OP-Stack chains.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH contract.
                  address internal constant WETH = 0x4200000000000000000000000000000000000006;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the OperatorFeeVault predeploy.
                  address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @notice Address of the CrossL2Inbox predeploy.
                  address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                  /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                  address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                  /// @notice Address of the SuperchainWETH predeploy.
                  address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                  /// @notice Address of the ETHLiquidity predeploy.
                  address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                  /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                  /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                  // TODO: Precalculate the address of the implementation contract
                  /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                  /// @notice Address of the SuperchainTokenBridge predeploy.
                  address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                  /// @notice Returns the name of the predeploy at the given address.
                  function getName(address _addr) internal pure returns (string memory out_) {
                      require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                      if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                      if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                      if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                      if (_addr == WETH) return "WETH";
                      if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                      if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                      if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                      if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                      if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                      if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                      if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                      if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                      if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                      if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                      if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                      if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                      if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                      if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                      if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                      if (_addr == EAS) return "EAS";
                      if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                      if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                      if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                      if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                      if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                      if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                      if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                      revert("Predeploys: unnamed predeploy");
                  }
                  /// @notice Returns true if the predeploy is not proxied.
                  function notProxied(address _addr) internal pure returns (bool) {
                      return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                  }
                  /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                  function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                      return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                          || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                          || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                          || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                          || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                          || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                          || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                          || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                          || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                  }
                  function isPredeployNamespace(address _addr) internal pure returns (bool) {
                      return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                  }
                  /// @notice Function to compute the expected address of the predeploy implementation
                  ///         in the genesis state.
                  function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                      require(
                          isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                      );
                      return address(
                          uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { GameType, Timestamp } from "src/dispute/lib/LibUDT.sol";
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
              import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              interface IOptimismPortal2 {
                  error AlreadyFinalized();
                  error BadTarget();
                  error Blacklisted();
                  error CallPaused();
                  error ContentLengthMismatch();
                  error EmptyItem();
                  error GasEstimation();
                  error InvalidDataRemainder();
                  error InvalidDisputeGame();
                  error InvalidGameType();
                  error InvalidHeader();
                  error InvalidMerkleProof();
                  error InvalidProof();
                  error LargeCalldata();
                  error NonReentrant();
                  error OutOfGas();
                  error ProposalNotValidated();
                  error SmallGasLimit();
                  error Unauthorized();
                  error UnexpectedList();
                  error UnexpectedString();
                  error Unproven();
                  error LegacyGame();
                  event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                  event Initialized(uint8 version);
                  event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                  receive() external payable;
                  function blacklistDisputeGame(IDisputeGame _disputeGame) external;
                  function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) external view;
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      external
                      payable;
                  function disputeGameBlacklist(IDisputeGame) external view returns (bool);
                  function disputeGameFactory() external view returns (IDisputeGameFactory);
                  function disputeGameFinalityDelaySeconds() external view returns (uint256);
                  function donateETH() external payable;
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
                  function finalizeWithdrawalTransactionExternalProof(
                      Types.WithdrawalTransaction memory _tx,
                      address _proofSubmitter
                  )
                      external;
                  function finalizedWithdrawals(bytes32) external view returns (bool);
                  function guardian() external view returns (address);
                  function initialize(
                      IDisputeGameFactory _disputeGameFactory,
                      ISystemConfig _systemConfig,
                      ISuperchainConfig _superchainConfig,
                      GameType _initialRespectedGameType
                  )
                      external;
                  function l2Sender() external view returns (address);
                  function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
                  function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function paused() external view returns (bool);
                  function proofMaturityDelaySeconds() external view returns (uint256);
                  function proofSubmitters(bytes32, uint256) external view returns (address);
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _disputeGameIndex,
                      Types.OutputRootProof memory _outputRootProof,
                      bytes[] memory _withdrawalProof
                  )
                      external;
                  function provenWithdrawals(
                      bytes32,
                      address
                  )
                      external
                      view
                      returns (IDisputeGame disputeGameProxy, uint64 timestamp); // nosemgrep
                  function respectedGameType() external view returns (GameType);
                  function respectedGameTypeUpdatedAt() external view returns (uint64);
                  function setRespectedGameType(GameType _gameType) external;
                  function superchainConfig() external view returns (ISuperchainConfig);
                  function systemConfig() external view returns (ISystemConfig);
                  function version() external pure returns (string memory);
                  function __constructor__(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/AddressUpgradeable.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
                  /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                  ///         the message and ensure it is not relayed more than once.
                  /// @param _destination Chain ID of the destination chain.
                  /// @param _source Chain ID of the source chain.
                  /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                  /// @param _sender Address of the user who originally sent the message.
                  /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                  /// @param _message The message payload to be relayed to the target on the destination chain.
                  /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                  function hashL2toL2CrossDomainMessage(
                      uint256 _destination,
                      uint256 _source,
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      bytes memory _message
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  /// @param _operatorFeeScalar   Operator fee scalar.
                  /// @param _operatorFeeConstant Operator fee constant.
                  function encodeSetL1BlockValuesIsthmus(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash,
                      uint32 _operatorFeeScalar,
                      uint64 _operatorFeeConstant
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash,
                          _operatorFeeScalar,
                          _operatorFeeConstant
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesInterop(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Interfaces
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice The address that represents ether when dealing with ERC20 token addresses.
                  address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                  /// @notice The address that represents the system caller responsible for L1 attributes
                  ///         transactions.
                  address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                      IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
                  /// @notice Enum representing where the FeeVault withdraws funds to.
                  /// @custom:value L1 FeeVault withdraws funds to L1.
                  /// @custom:value L2 FeeVault withdraws funds to L2.
                  enum WithdrawalNetwork {
                      L1,
                      L2
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import { Position } from "src/dispute/lib/LibPosition.sol";
              using LibClaim for Claim global;
              using LibHash for Hash global;
              using LibDuration for Duration global;
              using LibClock for Clock global;
              using LibGameId for GameId global;
              using LibTimestamp for Timestamp global;
              using LibVMStatus for VMStatus global;
              using LibGameType for GameType global;
              /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
              /// @dev The packed layout of this type is as follows:
              /// ┌────────────┬────────────────┐
              /// │    Bits    │     Value      │
              /// ├────────────┼────────────────┤
              /// │ [0, 64)    │ Duration       │
              /// │ [64, 128)  │ Timestamp      │
              /// └────────────┴────────────────┘
              type Clock is uint128;
              /// @title LibClock
              /// @notice This library contains helper functions for working with the `Clock` type.
              library LibClock {
                  /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                  /// @param _duration The `Duration` to pack into the `Clock` type.
                  /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                  /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                  function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                      assembly {
                          clock_ := or(shl(0x40, _duration), _timestamp)
                      }
                  }
                  /// @notice Pull the `Duration` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Duration` out of.
                  /// @return duration_ The `Duration` pulled out of `_clock`.
                  function duration(Clock _clock) internal pure returns (Duration duration_) {
                      // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                      assembly {
                          duration_ := shr(0x40, _clock)
                      }
                  }
                  /// @notice Pull the `Timestamp` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                  /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                  function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                      // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                      // only the `timestamp`.
                      assembly {
                          timestamp_ := shr(0xC0, shl(0xC0, _clock))
                      }
                  }
                  /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                  /// @param _clock The `Clock` type to get the value of.
                  /// @return clock_ The value of the `Clock` type as a uint128 type.
                  function raw(Clock _clock) internal pure returns (uint128 clock_) {
                      assembly {
                          clock_ := _clock
                      }
                  }
              }
              /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
              /// @dev The packed layout of this type is as follows:
              /// ┌───────────┬───────────┐
              /// │   Bits    │   Value   │
              /// ├───────────┼───────────┤
              /// │ [0, 32)   │ Game Type │
              /// │ [32, 96)  │ Timestamp │
              /// │ [96, 256) │ Address   │
              /// └───────────┴───────────┘
              type GameId is bytes32;
              /// @title LibGameId
              /// @notice Utility functions for packing and unpacking GameIds.
              library LibGameId {
                  /// @notice Packs values into a 32 byte GameId type.
                  /// @param _gameType The game type.
                  /// @param _timestamp The timestamp of the game's creation.
                  /// @param _gameProxy The game proxy address.
                  /// @return gameId_ The packed GameId.
                  function pack(
                      GameType _gameType,
                      Timestamp _timestamp,
                      address _gameProxy
                  )
                      internal
                      pure
                      returns (GameId gameId_)
                  {
                      assembly {
                          gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                      }
                  }
                  /// @notice Unpacks values from a 32 byte GameId type.
                  /// @param _gameId The packed GameId.
                  /// @return gameType_ The game type.
                  /// @return timestamp_ The timestamp of the game's creation.
                  /// @return gameProxy_ The game proxy address.
                  function unpack(GameId _gameId)
                      internal
                      pure
                      returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                  {
                      assembly {
                          gameType_ := shr(224, _gameId)
                          timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                          gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      }
                  }
              }
              /// @notice A claim represents an MPT root representing the state of the fault proof program.
              type Claim is bytes32;
              /// @title LibClaim
              /// @notice This library contains helper functions for working with the `Claim` type.
              library LibClaim {
                  /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                  /// @param _claim The `Claim` type to get the value of.
                  /// @return claim_ The value of the `Claim` type as a bytes32 type.
                  function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                      assembly {
                          claim_ := _claim
                      }
                  }
                  /// @notice Hashes a claim and a position together.
                  /// @param _claim A Claim type.
                  /// @param _position The position of `claim`.
                  /// @param _challengeIndex The index of the claim being moved against.
                  /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                  function hashClaimPos(
                      Claim _claim,
                      Position _position,
                      uint256 _challengeIndex
                  )
                      internal
                      pure
                      returns (Hash claimHash_)
                  {
                      assembly {
                          mstore(0x00, _claim)
                          mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                          claimHash_ := keccak256(0x00, 0x40)
                      }
                  }
              }
              /// @notice A dedicated duration type.
              /// @dev Unit: seconds
              type Duration is uint64;
              /// @title LibDuration
              /// @notice This library contains helper functions for working with the `Duration` type.
              library LibDuration {
                  /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                  /// @param _duration The `Duration` type to get the value of.
                  /// @return duration_ The value of the `Duration` type as a uint64 type.
                  function raw(Duration _duration) internal pure returns (uint64 duration_) {
                      assembly {
                          duration_ := _duration
                      }
                  }
              }
              /// @notice A custom type for a generic hash.
              type Hash is bytes32;
              /// @title LibHash
              /// @notice This library contains helper functions for working with the `Hash` type.
              library LibHash {
                  /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                  /// @param _hash The `Hash` type to get the value of.
                  /// @return hash_ The value of the `Hash` type as a bytes32 type.
                  function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                      assembly {
                          hash_ := _hash
                      }
                  }
              }
              /// @notice A dedicated timestamp type.
              type Timestamp is uint64;
              /// @title LibTimestamp
              /// @notice This library contains helper functions for working with the `Timestamp` type.
              library LibTimestamp {
                  /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                  /// @param _timestamp The `Timestamp` type to get the value of.
                  /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                  function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                      assembly {
                          timestamp_ := _timestamp
                      }
                  }
              }
              /// @notice A `VMStatus` represents the status of a VM execution.
              type VMStatus is uint8;
              /// @title LibVMStatus
              /// @notice This library contains helper functions for working with the `VMStatus` type.
              library LibVMStatus {
                  /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                  /// @param _vmstatus The `VMStatus` type to get the value of.
                  /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                  function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                      assembly {
                          vmstatus_ := _vmstatus
                      }
                  }
              }
              /// @notice A `GameType` represents the type of game being played.
              type GameType is uint32;
              /// @title LibGameType
              /// @notice This library contains helper functions for working with the `GameType` type.
              library LibGameType {
                  /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                  /// @param _gametype The `GameType` type to get the value of.
                  /// @return gametype_ The value of the `GameType` type as a uint32 type.
                  function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                      assembly {
                          gametype_ := _gametype
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IInitializable } from "interfaces/dispute/IInitializable.sol";
              import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
              interface IDisputeGame is IInitializable {
                  event Resolved(GameStatus indexed status);
                  function createdAt() external view returns (Timestamp);
                  function resolvedAt() external view returns (Timestamp);
                  function status() external view returns (GameStatus);
                  function gameType() external view returns (GameType gameType_);
                  function gameCreator() external pure returns (address creator_);
                  function rootClaim() external pure returns (Claim rootClaim_);
                  function l1Head() external pure returns (Hash l1Head_);
                  function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                  function extraData() external pure returns (bytes memory extraData_);
                  function resolve() external returns (GameStatus status_);
                  function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                  function wasRespectedGameTypeWhenCreated() external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
              interface IDisputeGameFactory {
                  struct GameSearchResult {
                      uint256 index;
                      GameId metadata;
                      Timestamp timestamp;
                      Claim rootClaim;
                      bytes extraData;
                  }
                  error GameAlreadyExists(Hash uuid);
                  error IncorrectBondAmount();
                  error NoImplementation(GameType gameType);
                  event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                  event ImplementationSet(address indexed impl, GameType indexed gameType);
                  event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_);
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_);
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                  function gameCount() external view returns (uint256 gameCount_);
                  function gameImpls(GameType) external view returns (IDisputeGame);
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_);
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      pure
                      returns (Hash uuid_);
                  function initBonds(GameType) external view returns (uint256);
                  function initialize(address _owner) external;
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                  function setInitBond(GameType _gameType, uint256 _initBond) external;
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              interface ISystemConfig {
                  enum UpdateType {
                      BATCHER,
                      FEE_SCALARS,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER,
                      EIP_1559_PARAMS,
                      OPERATOR_FEE_PARAMS
                  }
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address disputeGameFactory;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function BATCH_INBOX_SLOT() external view returns (bytes32);
                  function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                  function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                  function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                  function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                  function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                  function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                  function START_BLOCK_SLOT() external view returns (bytes32);
                  function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                  function VERSION() external view returns (uint256);
                  function basefeeScalar() external view returns (uint32);
                  function batchInbox() external view returns (address addr_);
                  function batcherHash() external view returns (bytes32);
                  function blobbasefeeScalar() external view returns (uint32);
                  function disputeGameFactory() external view returns (address addr_);
                  function gasLimit() external view returns (uint64);
                  function eip1559Denominator() external view returns (uint32);
                  function eip1559Elasticity() external view returns (uint32);
                  function getAddresses() external view returns (Addresses memory);
                  function initialize(
                      address _owner,
                      uint32 _basefeeScalar,
                      uint32 _blobbasefeeScalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      IResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      Addresses memory _addresses
                  )
                      external;
                  function l1CrossDomainMessenger() external view returns (address addr_);
                  function l1ERC721Bridge() external view returns (address addr_);
                  function l1StandardBridge() external view returns (address addr_);
                  function maximumGasLimit() external pure returns (uint64);
                  function minimumGasLimit() external view returns (uint64);
                  function operatorFeeConstant() external view returns (uint64);
                  function operatorFeeScalar() external view returns (uint32);
                  function optimismMintableERC20Factory() external view returns (address addr_);
                  function optimismPortal() external view returns (address addr_);
                  function overhead() external view returns (uint256);
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                  function scalar() external view returns (uint256);
                  function setBatcherHash(bytes32 _batcherHash) external;
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                  function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                  function setGasLimit(uint64 _gasLimit) external;
                  function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external;
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                  function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                  function startBlock() external view returns (uint256 startBlock_);
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function unsafeBlockSigner() external view returns (address addr_);
                  function version() external pure returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IResourceMetering {
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  error OutOfGas();
                  event Initialized(uint8 version);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              using LibPosition for Position global;
              /// @notice A `Position` represents a position of a claim within the game tree.
              /// @dev This is represented as a "generalized index" where the high-order bit
              /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
              /// a unique identifier for each node in the tree. Mathematically, it is calculated
              /// as 2^{depth} + indexAtDepth.
              type Position is uint128;
              /// @title LibPosition
              /// @notice This library contains helper functions for working with the `Position` type.
              library LibPosition {
                  /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                  ///         its behavior within this library, can safely support.
                  uint8 internal constant MAX_POSITION_BITLEN = 126;
                  /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                  /// @param _depth The depth of the position.
                  /// @param _indexAtDepth The index at the depth of the position.
                  /// @return position_ The computed generalized index.
                  function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                      assembly {
                          // gindex = 2^{_depth} + _indexAtDepth
                          position_ := add(shl(_depth, 1), _indexAtDepth)
                      }
                  }
                  /// @notice Pulls the `depth` out of a `Position` type.
                  /// @param _position The generalized index to get the `depth` of.
                  /// @return depth_ The `depth` of the `position` gindex.
                  /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                  function depth(Position _position) internal pure returns (uint8 depth_) {
                      // Return the most significant bit offset, which signifies the depth of the gindex.
                      assembly {
                          depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                          depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                          // For the remaining 32 bits, use a De Bruijn lookup.
                          _position := shr(depth_, _position)
                          _position := or(_position, shr(1, _position))
                          _position := or(_position, shr(2, _position))
                          _position := or(_position, shr(4, _position))
                          _position := or(_position, shr(8, _position))
                          _position := or(_position, shr(16, _position))
                          depth_ :=
                              or(
                                  depth_,
                                  byte(
                                      shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                      0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                  )
                              )
                      }
                  }
                  /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                  ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                  ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                  ///         and the `indexAtDepth` = 0.
                  /// @param _position The generalized index to get the `indexAtDepth` of.
                  /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                  function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                      // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                      // leaving only the `indexAtDepth`.
                      uint256 msb = depth(_position);
                      assembly {
                          indexAtDepth_ := sub(_position, shl(msb, 1))
                      }
                  }
                  /// @notice Get the left child of `_position`.
                  /// @param _position The position to get the left position of.
                  /// @return left_ The position to the left of `position`.
                  function left(Position _position) internal pure returns (Position left_) {
                      assembly {
                          left_ := shl(1, _position)
                      }
                  }
                  /// @notice Get the right child of `_position`
                  /// @param _position The position to get the right position of.
                  /// @return right_ The position to the right of `position`.
                  function right(Position _position) internal pure returns (Position right_) {
                      assembly {
                          right_ := or(1, shl(1, _position))
                      }
                  }
                  /// @notice Get the parent position of `_position`.
                  /// @param _position The position to get the parent position of.
                  /// @return parent_ The parent position of `position`.
                  function parent(Position _position) internal pure returns (Position parent_) {
                      assembly {
                          parent_ := shr(1, _position)
                      }
                  }
                  /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                  ///         calling `right` on a position until the maximum depth is reached.
                  /// @param _position The position to get the relative deepest, right most gindex of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                  function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                      }
                  }
                  /// @notice Get the deepest, right most trace index relative to the `position`. This is
                  ///         equivalent to calling `right` on a position until the maximum depth is reached and
                  ///         then finding its index at depth.
                  /// @param _position The position to get the relative trace index of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return traceIndex_ The trace index relative to the `position`.
                  function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index.
                  /// @param _position The position to get the highest ancestor of.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                      // Create a field with only the lowest unset bit of `_position` set.
                      Position lsb;
                      assembly {
                          lsb := and(not(_position), add(_position, 1))
                      }
                      // Find the index of the lowest unset bit within the field.
                      uint256 msb = depth(lsb);
                      // The highest ancestor that commits to the same trace index is the original position
                      // shifted right by the index of the lowest unset bit.
                      assembly {
                          let a := shr(msb, _position)
                          // Bound the ancestor to the minimum gindex, 1.
                          ancestor_ := or(a, iszero(a))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index, while still being below `_upperBoundExclusive`.
                  /// @param _position The position to get the highest ancestor of.
                  /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                  ///                             to not escape a sub-tree.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestorBounded(
                      Position _position,
                      uint256 _upperBoundExclusive
                  )
                      internal
                      pure
                      returns (Position ancestor_)
                  {
                      // This function only works for positions that are below the upper bound.
                      if (_position.depth() <= _upperBoundExclusive) {
                          assembly {
                              // Revert with `ClaimAboveSplit()`
                              mstore(0x00, 0xb34b5c22)
                              revert(0x1C, 0x04)
                          }
                      }
                      // Grab the global trace ancestor.
                      ancestor_ = traceAncestor(_position);
                      // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                      // This should be a special case that only covers positions that commit to the final leaf
                      // in a sub-tree.
                      if (ancestor_.depth() <= _upperBoundExclusive) {
                          ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                      }
                  }
                  /// @notice Get the move position of `_position`, which is the left child of:
                  ///         1. `_position` if `_isAttack` is true.
                  ///         2. `_position | 1` if `_isAttack` is false.
                  /// @param _position The position to get the relative attack/defense position of.
                  /// @param _isAttack Whether or not the move is an attack move.
                  /// @return move_ The move position relative to `position`.
                  function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                      assembly {
                          move_ := shl(1, or(iszero(_isAttack), _position))
                      }
                  }
                  /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                  /// @param _position The position to get the value of.
                  /// @return raw_ The value of the `position` as a uint128 type.
                  function raw(Position _position) internal pure returns (uint128 raw_) {
                      assembly {
                          raw_ := _position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IInitializable {
                  function initialize() external payable;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import {
                  Position,
                  Hash,
                  GameType,
                  VMStatus,
                  Timestamp,
                  Duration,
                  Clock,
                  GameId,
                  Claim,
                  LibGameId,
                  LibClock
              } from "src/dispute/lib/LibUDT.sol";
              /// @notice The current status of the dispute game.
              enum GameStatus {
                  // The game is currently in progress, and has not been resolved.
                  IN_PROGRESS,
                  // The game has concluded, and the `rootClaim` was challenged successfully.
                  CHALLENGER_WINS,
                  // The game has concluded, and the `rootClaim` could not be contested.
                  DEFENDER_WINS
              }
              /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
              ///         state, and then choose either `NORMAL` or `REFUND`.
              enum BondDistributionMode {
                  // Bond distribution strategy has not been chosen.
                  UNDECIDED,
                  // Bonds should be distributed as normal.
                  NORMAL,
                  // Bonds should be refunded to claimants.
                  REFUND
              }
              /// @notice Represents an L2 output root and the L2 block number at which it was generated.
              /// @custom:field root The output root.
              /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
              struct OutputRoot {
                  Hash root;
                  uint256 l2BlockNumber;
              }
              /// @title GameTypes
              /// @notice A library that defines the IDs of games that can be played.
              library GameTypes {
                  /// @dev A dispute game type the uses the cannon vm.
                  GameType internal constant CANNON = GameType.wrap(0);
                  /// @dev A permissioned dispute game type that uses the cannon vm.
                  GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                  /// @notice A dispute game type that uses the asterisc vm.
                  GameType internal constant ASTERISC = GameType.wrap(2);
                  /// @notice A dispute game type that uses the asterisc vm with Kona.
                  GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                  /// @notice A dispute game type that uses OP Succinct
                  GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                  /// @notice A dispute game type with short game duration for testing withdrawals.
                  ///         Not intended for production use.
                  GameType internal constant FAST = GameType.wrap(254);
                  /// @notice A dispute game type that uses an alphabet vm.
                  ///         Not intended for production use.
                  GameType internal constant ALPHABET = GameType.wrap(255);
                  /// @notice A dispute game type that uses RISC Zero's Kailua
                  GameType internal constant KAILUA = GameType.wrap(1337);
              }
              /// @title VMStatuses
              /// @notice Named type aliases for the various valid VM status bytes.
              library VMStatuses {
                  /// @notice The VM has executed successfully and the outcome is valid.
                  VMStatus internal constant VALID = VMStatus.wrap(0);
                  /// @notice The VM has executed successfully and the outcome is invalid.
                  VMStatus internal constant INVALID = VMStatus.wrap(1);
                  /// @notice The VM has paniced.
                  VMStatus internal constant PANIC = VMStatus.wrap(2);
                  /// @notice The VM execution is still in progress.
                  VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
              }
              /// @title LocalPreimageKey
              /// @notice Named type aliases for local `PreimageOracle` key identifiers.
              library LocalPreimageKey {
                  /// @notice The identifier for the L1 head hash.
                  uint256 internal constant L1_HEAD_HASH = 0x01;
                  /// @notice The identifier for the starting output root.
                  uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                  /// @notice The identifier for the disputed output root.
                  uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                  /// @notice The identifier for the disputed L2 block number.
                  uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                  /// @notice The identifier for the chain ID.
                  uint256 internal constant CHAIN_ID = 0x05;
              }
              

              File 9 of 10: OptimismPortal2
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              // Libraries
              import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import { EOA } from "src/libraries/EOA.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Constants } from "src/libraries/Constants.sol";
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
              import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
              import {
                  BadTarget,
                  LargeCalldata,
                  SmallGasLimit,
                  Unauthorized,
                  CallPaused,
                  GasEstimation,
                  NonReentrant,
                  InvalidProof,
                  InvalidGameType,
                  InvalidDisputeGame,
                  InvalidMerkleProof,
                  Blacklisted,
                  Unproven,
                  ProposalNotValidated,
                  AlreadyFinalized,
                  LegacyGame
              } from "src/libraries/PortalErrors.sol";
              import { GameStatus, GameType, Claim, Timestamp } from "src/dispute/lib/Types.sol";
              // Interfaces
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              /// @custom:proxied true
              /// @title OptimismPortal2
              /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
              ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
              ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
              contract OptimismPortal2 is Initializable, ResourceMetering, ISemver {
                  /// @notice Allows for interactions with non standard ERC20 tokens.
                  using SafeERC20 for IERC20;
                  /// @notice Represents a proven withdrawal.
                  /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against.
                  /// @custom:field timestamp        Timestamp at which the withdrawal was proven.
                  struct ProvenWithdrawal {
                      IDisputeGame disputeGameProxy;
                      uint64 timestamp;
                  }
                  /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized.
                  uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS;
                  /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be
                  ///         finalized.
                  uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  /// @notice Version of the deposit event.
                  uint256 internal constant DEPOSIT_VERSION = 0;
                  /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                  uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                  /// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
                  uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
                  /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                  ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                  ///         a call to finalizeWithdrawalTransaction.
                  address public l2Sender;
                  /// @notice A list of withdrawal hashes which have been successfully finalized.
                  mapping(bytes32 => bool) public finalizedWithdrawals;
                  /// @custom:legacy
                  /// @custom:spacer provenWithdrawals
                  /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot.
                  bytes32 private spacer_52_0_32;
                  /// @custom:legacy
                  /// @custom:spacer paused
                  /// @notice Spacer for backwards compatibility.
                  bool private spacer_53_0_1;
                  /// @notice Contract of the Superchain Config.
                  ISuperchainConfig public superchainConfig;
                  /// @custom:legacy
                  /// @custom:spacer l2Oracle
                  /// @notice Spacer taking up the legacy `l2Oracle` address slot.
                  address private spacer_54_0_20;
                  /// @notice Contract of the SystemConfig.
                  /// @custom:network-specific
                  ISystemConfig public systemConfig;
                  /// @notice Address of the DisputeGameFactory.
                  /// @custom:network-specific
                  IDisputeGameFactory public disputeGameFactory;
                  /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data.
                  mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals;
                  /// @notice A mapping of dispute game addresses to whether or not they are blacklisted.
                  mapping(IDisputeGame => bool) public disputeGameBlacklist;
                  /// @notice The game type that the OptimismPortal consults for output proposals.
                  GameType public respectedGameType;
                  /// @notice The timestamp at which the respected game type was last updated.
                  uint64 public respectedGameTypeUpdatedAt;
                  /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the
                  ///         withdrawal. Original OptimismPortal contract only allowed one proof to be submitted
                  ///         for any given withdrawal hash. Fault Proofs version of this contract must allow
                  ///         multiple proofs for the same withdrawal hash to prevent a malicious user from
                  ///         blocking other withdrawals by proving them against invalid proposals. Submitters
                  ///         are tracked in an array to simplify the off-chain process of determining which
                  ///         proof submission should be used when finalizing a withdrawal.
                  mapping(bytes32 => address[]) public proofSubmitters;
                  /// @custom:legacy
                  /// @custom:spacer _balance
                  /// @notice Spacer taking up the legacy `_balance` slot.
                  uint256 private spacer_61_0_32;
                  /// @notice Emitted when a transaction is deposited from L1 to L2.
                  ///         The parameters of this event are read by the rollup node and used to derive deposit
                  ///         transactions on L2.
                  /// @param from       Address that triggered the deposit transaction.
                  /// @param to         Address that the deposit transaction is directed to.
                  /// @param version    Version of this deposit transaction event.
                  /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  /// @notice Emitted when a withdrawal transaction is proven.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param from           Address that triggered the withdrawal transaction.
                  /// @param to             Address that the withdrawal transaction is directed to.
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards
                  ///         compatibility for tooling that observes the `WithdrawalProven` event.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param proofSubmitter Address of the proof submitter.
                  event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                  /// @notice Emitted when a withdrawal transaction is finalized.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param success        Whether the withdrawal transaction was successful.
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  /// @notice Emitted when a dispute game is blacklisted by the Guardian.
                  /// @param disputeGame Address of the dispute game that was blacklisted.
                  event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                  /// @notice Emitted when the Guardian changes the respected game type in the portal.
                  /// @param newGameType The new respected game type.
                  /// @param updatedAt   The timestamp at which the respected game type was updated.
                  event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                  /// @notice Reverts when paused.
                  modifier whenNotPaused() {
                      if (paused()) revert CallPaused();
                      _;
                  }
                  /// @notice Semantic version.
                  /// @custom:semver 3.14.0
                  function version() public pure virtual returns (string memory) {
                      return "3.14.0";
                  }
                  /// @notice Constructs the OptimismPortal contract.
                  constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) {
                      PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds;
                      DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds;
                      _disableInitializers();
                  }
                  /// @notice Initializer.
                  /// @param _disputeGameFactory Contract of the DisputeGameFactory.
                  /// @param _systemConfig Contract of the SystemConfig.
                  /// @param _superchainConfig Contract of the SuperchainConfig.
                  function initialize(
                      IDisputeGameFactory _disputeGameFactory,
                      ISystemConfig _systemConfig,
                      ISuperchainConfig _superchainConfig,
                      GameType _initialRespectedGameType
                  )
                      external
                      initializer
                  {
                      disputeGameFactory = _disputeGameFactory;
                      systemConfig = _systemConfig;
                      superchainConfig = _superchainConfig;
                      // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the
                      // contract.
                      if (l2Sender == address(0)) {
                          l2Sender = Constants.DEFAULT_L2_SENDER;
                          // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior
                          // to this operation.
                          respectedGameTypeUpdatedAt = uint64(block.timestamp);
                          // Set the initial respected game type
                          respectedGameType = _initialRespectedGameType;
                      }
                      __ResourceMetering_init();
                  }
                  /// @notice Getter function for the address of the guardian.
                  ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                  /// @return Address of the guardian.
                  /// @custom:legacy
                  function guardian() public view returns (address) {
                      return superchainConfig.guardian();
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Getter for the proof maturity delay.
                  function proofMaturityDelaySeconds() public view returns (uint256) {
                      return PROOF_MATURITY_DELAY_SECONDS;
                  }
                  /// @notice Getter for the dispute game finality delay.
                  function disputeGameFinalityDelaySeconds() public view returns (uint256) {
                      return DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  }
                  /// @notice Computes the minimum gas limit for a deposit.
                  ///         The minimum gas limit linearly increases based on the size of the calldata.
                  ///         This is to prevent users from creating L2 resource usage without paying for it.
                  ///         This function can be used when interacting with the portal to ensure forwards
                  ///         compatibility.
                  /// @param _byteCount Number of bytes in the calldata.
                  /// @return The minimum gas limit for a deposit.
                  function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                      return _byteCount * 40 + 21000;
                  }
                  /// @notice Accepts value so that users can send ETH directly to this contract and have the
                  ///         funds be deposited to their address on L2. This is intended as a convenience
                  ///         function for EOAs. Contracts should call the depositTransaction() function directly
                  ///         otherwise any deposited funds will be lost due to address aliasing.
                  receive() external payable {
                      depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                  }
                  /// @notice Accepts ETH value without triggering a deposit to L2.
                  ///         This function mainly exists for the sake of the migration between the legacy
                  ///         Optimism system and Bedrock.
                  function donateETH() external payable {
                      // Intentionally empty.
                  }
                  /// @notice Getter for the resource config.
                  ///         Used internally by the ResourceMetering contract.
                  ///         The SystemConfig is the source of truth for the resource config.
                  /// @return config_ ResourceMetering ResourceConfig
                  function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory config_) {
                      IResourceMetering.ResourceConfig memory config = systemConfig.resourceConfig();
                      assembly ("memory-safe") {
                          config_ := config
                      }
                  }
                  /// @notice Proves a withdrawal transaction.
                  /// @param _tx               Withdrawal transaction to finalize.
                  /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against.
                  /// @param _outputRootProof  Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                  /// @param _withdrawalProof  Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _disputeGameIndex,
                      Types.OutputRootProof calldata _outputRootProof,
                      bytes[] calldata _withdrawalProof
                  )
                      external
                      whenNotPaused
                  {
                      // Prevent users from creating a deposit transaction where this address is the message
                      // sender on L2. Because this is checked here, we do not need to check again in
                      // `finalizeWithdrawalTransaction`.
                      if (_tx.target == address(this)) revert BadTarget();
                      // Fetch the dispute game proxy from the `DisputeGameFactory` contract.
                      (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex);
                      Claim outputRoot = gameProxy.rootClaim();
                      // The game type of the dispute game must be the respected game type.
                      if (gameType.raw() != respectedGameType.raw()) revert InvalidGameType();
                      // The game type of the DisputeGame must have been the respected game type at creation.
                      // eip150-safe
                      try gameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                          if (!wasRespected_) revert InvalidGameType();
                      } catch {
                          revert LegacyGame();
                      }
                      // Game must have been created after the respected game type was updated. This check is a
                      // strict inequality because we want to prevent users from being able to prove or finalize
                      // withdrawals against games that were created in the same block that the retirement
                      // timestamp was set. If the retirement timestamp and game type are changed in the same
                      // block, such games could still be considered valid even if they used the old game type
                      // that we intended to invalidate.
                      require(
                          gameProxy.createdAt().raw() > respectedGameTypeUpdatedAt,
                          "OptimismPortal: dispute game created before respected game type was updated"
                      );
                      // Verify that the output root can be generated with the elements in the proof.
                      if (outputRoot.raw() != Hashing.hashOutputRootProof(_outputRootProof)) revert InvalidProof();
                      // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // We do not allow for proving withdrawals against dispute games that have resolved against the favor
                      // of the root claim.
                      if (gameProxy.status() == GameStatus.CHALLENGER_WINS) revert InvalidDisputeGame();
                      // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                      // Refer to the Solidity documentation for more information on how storage layouts are
                      // computed for mappings.
                      bytes32 storageKey = keccak256(
                          abi.encode(
                              withdrawalHash,
                              uint256(0) // The withdrawals mapping is at the first slot in the layout.
                          )
                      );
                      // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                      // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                      // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                      // be relayed on L1.
                      if (
                          SecureMerkleTrie.verifyInclusionProof({
                              _key: abi.encode(storageKey),
                              _value: hex"01",
                              _proof: _withdrawalProof,
                              _root: _outputRootProof.messagePasserStorageRoot
                          }) == false
                      ) revert InvalidMerkleProof();
                      // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the
                      // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved
                      // against resolves against the favor of the root claim.
                      provenWithdrawals[withdrawalHash][msg.sender] =
                          ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) });
                      // Emit a `WithdrawalProven` event.
                      emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                      // Emit a `WithdrawalProvenExtension1` event.
                      emit WithdrawalProvenExtension1(withdrawalHash, msg.sender);
                      // Add the proof submitter to the list of proof submitters for this withdrawal hash.
                      proofSubmitters[withdrawalHash].push(msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction.
                  /// @param _tx Withdrawal transaction to finalize.
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                      finalizeWithdrawalTransactionExternalProof(_tx, msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction, using an external proof submitter.
                  /// @param _tx Withdrawal transaction to finalize.
                  /// @param _proofSubmitter Address of the proof submitter.
                  function finalizeWithdrawalTransactionExternalProof(
                      Types.WithdrawalTransaction memory _tx,
                      address _proofSubmitter
                  )
                      public
                      whenNotPaused
                  {
                      // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                      // than the default value when a withdrawal transaction is being finalized. This check is
                      // a defacto reentrancy guard.
                      if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
                      // Compute the withdrawal hash.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // Check that the withdrawal can be finalized.
                      checkWithdrawal(withdrawalHash, _proofSubmitter);
                      // Mark the withdrawal as finalized so it can't be replayed.
                      finalizedWithdrawals[withdrawalHash] = true;
                      // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                      l2Sender = _tx.sender;
                      // Trigger the call to the target contract. We use a custom low level method
                      // SafeCall.callWithMinGas to ensure two key properties
                      //   1. Target contracts cannot force this call to run out of gas by returning a very large
                      //      amount of data (and this is OK because we don't care about the returndata here).
                      //   2. The amount of gas provided to the execution context of the target is at least the
                      //      gas limit specified by the user. If there is not enough gas in the current context
                      //      to accomplish this, `callWithMinGas` will revert.
                      bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                      // Reset the l2Sender back to the default value.
                      l2Sender = Constants.DEFAULT_L2_SENDER;
                      // All withdrawals are immediately finalized. Replayability can
                      // be achieved through contracts built on top of this contract
                      emit WithdrawalFinalized(withdrawalHash, success);
                      // Reverting here is useful for determining the exact gas cost to successfully execute the
                      // sub call to the target contract if the minimum gas limit specified by the user would not
                      // be sufficient to execute the sub call.
                      if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) {
                          revert GasEstimation();
                      }
                  }
                  /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                  ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                  ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                  ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                  /// @param _to         Target address on L2.
                  /// @param _value      ETH value to send to the recipient.
                  /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                  /// @param _isCreation Whether or not the transaction is a contract creation.
                  /// @param _data       Data to trigger the recipient with.
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      public
                      payable
                      metered(_gasLimit)
                  {
                      // Just to be safe, make sure that people specify address(0) as the target when doing
                      // contract creations.
                      if (_isCreation && _to != address(0)) revert BadTarget();
                      // Prevent depositing transactions that have too small of a gas limit. Users should pay
                      // more for more resource usage.
                      if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                      // Prevent the creation of deposit transactions that have too much calldata. This gives an
                      // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                      // that the transaction can fit into the p2p network policy of 128kb even though deposit
                      // transactions are not gossipped over the p2p network.
                      if (_data.length > 120_000) revert LargeCalldata();
                      // Transform the from-address to its alias if the caller is a contract.
                      address from = msg.sender;
                      if (!EOA.isSenderEOA()) {
                          from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                      }
                      // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                      // We use opaque data so that we can update the TransactionDeposited event in the future
                      // without breaking the current interface.
                      bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                      // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                      // transaction for this deposit.
                      emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                  }
                  /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly.
                  /// @param _disputeGame Dispute game to blacklist.
                  function blacklistDisputeGame(IDisputeGame _disputeGame) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      disputeGameBlacklist[_disputeGame] = true;
                      emit DisputeGameBlacklisted(_disputeGame);
                  }
                  /// @notice Sets the respected game type. Changing this value can alter the security properties of the system,
                  ///         depending on the new game's behavior.
                  /// @param _gameType The game type to consult for output proposals.
                  function setRespectedGameType(GameType _gameType) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      // respectedGameTypeUpdatedAt is now no longer set by default. We want to avoid modifying
                      // this function's signature as that would result in changes to the DeputyGuardianModule.
                      // We use type(uint32).max as a temporary solution to allow us to update the
                      // respectedGameTypeUpdatedAt timestamp without modifying this function's signature.
                      if (_gameType.raw() == type(uint32).max) {
                          respectedGameTypeUpdatedAt = uint64(block.timestamp);
                      } else {
                          respectedGameType = _gameType;
                      }
                      emit RespectedGameTypeSet(respectedGameType, Timestamp.wrap(respectedGameTypeUpdatedAt));
                  }
                  /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be
                  ///         finalized, and otherwise has no side-effects.
                  /// @param _withdrawalHash Hash of the withdrawal to check.
                  /// @param _proofSubmitter The submitter of the proof for the withdrawal hash
                  function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view {
                      ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter];
                      IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy;
                      // The dispute game must not be blacklisted.
                      if (disputeGameBlacklist[disputeGameProxy]) revert Blacklisted();
                      // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                      // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                      // a timestamp of zero.
                      if (provenWithdrawal.timestamp == 0) revert Unproven();
                      // Grab the createdAt timestamp once.
                      uint64 createdAt = disputeGameProxy.createdAt().raw();
                      // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                      // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of
                      // safety against weird bugs in the proving step.
                      require(
                          provenWithdrawal.timestamp > createdAt,
                          "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp"
                      );
                      // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing.
                      require(
                          block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS,
                          "OptimismPortal: proven withdrawal has not matured yet"
                      );
                      // A proven withdrawal must wait until the dispute game it was proven against has been
                      // resolved in favor of the root claim (the output proposal). This is to prevent users
                      // from finalizing withdrawals proven against non-finalized output roots.
                      if (disputeGameProxy.status() != GameStatus.DEFENDER_WINS) revert ProposalNotValidated();
                      // The game type of the dispute game must have been the respected game type at creation
                      // time. We check that the game type is the respected game type at proving time, but it's
                      // possible that the respected game type has since changed. Users can still use this game
                      // to finalize a withdrawal as long as it has not been otherwise invalidated.
                      // The game type of the DisputeGame must have been the respected game type at creation.
                      // eip150-safe
                      try disputeGameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                          if (!wasRespected_) revert InvalidGameType();
                      } catch {
                          revert LegacyGame();
                      }
                      // Game must have been created after the respected game type was updated. This check is a
                      // strict inequality because we want to prevent users from being able to prove or finalize
                      // withdrawals against games that were created in the same block that the retirement
                      // timestamp was set. If the retirement timestamp and game type are changed in the same
                      // block, such games could still be considered valid even if they used the old game type
                      // that we intended to invalidate.
                      require(
                          createdAt > respectedGameTypeUpdatedAt,
                          "OptimismPortal: dispute game created before respected game type was updated"
                      );
                      // Before a withdrawal can be finalized, the dispute game it was proven against must have been
                      // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual
                      // intervention in the event that a dispute game is resolved incorrectly.
                      require(
                          block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS,
                          "OptimismPortal: output proposal in air-gap"
                      );
                      // Check that this withdrawal has not already been finalized, this is replay protection.
                      if (finalizedWithdrawals[_withdrawalHash]) revert AlreadyFinalized();
                  }
                  /// @notice External getter for the number of proof submitters for a withdrawal hash.
                  /// @param _withdrawalHash Hash of the withdrawal.
                  /// @return The number of proof submitters for the withdrawal hash.
                  function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) {
                      return proofSubmitters[_withdrawalHash].length;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              // Libraries
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "src/libraries/Burn.sol";
              import { Arithmetic } from "src/libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Error returned when too much gas resource is consumed.
                  error OutOfGas();
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                          revert OutOfGas();
                      }
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
                  ///         when L2 system transactions are generated from L1.
                  /// @param _amount Amount of the L2 gas resource requested.
                  function useGas(uint32 _amount) internal {
                      params.prevBoughtGas += uint64(_amount);
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  function __ResourceMetering_init() internal onlyInitializing {
                      if (params.prevBlockNum == 0) {
                          params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title EOA
              /// @notice A library for detecting if an address is an EOA.
              library EOA {
                  /// @notice Returns true if sender address is an EOA.
                  /// @return isEOA_ True if the sender address is an EOA.
                  function isSenderEOA() internal view returns (bool isEOA_) {
                      if (msg.sender == tx.origin) {
                          isEOA_ = true;
                      } else if (address(msg.sender).code.length == 23) {
                          // If the sender is not the origin, check for 7702 delegated EOAs.
                          assembly {
                              let ptr := mload(0x40)
                              mstore(0x40, add(ptr, 0x20))
                              extcodecopy(caller(), ptr, 0, 0x20)
                              isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                          }
                      } else {
                          // If more or less than 23 bytes of code, not a 7702 delegated EOA.
                          isEOA_ = false;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Interfaces
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice The address that represents ether when dealing with ERC20 token addresses.
                  address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                  /// @notice The address that represents the system caller responsible for L1 attributes
                  ///         transactions.
                  address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                      IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
                  /// @notice Enum representing where the FeeVault withdraws funds to.
                  /// @custom:value L1 FeeVault withdraws funds to L1.
                  /// @custom:value L2 FeeVault withdraws funds to L2.
                  enum WithdrawalNetwork {
                      L1,
                      L2
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
                  /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                  ///         the message and ensure it is not relayed more than once.
                  /// @param _destination Chain ID of the destination chain.
                  /// @param _source Chain ID of the source chain.
                  /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                  /// @param _sender Address of the user who originally sent the message.
                  /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                  /// @param _message The message payload to be relayed to the target on the destination chain.
                  /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                  function hashL2toL2CrossDomainMessage(
                      uint256 _destination,
                      uint256 _source,
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      bytes memory _message
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { MerkleTrie } from "src/libraries/trie/MerkleTrie.sol";
              /// @title SecureMerkleTrie
              /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
              ///         keys. Ethereum's state trie hashes input keys before storing them.
              library SecureMerkleTrie {
                  /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      bytes memory key = _getSecureKey(_key);
                      valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      bytes memory key = _getSecureKey(_key);
                      value_ = MerkleTrie.get(key, _proof, _root);
                  }
                  /// @notice Computes the hashed version of the input key.
                  /// @param _key Key to hash.
                  /// @return hash_ Hashed version of the key.
                  function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                      hash_ = abi.encodePacked(keccak256(_key));
                  }
              }
              // SPDX-License-Identifier: Apache-2.0
              /*
               * Copyright 2019-2021, Offchain Labs, Inc.
               *
               * Licensed under the Apache License, Version 2.0 (the "License");
               * you may not use this file except in compliance with the License.
               * You may obtain a copy of the License at
               *
               *    http://www.apache.org/licenses/LICENSE-2.0
               *
               * Unless required by applicable law or agreed to in writing, software
               * distributed under the License is distributed on an "AS IS" BASIS,
               * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
               * See the License for the specific language governing permissions and
               * limitations under the License.
               */
              pragma solidity ^0.8.0;
              library AddressAliasHelper {
                  uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                  /// @notice Utility function that converts the address in the L1 that submitted a tx to
                  /// the inbox to the msg.sender viewed in the L2
                  /// @param l1Address the address in the L1 that triggered the tx to L2
                  /// @return l2Address L2 address as viewed in msg.sender
                  function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                      unchecked {
                          l2Address = address(uint160(l1Address) + offset);
                      }
                  }
                  /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                  /// address in the L1 that submitted a tx to the inbox
                  /// @param l2Address L2 address as viewed in msg.sender
                  /// @return l1Address the address in the L1 that triggered the tx to L2
                  function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                      unchecked {
                          l1Address = address(uint160(l2Address) - offset);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Error for when a deposit or withdrawal is to a bad target.
              error BadTarget();
              /// @notice Error for when a deposit has too much calldata.
              error LargeCalldata();
              /// @notice Error for when a deposit has too small of a gas limit.
              error SmallGasLimit();
              /// @notice Error for when a withdrawal transfer fails.
              error TransferFailed();
              /// @notice Error for when a method cannot be called with non zero CALLVALUE.
              error NoValue();
              /// @notice Error for an unauthorized CALLER.
              error Unauthorized();
              /// @notice Error for when a method cannot be called when paused. This could be renamed
              ///         to `Paused` in the future, but it collides with the `Paused` event.
              error CallPaused();
              /// @notice Error for special gas estimation.
              error GasEstimation();
              /// @notice Error for when a method is being reentered.
              error NonReentrant();
              /// @notice Error for invalid proof.
              error InvalidProof();
              /// @notice Error for invalid game type.
              error InvalidGameType();
              /// @notice Error for an invalid dispute game.
              error InvalidDisputeGame();
              /// @notice Error for an invalid merkle proof.
              error InvalidMerkleProof();
              /// @notice Error for when a dispute game has been blacklisted.
              error Blacklisted();
              /// @notice Error for when trying to withdrawal without first proven.
              error Unproven();
              /// @notice Error for when a proposal is not validated.
              error ProposalNotValidated();
              /// @notice Error for when a withdrawal has already been finalized.
              error AlreadyFinalized();
              /// @notice Error for when a game is a legacy game.
              error LegacyGame();
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import {
                  Position,
                  Hash,
                  GameType,
                  VMStatus,
                  Timestamp,
                  Duration,
                  Clock,
                  GameId,
                  Claim,
                  LibGameId,
                  LibClock
              } from "src/dispute/lib/LibUDT.sol";
              /// @notice The current status of the dispute game.
              enum GameStatus {
                  // The game is currently in progress, and has not been resolved.
                  IN_PROGRESS,
                  // The game has concluded, and the `rootClaim` was challenged successfully.
                  CHALLENGER_WINS,
                  // The game has concluded, and the `rootClaim` could not be contested.
                  DEFENDER_WINS
              }
              /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
              ///         state, and then choose either `NORMAL` or `REFUND`.
              enum BondDistributionMode {
                  // Bond distribution strategy has not been chosen.
                  UNDECIDED,
                  // Bonds should be distributed as normal.
                  NORMAL,
                  // Bonds should be refunded to claimants.
                  REFUND
              }
              /// @notice Represents an L2 output root and the L2 block number at which it was generated.
              /// @custom:field root The output root.
              /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
              struct OutputRoot {
                  Hash root;
                  uint256 l2BlockNumber;
              }
              /// @title GameTypes
              /// @notice A library that defines the IDs of games that can be played.
              library GameTypes {
                  /// @dev A dispute game type the uses the cannon vm.
                  GameType internal constant CANNON = GameType.wrap(0);
                  /// @dev A permissioned dispute game type that uses the cannon vm.
                  GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                  /// @notice A dispute game type that uses the asterisc vm.
                  GameType internal constant ASTERISC = GameType.wrap(2);
                  /// @notice A dispute game type that uses the asterisc vm with Kona.
                  GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                  /// @notice A dispute game type that uses OP Succinct
                  GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                  /// @notice A dispute game type with short game duration for testing withdrawals.
                  ///         Not intended for production use.
                  GameType internal constant FAST = GameType.wrap(254);
                  /// @notice A dispute game type that uses an alphabet vm.
                  ///         Not intended for production use.
                  GameType internal constant ALPHABET = GameType.wrap(255);
                  /// @notice A dispute game type that uses RISC Zero's Kailua
                  GameType internal constant KAILUA = GameType.wrap(1337);
              }
              /// @title VMStatuses
              /// @notice Named type aliases for the various valid VM status bytes.
              library VMStatuses {
                  /// @notice The VM has executed successfully and the outcome is valid.
                  VMStatus internal constant VALID = VMStatus.wrap(0);
                  /// @notice The VM has executed successfully and the outcome is invalid.
                  VMStatus internal constant INVALID = VMStatus.wrap(1);
                  /// @notice The VM has paniced.
                  VMStatus internal constant PANIC = VMStatus.wrap(2);
                  /// @notice The VM execution is still in progress.
                  VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
              }
              /// @title LocalPreimageKey
              /// @notice Named type aliases for local `PreimageOracle` key identifiers.
              library LocalPreimageKey {
                  /// @notice The identifier for the L1 head hash.
                  uint256 internal constant L1_HEAD_HASH = 0x01;
                  /// @notice The identifier for the starting output root.
                  uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                  /// @notice The identifier for the disputed output root.
                  uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                  /// @notice The identifier for the disputed L2 block number.
                  uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                  /// @notice The identifier for the chain ID.
                  uint256 internal constant CHAIN_ID = 0x05;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              interface ISystemConfig {
                  enum UpdateType {
                      BATCHER,
                      FEE_SCALARS,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER,
                      EIP_1559_PARAMS,
                      OPERATOR_FEE_PARAMS
                  }
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address disputeGameFactory;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function BATCH_INBOX_SLOT() external view returns (bytes32);
                  function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                  function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                  function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                  function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                  function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                  function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                  function START_BLOCK_SLOT() external view returns (bytes32);
                  function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                  function VERSION() external view returns (uint256);
                  function basefeeScalar() external view returns (uint32);
                  function batchInbox() external view returns (address addr_);
                  function batcherHash() external view returns (bytes32);
                  function blobbasefeeScalar() external view returns (uint32);
                  function disputeGameFactory() external view returns (address addr_);
                  function gasLimit() external view returns (uint64);
                  function eip1559Denominator() external view returns (uint32);
                  function eip1559Elasticity() external view returns (uint32);
                  function getAddresses() external view returns (Addresses memory);
                  function initialize(
                      address _owner,
                      uint32 _basefeeScalar,
                      uint32 _blobbasefeeScalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      IResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      Addresses memory _addresses
                  )
                      external;
                  function l1CrossDomainMessenger() external view returns (address addr_);
                  function l1ERC721Bridge() external view returns (address addr_);
                  function l1StandardBridge() external view returns (address addr_);
                  function maximumGasLimit() external pure returns (uint64);
                  function minimumGasLimit() external view returns (uint64);
                  function operatorFeeConstant() external view returns (uint64);
                  function operatorFeeScalar() external view returns (uint32);
                  function optimismMintableERC20Factory() external view returns (address addr_);
                  function optimismPortal() external view returns (address addr_);
                  function overhead() external view returns (uint256);
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                  function scalar() external view returns (uint256);
                  function setBatcherHash(bytes32 _batcherHash) external;
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                  function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                  function setGasLimit(uint64 _gasLimit) external;
                  function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external;
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                  function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                  function startBlock() external view returns (uint256 startBlock_);
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function unsafeBlockSigner() external view returns (address addr_);
                  function version() external pure returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IResourceMetering {
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  error OutOfGas();
                  event Initialized(uint8 version);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
              interface IDisputeGameFactory {
                  struct GameSearchResult {
                      uint256 index;
                      GameId metadata;
                      Timestamp timestamp;
                      Claim rootClaim;
                      bytes extraData;
                  }
                  error GameAlreadyExists(Hash uuid);
                  error IncorrectBondAmount();
                  error NoImplementation(GameType gameType);
                  event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                  event ImplementationSet(address indexed impl, GameType indexed gameType);
                  event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_);
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_);
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                  function gameCount() external view returns (uint256 gameCount_);
                  function gameImpls(GameType) external view returns (IDisputeGame);
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_);
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      pure
                      returns (Hash uuid_);
                  function initBonds(GameType) external view returns (uint256);
                  function initialize(address _owner) external;
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                  function setInitBond(GameType _gameType, uint256 _initBond) external;
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IInitializable } from "interfaces/dispute/IInitializable.sol";
              import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
              interface IDisputeGame is IInitializable {
                  event Resolved(GameStatus indexed status);
                  function createdAt() external view returns (Timestamp);
                  function resolvedAt() external view returns (Timestamp);
                  function status() external view returns (GameStatus);
                  function gameType() external view returns (GameType gameType_);
                  function gameCreator() external pure returns (address creator_);
                  function rootClaim() external pure returns (Claim rootClaim_);
                  function l1Head() external pure returns (Hash l1Head_);
                  function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                  function extraData() external pure returns (bytes memory extraData_);
                  function resolve() external returns (GameStatus status_);
                  function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                  function wasRespectedGameTypeWhenCreated() external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
                  /// @notice Saturating addition.
                  /// @param _x The first value.
                  /// @param _y The second value.
                  /// @return z_ The sum of the two values, or the maximum value if the sum overflows.
                  /// @dev Returns `min(2 ** 256 - 1, x + y)`.
                  /// @dev Taken from Solady
                  /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L673
                  function saturatingAdd(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
                      assembly ("memory-safe") {
                          z_ := or(sub(0, lt(add(_x, _y), _x)), add(_x, _y))
                      }
                  }
                  /// @notice Saturating multiplication.
                  /// @param _x The first value.
                  /// @param _y The second value.
                  /// @return z_ The product of the two values, or the maximum value if the product overflows.
                  /// @dev Returns `min(2 ** 256 - 1, x * y).
                  /// @dev Taken from Solady
                  /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L681
                  function saturatingMul(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
                      assembly ("memory-safe") {
                          z_ := or(sub(or(iszero(_x), eq(div(mul(_x, _y), _x), _y)), 1), mul(_x, _y))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  /// @param _operatorFeeScalar   Operator fee scalar.
                  /// @param _operatorFeeConstant Operator fee constant.
                  function encodeSetL1BlockValuesIsthmus(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash,
                      uint32 _operatorFeeScalar,
                      uint64 _operatorFeeConstant
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash,
                          _operatorFeeScalar,
                          _operatorFeeConstant
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesInterop(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Bytes } from "src/libraries/Bytes.sol";
              import { RLPReader } from "src/libraries/rlp/RLPReader.sol";
              /// @title MerkleTrie
              /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
              ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
              ///         trie radix constant to support other trie radixes.
              library MerkleTrie {
                  /// @notice Struct representing a node in the trie.
                  /// @custom:field encoded The RLP-encoded node.
                  /// @custom:field decoded The RLP-decoded node.
                  struct TrieNode {
                      bytes encoded;
                      RLPReader.RLPItem[] decoded;
                  }
                  /// @notice Determines the number of elements per branch node.
                  uint256 internal constant TREE_RADIX = 16;
                  /// @notice Branch nodes have TREE_RADIX elements and one value element.
                  uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                  /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                  uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                  /// @notice Prefix for even-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                  /// @notice Prefix for odd-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                  /// @notice Prefix for even-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_EVEN = 2;
                  /// @notice Prefix for odd-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_ODD = 3;
                  /// @notice Verifies a proof that a given key/value pair is present in the trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      require(_key.length > 0, "MerkleTrie: empty key");
                      TrieNode[] memory proof = _parseProof(_proof);
                      bytes memory key = Bytes.toNibbles(_key);
                      bytes memory currentNodeID = abi.encodePacked(_root);
                      uint256 currentKeyIndex = 0;
                      // Proof is top-down, so we start at the first element (root).
                      for (uint256 i = 0; i < proof.length; i++) {
                          TrieNode memory currentNode = proof[i];
                          // Key index should never exceed total key length or we'll be out of bounds.
                          require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                          if (currentKeyIndex == 0) {
                              // First proof element is always the root node.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid root hash"
                              );
                          } else if (currentNode.encoded.length >= 32) {
                              // Nodes 32 bytes or larger are hashed inside branch nodes.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid large internal hash"
                              );
                          } else {
                              // Nodes smaller than 32 bytes aren't hashed.
                              require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                          }
                          if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                              if (currentKeyIndex == key.length) {
                                  // Value is the last element of the decoded list (for branch nodes). There's
                                  // some ambiguity in the Merkle trie specification because bytes(0) is a
                                  // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                  // even when the value wasn't explicitly placed there. Geth treats a value of
                                  // bytes(0) as "key does not exist" and so we do the same.
                                  value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                  return value_;
                              } else {
                                  // We're not at the end of the key yet.
                                  // Figure out what the next node ID should be and continue.
                                  uint8 branchKey = uint8(key[currentKeyIndex]);
                                  RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                  currentNodeID = _getNodeID(nextNode);
                                  currentKeyIndex += 1;
                              }
                          } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                              bytes memory path = _getNodePath(currentNode);
                              uint8 prefix = uint8(path[0]);
                              uint8 offset = 2 - (prefix % 2);
                              bytes memory pathRemainder = Bytes.slice(path, offset);
                              bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                              uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                              // Whether this is a leaf node or an extension node, the path remainder MUST be a
                              // prefix of the key remainder (or be equal to the key remainder) or the proof is
                              // considered invalid.
                              require(
                                  pathRemainder.length == sharedNibbleLength,
                                  "MerkleTrie: path remainder must share all nibbles with key"
                              );
                              if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                  // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                  // the key remainder must be exactly equal to the path remainder. We already
                                  // did the necessary byte comparison, so it's more efficient here to check that
                                  // the key remainder length equals the shared nibble length, which implies
                                  // equality with the path remainder (since we already did the same check with
                                  // the path remainder and the shared nibble length).
                                  require(
                                      keyRemainder.length == sharedNibbleLength,
                                      "MerkleTrie: key remainder must be identical to path remainder"
                                  );
                                  // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                  // state trie. Empty values are not allowed in the state trie, so we can safely
                                  // say that if the value is empty, the key should not exist and the proof is
                                  // invalid.
                                  value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                  return value_;
                              } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                  // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                  // in the proof and increment the key index by the length of the path remainder
                                  // which is equal to the shared nibble length.
                                  currentNodeID = _getNodeID(currentNode.decoded[1]);
                                  currentKeyIndex += sharedNibbleLength;
                              } else {
                                  revert("MerkleTrie: received a node with an unknown prefix");
                              }
                          } else {
                              revert("MerkleTrie: received an unparseable node");
                          }
                      }
                      revert("MerkleTrie: ran out of proof elements");
                  }
                  /// @notice Parses an array of proof elements into a new array that contains both the original
                  ///         encoded element and the RLP-decoded element.
                  /// @param _proof Array of proof elements to parse.
                  /// @return proof_ Proof parsed into easily accessible structs.
                  function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                      uint256 length = _proof.length;
                      proof_ = new TrieNode[](length);
                      for (uint256 i = 0; i < length;) {
                          proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                  ///         specification, but nodes < 32 bytes are not actually hashed.
                  /// @param _node Node to pull an ID for.
                  /// @return id_ ID for the node, depending on the size of its contents.
                  function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                      id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                  }
                  /// @notice Gets the path for a leaf or extension node.
                  /// @param _node Node to get a path for.
                  /// @return nibbles_ Node path, converted to an array of nibbles.
                  function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                      nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                  }
                  /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                  /// @param _a First nibble array.
                  /// @param _b Second nibble array.
                  /// @return shared_ Number of shared nibbles.
                  function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                      uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                      for (; shared_ < max && _a[shared_] == _b[shared_];) {
                          unchecked {
                              ++shared_;
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import { Position } from "src/dispute/lib/LibPosition.sol";
              using LibClaim for Claim global;
              using LibHash for Hash global;
              using LibDuration for Duration global;
              using LibClock for Clock global;
              using LibGameId for GameId global;
              using LibTimestamp for Timestamp global;
              using LibVMStatus for VMStatus global;
              using LibGameType for GameType global;
              /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
              /// @dev The packed layout of this type is as follows:
              /// ┌────────────┬────────────────┐
              /// │    Bits    │     Value      │
              /// ├────────────┼────────────────┤
              /// │ [0, 64)    │ Duration       │
              /// │ [64, 128)  │ Timestamp      │
              /// └────────────┴────────────────┘
              type Clock is uint128;
              /// @title LibClock
              /// @notice This library contains helper functions for working with the `Clock` type.
              library LibClock {
                  /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                  /// @param _duration The `Duration` to pack into the `Clock` type.
                  /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                  /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                  function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                      assembly {
                          clock_ := or(shl(0x40, _duration), _timestamp)
                      }
                  }
                  /// @notice Pull the `Duration` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Duration` out of.
                  /// @return duration_ The `Duration` pulled out of `_clock`.
                  function duration(Clock _clock) internal pure returns (Duration duration_) {
                      // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                      assembly {
                          duration_ := shr(0x40, _clock)
                      }
                  }
                  /// @notice Pull the `Timestamp` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                  /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                  function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                      // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                      // only the `timestamp`.
                      assembly {
                          timestamp_ := shr(0xC0, shl(0xC0, _clock))
                      }
                  }
                  /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                  /// @param _clock The `Clock` type to get the value of.
                  /// @return clock_ The value of the `Clock` type as a uint128 type.
                  function raw(Clock _clock) internal pure returns (uint128 clock_) {
                      assembly {
                          clock_ := _clock
                      }
                  }
              }
              /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
              /// @dev The packed layout of this type is as follows:
              /// ┌───────────┬───────────┐
              /// │   Bits    │   Value   │
              /// ├───────────┼───────────┤
              /// │ [0, 32)   │ Game Type │
              /// │ [32, 96)  │ Timestamp │
              /// │ [96, 256) │ Address   │
              /// └───────────┴───────────┘
              type GameId is bytes32;
              /// @title LibGameId
              /// @notice Utility functions for packing and unpacking GameIds.
              library LibGameId {
                  /// @notice Packs values into a 32 byte GameId type.
                  /// @param _gameType The game type.
                  /// @param _timestamp The timestamp of the game's creation.
                  /// @param _gameProxy The game proxy address.
                  /// @return gameId_ The packed GameId.
                  function pack(
                      GameType _gameType,
                      Timestamp _timestamp,
                      address _gameProxy
                  )
                      internal
                      pure
                      returns (GameId gameId_)
                  {
                      assembly {
                          gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                      }
                  }
                  /// @notice Unpacks values from a 32 byte GameId type.
                  /// @param _gameId The packed GameId.
                  /// @return gameType_ The game type.
                  /// @return timestamp_ The timestamp of the game's creation.
                  /// @return gameProxy_ The game proxy address.
                  function unpack(GameId _gameId)
                      internal
                      pure
                      returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                  {
                      assembly {
                          gameType_ := shr(224, _gameId)
                          timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                          gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      }
                  }
              }
              /// @notice A claim represents an MPT root representing the state of the fault proof program.
              type Claim is bytes32;
              /// @title LibClaim
              /// @notice This library contains helper functions for working with the `Claim` type.
              library LibClaim {
                  /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                  /// @param _claim The `Claim` type to get the value of.
                  /// @return claim_ The value of the `Claim` type as a bytes32 type.
                  function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                      assembly {
                          claim_ := _claim
                      }
                  }
                  /// @notice Hashes a claim and a position together.
                  /// @param _claim A Claim type.
                  /// @param _position The position of `claim`.
                  /// @param _challengeIndex The index of the claim being moved against.
                  /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                  function hashClaimPos(
                      Claim _claim,
                      Position _position,
                      uint256 _challengeIndex
                  )
                      internal
                      pure
                      returns (Hash claimHash_)
                  {
                      assembly {
                          mstore(0x00, _claim)
                          mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                          claimHash_ := keccak256(0x00, 0x40)
                      }
                  }
              }
              /// @notice A dedicated duration type.
              /// @dev Unit: seconds
              type Duration is uint64;
              /// @title LibDuration
              /// @notice This library contains helper functions for working with the `Duration` type.
              library LibDuration {
                  /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                  /// @param _duration The `Duration` type to get the value of.
                  /// @return duration_ The value of the `Duration` type as a uint64 type.
                  function raw(Duration _duration) internal pure returns (uint64 duration_) {
                      assembly {
                          duration_ := _duration
                      }
                  }
              }
              /// @notice A custom type for a generic hash.
              type Hash is bytes32;
              /// @title LibHash
              /// @notice This library contains helper functions for working with the `Hash` type.
              library LibHash {
                  /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                  /// @param _hash The `Hash` type to get the value of.
                  /// @return hash_ The value of the `Hash` type as a bytes32 type.
                  function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                      assembly {
                          hash_ := _hash
                      }
                  }
              }
              /// @notice A dedicated timestamp type.
              type Timestamp is uint64;
              /// @title LibTimestamp
              /// @notice This library contains helper functions for working with the `Timestamp` type.
              library LibTimestamp {
                  /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                  /// @param _timestamp The `Timestamp` type to get the value of.
                  /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                  function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                      assembly {
                          timestamp_ := _timestamp
                      }
                  }
              }
              /// @notice A `VMStatus` represents the status of a VM execution.
              type VMStatus is uint8;
              /// @title LibVMStatus
              /// @notice This library contains helper functions for working with the `VMStatus` type.
              library LibVMStatus {
                  /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                  /// @param _vmstatus The `VMStatus` type to get the value of.
                  /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                  function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                      assembly {
                          vmstatus_ := _vmstatus
                      }
                  }
              }
              /// @notice A `GameType` represents the type of game being played.
              type GameType is uint32;
              /// @title LibGameType
              /// @notice This library contains helper functions for working with the `GameType` type.
              library LibGameType {
                  /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                  /// @param _gametype The `GameType` type to get the value of.
                  /// @return gametype_ The value of the `GameType` type as a uint32 type.
                  function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                      assembly {
                          gametype_ := _gametype
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IInitializable {
                  function initialize() external payable;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Bytes
              /// @notice Bytes is a library for manipulating byte arrays.
              library Bytes {
                  /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                  /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                  ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                  ///         bytes than exist in the array.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @param _length Length of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                      unchecked {
                          require(_length + 31 >= _length, "slice_overflow");
                          require(_start + _length >= _start, "slice_overflow");
                          require(_bytes.length >= _start + _length, "slice_outOfBounds");
                      }
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } { mstore(mc, mload(cc)) }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  /// @notice Slices a byte array with a given starting index up to the end of the original byte
                  ///         array. Returns a new array rathern than a pointer to the original.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                      if (_start >= _bytes.length) {
                          return bytes("");
                      }
                      return slice(_bytes, _start, _bytes.length - _start);
                  }
                  /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                  ///         Resulting nibble array will be exactly twice as long as the input byte array.
                  /// @param _bytes Input byte array to convert.
                  /// @return Resulting nibble array.
                  function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                      bytes memory _nibbles;
                      assembly {
                          // Grab a free memory offset for the new array
                          _nibbles := mload(0x40)
                          // Load the length of the passed bytes array from memory
                          let bytesLength := mload(_bytes)
                          // Calculate the length of the new nibble array
                          // This is the length of the input array times 2
                          let nibblesLength := shl(0x01, bytesLength)
                          // Update the free memory pointer to allocate memory for the new array.
                          // To do this, we add the length of the new array + 32 bytes for the array length
                          // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                          mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                          // Store the length of the new array in memory
                          mstore(_nibbles, nibblesLength)
                          // Store the memory offset of the _bytes array's contents on the stack
                          let bytesStart := add(_bytes, 0x20)
                          // Store the memory offset of the nibbles array's contents on the stack
                          let nibblesStart := add(_nibbles, 0x20)
                          // Loop through each byte in the input array
                          for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                              // Get the starting offset of the next 2 bytes in the nibbles array
                              let offset := add(nibblesStart, shl(0x01, i))
                              // Load the byte at the current index within the `_bytes` array
                              let b := byte(0x00, mload(add(bytesStart, i)))
                              // Pull out the first nibble and store it in the new array
                              mstore8(offset, shr(0x04, b))
                              // Pull out the second nibble and store it in the new array
                              mstore8(add(offset, 0x01), and(b, 0x0F))
                          }
                      }
                      return _nibbles;
                  }
                  /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                  /// @param _bytes First byte array to compare.
                  /// @param _other Second byte array to compare.
                  /// @return True if the two byte arrays are equal, false otherwise.
                  function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                      return keccak256(_bytes) == keccak256(_other);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.8;
              // Libraries
              import {
                  EmptyItem,
                  UnexpectedString,
                  InvalidDataRemainder,
                  ContentLengthMismatch,
                  InvalidHeader,
                  UnexpectedList
              } from "src/libraries/rlp/RLPErrors.sol";
              /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
              /// @title RLPReader
              /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
              ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
              ///         various tweaks to improve readability.
              library RLPReader {
                  /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                  type MemoryPointer is uint256;
                  /// @notice RLP item types.
                  /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                  /// @custom:value LIST_ITEM Represents an RLP list item.
                  enum RLPItemType {
                      DATA_ITEM,
                      LIST_ITEM
                  }
                  /// @notice Struct representing an RLP item.
                  /// @custom:field length Length of the RLP item.
                  /// @custom:field ptr    Pointer to the RLP item in memory.
                  struct RLPItem {
                      uint256 length;
                      MemoryPointer ptr;
                  }
                  /// @notice Max list length that this library will accept.
                  uint256 internal constant MAX_LIST_LENGTH = 32;
                  /// @notice Converts bytes to a reference to memory position and length.
                  /// @param _in Input bytes to convert.
                  /// @return out_ Output memory reference.
                  function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                      // Empty arrays are not RLP items.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr;
                      assembly {
                          ptr := add(_in, 32)
                      }
                      out_ = RLPItem({ length: _in.length, ptr: ptr });
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                      (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                      if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                      // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                      // writing to the length. Since we can't know the number of RLP items without looping over
                      // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                      // simply set a reasonable maximum list length and decrease the size before we finish.
                      out_ = new RLPItem[](MAX_LIST_LENGTH);
                      uint256 itemCount = 0;
                      uint256 offset = listOffset;
                      while (offset < _in.length) {
                          (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                              RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                          );
                          // We don't need to check itemCount < out.length explicitly because Solidity already
                          // handles this check on our behalf, we'd just be wasting gas.
                          out_[itemCount] = RLPItem({
                              length: itemLength + itemOffset,
                              ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                          });
                          itemCount += 1;
                          offset += itemOffset + itemLength;
                      }
                      // Decrease the array size to match the actual item count.
                      assembly {
                          mstore(out_, itemCount)
                      }
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                      out_ = readList(toRLPItem(_in));
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                      if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                      out_ = _copy(_in.ptr, itemOffset, itemLength);
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      out_ = readBytes(toRLPItem(_in));
                  }
                  /// @notice Reads the raw bytes of an RLP item.
                  /// @param _in RLP item to read.
                  /// @return out_ Raw RLP bytes.
                  function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      out_ = _copy(_in.ptr, 0, _in.length);
                  }
                  /// @notice Decodes the length of an RLP item.
                  /// @param _in RLP item to decode.
                  /// @return offset_ Offset of the encoded data.
                  /// @return length_ Length of the encoded data.
                  /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                  function _decodeLength(RLPItem memory _in)
                      private
                      pure
                      returns (uint256 offset_, uint256 length_, RLPItemType type_)
                  {
                      // Short-circuit if there's nothing to decode, note that we perform this check when
                      // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                      // that function and create an RLP item directly. So we need to check this anyway.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr = _in.ptr;
                      uint256 prefix;
                      assembly {
                          prefix := byte(0, mload(ptr))
                      }
                      if (prefix <= 0x7f) {
                          // Single byte.
                          return (0, 1, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xb7) {
                          // Short string.
                          // slither-disable-next-line variable-scope
                          uint256 strLen = prefix - 0x80;
                          if (_in.length <= strLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                          return (1, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xbf) {
                          // Long string.
                          uint256 lenOfStrLen = prefix - 0xb7;
                          if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 strLen;
                          assembly {
                              strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                          }
                          if (strLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                          return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xf7) {
                          // Short list.
                          // slither-disable-next-line variable-scope
                          uint256 listLen = prefix - 0xc0;
                          if (_in.length <= listLen) revert ContentLengthMismatch();
                          return (1, listLen, RLPItemType.LIST_ITEM);
                      } else {
                          // Long list.
                          uint256 lenOfListLen = prefix - 0xf7;
                          if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 listLen;
                          assembly {
                              listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                          }
                          if (listLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                          return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                      }
                  }
                  /// @notice Copies the bytes from a memory location.
                  /// @param _src    Pointer to the location to read from.
                  /// @param _offset Offset to start reading from.
                  /// @param _length Number of bytes to read.
                  /// @return out_ Copied bytes.
                  function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                      out_ = new bytes(_length);
                      if (_length == 0) {
                          return out_;
                      }
                      // Mostly based on Solidity's copy_memory_to_memory:
                      // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                      uint256 src = MemoryPointer.unwrap(_src) + _offset;
                      assembly {
                          let dest := add(out_, 32)
                          let i := 0
                          for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                          if gt(i, _length) { mstore(add(dest, _length), 0) }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              using LibPosition for Position global;
              /// @notice A `Position` represents a position of a claim within the game tree.
              /// @dev This is represented as a "generalized index" where the high-order bit
              /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
              /// a unique identifier for each node in the tree. Mathematically, it is calculated
              /// as 2^{depth} + indexAtDepth.
              type Position is uint128;
              /// @title LibPosition
              /// @notice This library contains helper functions for working with the `Position` type.
              library LibPosition {
                  /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                  ///         its behavior within this library, can safely support.
                  uint8 internal constant MAX_POSITION_BITLEN = 126;
                  /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                  /// @param _depth The depth of the position.
                  /// @param _indexAtDepth The index at the depth of the position.
                  /// @return position_ The computed generalized index.
                  function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                      assembly {
                          // gindex = 2^{_depth} + _indexAtDepth
                          position_ := add(shl(_depth, 1), _indexAtDepth)
                      }
                  }
                  /// @notice Pulls the `depth` out of a `Position` type.
                  /// @param _position The generalized index to get the `depth` of.
                  /// @return depth_ The `depth` of the `position` gindex.
                  /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                  function depth(Position _position) internal pure returns (uint8 depth_) {
                      // Return the most significant bit offset, which signifies the depth of the gindex.
                      assembly {
                          depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                          depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                          // For the remaining 32 bits, use a De Bruijn lookup.
                          _position := shr(depth_, _position)
                          _position := or(_position, shr(1, _position))
                          _position := or(_position, shr(2, _position))
                          _position := or(_position, shr(4, _position))
                          _position := or(_position, shr(8, _position))
                          _position := or(_position, shr(16, _position))
                          depth_ :=
                              or(
                                  depth_,
                                  byte(
                                      shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                      0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                  )
                              )
                      }
                  }
                  /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                  ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                  ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                  ///         and the `indexAtDepth` = 0.
                  /// @param _position The generalized index to get the `indexAtDepth` of.
                  /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                  function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                      // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                      // leaving only the `indexAtDepth`.
                      uint256 msb = depth(_position);
                      assembly {
                          indexAtDepth_ := sub(_position, shl(msb, 1))
                      }
                  }
                  /// @notice Get the left child of `_position`.
                  /// @param _position The position to get the left position of.
                  /// @return left_ The position to the left of `position`.
                  function left(Position _position) internal pure returns (Position left_) {
                      assembly {
                          left_ := shl(1, _position)
                      }
                  }
                  /// @notice Get the right child of `_position`
                  /// @param _position The position to get the right position of.
                  /// @return right_ The position to the right of `position`.
                  function right(Position _position) internal pure returns (Position right_) {
                      assembly {
                          right_ := or(1, shl(1, _position))
                      }
                  }
                  /// @notice Get the parent position of `_position`.
                  /// @param _position The position to get the parent position of.
                  /// @return parent_ The parent position of `position`.
                  function parent(Position _position) internal pure returns (Position parent_) {
                      assembly {
                          parent_ := shr(1, _position)
                      }
                  }
                  /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                  ///         calling `right` on a position until the maximum depth is reached.
                  /// @param _position The position to get the relative deepest, right most gindex of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                  function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                      }
                  }
                  /// @notice Get the deepest, right most trace index relative to the `position`. This is
                  ///         equivalent to calling `right` on a position until the maximum depth is reached and
                  ///         then finding its index at depth.
                  /// @param _position The position to get the relative trace index of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return traceIndex_ The trace index relative to the `position`.
                  function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index.
                  /// @param _position The position to get the highest ancestor of.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                      // Create a field with only the lowest unset bit of `_position` set.
                      Position lsb;
                      assembly {
                          lsb := and(not(_position), add(_position, 1))
                      }
                      // Find the index of the lowest unset bit within the field.
                      uint256 msb = depth(lsb);
                      // The highest ancestor that commits to the same trace index is the original position
                      // shifted right by the index of the lowest unset bit.
                      assembly {
                          let a := shr(msb, _position)
                          // Bound the ancestor to the minimum gindex, 1.
                          ancestor_ := or(a, iszero(a))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index, while still being below `_upperBoundExclusive`.
                  /// @param _position The position to get the highest ancestor of.
                  /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                  ///                             to not escape a sub-tree.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestorBounded(
                      Position _position,
                      uint256 _upperBoundExclusive
                  )
                      internal
                      pure
                      returns (Position ancestor_)
                  {
                      // This function only works for positions that are below the upper bound.
                      if (_position.depth() <= _upperBoundExclusive) {
                          assembly {
                              // Revert with `ClaimAboveSplit()`
                              mstore(0x00, 0xb34b5c22)
                              revert(0x1C, 0x04)
                          }
                      }
                      // Grab the global trace ancestor.
                      ancestor_ = traceAncestor(_position);
                      // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                      // This should be a special case that only covers positions that commit to the final leaf
                      // in a sub-tree.
                      if (ancestor_.depth() <= _upperBoundExclusive) {
                          ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                      }
                  }
                  /// @notice Get the move position of `_position`, which is the left child of:
                  ///         1. `_position` if `_isAttack` is true.
                  ///         2. `_position | 1` if `_isAttack` is false.
                  /// @param _position The position to get the relative attack/defense position of.
                  /// @param _isAttack Whether or not the move is an attack move.
                  /// @return move_ The move position relative to `position`.
                  function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                      assembly {
                          move_ := shl(1, or(iszero(_isAttack), _position))
                      }
                  }
                  /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                  /// @param _position The position to get the value of.
                  /// @return raw_ The value of the `position` as a uint128 type.
                  function raw(Position _position) internal pure returns (uint128 raw_) {
                      assembly {
                          raw_ := _position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice The length of an RLP item must be greater than zero to be decodable
              error EmptyItem();
              /// @notice The decoded item type for list is not a list item
              error UnexpectedString();
              /// @notice The RLP item has an invalid data remainder
              error InvalidDataRemainder();
              /// @notice Decoded item type for bytes is not a string item
              error UnexpectedList();
              /// @notice The length of the content must be greater than the RLP item length
              error ContentLengthMismatch();
              /// @notice Invalid RLP header for RLP item
              error InvalidHeader();
              

              File 10 of 10: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }