ETH Price: $2,501.51 (+0.41%)

Transaction Decoder

Block:
22591010 at May-29-2025 09:13:59 PM +UTC
Transaction Fee:
0.000297604111886252 ETH $0.74
Gas Used:
91,636 Gas / 3.247676807 Gwei

Emitted Events:

299 ERC20EscrowPredicate.LockedERC20( depositor=[Sender] 0xca74f404e0c7bfa35b13b511097df966d5a65597, depositReceiver=[Sender] 0xca74f404e0c7bfa35b13b511097df966d5a65597, rootToken=REVV, amount=194534408705000000000000 )
300 REVV.Approval( _owner=[Sender] 0xca74f404e0c7bfa35b13b511097df966d5a65597, _spender=ERC20EscrowPredicate, _value=115792089237316195423570985008687907853269984665640559201009366830797114768778 )
301 REVV.Transfer( _from=[Sender] 0xca74f404e0c7bfa35b13b511097df966d5a65597, _to=ERC20EscrowPredicate, _value=194534408705000000000000 )
302 StateSender.StateSynced( id=3071428, contractAddress=0xA6FA4fB5...9C5d1C0aa, data=0x87A7811F4BFEDEA3D341AD165680AE306B01AAEACC205D227629CF157DD9F821000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000CA74F404E0C7BFA35B13B511097DF966D5A65597000000000000000000000000557B933A7C2C45672B610F8954A3DEB39A51A8CA00000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000002931BB3ECDBA16C51000 )

Account State Difference:

  Address   Before After State Difference Code
0x28e4F3a7...189A5bFbE
(Polygon (Matic): State Syncer)
0x557B933a...39a51A8Ca
(beaverbuild)
15.884754848223849743 Eth15.884787424821849743 Eth0.000032576598
0xcA74F404...6D5a65597
2.243147130444198568 Eth
Nonce: 422501
2.242849526332312316 Eth
Nonce: 422502
0.000297604111886252

Execution Trace

RootChainManagerProxy.e3dec8fb( )
  • RootChainManager.depositFor( user=0xcA74F404E0C7bfA35B13B511097df966D5a65597, rootToken=0x557B933a7C2c45672B610F8954A3deB39a51A8Ca, depositData=0x000000000000000000000000000000000000000000002931BB3ECDBA16C51000 )
    • ERC20EscrowPredicate.lockTokens( depositor=0xcA74F404E0C7bfA35B13B511097df966D5a65597, depositReceiver=0xcA74F404E0C7bfA35B13B511097df966D5a65597, rootToken=0x557B933a7C2c45672B610F8954A3deB39a51A8Ca, depositData=0x000000000000000000000000000000000000000000002931BB3ECDBA16C51000 )
      • REVV.transferFrom( sender=0xcA74F404E0C7bfA35B13B511097df966D5a65597, recipient=0x21ada4D8A799c4b0ADF100eB597a6f1321bCD3E4, amount=194534408705000000000000 ) => ( True )
      • StateSender.syncState( receiver=0xA6FA4fB5f76172d178d61B04b0ecd319C5d1C0aa, data=0x87A7811F4BFEDEA3D341AD165680AE306B01AAEACC205D227629CF157DD9F821000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000CA74F404E0C7BFA35B13B511097DF966D5A65597000000000000000000000000557B933A7C2C45672B610F8954A3DEB39A51A8CA00000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000002931BB3ECDBA16C51000 )
        File 1 of 5: RootChainManagerProxy
        // File: contracts/common/Proxy/IERCProxy.sol
        
        pragma solidity 0.6.6;
        
        interface IERCProxy {
            function proxyType() external pure returns (uint256 proxyTypeId);
        
            function implementation() external view returns (address codeAddr);
        }
        
        // File: contracts/common/Proxy/Proxy.sol
        
        pragma solidity 0.6.6;
        
        
        abstract contract Proxy is IERCProxy {
            function delegatedFwd(address _dst, bytes memory _calldata) internal {
                // solium-disable-next-line security/no-inline-assembly
                assembly {
                    let result := delegatecall(
                        sub(gas(), 10000),
                        _dst,
                        add(_calldata, 0x20),
                        mload(_calldata),
                        0,
                        0
                    )
                    let size := returndatasize()
        
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, size)
        
                    // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
                    // if the call returned error data, forward it
                    switch result
                        case 0 {
                            revert(ptr, size)
                        }
                        default {
                            return(ptr, size)
                        }
                }
            }
        
            function proxyType() external virtual override pure returns (uint256 proxyTypeId) {
                // Upgradeable proxy
                proxyTypeId = 2;
            }
        
            function implementation() external virtual override view returns (address);
        }
        
        // File: contracts/common/Proxy/UpgradableProxy.sol
        
        pragma solidity 0.6.6;
        
        
        contract UpgradableProxy is Proxy {
            event ProxyUpdated(address indexed _new, address indexed _old);
            event ProxyOwnerUpdate(address _new, address _old);
        
            bytes32 constant IMPLEMENTATION_SLOT = keccak256("matic.network.proxy.implementation");
            bytes32 constant OWNER_SLOT = keccak256("matic.network.proxy.owner");
        
            constructor(address _proxyTo) public {
                setProxyOwner(msg.sender);
                setImplementation(_proxyTo);
            }
        
            fallback() external payable {
                delegatedFwd(loadImplementation(), msg.data);
            }
        
            receive() external payable {
                delegatedFwd(loadImplementation(), msg.data);
            }
        
            modifier onlyProxyOwner() {
                require(loadProxyOwner() == msg.sender, "NOT_OWNER");
                _;
            }
        
            function proxyOwner() external view returns(address) {
                return loadProxyOwner();
            }
        
            function loadProxyOwner() internal view returns(address) {
                address _owner;
                bytes32 position = OWNER_SLOT;
                assembly {
                    _owner := sload(position)
                }
                return _owner;
            }
        
            function implementation() external override view returns (address) {
                return loadImplementation();
            }
        
            function loadImplementation() internal view returns(address) {
                address _impl;
                bytes32 position = IMPLEMENTATION_SLOT;
                assembly {
                    _impl := sload(position)
                }
                return _impl;
            }
        
            function transferProxyOwnership(address newOwner) public onlyProxyOwner {
                require(newOwner != address(0), "ZERO_ADDRESS");
                emit ProxyOwnerUpdate(newOwner, loadProxyOwner());
                setProxyOwner(newOwner);
            }
        
            function setProxyOwner(address newOwner) private {
                bytes32 position = OWNER_SLOT;
                assembly {
                    sstore(position, newOwner)
                }
            }
        
            function updateImplementation(address _newProxyTo) public onlyProxyOwner {
                require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS");
                require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT");
        
                emit ProxyUpdated(_newProxyTo, loadImplementation());
                
                setImplementation(_newProxyTo);
            }
        
            function updateAndCall(address _newProxyTo, bytes memory data) payable public onlyProxyOwner {
                updateImplementation(_newProxyTo);
        
                (bool success, bytes memory returnData) = address(this).call{value: msg.value}(data);
                require(success, string(returnData));
            }
        
            function setImplementation(address _newProxyTo) private {
                bytes32 position = IMPLEMENTATION_SLOT;
                assembly {
                    sstore(position, _newProxyTo)
                }
            }
            
            function isContract(address _target) internal view returns (bool) {
                if (_target == address(0)) {
                    return false;
                }
        
                uint256 size;
                assembly {
                    size := extcodesize(_target)
                }
                return size > 0;
            }
        }
        
        // File: contracts/root/RootChainManager/RootChainManagerProxy.sol
        
        pragma solidity 0.6.6;
        
        
        contract RootChainManagerProxy is UpgradableProxy {
            constructor(address _proxyTo)
                public
                UpgradableProxy(_proxyTo)
            {}
        }

        File 2 of 5: ERC20EscrowPredicate
        // Sources flattened with hardhat v2.4.3 https://hardhat.org
        
        // File @animoca/ethereum-contracts-core-1.1.1/contracts/utils/types/[email protected]
        
        // SPDX-License-Identifier: MIT
        
        // Partially derived from OpenZeppelin:
        // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/406c83649bd6169fc1b578e08506d78f0873b276/contracts/utils/Address.sol
        
        pragma solidity >=0.7.6 <0.8.0;
        
        /**
         * @dev Upgrades the address type to check if it is a contract.
         */
        library AddressIsContract {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
        
                uint256 size;
                assembly {
                    size := extcodesize(account)
                }
                return size > 0;
            }
        }
        
        
        // File @animoca/ethereum-contracts-core-1.1.1/contracts/utils/[email protected]
        
        pragma solidity >=0.7.6 <0.8.0;
        
        /**
         * @title ERC20Wrapper
         * Wraps ERC20 functions to support non-standard implementations which do not return a bool value.
         * Calls to the wrapped functions revert only if they throw or if they return false.
         */
        library ERC20Wrapper {
            using AddressIsContract for address;
        
            function wrappedTransfer(
                IWrappedERC20 token,
                address to,
                uint256 value
            ) internal {
                _callWithOptionalReturnData(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
        
            function wrappedTransferFrom(
                IWrappedERC20 token,
                address from,
                address to,
                uint256 value
            ) internal {
                _callWithOptionalReturnData(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
        
            function wrappedApprove(
                IWrappedERC20 token,
                address spender,
                uint256 value
            ) internal {
                _callWithOptionalReturnData(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
        
            function _callWithOptionalReturnData(IWrappedERC20 token, bytes memory callData) internal {
                address target = address(token);
                require(target.isContract(), "ERC20Wrapper: non-contract");
        
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory data) = target.call(callData);
                if (success) {
                    if (data.length != 0) {
                        require(abi.decode(data, (bool)), "ERC20Wrapper: operation failed");
                    }
                } else {
                    // revert using a standard revert message
                    if (data.length == 0) {
                        revert("ERC20Wrapper: operation failed");
                    }
        
                    // revert using the revert message coming from the call
                    assembly {
                        let size := mload(data)
                        revert(add(32, data), size)
                    }
                }
            }
        }
        
        interface IWrappedERC20 {
            function transfer(address to, uint256 value) external returns (bool);
        
            function transferFrom(
                address from,
                address to,
                uint256 value
            ) external returns (bool);
        
            function approve(address spender, uint256 value) external returns (bool);
        }
        
        
        // File @animoca/ethereum-contracts-core-1.1.1/contracts/metatx/[email protected]
        
        pragma solidity >=0.7.6 <0.8.0;
        
        /*
         * Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner.
         */
        abstract contract ManagedIdentity {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
        
            function _msgData() internal view virtual returns (bytes memory) {
                return msg.data;
            }
        }
        
        
        // File @animoca/ethereum-contracts-core-1.1.1/contracts/bridging/[email protected]
        
        pragma solidity >=0.7.6 <0.8.0;
        
        /**
         * @title Token predicate interface for all POS portal predicates.
         * Abstract interface that defines methods for custom predicates.
         */
        interface ITokenPredicate {
            /**
             * @notice Deposit tokens into POS portal.
             * @dev When `depositor` deposits tokens into POS portal, tokens get locked into predicate contract.
             * @param depositor Address who wants to deposit tokens
             * @param depositReceiver Address (address) who wants to receive tokens on side chain
             * @param rootToken Token which gets deposited
             * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded]
             */
            function lockTokens(
                address depositor,
                address depositReceiver,
                address rootToken,
                bytes calldata depositData
            ) external;
        
            /**
             * @notice Validates and processes exit while withdraw process
             * @dev Validates exit log emitted on sidechain. Reverts if validation fails.
             * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw
             * @param sender Address
             * @param rootToken Token which gets withdrawn
             * @param logRLPList Valid sidechain log for data like amount, token id etc.
             */
            function exitTokens(
                address sender,
                address rootToken,
                bytes calldata logRLPList
            ) external;
        }
        
        
        // File @animoca/ethereum-contracts-core-1.1.1/contracts/utils/[email protected]
        
        /*
         * @author Hamdi Allam [email protected]
         * Please reach out with any questions or concerns
         * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol
         */
        pragma solidity >=0.7.6 <0.8.0;
        
        library RLPReader {
            uint8 private constant _STRING_SHORT_START = 0x80;
            uint8 private constant _STRING_LONG_START = 0xb8;
            uint8 private constant _LIST_SHORT_START = 0xc0;
            uint8 private constant _LIST_LONG_START = 0xf8;
            uint8 private constant _WORD_SIZE = 32;
        
            struct RLPItem {
                uint256 len;
                uint256 memPtr;
            }
        
            /*
             * @param item RLP encoded bytes
             */
            function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
                require(item.length > 0, "RLPReader: INVALID_BYTES_LENGTH");
                uint256 memPtr;
                assembly {
                    memPtr := add(item, 0x20)
                }
        
                return RLPItem(item.length, memPtr);
            }
        
            /*
             * @param item RLP encoded list in bytes
             */
            function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
                require(isList(item), "RLP: ITEM_NOT_LIST");
        
                uint256 items = numItems(item);
                RLPItem[] memory result = new RLPItem[](items);
                uint256 listLength = _itemLength(item.memPtr);
                require(listLength == item.len, "RLP: LIST_LENGTH_MISMATCH");
        
                uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
                uint256 dataLen;
                for (uint256 i = 0; i < items; i++) {
                    dataLen = _itemLength(memPtr);
                    result[i] = RLPItem(dataLen, memPtr);
                    memPtr = memPtr + dataLen;
                }
        
                return result;
            }
        
            // @return indicator whether encoded payload is a list. negate this function call for isData.
            function isList(RLPItem memory item) internal pure returns (bool) {
                uint8 byte0;
                uint256 memPtr = item.memPtr;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
        
                if (byte0 < _LIST_SHORT_START) return false;
                return true;
            }
        
            /** RLPItem conversions into data types **/
        
            // @returns raw rlp encoding in bytes
            function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
                bytes memory result = new bytes(item.len);
        
                uint256 ptr;
                assembly {
                    ptr := add(0x20, result)
                }
        
                copy(item.memPtr, ptr, item.len);
                return result;
            }
        
            function toAddress(RLPItem memory item) internal pure returns (address) {
                require(!isList(item), "RLP: DECODING_LIST_AS_ADDRESS");
                // 1 byte for the length prefix
                require(item.len == 21, "RLP: INVALID_ADDRESS_LEN");
        
                return address(toUint(item));
            }
        
            function toUint(RLPItem memory item) internal pure returns (uint256) {
                require(!isList(item), "RLP: DECODING_LIST_AS_UINT");
                require(item.len <= 33, "RLP: INVALID_UINT_LEN");
        
                uint256 itemLength = _itemLength(item.memPtr);
                require(itemLength == item.len, "RLP: UINT_LEN_MISMATCH");
        
                uint256 offset = _payloadOffset(item.memPtr);
                uint256 len = item.len - offset;
                uint256 result;
                uint256 memPtr = item.memPtr + offset;
                assembly {
                    result := mload(memPtr)
        
                    // shfit to the correct location if neccesary
                    if lt(len, 32) {
                        result := div(result, exp(256, sub(32, len)))
                    }
                }
        
                return result;
            }
        
            // enforces 32 byte length
            function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
                uint256 itemLength = _itemLength(item.memPtr);
                require(itemLength == item.len, "RLP: UINT_STRICT_LEN_MISMATCH");
                // one byte prefix
                require(item.len == 33, "RLP: INVALID_UINT_STRICT_LEN");
        
                uint256 result;
                uint256 memPtr = item.memPtr + 1;
                assembly {
                    result := mload(memPtr)
                }
        
                return result;
            }
        
            function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
                uint256 listLength = _itemLength(item.memPtr);
                require(listLength == item.len, "RLP: BYTES_LEN_MISMATCH");
                uint256 offset = _payloadOffset(item.memPtr);
        
                uint256 len = item.len - offset; // data length
                bytes memory result = new bytes(len);
        
                uint256 destPtr;
                assembly {
                    destPtr := add(0x20, result)
                }
        
                copy(item.memPtr + offset, destPtr, len);
                return result;
            }
        
            /*
             * Private Helpers
             */
        
            // @return number of payload items inside an encoded list.
            function numItems(RLPItem memory item) private pure returns (uint256) {
                // add `isList` check if `item` is expected to be passsed without a check from calling function
                // require(isList(item), "RLPReader: NUM_ITEMS_NOT_LIST");
        
                uint256 count = 0;
                uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
                uint256 endPtr = item.memPtr + item.len;
                while (currPtr < endPtr) {
                    currPtr = currPtr + _itemLength(currPtr); // skip over an item
                    require(currPtr <= endPtr, "RLP: NUM_ITEMS_LEN_MISMATCH");
                    count++;
                }
        
                return count;
            }
        
            // @return entire rlp item byte length
            function _itemLength(uint256 memPtr) private pure returns (uint256) {
                uint256 itemLen;
                uint256 byte0;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
        
                if (byte0 < _STRING_SHORT_START) itemLen = 1;
                else if (byte0 < _STRING_LONG_START) itemLen = byte0 - _STRING_SHORT_START + 1;
                else if (byte0 < _LIST_SHORT_START) {
                    assembly {
                        let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                        memPtr := add(memPtr, 1) // skip over the first byte
        
                        /* 32 byte word size */
                        let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                        itemLen := add(dataLen, add(byteLen, 1))
                    }
                } else if (byte0 < _LIST_LONG_START) {
                    itemLen = byte0 - _LIST_SHORT_START + 1;
                } else {
                    assembly {
                        let byteLen := sub(byte0, 0xf7)
                        memPtr := add(memPtr, 1)
        
                        let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                        itemLen := add(dataLen, add(byteLen, 1))
                    }
                }
        
                return itemLen;
            }
        
            // @return number of bytes until the data
            function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
                uint256 byte0;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
        
                if (byte0 < _STRING_SHORT_START) return 0;
                else if (byte0 < _STRING_LONG_START || (byte0 >= _LIST_SHORT_START && byte0 < _LIST_LONG_START)) return 1;
                else if (byte0 < _LIST_SHORT_START)
                    // being explicit
                    return byte0 - (_STRING_LONG_START - 1) + 1;
                else return byte0 - (_LIST_LONG_START - 1) + 1;
            }
        
            /*
             * @param src Pointer to source
             * @param dest Pointer to destination
             * @param len Amount of memory to copy from the source
             */
            function copy(
                uint256 src,
                uint256 dest,
                uint256 len
            ) private pure {
                if (len == 0) return;
        
                // copy as many word sizes as possible
                for (; len >= _WORD_SIZE; len -= _WORD_SIZE) {
                    assembly {
                        mstore(dest, mload(src))
                    }
        
                    src += _WORD_SIZE;
                    dest += _WORD_SIZE;
                }
        
                // left over bytes. Mask is used to remove unwanted bytes from the word
                uint256 mask = 256**(_WORD_SIZE - len) - 1;
                assembly {
                    let srcpart := and(mload(src), not(mask)) // zero out src
                    let destpart := and(mload(dest), mask) // retrieve the bytes
                    mstore(dest, or(destpart, srcpart))
                }
            }
        }
        
        
        // File contracts/bridging/ERC20BasePredicate.sol
        
        pragma solidity >=0.7.6 <0.8.0;
        
        
        /**
         * Polygon (MATIC) bridging base ERC20 predicate to be deployed on the root chain (Ethereum mainnet).
         */
        abstract contract ERC20BasePredicate is ITokenPredicate {
            using RLPReader for bytes;
            using RLPReader for RLPReader.RLPItem;
        
            event LockedERC20(address indexed depositor, address indexed depositReceiver, address indexed rootToken, uint256 amount);
        
            bytes32 public constant WITHDRAWN_EVENT_SIG = 0x7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d5;
        
            // see https://github.com/maticnetwork/pos-portal/blob/master/contracts/root/RootChainManager/RootChainManager.sol
            address public rootChainManager;
        
            /**
             * Constructor
             * @param rootChainManager_ the Polygon/MATIC RootChainManager proxy address.
             */
            constructor(address rootChainManager_) {
                rootChainManager = rootChainManager_;
            }
        
            function _requireManagerRole(address account) internal view {
                require(account == rootChainManager, "Predicate: only manager");
            }
        
            function _verifyWithdrawalLog(bytes memory log) internal pure returns (address withdrawer, uint256 amount) {
                RLPReader.RLPItem[] memory logRLPList = log.toRlpItem().toList();
                RLPReader.RLPItem[] memory logTopicRLPList = logRLPList[1].toList(); // topics
        
                require(
                    bytes32(logTopicRLPList[0].toUint()) == WITHDRAWN_EVENT_SIG, // topic0 is event sig
                    "Predicate: invalid signature"
                );
        
                bytes memory logData = logRLPList[2].toBytes();
                (withdrawer, amount) = abi.decode(logData, (address, uint256));
            }
        }
        
        
        // File contracts/bridging/ERC20EscrowPredicate.sol
        
        pragma solidity >=0.7.6 <0.8.0;
        
        
        
        /**
         * Polygon (MATIC) bridging ERC20 escrowing predicate to be deployed on the root chain (Ethereum mainnet).
         * This predicate must be used for non-mintable/non-burnable tokens.
         */
        contract ERC20EscrowPredicate is ERC20BasePredicate, ManagedIdentity {
            using ERC20Wrapper for IWrappedERC20;
        
            constructor(address rootChainManager_) ERC20BasePredicate(rootChainManager_) {}
        
            /**
             * Locks ERC20 tokens for deposit.
             * @dev Reverts if not called by the manager (RootChainManager).
             * @param depositor Address who wants to deposit tokens.
             * @param depositReceiver Address (address) who wants to receive tokens on child chain.
             * @param rootToken Token which gets deposited.
             * @param depositData ABI encoded amount.
             */
            function lockTokens(
                address depositor,
                address depositReceiver,
                address rootToken,
                bytes calldata depositData
            ) external override {
                _requireManagerRole(_msgSender());
                uint256 amount = abi.decode(depositData, (uint256));
                emit LockedERC20(depositor, depositReceiver, rootToken, amount);
                IWrappedERC20(rootToken).wrappedTransferFrom(depositor, address(this), amount);
            }
        
            /**
             * Validates the {Withdrawn} log signature, then sends the correct amount to withdrawer.
             * @dev Reverts if not called only by the manager (RootChainManager).
             * @param rootToken Token which gets withdrawn
             * @param log Valid ERC20 burn log from child chain
             */
            function exitTokens(
                address,
                address rootToken,
                bytes memory log
            ) public override {
                _requireManagerRole(_msgSender());
                (address withdrawer, uint256 amount) = _verifyWithdrawalLog(log);
                IWrappedERC20(rootToken).wrappedTransfer(withdrawer, amount);
            }
        }

        File 3 of 5: REVV
        // Sources flattened with buidler v1.3.8 https://buidler.dev
        
        // SPDX-License-Identifier: MIT
        
        // File @openzeppelin/contracts/GSN/[email protected]
        
        pragma solidity ^0.6.0;
        
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
        
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        
        
        // File @openzeppelin/contracts/access/[email protected]
        
        pragma solidity ^0.6.0;
        
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        contract Ownable is Context {
            address private _owner;
        
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () internal {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
        
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view returns (address) {
                return _owner;
            }
        
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(_owner == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
        
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
        
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        
        
        // File @animoca/ethereum-contracts-core_library/contracts/access/[email protected]
        
        pragma solidity 0.6.8;
        
        
        contract WhitelistedOperators is Ownable {
        
            mapping(address => bool) internal _whitelistedOperators;
        
            event WhitelistedOperator(address operator, bool enabled);
        
            /// @notice Enable or disable address operator access
            /// @param operator address that will be given/removed operator right.
            /// @param enabled set whether the operator is enabled or disabled.
            function whitelistOperator(address operator, bool enabled) external onlyOwner {
                _whitelistedOperators[operator] = enabled;
                emit WhitelistedOperator(operator, enabled);
            }
        
            /// @notice check whether address `who` is given operator rights.
            /// @param who The address to query.
            /// @return whether the address is whitelisted operator
            function isOperator(address who) public view returns (bool) {
                return _whitelistedOperators[who];
            }
        }
        
        
        // File @openzeppelin/contracts/introspection/[email protected]
        
        pragma solidity ^0.6.0;
        
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        
        
        // File @openzeppelin/contracts/introspection/[email protected]
        
        pragma solidity ^0.6.0;
        
        
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts may inherit from this and call {_registerInterface} to declare
         * their support of an interface.
         */
        contract ERC165 is IERC165 {
            /*
             * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
             */
            bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
        
            /**
             * @dev Mapping of interface ids to whether or not it's supported.
             */
            mapping(bytes4 => bool) private _supportedInterfaces;
        
            constructor () internal {
                // Derived contracts need only register support for their own interfaces,
                // we register support for ERC165 itself here
                _registerInterface(_INTERFACE_ID_ERC165);
            }
        
            /**
             * @dev See {IERC165-supportsInterface}.
             *
             * Time complexity O(1), guaranteed to always use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) public view override returns (bool) {
                return _supportedInterfaces[interfaceId];
            }
        
            /**
             * @dev Registers the contract as an implementer of the interface defined by
             * `interfaceId`. Support of the actual ERC165 interface is automatic and
             * registering its interface id is not required.
             *
             * See {IERC165-supportsInterface}.
             *
             * Requirements:
             *
             * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
             */
            function _registerInterface(bytes4 interfaceId) internal virtual {
                require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
                _supportedInterfaces[interfaceId] = true;
            }
        }
        
        
        // File @openzeppelin/contracts/math/[email protected]
        
        pragma solidity ^0.6.0;
        
        /**
         * @dev Wrappers over Solidity's arithmetic operations with added overflow
         * checks.
         *
         * Arithmetic operations in Solidity wrap on overflow. This can easily result
         * in bugs, because programmers usually assume that an overflow raises an
         * error, which is the standard behavior in high level programming languages.
         * `SafeMath` restores this intuition by reverting the transaction when an
         * operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeMath {
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a, "SafeMath: addition overflow");
        
                return c;
            }
        
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                return sub(a, b, "SafeMath: subtraction overflow");
            }
        
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b <= a, errorMessage);
                uint256 c = a - b;
        
                return c;
            }
        
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) {
                    return 0;
                }
        
                uint256 c = a * b;
                require(c / a == b, "SafeMath: multiplication overflow");
        
                return c;
            }
        
            /**
             * @dev Returns the integer division of two unsigned integers. Reverts on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                return div(a, b, "SafeMath: division by zero");
            }
        
            /**
             * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
        
                return c;
            }
        
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * Reverts when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                return mod(a, b, "SafeMath: modulo by zero");
            }
        
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * Reverts with custom message when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b != 0, errorMessage);
                return a % b;
            }
        }
        
        
        // File @openzeppelin/contracts/utils/[email protected]
        
        pragma solidity ^0.6.2;
        
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                // for accounts without code, i.e. `keccak256('')`
                bytes32 codehash;
                bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                // solhint-disable-next-line no-inline-assembly
                assembly { codehash := extcodehash(account) }
                return (codehash != accountHash && codehash != 0x0);
            }
        
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
        
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
        
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
        
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return _functionCallWithValue(target, data, 0, errorMessage);
            }
        
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
        
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                return _functionCallWithValue(target, data, value, errorMessage);
            }
        
            function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                require(isContract(target), "Address: call to non-contract");
        
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
        
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        
        
        // File @animoca/ethereum-contracts-erc20_base/contracts/token/ERC20/[email protected]
        
        /*
        https://github.com/OpenZeppelin/openzeppelin-contracts
        
        The MIT License (MIT)
        
        Copyright (c) 2016-2019 zOS Global Limited
        
        Permission is hereby granted, free of charge, to any person obtaining
        a copy of this software and associated documentation files (the
        "Software"), to deal in the Software without restriction, including
        without limitation the rights to use, copy, modify, merge, publish,
        distribute, sublicense, and/or sell copies of the Software, and to
        permit persons to whom the Software is furnished to do so, subject to
        the following conditions:
        
        The above copyright notice and this permission notice shall be included
        in all copies or substantial portions of the Software.
        
        THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
        OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
        MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
        IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
        CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
        TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
        SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
        */
        
        pragma solidity 0.6.8;
        
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
        
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(
                address indexed _from,
                address indexed _to,
                uint256 _value
            );
        
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(
                address indexed _owner,
                address indexed _spender,
                uint256 _value
            );
        
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
        
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
        
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
        
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
        
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
        
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        }
        
        
        // File @animoca/ethereum-contracts-erc20_base/contracts/token/ERC20/[email protected]
        
        /*
        https://github.com/OpenZeppelin/openzeppelin-contracts
        
        The MIT License (MIT)
        
        Copyright (c) 2016-2019 zOS Global Limited
        
        Permission is hereby granted, free of charge, to any person obtaining
        a copy of this software and associated documentation files (the
        "Software"), to deal in the Software without restriction, including
        without limitation the rights to use, copy, modify, merge, publish,
        distribute, sublicense, and/or sell copies of the Software, and to
        permit persons to whom the Software is furnished to do so, subject to
        the following conditions:
        
        The above copyright notice and this permission notice shall be included
        in all copies or substantial portions of the Software.
        
        THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
        OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
        MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
        IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
        CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
        TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
        SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
        */
        
        pragma solidity 0.6.8;
        
        /**
         * @dev Interface for commonly used additional ERC20 interfaces
         */
        interface IERC20Detailed {
        
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
        
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() external view returns (string memory);
        
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5,05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the value {ERC20} uses.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() external view returns (uint8);
        }
        
        
        // File @animoca/ethereum-contracts-erc20_base/contracts/token/ERC20/[email protected]
        
        pragma solidity 0.6.8;
        
        /**
         * @dev Interface for additional ERC20 allowance features
         */
        interface IERC20Allowance {
        
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) external returns (bool);
        
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool);
        
        }
        
        
        // File @animoca/ethereum-contracts-erc20_base/contracts/token/ERC20/[email protected]
        
        /*
        https://github.com/OpenZeppelin/openzeppelin-contracts
        
        The MIT License (MIT)
        
        Copyright (c) 2016-2019 zOS Global Limited
        
        Permission is hereby granted, free of charge, to any person obtaining
        a copy of this software and associated documentation files (the
        "Software"), to deal in the Software without restriction, including
        without limitation the rights to use, copy, modify, merge, publish,
        distribute, sublicense, and/or sell copies of the Software, and to
        permit persons to whom the Software is furnished to do so, subject to
        the following conditions:
        
        The above copyright notice and this permission notice shall be included
        in all copies or substantial portions of the Software.
        
        THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
        OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
        MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
        IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
        CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
        TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
        SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
        */
        
        pragma solidity 0.6.8;
        
        
        
        
        
        
        
        
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20MinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * We have followed general OpenZeppelin guidelines: functions revert instead
         * of returning `false` on failure. This behavior is nonetheless conventional
         * and does not conflict with the expectations of ERC20 applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        abstract contract ERC20 is ERC165, Context, IERC20, IERC20Detailed, IERC20Allowance {
        
            using SafeMath for uint256;
            using Address for address;
        
            mapping (address => uint256) internal _balances;
            mapping (address => mapping (address => uint256)) internal _allowances;
            uint256 internal _totalSupply;
        
            constructor() internal {
                _registerInterface(type(IERC20).interfaceId);
                _registerInterface(type(IERC20Detailed).interfaceId);
                _registerInterface(type(IERC20Allowance).interfaceId);
        
                // ERC20Name interfaceId: bytes4(keccak256("name()"))
                _registerInterface(0x06fdde03);
                // ERC20Symbol interfaceId: bytes4(keccak256("symbol()"))
                _registerInterface(0x95d89b41);
                // ERC20Decimals interfaceId: bytes4(keccak256("decimals()"))
                _registerInterface(0x313ce567);
            }
        
        /////////////////////////////////////////// ERC20 ///////////////////////////////////////
        
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view override returns (uint256) {
                return _totalSupply;
            }
        
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view override returns (uint256) {
                return _balances[account];
            }
        
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `recipient` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(_msgSender(), recipient, amount);
                return true;
            }
        
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
        
            /**
             * @dev See {IERC20-approve}.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                _approve(_msgSender(), spender, amount);
                return true;
            }
        
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20};
             *
             * Requirements:
             * - `sender` and `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             * - the caller must have allowance for ``sender``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(sender, recipient, amount);
                _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                return true;
            }
        
        /////////////////////////////////////////// ERC20Allowance ///////////////////////////////////////
        
            /**
             * @dev See {IERC20Allowance-increaseAllowance}.
             */
            function increaseAllowance(
                address spender,
                uint256 addedValue
            ) public virtual override returns (bool)
            {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                return true;
            }
        
            /**
             * @dev See {IERC20Allowance-decreaseAllowance}.
             */
            function decreaseAllowance(
                address spender,
                uint256 subtractedValue
            ) public virtual override returns (bool)
            {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                return true;
            }
        
        /////////////////////////////////////////// Internal Functions ///////////////////////////////////////
        
            /**
             * @dev Moves tokens `amount` from `sender` to `recipient`.
             *
             * This is internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `sender` cannot be the zero address.
             * - `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             */
            function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                require(sender != address(0), "ERC20: transfer from the zero address");
                require(recipient != address(0), "ERC20: transfer to the zero address");
        
                _beforeTokenTransfer(sender, recipient, amount);
        
                _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                _balances[recipient] = _balances[recipient].add(amount);
                emit Transfer(sender, recipient, amount);
            }
        
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements
             *
             * - `to` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
        
                _beforeTokenTransfer(address(0), account, amount);
        
                _totalSupply = _totalSupply.add(amount);
                _balances[account] = _balances[account].add(amount);
                emit Transfer(address(0), account, amount);
            }
        
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
        
                _beforeTokenTransfer(account, address(0), amount);
        
                _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                _totalSupply = _totalSupply.sub(amount);
                emit Transfer(account, address(0), amount);
            }
        
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
             *
             * This is internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
        
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
        
        /////////////////////////////////////////// Hooks ///////////////////////////////////////
        
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be to transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
        }
        
        
        // File @animoca/ethereum-contracts-erc20_base/contracts/token/ERC20/[email protected]
        
        pragma solidity 0.6.8;
        
        
        
        abstract contract ERC20WithOperators is ERC20, WhitelistedOperators {
        
            /**
             * NOTICE
             * This override will allow *any* whitelisted operator to be able to
             * transfer unresitricted amounts of ERC20WithOperators-based tokens from 'sender'
             * to 'recipient'. Care must be taken to ensure to integrity of the
             * whitelisted operator list.
             */
            function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
                address msgSender = _msgSender();
        
                // bypass the internal allowance manipulation and checks for the
                // whitelisted operator (i.e. _msgSender()). as a side-effect, the
                // 'Approval' event will not be emitted since the allowance was not
                // updated.
                if (!isOperator(msgSender)) {
                    _approve(sender, msgSender, allowance(sender, msgSender).sub(amount));
                }
        
                _transfer(sender, recipient, amount);
                return true;
            }
        
            function allowance(address owner, address spender) public override view returns (uint256) {
                if (isOperator(spender)) {
                    // allow the front-end to determine whether or not an approval is
                    // necessary, given that the whitelisted operator status of the
                    // spender is unknown. A call to WhitelistedOperators::isOperator()
                    // is more direct, but we want to expose a mechanism by which to
                    // check through the ERC20 interface.
                    return type(uint256).max;
                } else {
                    return super.allowance(owner, spender);
                }
            }
        
            function increaseAllowance(address spender, uint256 addedValue) public override returns (bool) {
                if (isOperator(spender)) {
                    // bypass the internal allowance manipulation and checks for the
                    // whitelisted operator (i.e. spender). as a side-effect, the
                    // 'Approval' event will not be emitted since the allowance was not
                    // updated.
                    return true;
                } else {
                    return super.increaseAllowance(spender, addedValue);
                }
            }
        
            function decreaseAllowance(address spender, uint256 subtractedValue) public override returns (bool) {
                if (isOperator(spender)) {
                    // bypass the internal allowance manipulation and checks for the
                    // whitelisted operator (i.e. spender). as a side-effect, the
                    // 'Approval' event will not be emitted since the allowance was not
                    // updated.
                    return true;
                } else {
                    return super.decreaseAllowance(spender, subtractedValue);
                }
            }
        
            function _approve(address owner, address spender, uint256 value) internal override {
                if (isOperator(spender)) {
                    // bypass the internal allowance manipulation and checks for the
                    // whitelisted operator (i.e. spender). as a side-effect, the
                    // 'Approval' event will not be emitted since the allowance was not
                    // updated.
                    return;
                } else {
                    super._approve(owner, spender, value);
                }
            }
        }
        
        
        // File @animoca/f1dt-ethereum-contracts/contracts/token/ERC20/[email protected]
        
        pragma solidity 0.6.8;
        
        
        contract REVV is ERC20WithOperators {
        
            string public override constant name = "REVV";
            string public override constant symbol = "REVV";
            uint8 public override constant decimals = 18;
        
            constructor (
                address[] memory holders,
                uint256[] memory amounts
            ) public ERC20WithOperators()
            {
                require(holders.length == amounts.length, "REVV: wrong arguments");
                for (uint256 i = 0; i < holders.length; ++i) {
                    _mint(holders[i], amounts[i]);
                }
            }
        }

        File 4 of 5: StateSender
        /**
        Matic network contracts
        */
        
        pragma solidity ^0.5.2;
        
        
        contract Ownable {
            address private _owner;
        
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        
            /**
             * @dev The Ownable constructor sets the original `owner` of the contract to the sender
             * account.
             */
            constructor () internal {
                _owner = msg.sender;
                emit OwnershipTransferred(address(0), _owner);
            }
        
            /**
             * @return the address of the owner.
             */
            function owner() public view returns (address) {
                return _owner;
            }
        
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(isOwner());
                _;
            }
        
            /**
             * @return true if `msg.sender` is the owner of the contract.
             */
            function isOwner() public view returns (bool) {
                return msg.sender == _owner;
            }
        
            /**
             * @dev Allows the current owner to relinquish control of the contract.
             * It will not be possible to call the functions with the `onlyOwner`
             * modifier anymore.
             * @notice Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
        
            /**
             * @dev Allows the current owner to transfer control of the contract to a newOwner.
             * @param newOwner The address to transfer ownership to.
             */
            function transferOwnership(address newOwner) public onlyOwner {
                _transferOwnership(newOwner);
            }
        
            /**
             * @dev Transfers control of the contract to a newOwner.
             * @param newOwner The address to transfer ownership to.
             */
            function _transferOwnership(address newOwner) internal {
                require(newOwner != address(0));
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        
        library SafeMath {
            /**
             * @dev Multiplies two unsigned integers, reverts on overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                if (a == 0) {
                    return 0;
                }
        
                uint256 c = a * b;
                require(c / a == b);
        
                return c;
            }
        
            /**
             * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                // Solidity only automatically asserts when dividing by 0
                require(b > 0);
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
        
                return c;
            }
        
            /**
             * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b <= a);
                uint256 c = a - b;
        
                return c;
            }
        
            /**
             * @dev Adds two unsigned integers, reverts on overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a);
        
                return c;
            }
        
            /**
             * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
             * reverts when dividing by zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b != 0);
                return a % b;
            }
        }
        
        contract StateSender is Ownable {
            using SafeMath for uint256;
        
            uint256 public counter;
            mapping(address => address) public registrations;
        
            event NewRegistration(
                address indexed user,
                address indexed sender,
                address indexed receiver
            );
            event RegistrationUpdated(
                address indexed user,
                address indexed sender,
                address indexed receiver
            );
            event StateSynced(
                uint256 indexed id,
                address indexed contractAddress,
                bytes data
            );
        
            modifier onlyRegistered(address receiver) {
                require(registrations[receiver] == msg.sender, "Invalid sender");
                _;
            }
        
            function syncState(address receiver, bytes calldata data)
                external
                onlyRegistered(receiver)
            {
                counter = counter.add(1);
                emit StateSynced(counter, receiver, data);
            }
        
            // register new contract for state sync
            function register(address sender, address receiver) public {
                require(
                    isOwner() || registrations[receiver] == msg.sender,
                    "StateSender.register: Not authorized to register"
                );
                registrations[receiver] = sender;
                if (registrations[receiver] == address(0)) {
                    emit NewRegistration(msg.sender, sender, receiver);
                } else {
                    emit RegistrationUpdated(msg.sender, sender, receiver);
                }
            }
        }

        File 5 of 5: RootChainManager
        pragma solidity 0.6.6;
        import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol";
        import {IRootChainManager} from "./IRootChainManager.sol";
        import {RootChainManagerStorage} from "./RootChainManagerStorage.sol";
        import {IStateSender} from "../StateSender/IStateSender.sol";
        import {ICheckpointManager} from "../ICheckpointManager.sol";
        import {RLPReader} from "../../lib/RLPReader.sol";
        import {ExitPayloadReader} from "../../lib/ExitPayloadReader.sol";
        import {MerklePatriciaProof} from "../../lib/MerklePatriciaProof.sol";
        import {Merkle} from "../../lib/Merkle.sol";
        import {ITokenPredicate} from "../TokenPredicates/ITokenPredicate.sol";
        import {Initializable} from "../../common/Initializable.sol";
        import {NativeMetaTransaction} from "../../common/NativeMetaTransaction.sol";
        import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
        import {AccessControlMixin} from "../../common/AccessControlMixin.sol";
        import {ContextMixin} from "../../common/ContextMixin.sol";
        contract RootChainManager is
            IRootChainManager,
            Initializable,
            AccessControl, // included to match old storage layout while upgrading
            RootChainManagerStorage, // created to match old storage layout while upgrading
            AccessControlMixin,
            NativeMetaTransaction,
            ContextMixin
        {
            using ExitPayloadReader for bytes;
            using ExitPayloadReader for ExitPayloadReader.ExitPayload;
            using ExitPayloadReader for ExitPayloadReader.Log;
            using ExitPayloadReader for ExitPayloadReader.Receipt;
            using Merkle for bytes32;
            using SafeMath for uint256;
            // maybe DEPOSIT and MAP_TOKEN can be reduced to bytes4
            bytes32 public constant DEPOSIT = keccak256("DEPOSIT");
            bytes32 public constant MAP_TOKEN = keccak256("MAP_TOKEN");
            address public constant ETHER_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
            bytes32 public constant MAPPER_ROLE = keccak256("MAPPER_ROLE");
            constructor() public {
                // Disable initializer on implementation contract
                _disableInitializer();
            }
            function _msgSender()
                internal
                override
                view
                returns (address payable sender)
            {
                return ContextMixin.msgSender();
            }
            /**
             * @notice Deposit ether by directly sending to the contract
             * The account sending ether receives WETH on child chain
             */
            receive() external payable {
                _depositEtherFor(_msgSender());
            }
            /**
             * @notice Initialize the contract after it has been proxified
             * @dev meant to be called once immediately after deployment
             * @param _owner the account that should be granted admin role
             */
            function initialize(
                address _owner
            )
                external
                initializer
            {
                _initializeEIP712("RootChainManager");
                _setupContractId("RootChainManager");
                _setupRole(DEFAULT_ADMIN_ROLE, _owner);
                _setupRole(MAPPER_ROLE, _owner);
            }
            // adding seperate function setupContractId since initialize is already called with old implementation
            function setupContractId()
                external
                only(DEFAULT_ADMIN_ROLE)
            {
                _setupContractId("RootChainManager");
            }
            // adding seperate function initializeEIP712 since initialize is already called with old implementation
            function initializeEIP712()
                external
                only(DEFAULT_ADMIN_ROLE)
            {
                _setDomainSeperator("RootChainManager");
            }
            /**
             * @notice Set the state sender, callable only by admins
             * @dev This should be the state sender from plasma contracts
             * It is used to send bytes from root to child chain
             * @param newStateSender address of state sender contract
             */
            function setStateSender(address newStateSender)
                external
                only(DEFAULT_ADMIN_ROLE)
            {
                require(newStateSender != address(0), "RootChainManager: BAD_NEW_STATE_SENDER");
                _stateSender = IStateSender(newStateSender);
            }
            /**
             * @notice Get the address of contract set as state sender
             * @return The address of state sender contract
             */
            function stateSenderAddress() external view returns (address) {
                return address(_stateSender);
            }
            /**
             * @notice Set the checkpoint manager, callable only by admins
             * @dev This should be the plasma contract responsible for keeping track of checkpoints
             * @param newCheckpointManager address of checkpoint manager contract
             */
            function setCheckpointManager(address newCheckpointManager)
                external
                only(DEFAULT_ADMIN_ROLE)
            {
                require(newCheckpointManager != address(0), "RootChainManager: BAD_NEW_CHECKPOINT_MANAGER");
                _checkpointManager = ICheckpointManager(newCheckpointManager);
            }
            /**
             * @notice Get the address of contract set as checkpoint manager
             * @return The address of checkpoint manager contract
             */
            function checkpointManagerAddress() external view returns (address) {
                return address(_checkpointManager);
            }
            /**
             * @notice Set the child chain manager, callable only by admins
             * @dev This should be the contract responsible to receive deposit bytes on child chain
             * @param newChildChainManager address of child chain manager contract
             */
            function setChildChainManagerAddress(address newChildChainManager)
                external
                only(DEFAULT_ADMIN_ROLE)
            {
                require(newChildChainManager != address(0x0), "RootChainManager: INVALID_CHILD_CHAIN_ADDRESS");
                childChainManagerAddress = newChildChainManager;
            }
            /**
             * @notice Register a token predicate address against its type, callable only by ADMIN
             * @dev A predicate is a contract responsible to process the token specific logic while locking or exiting tokens
             * @param tokenType bytes32 unique identifier for the token type
             * @param predicateAddress address of token predicate address
             */
            function registerPredicate(bytes32 tokenType, address predicateAddress)
                external
                override
                only(DEFAULT_ADMIN_ROLE)
            {
                typeToPredicate[tokenType] = predicateAddress;
                emit PredicateRegistered(tokenType, predicateAddress);
            }
            /**
             * @notice Map a token to enable its movement via the PoS Portal, callable only by mappers
             * @param rootToken address of token on root chain
             * @param childToken address of token on child chain
             * @param tokenType bytes32 unique identifier for the token type
             */
            function mapToken(
                address rootToken,
                address childToken,
                bytes32 tokenType
            ) external override only(MAPPER_ROLE) {
                // explicit check if token is already mapped to avoid accidental remaps
                require(
                    rootToChildToken[rootToken] == address(0) &&
                    childToRootToken[childToken] == address(0),
                    "RootChainManager: ALREADY_MAPPED"
                );
                _mapToken(rootToken, childToken, tokenType);
            }
            /**
             * @notice Clean polluted token mapping
             * @param rootToken address of token on root chain. Since rename token was introduced later stage,
             * clean method is used to clean pollulated mapping
             */
            function cleanMapToken(
                address rootToken,
                address childToken
            ) external override only(DEFAULT_ADMIN_ROLE) {
                rootToChildToken[rootToken] = address(0);
                childToRootToken[childToken] = address(0);
                tokenToType[rootToken] = bytes32(0);
                emit TokenMapped(rootToken, childToken, tokenToType[rootToken]);
            }
            /**
             * @notice Remap a token that has already been mapped, properly cleans up old mapping
             * Callable only by ADMIN
             * @param rootToken address of token on root chain
             * @param childToken address of token on child chain
             * @param tokenType bytes32 unique identifier for the token type
             */
            function remapToken(
                address rootToken,
                address childToken,
                bytes32 tokenType
            ) external override only(DEFAULT_ADMIN_ROLE) {
                // cleanup old mapping
                address oldChildToken = rootToChildToken[rootToken];
                address oldRootToken = childToRootToken[childToken];
                if (rootToChildToken[oldRootToken] != address(0)) {
                    rootToChildToken[oldRootToken] = address(0);
                    tokenToType[oldRootToken] = bytes32(0);
                }
                if (childToRootToken[oldChildToken] != address(0)) {
                    childToRootToken[oldChildToken] = address(0);
                }
                _mapToken(rootToken, childToken, tokenType);
            }
            function _mapToken(
                address rootToken,
                address childToken,
                bytes32 tokenType
            ) private {
                require(
                    typeToPredicate[tokenType] != address(0x0),
                    "RootChainManager: TOKEN_TYPE_NOT_SUPPORTED"
                );
                rootToChildToken[rootToken] = childToken;
                childToRootToken[childToken] = rootToken;
                tokenToType[rootToken] = tokenType;
                emit TokenMapped(rootToken, childToken, tokenType);
                bytes memory syncData = abi.encode(rootToken, childToken, tokenType);
                _stateSender.syncState(
                    childChainManagerAddress,
                    abi.encode(MAP_TOKEN, syncData)
                );
            }
            /**
             * @notice Move ether from root to child chain, accepts ether transfer
             * Keep in mind this ether cannot be used to pay gas on child chain
             * Use Matic tokens deposited using plasma mechanism for that
             * @param user address of account that should receive WETH on child chain
             */
            function depositEtherFor(address user) external override payable {
                _depositEtherFor(user);
            }
            /**
             * @notice Move tokens from root to child chain
             * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped
             * @param user address of account that should receive this deposit on child chain
             * @param rootToken address of token that is being deposited
             * @param depositData bytes data that is sent to predicate and child token contracts to handle deposit
             */
            function depositFor(
                address user,
                address rootToken,
                bytes calldata depositData
            ) external override {
                require(
                    rootToken != ETHER_ADDRESS,
                    "RootChainManager: INVALID_ROOT_TOKEN"
                );
                _depositFor(user, rootToken, depositData);
            }
            function _depositEtherFor(address user) private {
                bytes memory depositData = abi.encode(msg.value);
                _depositFor(user, ETHER_ADDRESS, depositData);
                // payable(typeToPredicate[tokenToType[ETHER_ADDRESS]]).transfer(msg.value);
                // transfer doesn't work as expected when receiving contract is proxified so using call
                (bool success, /* bytes memory data */) = typeToPredicate[tokenToType[ETHER_ADDRESS]].call{value: msg.value}("");
                if (!success) {
                    revert("RootChainManager: ETHER_TRANSFER_FAILED");
                }
            }
            function _depositFor(
                address user,
                address rootToken,
                bytes memory depositData
            ) private {
                bytes32 tokenType = tokenToType[rootToken];
                require(
                    rootToChildToken[rootToken] != address(0x0) &&
                       tokenType != 0,
                    "RootChainManager: TOKEN_NOT_MAPPED"
                );
                address predicateAddress = typeToPredicate[tokenType];
                require(
                    predicateAddress != address(0),
                    "RootChainManager: INVALID_TOKEN_TYPE"
                );
                require(
                    user != address(0),
                    "RootChainManager: INVALID_USER"
                );
                ITokenPredicate(predicateAddress).lockTokens(
                    _msgSender(),
                    user,
                    rootToken,
                    depositData
                );
                bytes memory syncData = abi.encode(user, rootToken, depositData);
                _stateSender.syncState(
                    childChainManagerAddress,
                    abi.encode(DEPOSIT, syncData)
                );
            }
            /**
             * @notice exit tokens by providing proof
             * @dev This function verifies if the transaction actually happened on child chain
             * the transaction log is then sent to token predicate to handle it accordingly
             *
             * @param inputData RLP encoded data of the reference tx containing following list of fields
             *  0 - headerNumber - Checkpoint header block number containing the reference tx
             *  1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root
             *  2 - blockNumber - Block number containing the reference tx on child chain
             *  3 - blockTime - Reference tx block time
             *  4 - txRoot - Transactions root of block
             *  5 - receiptRoot - Receipts root of block
             *  6 - receipt - Receipt of the reference transaction
             *  7 - receiptProof - Merkle proof of the reference receipt
             *  8 - branchMask - 32 bits denoting the path of receipt in merkle tree
             *  9 - receiptLogIndex - Log Index to read from the receipt
             */
            function exit(bytes calldata inputData) external override {
                ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload();
                bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
                // checking if exit has already been processed
                // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex)
                bytes32 exitHash = keccak256(
                    abi.encodePacked(
                        payload.getBlockNumber(),
                        // first 2 nibbles are dropped while generating nibble array
                        // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only)
                        // so converting to nibble array and then hashing it
                        MerklePatriciaProof._getNibbleArray(branchMaskBytes),
                        payload.getReceiptLogIndex()
                    )
                );
                require(
                    processedExits[exitHash] == false,
                    "RootChainManager: EXIT_ALREADY_PROCESSED"
                );
                processedExits[exitHash] = true;
                ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
                ExitPayloadReader.Log memory log = receipt.getLog();
                // log should be emmited only by the child token
                address rootToken = childToRootToken[log.getEmitter()];
                require(
                    rootToken != address(0),
                    "RootChainManager: TOKEN_NOT_MAPPED"
                );
                address predicateAddress = typeToPredicate[
                    tokenToType[rootToken]
                ];
                // branch mask can be maximum 32 bits
                require(
                    payload.getBranchMaskAsUint() &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000 ==
                    0,
                    "RootChainManager: INVALID_BRANCH_MASK"
                );
                // verify receipt inclusion
                require(
                    MerklePatriciaProof.verify(
                        receipt.toBytes(),
                        branchMaskBytes,
                        payload.getReceiptProof(),
                        payload.getReceiptRoot()
                    ),
                    "RootChainManager: INVALID_PROOF"
                );
                // verify checkpoint inclusion
                _checkBlockMembershipInCheckpoint(
                    payload.getBlockNumber(),
                    payload.getBlockTime(),
                    payload.getTxRoot(),
                    payload.getReceiptRoot(),
                    payload.getHeaderNumber(),
                    payload.getBlockProof()
                );
                ITokenPredicate(predicateAddress).exitTokens(
                    _msgSender(),
                    rootToken,
                    log.toRlpBytes()
                );
            }
            function _checkBlockMembershipInCheckpoint(
                uint256 blockNumber,
                uint256 blockTime,
                bytes32 txRoot,
                bytes32 receiptRoot,
                uint256 headerNumber,
                bytes memory blockProof
            ) private view {
                (
                    bytes32 headerRoot,
                    uint256 startBlock,
                    ,
                    ,
                ) = _checkpointManager.headerBlocks(headerNumber);
                require(
                    keccak256(
                        abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)
                    )
                        .checkMembership(
                        blockNumber.sub(startBlock),
                        headerRoot,
                        blockProof
                    ),
                    "RootChainManager: INVALID_HEADER"
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.6.0;
        /**
         * @dev Wrappers over Solidity's arithmetic operations with added overflow
         * checks.
         *
         * Arithmetic operations in Solidity wrap on overflow. This can easily result
         * in bugs, because programmers usually assume that an overflow raises an
         * error, which is the standard behavior in high level programming languages.
         * `SafeMath` restores this intuition by reverting the transaction when an
         * operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeMath {
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a, "SafeMath: addition overflow");
                return c;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                return sub(a, b, "SafeMath: subtraction overflow");
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b <= a, errorMessage);
                uint256 c = a - b;
                return c;
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) {
                    return 0;
                }
                uint256 c = a * b;
                require(c / a == b, "SafeMath: multiplication overflow");
                return c;
            }
            /**
             * @dev Returns the integer division of two unsigned integers. Reverts on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                return div(a, b, "SafeMath: division by zero");
            }
            /**
             * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                return c;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * Reverts when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                return mod(a, b, "SafeMath: modulo by zero");
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * Reverts with custom message when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b != 0, errorMessage);
                return a % b;
            }
        }
        pragma solidity 0.6.6;
        interface IRootChainManager {
            event TokenMapped(
                address indexed rootToken,
                address indexed childToken,
                bytes32 indexed tokenType
            );
            event PredicateRegistered(
                bytes32 indexed tokenType,
                address indexed predicateAddress
            );
            function registerPredicate(bytes32 tokenType, address predicateAddress)
                external;
            function mapToken(
                address rootToken,
                address childToken,
                bytes32 tokenType
            ) external;
            function cleanMapToken(
                address rootToken,
                address childToken
            ) external;
            function remapToken(
                address rootToken,
                address childToken,
                bytes32 tokenType
            ) external;
            function depositEtherFor(address user) external payable;
            function depositFor(
                address user,
                address rootToken,
                bytes calldata depositData
            ) external;
            function exit(bytes calldata inputData) external;
        }
        pragma solidity 0.6.6;
        import {IStateSender} from "../StateSender/IStateSender.sol";
        import {ICheckpointManager} from "../ICheckpointManager.sol";
        abstract contract RootChainManagerStorage {
            mapping(bytes32 => address) public typeToPredicate;
            mapping(address => address) public rootToChildToken;
            mapping(address => address) public childToRootToken;
            mapping(address => bytes32) public tokenToType;
            mapping(bytes32 => bool) public processedExits;
            IStateSender internal _stateSender;
            ICheckpointManager internal _checkpointManager;
            address public childChainManagerAddress;
        }
        pragma solidity 0.6.6;
        interface IStateSender {
            function syncState(address receiver, bytes calldata data) external;
        }
        pragma solidity 0.6.6;
        contract ICheckpointManager {
            struct HeaderBlock {
                bytes32 root;
                uint256 start;
                uint256 end;
                uint256 createdAt;
                address proposer;
            }
            /**
             * @notice mapping of checkpoint header numbers to block details
             * @dev These checkpoints are submited by plasma contracts
             */
            mapping(uint256 => HeaderBlock) public headerBlocks;
        }
        /*
         * @author Hamdi Allam [email protected]
         * Please reach out with any questions or concerns
         * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol
         */
        pragma solidity 0.6.6;
        library RLPReader {
            uint8 constant STRING_SHORT_START = 0x80;
            uint8 constant STRING_LONG_START  = 0xb8;
            uint8 constant LIST_SHORT_START   = 0xc0;
            uint8 constant LIST_LONG_START    = 0xf8;
            uint8 constant WORD_SIZE = 32;
            struct RLPItem {
                uint len;
                uint memPtr;
            }
            struct Iterator {
                RLPItem item;   // Item that's being iterated over.
                uint nextPtr;   // Position of the next item in the list.
            }
            /*
            * @dev Returns the next element in the iteration. Reverts if it has not next element.
            * @param self The iterator.
            * @return The next element in the iteration.
            */
            function next(Iterator memory self) internal pure returns (RLPItem memory) {
                require(hasNext(self));
                uint ptr = self.nextPtr;
                uint itemLength = _itemLength(ptr);
                self.nextPtr = ptr + itemLength;
                return RLPItem(itemLength, ptr);
            }
            /*
            * @dev Returns true if the iteration has more elements.
            * @param self The iterator.
            * @return true if the iteration has more elements.
            */
            function hasNext(Iterator memory self) internal pure returns (bool) {
                RLPItem memory item = self.item;
                return self.nextPtr < item.memPtr + item.len;
            }
            /*
            * @param item RLP encoded bytes
            */
            function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
                uint memPtr;
                assembly {
                    memPtr := add(item, 0x20)
                }
                return RLPItem(item.length, memPtr);
            }
            /*
            * @dev Create an iterator. Reverts if item is not a list.
            * @param self The RLP item.
            * @return An 'Iterator' over the item.
            */
            function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
                require(isList(self));
                uint ptr = self.memPtr + _payloadOffset(self.memPtr);
                return Iterator(self, ptr);
            }
            /*
            * @param the RLP item.
            */
            function rlpLen(RLPItem memory item) internal pure returns (uint) {
                return item.len;
            }
            /*
             * @param the RLP item.
             * @return (memPtr, len) pair: location of the item's payload in memory.
             */
            function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) {
                uint offset = _payloadOffset(item.memPtr);
                uint memPtr = item.memPtr + offset;
                uint len = item.len - offset; // data length
                return (memPtr, len);
            }
            /*
            * @param the RLP item.
            */
            function payloadLen(RLPItem memory item) internal pure returns (uint) {
                (, uint len) = payloadLocation(item);
                return len;
            }
            /*
            * @param the RLP item containing the encoded list.
            */
            function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
                require(isList(item));
                uint items = numItems(item);
                RLPItem[] memory result = new RLPItem[](items);
                uint memPtr = item.memPtr + _payloadOffset(item.memPtr);
                uint dataLen;
                for (uint i = 0; i < items; i++) {
                    dataLen = _itemLength(memPtr);
                    result[i] = RLPItem(dataLen, memPtr); 
                    memPtr = memPtr + dataLen;
                }
                require(memPtr - item.memPtr == item.len, "Wrong total length.");
                return result;
            }
            // @return indicator whether encoded payload is a list. negate this function call for isData.
            function isList(RLPItem memory item) internal pure returns (bool) {
                if (item.len == 0) return false;
                uint8 byte0;
                uint memPtr = item.memPtr;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
                if (byte0 < LIST_SHORT_START)
                    return false;
                return true;
            }
            /*
             * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
             * @return keccak256 hash of RLP encoded bytes.
             */
            function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
                uint256 ptr = item.memPtr;
                uint256 len = item.len;
                bytes32 result;
                assembly {
                    result := keccak256(ptr, len)
                }
                return result;
            }
            /*
             * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
             * @return keccak256 hash of the item payload.
             */
            function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
                (uint memPtr, uint len) = payloadLocation(item);
                bytes32 result;
                assembly {
                    result := keccak256(memPtr, len)
                }
                return result;
            }
            /** RLPItem conversions into data types **/
            // @returns raw rlp encoding in bytes
            function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
                bytes memory result = new bytes(item.len);
                if (result.length == 0) return result;
                
                uint ptr;
                assembly {
                    ptr := add(0x20, result)
                }
                copy(item.memPtr, ptr, item.len);
                return result;
            }
            // any non-zero byte except "0x80" is considered true
            function toBoolean(RLPItem memory item) internal pure returns (bool) {
                require(item.len == 1);
                uint result;
                uint memPtr = item.memPtr;
                assembly {
                    result := byte(0, mload(memPtr))
                }
                // SEE Github Issue #5.
                // Summary: Most commonly used RLP libraries (i.e Geth) will encode
                // "0" as "0x80" instead of as "0". We handle this edge case explicitly
                // here.
                if (result == 0 || result == STRING_SHORT_START) {
                    return false;
                } else {
                    return true;
                }
            }
            function toAddress(RLPItem memory item) internal pure returns (address) {
                // 1 byte for the length prefix
                require(item.len == 21);
                return address(toUint(item));
            }
            function toUint(RLPItem memory item) internal pure returns (uint) {
                require(item.len > 0 && item.len <= 33);
                (uint memPtr, uint len) = payloadLocation(item);
                uint result;
                assembly {
                    result := mload(memPtr)
                    // shfit to the correct location if neccesary
                    if lt(len, 32) {
                        result := div(result, exp(256, sub(32, len)))
                    }
                }
                return result;
            }
            // enforces 32 byte length
            function toUintStrict(RLPItem memory item) internal pure returns (uint) {
                // one byte prefix
                require(item.len == 33);
                uint result;
                uint memPtr = item.memPtr + 1;
                assembly {
                    result := mload(memPtr)
                }
                return result;
            }
            function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
                require(item.len > 0);
                (uint memPtr, uint len) = payloadLocation(item);
                bytes memory result = new bytes(len);
                uint destPtr;
                assembly {
                    destPtr := add(0x20, result)
                }
                copy(memPtr, destPtr, len);
                return result;
            }
            /*
            * Private Helpers
            */
            // @return number of payload items inside an encoded list.
            function numItems(RLPItem memory item) private pure returns (uint) {
                if (item.len == 0) return 0;
                uint count = 0;
                uint currPtr = item.memPtr + _payloadOffset(item.memPtr);
                uint endPtr = item.memPtr + item.len;
                while (currPtr < endPtr) {
                   currPtr = currPtr + _itemLength(currPtr); // skip over an item
                   count++;
                }
                return count;
            }
            // @return entire rlp item byte length
            function _itemLength(uint memPtr) private pure returns (uint) {
                uint itemLen;
                uint byte0;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
                if (byte0 < STRING_SHORT_START)
                    itemLen = 1;
                
                else if (byte0 < STRING_LONG_START)
                    itemLen = byte0 - STRING_SHORT_START + 1;
                else if (byte0 < LIST_SHORT_START) {
                    assembly {
                        let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                        memPtr := add(memPtr, 1) // skip over the first byte
                        
                        /* 32 byte word size */
                        let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                        itemLen := add(dataLen, add(byteLen, 1))
                    }
                }
                else if (byte0 < LIST_LONG_START) {
                    itemLen = byte0 - LIST_SHORT_START + 1;
                } 
                else {
                    assembly {
                        let byteLen := sub(byte0, 0xf7)
                        memPtr := add(memPtr, 1)
                        let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                        itemLen := add(dataLen, add(byteLen, 1))
                    }
                }
                return itemLen;
            }
            // @return number of bytes until the data
            function _payloadOffset(uint memPtr) private pure returns (uint) {
                uint byte0;
                assembly {
                    byte0 := byte(0, mload(memPtr))
                }
                if (byte0 < STRING_SHORT_START) 
                    return 0;
                else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START))
                    return 1;
                else if (byte0 < LIST_SHORT_START)  // being explicit
                    return byte0 - (STRING_LONG_START - 1) + 1;
                else
                    return byte0 - (LIST_LONG_START - 1) + 1;
            }
            /*
            * @param src Pointer to source
            * @param dest Pointer to destination
            * @param len Amount of memory to copy from the source
            */
            function copy(uint src, uint dest, uint len) private pure {
                if (len == 0) return;
                // copy as many word sizes as possible
                for (; len >= WORD_SIZE; len -= WORD_SIZE) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    src += WORD_SIZE;
                    dest += WORD_SIZE;
                }
                if (len > 0) {
                    // left over bytes. Mask is used to remove unwanted bytes from the word
                    uint mask = 256 ** (WORD_SIZE - len) - 1;
                    assembly {
                        let srcpart := and(mload(src), not(mask)) // zero out src
                        let destpart := and(mload(dest), mask) // retrieve the bytes
                        mstore(dest, or(destpart, srcpart))
                    }
                }
            }
        }
        pragma solidity 0.6.6;
        import { RLPReader } from "./RLPReader.sol";
        library ExitPayloadReader {
          using RLPReader for bytes;
          using RLPReader for RLPReader.RLPItem;
          uint8 constant WORD_SIZE = 32;
          struct ExitPayload {
            RLPReader.RLPItem[] data;
          }
          struct Receipt {
            RLPReader.RLPItem[] data;
            bytes raw;
            uint256 logIndex;
          }
          struct Log {
            RLPReader.RLPItem data;
            RLPReader.RLPItem[] list;
          }
          struct LogTopics {
            RLPReader.RLPItem[] data;
          }
          // copy paste of private copy() from RLPReader to avoid changing of existing contracts
          function copy(uint src, uint dest, uint len) private pure {
                if (len == 0) return;
                // copy as many word sizes as possible
                for (; len >= WORD_SIZE; len -= WORD_SIZE) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    src += WORD_SIZE;
                    dest += WORD_SIZE;
                }
                // left over bytes. Mask is used to remove unwanted bytes from the word
                uint mask = 256 ** (WORD_SIZE - len) - 1;
                assembly {
                    let srcpart := and(mload(src), not(mask)) // zero out src
                    let destpart := and(mload(dest), mask) // retrieve the bytes
                    mstore(dest, or(destpart, srcpart))
                }
            }
          function toExitPayload(bytes memory data)
                internal
                pure
                returns (ExitPayload memory)
            {
                RLPReader.RLPItem[] memory payloadData = data
                    .toRlpItem()
                    .toList();
                return ExitPayload(payloadData);
            }
            function getHeaderNumber(ExitPayload memory payload) internal pure returns(uint256) {
              return payload.data[0].toUint();
            }
            function getBlockProof(ExitPayload memory payload) internal pure returns(bytes memory) {
              return payload.data[1].toBytes();
            }
            function getBlockNumber(ExitPayload memory payload) internal pure returns(uint256) {
              return payload.data[2].toUint();
            }
            function getBlockTime(ExitPayload memory payload) internal pure returns(uint256) {
              return payload.data[3].toUint();
            }
            function getTxRoot(ExitPayload memory payload) internal pure returns(bytes32) {
              return bytes32(payload.data[4].toUint());
            }
            function getReceiptRoot(ExitPayload memory payload) internal pure returns(bytes32) {
              return bytes32(payload.data[5].toUint());
            }
            function getReceipt(ExitPayload memory payload) internal pure returns(Receipt memory receipt) {
              receipt.raw = payload.data[6].toBytes();
              RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();
              if (receiptItem.isList()) {
                  // legacy tx
                  receipt.data = receiptItem.toList();
              } else {
                  // pop first byte before parsting receipt
                  bytes memory typedBytes = receipt.raw;
                  bytes memory result = new bytes(typedBytes.length - 1);
                  uint256 srcPtr;
                  uint256 destPtr;
                  assembly {
                      srcPtr := add(33, typedBytes)
                      destPtr := add(0x20, result)
                  }
                  copy(srcPtr, destPtr, result.length);
                  receipt.data = result.toRlpItem().toList();
              }
              receipt.logIndex = getReceiptLogIndex(payload);
              return receipt;
            }
            function getReceiptProof(ExitPayload memory payload) internal pure returns(bytes memory) {
              return payload.data[7].toBytes();
            }
            function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns(bytes memory) {
              return payload.data[8].toBytes();
            }
            function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns(uint256) {
              return payload.data[8].toUint();
            }
            function getReceiptLogIndex(ExitPayload memory payload) internal pure returns(uint256) {
              return payload.data[9].toUint();
            }
            
            // Receipt methods
            function toBytes(Receipt memory receipt) internal pure returns(bytes memory) {
                return receipt.raw;
            }
            function getLog(Receipt memory receipt) internal pure returns(Log memory) {
                RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
                return Log(logData, logData.toList());
            }
            // Log methods
            function getEmitter(Log memory log) internal pure returns(address) {
              return RLPReader.toAddress(log.list[0]);
            }
            function getTopics(Log memory log) internal pure returns(LogTopics memory) {
                return LogTopics(log.list[1].toList());
            }
            function getData(Log memory log) internal pure returns(bytes memory) {
                return log.list[2].toBytes();
            }
            function toRlpBytes(Log memory log) internal pure returns(bytes memory) {
              return log.data.toRlpBytes();
            }
            // LogTopics methods
            function getField(LogTopics memory topics, uint256 index) internal pure returns(RLPReader.RLPItem memory) {
              return topics.data[index];
            }
        }
        /*
         * @title MerklePatriciaVerifier
         * @author Sam Mayo ([email protected])
         *
         * @dev Library for verifing merkle patricia proofs.
         */
        pragma solidity 0.6.6;
        import {RLPReader} from "./RLPReader.sol";
        library MerklePatriciaProof {
            /*
             * @dev Verifies a merkle patricia proof.
             * @param value The terminating value in the trie.
             * @param encodedPath The path in the trie leading to value.
             * @param rlpParentNodes The rlp encoded stack of nodes.
             * @param root The root hash of the trie.
             * @return The boolean validity of the proof.
             */
            function verify(
                bytes memory value,
                bytes memory encodedPath,
                bytes memory rlpParentNodes,
                bytes32 root
            ) internal pure returns (bool) {
                RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
                RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);
                bytes memory currentNode;
                RLPReader.RLPItem[] memory currentNodeList;
                bytes32 nodeKey = root;
                uint256 pathPtr = 0;
                bytes memory path = _getNibbleArray(encodedPath);
                if (path.length == 0) {
                    return false;
                }
                for (uint256 i = 0; i < parentNodes.length; i++) {
                    if (pathPtr > path.length) {
                        return false;
                    }
                    currentNode = RLPReader.toRlpBytes(parentNodes[i]);
                    if (nodeKey != keccak256(currentNode)) {
                        return false;
                    }
                    currentNodeList = RLPReader.toList(parentNodes[i]);
                    if (currentNodeList.length == 17) {
                        if (pathPtr == path.length) {
                            if (
                                keccak256(RLPReader.toBytes(currentNodeList[16])) ==
                                keccak256(value)
                            ) {
                                return true;
                            } else {
                                return false;
                            }
                        }
                        uint8 nextPathNibble = uint8(path[pathPtr]);
                        if (nextPathNibble > 16) {
                            return false;
                        }
                        nodeKey = bytes32(
                            RLPReader.toUintStrict(currentNodeList[nextPathNibble])
                        );
                        pathPtr += 1;
                    } else if (currentNodeList.length == 2) {
                        bytes memory nodeValue = RLPReader.toBytes(currentNodeList[0]);
                        uint256 traversed = _nibblesToTraverse(
                            nodeValue,
                            path,
                            pathPtr
                        );
                        //enforce correct nibble
                        bytes1 prefix = _getNthNibbleOfBytes(0, nodeValue);
                        if (pathPtr + traversed == path.length) {
                            //leaf node
                            if (
                                keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value) && 
                                (prefix == bytes1(uint8(2)) || prefix == bytes1(uint8(3)))
                            ) {
                                return true;
                            } else {
                                return false;
                            }
                        }
                        //extension node
                        if (traversed == 0 || (prefix != bytes1(uint8(0)) && prefix != bytes1(uint8(1)))) {
                            return false;
                        }
                        pathPtr += traversed;
                        nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
                    } else {
                        return false;
                    }
                }
                return false; // default
            }
            function _nibblesToTraverse(
                bytes memory encodedPartialPath,
                bytes memory path,
                uint256 pathPtr
            ) private pure returns (uint256) {
                uint256 len = 0;
                // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
                // and slicedPath have elements that are each one hex character (1 nibble)
                bytes memory partialPath = _getNibbleArray(encodedPartialPath);
                bytes memory slicedPath = new bytes(partialPath.length);
                // pathPtr counts nibbles in path
                // partialPath.length is a number of nibbles
                for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
                    bytes1 pathNibble = path[i];
                    slicedPath[i - pathPtr] = pathNibble;
                }
                if (keccak256(partialPath) == keccak256(slicedPath)) {
                    len = partialPath.length;
                } else {
                    len = 0;
                }
                return len;
            }
            // bytes b must be hp encoded
            function _getNibbleArray(bytes memory b)
                internal
                pure
                returns (bytes memory)
            {
                bytes memory nibbles = "";
                if (b.length > 0) {
                    uint8 offset;
                    uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
                    if (hpNibble == 1 || hpNibble == 3) {
                        nibbles = new bytes(b.length * 2 - 1);
                        bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
                        nibbles[0] = oddNibble;
                        offset = 1;
                    } else {
                        nibbles = new bytes(b.length * 2 - 2);
                        offset = 0;
                    }
                    for (uint256 i = offset; i < nibbles.length; i++) {
                        nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
                    }
                }
                return nibbles;
            }
            function _getNthNibbleOfBytes(uint256 n, bytes memory str)
                private
                pure
                returns (bytes1)
            {
                return
                    bytes1(
                        n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10
                    );
            }
        }
        pragma solidity 0.6.6;
        library Merkle {
            function checkMembership(
                bytes32 leaf,
                uint256 index,
                bytes32 rootHash,
                bytes memory proof
            ) internal pure returns (bool) {
                require(proof.length % 32 == 0, "Invalid proof length");
                uint256 proofHeight = proof.length / 32;
                // Proof of size n means, height of the tree is n+1.
                // In a tree of height n+1, max #leafs possible is 2 ^ n
                require(index < 2 ** proofHeight, "Leaf index is too big");
                bytes32 proofElement;
                bytes32 computedHash = leaf;
                for (uint256 i = 32; i <= proof.length; i += 32) {
                    assembly {
                        proofElement := mload(add(proof, i))
                    }
                    if (index % 2 == 0) {
                        computedHash = keccak256(
                            abi.encodePacked(computedHash, proofElement)
                        );
                    } else {
                        computedHash = keccak256(
                            abi.encodePacked(proofElement, computedHash)
                        );
                    }
                    index = index / 2;
                }
                return computedHash == rootHash;
            }
        }
        pragma solidity 0.6.6;
        import {RLPReader} from "../../lib/RLPReader.sol";
        /// @title Token predicate interface for all pos portal predicates
        /// @notice Abstract interface that defines methods for custom predicates
        interface ITokenPredicate {
            /**
             * @notice Deposit tokens into pos portal
             * @dev When `depositor` deposits tokens into pos portal, tokens get locked into predicate contract.
             * @param depositor Address who wants to deposit tokens
             * @param depositReceiver Address (address) who wants to receive tokens on side chain
             * @param rootToken Token which gets deposited
             * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded]
             */
            function lockTokens(
                address depositor,
                address depositReceiver,
                address rootToken,
                bytes calldata depositData
            ) external;
            /**
             * @notice Validates and processes exit while withdraw process
             * @dev Validates exit log emitted on sidechain. Reverts if validation fails.
             * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw
             * @param sender unused for polygon predicates, being kept for abi compatability
             * @param rootToken Token which gets withdrawn
             * @param logRLPList Valid sidechain log for data like amount, token id etc.
             */
            function exitTokens(
                address sender,
                address rootToken,
                bytes calldata logRLPList
            ) external;
        }
        pragma solidity 0.6.6;
        contract Initializable {
            bool inited = false;
            modifier initializer() {
                require(!inited, "already inited");
                _;
                inited = true;
            }
            function _disableInitializer() internal {
                inited = true;
            }
        }
        pragma solidity 0.6.6;
        /**
         * @notice DISCLAIMER:
         * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall"
         * nor any other form of self delegatecall!
         * Risk of address spoofing attacks.
         * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure
         */
        import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol";
        import {EIP712Base} from "./EIP712Base.sol";
        contract NativeMetaTransaction is EIP712Base {
            using SafeMath for uint256;
            bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256(
                bytes(
                    "MetaTransaction(uint256 nonce,address from,bytes functionSignature)"
                )
            );
            event MetaTransactionExecuted(
                address indexed userAddress,
                address payable indexed relayerAddress,
                bytes functionSignature
            );
            mapping(address => uint256) nonces;
            /*
             * Meta transaction structure.
             * No point of including value field here as if user is doing value transfer then he has the funds to pay for gas
             * He should call the desired function directly in that case.
             */
            struct MetaTransaction {
                uint256 nonce;
                address from;
                bytes functionSignature;
            }
            function executeMetaTransaction(
                address userAddress,
                bytes calldata functionSignature,
                bytes32 sigR,
                bytes32 sigS,
                uint8 sigV
            ) external payable returns (bytes memory) {
                MetaTransaction memory metaTx = MetaTransaction({
                    nonce: nonces[userAddress],
                    from: userAddress,
                    functionSignature: functionSignature
                });
                require(
                    verify(userAddress, metaTx, sigR, sigS, sigV),
                    "Signer and signature do not match"
                );
                // increase nonce for user (to avoid re-use)
                ++nonces[userAddress];
                emit MetaTransactionExecuted(
                    userAddress,
                    msg.sender,
                    functionSignature
                );
                // Append userAddress and relayer address at the end to extract it from calling context
                (bool success, bytes memory returnData) = address(this).call(
                    abi.encodePacked(functionSignature, userAddress)
                );
                require(success, "Function call not successful");
                return returnData;
            }
            function getNonce(address user) external view returns (uint256 nonce) {
                nonce = nonces[user];
            }
            function hashMetaTransaction(MetaTransaction memory metaTx)
                internal
                pure
                returns (bytes32)
            {
                return
                    keccak256(
                        abi.encode(
                            META_TRANSACTION_TYPEHASH,
                            metaTx.nonce,
                            metaTx.from,
                            keccak256(metaTx.functionSignature)
                        )
                    );
            }
            function verify(
                address signer,
                MetaTransaction memory metaTx,
                bytes32 sigR,
                bytes32 sigS,
                uint8 sigV
            ) internal view returns (bool) {
                require(signer != address(0), "NativeMetaTransaction: INVALID_SIGNER");
                return
                    signer ==
                    ecrecover(
                        toTypedMessageHash(hashMetaTransaction(metaTx)),
                        sigV,
                        sigR,
                        sigS
                    );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.6.0;
        import "../utils/EnumerableSet.sol";
        import "../utils/Address.sol";
        import "../GSN/Context.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it.
         */
        abstract contract AccessControl is Context {
            using EnumerableSet for EnumerableSet.AddressSet;
            using Address for address;
            struct RoleData {
                EnumerableSet.AddressSet members;
                bytes32 adminRole;
            }
            mapping (bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view returns (bool) {
                return _roles[role].members.contains(account);
            }
            /**
             * @dev Returns the number of accounts that have `role`. Can be used
             * together with {getRoleMember} to enumerate all bearers of a role.
             */
            function getRoleMemberCount(bytes32 role) public view returns (uint256) {
                return _roles[role].members.length();
            }
            /**
             * @dev Returns one of the accounts that have `role`. `index` must be a
             * value between 0 and {getRoleMemberCount}, non-inclusive.
             *
             * Role bearers are not sorted in any particular way, and their ordering may
             * change at any point.
             *
             * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
             * you perform all queries on the same block. See the following
             * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
             * for more information.
             */
            function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
                return _roles[role].members.at(index);
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) public virtual {
                require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) public virtual {
                require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) public virtual {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
                _roles[role].adminRole = adminRole;
            }
            function _grantRole(bytes32 role, address account) private {
                if (_roles[role].members.add(account)) {
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            function _revokeRole(bytes32 role, address account) private {
                if (_roles[role].members.remove(account)) {
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
        }
        pragma solidity 0.6.6;
        import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
        contract AccessControlMixin is AccessControl {
            string private _revertMsg;
            function _setupContractId(string memory contractId) internal {
                _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS"));
            }
            modifier only(bytes32 role) {
                require(
                    hasRole(role, _msgSender()),
                    _revertMsg
                );
                _;
            }
        }
        pragma solidity 0.6.6;
        /**
         * @notice DISCLAIMER:
         * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall"
         * nor any other form of self delegatecall!
         * Risk of address spoofing attacks.
         * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure
         */
        abstract contract ContextMixin {
            function msgSender()
                internal
                view
                returns (address payable sender)
            {
                if (msg.sender == address(this)) {
                    bytes memory array = msg.data;
                    uint256 index = msg.data.length;
                    assembly {
                        // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those.
                        sender := and(
                            mload(add(array, index)),
                            0xffffffffffffffffffffffffffffffffffffffff
                        )
                    }
                } else {
                    sender = msg.sender;
                }
                return sender;
            }
        }
        pragma solidity 0.6.6;
        import {Initializable} from "./Initializable.sol";
        contract EIP712Base is Initializable {
            struct EIP712Domain {
                string name;
                string version;
                address verifyingContract;
                bytes32 salt;
            }
            string constant public ERC712_VERSION = "1";
            bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256(
                bytes(
                    "EIP712Domain(string name,string version,address verifyingContract,bytes32 salt)"
                )
            );
            bytes32 internal domainSeperator;
            // supposed to be called once while initializing.
            // one of the contractsa that inherits this contract follows proxy pattern
            // so it is not possible to do this in a constructor
            function _initializeEIP712(
                string memory name
            )
                internal
                initializer
            {
                _setDomainSeperator(name);
            }
            function _setDomainSeperator(string memory name) internal {
                domainSeperator = keccak256(
                    abi.encode(
                        EIP712_DOMAIN_TYPEHASH,
                        keccak256(bytes(name)),
                        keccak256(bytes(ERC712_VERSION)),
                        address(this),
                        bytes32(getChainId())
                    )
                );
            }
            function getDomainSeperator() public view returns (bytes32) {
                return domainSeperator;
            }
            function getChainId() public pure returns (uint256) {
                uint256 id;
                assembly {
                    id := chainid()
                }
                return id;
            }
            /**
             * Accept message hash and returns hash message in EIP712 compatible form
             * So that it can be used to recover signer from signature signed using EIP712 formatted data
             * https://eips.ethereum.org/EIPS/eip-712
             * "\\\\x19" makes the encoding deterministic
             * "\\\\x01" is the version byte to make it compatible to EIP-191
             */
            function toTypedMessageHash(bytes32 messageHash)
                internal
                view
                returns (bytes32)
            {
                return
                    keccak256(
                        abi.encodePacked("\\x19\\x01", getDomainSeperator(), messageHash)
                    );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.6.0;
        /**
         * @dev Library for managing
         * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
         * types.
         *
         * Sets have the following properties:
         *
         * - Elements are added, removed, and checked for existence in constant time
         * (O(1)).
         * - Elements are enumerated in O(n). No guarantees are made on the ordering.
         *
         * ```
         * contract Example {
         *     // Add the library methods
         *     using EnumerableSet for EnumerableSet.AddressSet;
         *
         *     // Declare a set state variable
         *     EnumerableSet.AddressSet private mySet;
         * }
         * ```
         *
         * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
         * (`UintSet`) are supported.
         */
        library EnumerableSet {
            // To implement this library for multiple types with as little code
            // repetition as possible, we write it in terms of a generic Set type with
            // bytes32 values.
            // The Set implementation uses private functions, and user-facing
            // implementations (such as AddressSet) are just wrappers around the
            // underlying Set.
            // This means that we can only create new EnumerableSets for types that fit
            // in bytes32.
            struct Set {
                // Storage of set values
                bytes32[] _values;
                // Position of the value in the `values` array, plus 1 because index 0
                // means a value is not in the set.
                mapping (bytes32 => uint256) _indexes;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function _add(Set storage set, bytes32 value) private returns (bool) {
                if (!_contains(set, value)) {
                    set._values.push(value);
                    // The value is stored at length-1, but we add 1 to all indexes
                    // and use 0 as a sentinel value
                    set._indexes[value] = set._values.length;
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function _remove(Set storage set, bytes32 value) private returns (bool) {
                // We read and store the value's index to prevent multiple reads from the same storage slot
                uint256 valueIndex = set._indexes[value];
                if (valueIndex != 0) { // Equivalent to contains(set, value)
                    // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                    // the array, and then remove the last element (sometimes called as 'swap and pop').
                    // This modifies the order of the array, as noted in {at}.
                    uint256 toDeleteIndex = valueIndex - 1;
                    uint256 lastIndex = set._values.length - 1;
                    // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
                    // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
                    bytes32 lastvalue = set._values[lastIndex];
                    // Move the last value to the index where the value to delete is
                    set._values[toDeleteIndex] = lastvalue;
                    // Update the index for the moved value
                    set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
                    // Delete the slot where the moved value was stored
                    set._values.pop();
                    // Delete the index for the deleted slot
                    delete set._indexes[value];
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function _contains(Set storage set, bytes32 value) private view returns (bool) {
                return set._indexes[value] != 0;
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function _length(Set storage set) private view returns (uint256) {
                return set._values.length;
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function _at(Set storage set, uint256 index) private view returns (bytes32) {
                require(set._values.length > index, "EnumerableSet: index out of bounds");
                return set._values[index];
            }
            // AddressSet
            struct AddressSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(AddressSet storage set, address value) internal returns (bool) {
                return _add(set._inner, bytes32(uint256(value)));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(AddressSet storage set, address value) internal returns (bool) {
                return _remove(set._inner, bytes32(uint256(value)));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(AddressSet storage set, address value) internal view returns (bool) {
                return _contains(set._inner, bytes32(uint256(value)));
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(AddressSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(AddressSet storage set, uint256 index) internal view returns (address) {
                return address(uint256(_at(set._inner, index)));
            }
            // UintSet
            struct UintSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(UintSet storage set, uint256 value) internal returns (bool) {
                return _add(set._inner, bytes32(value));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(UintSet storage set, uint256 value) internal returns (bool) {
                return _remove(set._inner, bytes32(value));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(UintSet storage set, uint256 value) internal view returns (bool) {
                return _contains(set._inner, bytes32(value));
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function length(UintSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(UintSet storage set, uint256 index) internal view returns (uint256) {
                return uint256(_at(set._inner, index));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.6.2;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                // for accounts without code, i.e. `keccak256('')`
                bytes32 codehash;
                bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                // solhint-disable-next-line no-inline-assembly
                assembly { codehash := extcodehash(account) }
                return (codehash != accountHash && codehash != 0x0);
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return _functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                return _functionCallWithValue(target, data, value, errorMessage);
            }
            function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.6.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }