Transaction Hash:
Block:
21845364 at Feb-14-2025 02:41:59 PM +UTC
Transaction Fee:
0.000793537291978398 ETH
$2.02
Gas Used:
255,189 Gas / 3.109606182 Gwei
Emitted Events:
70 |
0xf3de3c0d654fda23dad170f0f320a92172509127.0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb( 0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb, 0000000000000000000000000000000000000000000000000000000000000000 )
|
71 |
WETH9.Deposit( dst=[Receiver] 0xf3de3c0d654fda23dad170f0f320a92172509127, wad=6000000000000000000 )
|
72 |
WETH9.Transfer( src=[Receiver] 0xf3de3c0d654fda23dad170f0f320a92172509127, dst=0x97a7f8bE1364759266CC5a619772458cc126B612, wad=6000000000000000000 )
|
73 |
WETH9.Withdrawal( src=0x97a7f8bE1364759266CC5a619772458cc126B612, wad=6000000000000000000 )
|
74 |
FluidLiquidityProxy.0x4d93b232a24e82b284ced7461bf4deacffe66759d5c24513e6f29e571ad78d15( 0x4d93b232a24e82b284ced7461bf4deacffe66759d5c24513e6f29e571ad78d15, 0x000000000000000000000000836951eb21f3df98273517b7249dceff270d34bf, 0x000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0000000000000000000000000000000000000000000000003960e55537302bc0, ffffffffffffffffffffffffffffffffffffffffffffffffe61c9d1f4ad82bc0, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000c87d0981e4eaf41400000000000000008b4942354581e815, 0000000000000007b7cc5364380000079e250cbfa19ebd578c01e72243e80116 )
|
75 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497, 0x00000000000000000000000097a7f8be1364759266cc5a619772458cc126b612, 00000000000000000000000000000000000000000000000000000003c7505c41 )
|
76 |
FluidLiquidityProxy.0x4d93b232a24e82b284ced7461bf4deacffe66759d5c24513e6f29e571ad78d15( 0x4d93b232a24e82b284ced7461bf4deacffe66759d5c24513e6f29e571ad78d15, 0x000000000000000000000000836951eb21f3df98273517b7249dceff270d34bf, 0x000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, fffffffffffffffffffffffffffffffffffffffffffffffffffffffd656e546c, 000000000000000000000000000000000000000000000000000000012cbeb0ad, 00000000000000000000000097a7f8be1364759266cc5a619772458cc126b612, 00000000000000000000000097a7f8be1364759266cc5a619772458cc126b612, 0000000000000000008da3df84581400000000000000000000dd3df1698cfe00, 00000000000000082394219ed8000007effc3fa6d99ebd56cc01e66d43e80353 )
|
77 |
FluidDexT1.Swap( swap0to1=False, amountIn=6000000000000000000, amountOut=16228834369, to=0x97a7f8bE1364759266CC5a619772458cc126B612 )
|
78 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000097a7f8be1364759266cc5a619772458cc126b612, 0x000000000000000000000000719729949bfcdee71e95795fb64f39db27e02a8d, 00000000000000000000000000000000000000000000000000000003c7505c41 )
|
79 |
0xf3de3c0d654fda23dad170f0f320a92172509127.0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c( 0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 000000000000000000000000719729949bfcdee71e95795fb64f39db27e02a8d, 00000000000000000000000000000000000000000000000053444835ec580000, 00000000000000000000000000000000000000000000000000000003c7505c41 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x52Aa8994...360F4e497 | (Fluid: Liquidity) | 23,365.508687501484391283 Eth | 23,371.508687501484391283 Eth | 6 | |
0x71972994...B27E02a8d |
11.682532156834291253 Eth
Nonce: 19
|
5.681738619542312855 Eth
Nonce: 20
| 6.000793537291978398 | ||
0x836951EB...F270d34bf | (Fluid: Dex USDC - ETH) | ||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 19.517479334877479682 Eth | 19.517808377935598688 Eth | 0.000329043058119006 | |
0xA0b86991...E3606eB48 |
Execution Trace
ETH 6
0xf3de3c0d654fda23dad170f0f320a92172509127.b80c2f09( )
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x719729949BfcdEE71E95795fb64f39dB27E02a8d ) => ( 31517635068 )
-
- ETH 6
WETH9.CALL( )
-
WETH9.transfer( dst=0x97a7f8bE1364759266CC5a619772458cc126B612, wad=6000000000000000000 ) => ( True )
0x97a7f8be1364759266cc5a619772458cc126b612.6f7929f2( )
-
WETH9.balanceOf( 0x97a7f8bE1364759266CC5a619772458cc126B612 ) => ( 6000000000000000000 )
WETH9.withdraw( wad=6000000000000000000 )
- ETH 6
0x97a7f8be1364759266cc5a619772458cc126b612.CALL( )
- ETH 6
-
FluidDexT1.STATICCALL( )
ETH 6
FluidDexT1.swapIn( swap0to1_=False, amountIn_=6000000000000000000, amountOutMin_=0, to_=0x97a7f8bE1364759266CC5a619772458cc126B612 ) => ( amountOut_=16228834369 )
-
FluidLiquidityProxy.readFromStorage( slot_=A8E1248EDDF82E10C0ADC6C737B6D8DA17674ABF51801EA5A4549F41C2DFDF21 ) => ( result_=51089181350577261291852190190477884684581147897438524670803 )
-
FluidLiquidityProxy.readFromStorage( slot_=A1829A9003092132F585B6CCDD167C19FE9774DBDEA4260287E8A8E8CA8185D7 ) => ( result_=48446426022572000625740669767781041584706566435080812101910 )
-
FluidLiquidityProxy.readFromStorage( slot_=89F27CBB3B930281DF7EF3528D38B6BD540933B5A322C200E817FF3C4DBC4896 ) => ( result_=329979906919291604023159273151633349800296927521673797721379272705 )
-
FluidLiquidityProxy.readFromStorage( slot_=5E5FDA7A9504D2BCFE88B229084646D0EEE09EA800412749D08CCC9F7D0865D0 ) => ( result_=383915175436800353631449689481711809053178632382139251906965519907 )
-
FluidLiquidityProxy.readFromStorage( slot_=B9E5B2CDEEE9653D2FEBD1B26B6C6CAAB99B55414C5BB37ADE8DA13BE3D0EFFB ) => ( result_=84561815707267215119799938388251425287518346248891872268813090168494593 )
-
FluidLiquidityProxy.readFromStorage( slot_=D678EA6031089A7E5AE0DE72204A1B7CC2EC5D2852CE956A271CEC8ECCBAF0EC ) => ( result_=99455546540570838263784184512214781037520519714343374295952152855725089 )
ETH 6
FluidLiquidityProxy.ad967e15( )
- ETH 6
FluidLiquidityUserModule.operate( token_=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, supplyAmount_=4134556612087000000, borrowAmount_=-1865443387913000000, withdrawTo_=0x0000000000000000000000000000000000000000, borrowTo_=0x0000000000000000000000000000000000000000, callbackData_=0x00000000000000000000000000000000000000000000000053444835EC580000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000097A7F8BE1364759266CC5A619772458CC126B612 ) => ( memVar3_=1046975977460, memVar4_=1060748553351 )
- ETH 6
FluidLiquidityProxy.ad967e15( )
FluidLiquidityUserModule.operate( token_=0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, supplyAmount_=-11183172500, borrowAmount_=5045661869, withdrawTo_=0x97a7f8bE1364759266CC5a619772458cc126B612, borrowTo_=0x97a7f8bE1364759266CC5a619772458cc126B612, callbackData_=0x ) => ( memVar3_=1090913826011, memVar4_=1118612763611 )
FiatTokenProxy.a9059cbb( )
-
FiatTokenV2_2.transfer( to=0x97a7f8bE1364759266CC5a619772458cc126B612, value=16228834369 ) => ( True )
-
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x97a7f8bE1364759266CC5a619772458cc126B612 ) => ( 16228834369 )
-
FiatTokenProxy.a9059cbb( )
-
FiatTokenV2_2.transfer( to=0x719729949BfcdEE71E95795fb64f39dB27E02a8d, value=16228834369 ) => ( True )
-
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0xF3dE3C0d654FDa23daD170f0f320a92172509127 ) => ( 0 )
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x719729949BfcdEE71E95795fb64f39dB27E02a8d ) => ( 47746469437 )
-
File 1 of 6: WETH9
File 2 of 6: FluidLiquidityProxy
File 3 of 6: FiatTokenProxy
File 4 of 6: FluidDexT1
File 5 of 6: FiatTokenV2_2
File 6 of 6: FluidLiquidityUserModule
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 2 of 6: FluidLiquidityProxy
//SPDX-License-Identifier: MIT pragma solidity 0.8.21; contract Error { error FluidInfiniteProxyError(uint256 errorId_); } //SPDX-License-Identifier: MIT pragma solidity 0.8.21; library ErrorTypes { /***********************************| | Infinite proxy | |__________________________________*/ /// @notice thrown when an implementation does not exist uint256 internal constant InfiniteProxy__ImplementationNotExist = 50001; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; contract Events { /// @notice emitted when a new admin is set event LogSetAdmin(address indexed oldAdmin, address indexed newAdmin); /// @notice emitted when a new dummy implementation is set event LogSetDummyImplementation(address indexed oldDummyImplementation, address indexed newDummyImplementation); /// @notice emitted when a new implementation is set with certain sigs event LogSetImplementation(address indexed implementation, bytes4[] sigs); /// @notice emitted when an implementation is removed event LogRemoveImplementation(address indexed implementation); } // SPDX-License-Identifier: MIT pragma solidity 0.8.21; import { Events } from "./events.sol"; import { ErrorTypes } from "./errorTypes.sol"; import { Error } from "./error.sol"; import { StorageRead } from "../libraries/storageRead.sol"; contract CoreInternals is StorageRead, Events, Error { struct SigsSlot { bytes4[] value; } /// @dev Storage slot with the admin of the contract. /// This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is /// validated in the constructor. bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @dev Storage slot with the address of the current dummy-implementation. /// This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is /// validated in the constructor. bytes32 internal constant _DUMMY_IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @dev use EIP1967 proxy slot (see _DUMMY_IMPLEMENTATION_SLOT) except for first 4 bytes, // which are set to 0. This is combined with a sig which will be set in those first 4 bytes bytes32 internal constant _SIG_SLOT_BASE = 0x000000003ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @dev Returns the storage slot which stores the sigs array set for the implementation. function _getSlotImplSigsSlot(address implementation_) internal pure returns (bytes32) { return keccak256(abi.encode("eip1967.proxy.implementation", implementation_)); } /// @dev Returns the storage slot which stores the implementation address for the function sig. function _getSlotSigsImplSlot(bytes4 sig_) internal pure returns (bytes32 result_) { assembly { // or operator sets sig_ in first 4 bytes with rest of bytes32 having default value of _SIG_SLOT_BASE result_ := or(_SIG_SLOT_BASE, sig_) } } /// @dev Returns an address `data_` located at `slot_`. function _getAddressSlot(bytes32 slot_) internal view returns (address data_) { assembly { data_ := sload(slot_) } } /// @dev Sets an address `data_` located at `slot_`. function _setAddressSlot(bytes32 slot_, address data_) internal { assembly { sstore(slot_, data_) } } /// @dev Returns an `SigsSlot` with member `value` located at `slot`. function _getSigsSlot(bytes32 slot_) internal pure returns (SigsSlot storage _r) { assembly { _r.slot := slot_ } } /// @dev Sets new implementation and adds mapping from implementation to sigs and sig to implementation. function _setImplementationSigs(address implementation_, bytes4[] memory sigs_) internal { require(sigs_.length != 0, "no-sigs"); bytes32 slot_ = _getSlotImplSigsSlot(implementation_); bytes4[] memory sigsCheck_ = _getSigsSlot(slot_).value; require(sigsCheck_.length == 0, "implementation-already-exist"); for (uint256 i; i < sigs_.length; i++) { bytes32 sigSlot_ = _getSlotSigsImplSlot(sigs_[i]); require(_getAddressSlot(sigSlot_) == address(0), "sig-already-exist"); _setAddressSlot(sigSlot_, implementation_); } _getSigsSlot(slot_).value = sigs_; emit LogSetImplementation(implementation_, sigs_); } /// @dev Removes implementation and the mappings corresponding to it. function _removeImplementationSigs(address implementation_) internal { bytes32 slot_ = _getSlotImplSigsSlot(implementation_); bytes4[] memory sigs_ = _getSigsSlot(slot_).value; require(sigs_.length != 0, "implementation-not-exist"); for (uint256 i; i < sigs_.length; i++) { bytes32 sigSlot_ = _getSlotSigsImplSlot(sigs_[i]); _setAddressSlot(sigSlot_, address(0)); } delete _getSigsSlot(slot_).value; emit LogRemoveImplementation(implementation_); } /// @dev Returns bytes4[] sigs from implementation address. If implemenatation is not registered then returns empty array. function _getImplementationSigs(address implementation_) internal view returns (bytes4[] memory) { bytes32 slot_ = _getSlotImplSigsSlot(implementation_); return _getSigsSlot(slot_).value; } /// @dev Returns implementation address from bytes4 sig. If sig is not registered then returns address(0). function _getSigImplementation(bytes4 sig_) internal view returns (address implementation_) { bytes32 slot_ = _getSlotSigsImplSlot(sig_); return _getAddressSlot(slot_); } /// @dev Returns the current admin. function _getAdmin() internal view returns (address) { return _getAddressSlot(_ADMIN_SLOT); } /// @dev Returns the current dummy-implementation. function _getDummyImplementation() internal view returns (address) { return _getAddressSlot(_DUMMY_IMPLEMENTATION_SLOT); } /// @dev Stores a new address in the EIP1967 admin slot. function _setAdmin(address newAdmin_) internal { address oldAdmin_ = _getAdmin(); require(newAdmin_ != address(0), "ERC1967: new admin is the zero address"); _setAddressSlot(_ADMIN_SLOT, newAdmin_); emit LogSetAdmin(oldAdmin_, newAdmin_); } /// @dev Stores a new address in the EIP1967 implementation slot. function _setDummyImplementation(address newDummyImplementation_) internal { address oldDummyImplementation_ = _getDummyImplementation(); _setAddressSlot(_DUMMY_IMPLEMENTATION_SLOT, newDummyImplementation_); emit LogSetDummyImplementation(oldDummyImplementation_, newDummyImplementation_); } } contract AdminInternals is CoreInternals { /// @dev Only admin guard modifier onlyAdmin() { require(msg.sender == _getAdmin(), "only-admin"); _; } constructor(address admin_, address dummyImplementation_) { _setAdmin(admin_); _setDummyImplementation(dummyImplementation_); } /// @dev Sets new admin. function setAdmin(address newAdmin_) external onlyAdmin { _setAdmin(newAdmin_); } /// @dev Sets new dummy-implementation. function setDummyImplementation(address newDummyImplementation_) external onlyAdmin { _setDummyImplementation(newDummyImplementation_); } /// @dev Adds new implementation address. function addImplementation(address implementation_, bytes4[] calldata sigs_) external onlyAdmin { _setImplementationSigs(implementation_, sigs_); } /// @dev Removes an existing implementation address. function removeImplementation(address implementation_) external onlyAdmin { _removeImplementationSigs(implementation_); } } /// @title Proxy /// @notice This abstract contract provides a fallback function that delegates all calls to another contract using the EVM. /// It implements the Instadapp infinite-proxy: https://github.com/Instadapp/infinite-proxy abstract contract Proxy is AdminInternals { constructor(address admin_, address dummyImplementation_) AdminInternals(admin_, dummyImplementation_) {} /// @dev Returns admin's address. function getAdmin() external view returns (address) { return _getAdmin(); } /// @dev Returns dummy-implementations's address. function getDummyImplementation() external view returns (address) { return _getDummyImplementation(); } /// @dev Returns bytes4[] sigs from implementation address If not registered then returns empty array. function getImplementationSigs(address impl_) external view returns (bytes4[] memory) { return _getImplementationSigs(impl_); } /// @dev Returns implementation address from bytes4 sig. If sig is not registered then returns address(0). function getSigsImplementation(bytes4 sig_) external view returns (address) { return _getSigImplementation(sig_); } /// @dev Fallback function that delegates calls to the address returned by Implementations registry. fallback() external payable { address implementation_; assembly { // get slot for sig and directly SLOAD implementation address from storage at that slot implementation_ := sload( // same as in `_getSlotSigsImplSlot()` but we must also load msg.sig from calldata. // msg.sig is first 4 bytes of calldata, so we can use calldataload(0) with a mask or( // or operator sets sig_ in first 4 bytes with rest of bytes32 having default value of _SIG_SLOT_BASE _SIG_SLOT_BASE, and(calldataload(0), 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000) ) ) } if (implementation_ == address(0)) { revert FluidInfiniteProxyError(ErrorTypes.InfiniteProxy__ImplementationNotExist); } // Delegate the current call to `implementation`. // This does not return to its internall call site, it will return directly to the external caller. // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation_, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) if eq(result, 0) { // delegatecall returns 0 on error. revert(0, returndatasize()) } return(0, returndatasize()) } } receive() external payable { // receive method can never have calldata in EVM so no need for any logic here } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice implements a method to read uint256 data from storage at a bytes32 storage slot key. contract StorageRead { function readFromStorage(bytes32 slot_) public view returns (uint256 result_) { assembly { result_ := sload(slot_) // read value from the storage slot } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { Proxy } from "../infiniteProxy/proxy.sol"; /// @notice Fluid Liquidity infinte proxy. /// Liquidity is the central point of the Instadapp Fluid architecture, it is the core interaction point /// for all allow-listed protocols, such as fTokens, Vault, Flashloan, StETH protocol, DEX protocol etc. contract FluidLiquidityProxy is Proxy { constructor(address admin_, address dummyImplementation_) Proxy(admin_, dummyImplementation_) {} }
File 3 of 6: FiatTokenProxy
pragma solidity ^0.4.24; // File: zos-lib/contracts/upgradeability/Proxy.sol /** * @title Proxy * @dev Implements delegation of calls to other contracts, with proper * forwarding of return values and bubbling of failures. * It defines a fallback function that delegates all calls to the address * returned by the abstract _implementation() internal function. */ contract Proxy { /** * @dev Fallback function. * Implemented entirely in `_fallback`. */ function () payable external { _fallback(); } /** * @return The Address of the implementation. */ function _implementation() internal view returns (address); /** * @dev Delegates execution to an implementation contract. * This is a low level function that doesn't return to its internal call site. * It will return to the external caller whatever the implementation returns. * @param implementation Address to delegate. */ function _delegate(address implementation) internal { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize) } default { return(0, returndatasize) } } } /** * @dev Function that is run as the first thing in the fallback function. * Can be redefined in derived contracts to add functionality. * Redefinitions must call super._willFallback(). */ function _willFallback() internal { } /** * @dev fallback implementation. * Extracted to enable manual triggering. */ function _fallback() internal { _willFallback(); _delegate(_implementation()); } } // File: openzeppelin-solidity/contracts/AddressUtils.sol /** * Utility library of inline functions on addresses */ library AddressUtils { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param addr address to check * @return whether the target address is a contract */ function isContract(address addr) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solium-disable-next-line security/no-inline-assembly assembly { size := extcodesize(addr) } return size > 0; } } // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol /** * @title UpgradeabilityProxy * @dev This contract implements a proxy that allows to change the * implementation address to which it will delegate. * Such a change is called an implementation upgrade. */ contract UpgradeabilityProxy is Proxy { /** * @dev Emitted when the implementation is upgraded. * @param implementation Address of the new implementation. */ event Upgraded(address implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is * validated in the constructor. */ bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3; /** * @dev Contract constructor. * @param _implementation Address of the initial implementation. */ constructor(address _implementation) public { assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation")); _setImplementation(_implementation); } /** * @dev Returns the current implementation. * @return Address of the current implementation */ function _implementation() internal view returns (address impl) { bytes32 slot = IMPLEMENTATION_SLOT; assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * @param newImplementation Address of the new implementation. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Sets the implementation address of the proxy. * @param newImplementation Address of the new implementation. */ function _setImplementation(address newImplementation) private { require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address"); bytes32 slot = IMPLEMENTATION_SLOT; assembly { sstore(slot, newImplementation) } } } // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol /** * @title AdminUpgradeabilityProxy * @dev This contract combines an upgradeability proxy with an authorization * mechanism for administrative tasks. * All external functions in this contract must be guarded by the * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity * feature proposal that would enable this to be done automatically. */ contract AdminUpgradeabilityProxy is UpgradeabilityProxy { /** * @dev Emitted when the administration has been transferred. * @param previousAdmin Address of the previous admin. * @param newAdmin Address of the new admin. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is * validated in the constructor. */ bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b; /** * @dev Modifier to check whether the `msg.sender` is the admin. * If it is, it will run the function. Otherwise, it will delegate the call * to the implementation. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * Contract constructor. * It sets the `msg.sender` as the proxy administrator. * @param _implementation address of the initial implementation. */ constructor(address _implementation) UpgradeabilityProxy(_implementation) public { assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin")); _setAdmin(msg.sender); } /** * @return The address of the proxy admin. */ function admin() external view ifAdmin returns (address) { return _admin(); } /** * @return The address of the implementation. */ function implementation() external view ifAdmin returns (address) { return _implementation(); } /** * @dev Changes the admin of the proxy. * Only the current admin can call this function. * @param newAdmin Address to transfer proxy administration to. */ function changeAdmin(address newAdmin) external ifAdmin { require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the backing implementation of the proxy. * Only the admin can call this function. * @param newImplementation Address of the new implementation. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the backing implementation of the proxy and call a function * on the new implementation. * This is useful to initialize the proxied contract. * @param newImplementation Address of the new implementation. * @param data Data to send as msg.data in the low level call. * It should include the signature and the parameters of the function to be * called, as described in * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding. */ function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin { _upgradeTo(newImplementation); require(address(this).call.value(msg.value)(data)); } /** * @return The admin slot. */ function _admin() internal view returns (address adm) { bytes32 slot = ADMIN_SLOT; assembly { adm := sload(slot) } } /** * @dev Sets the address of the proxy admin. * @param newAdmin Address of the new proxy admin. */ function _setAdmin(address newAdmin) internal { bytes32 slot = ADMIN_SLOT; assembly { sstore(slot, newAdmin) } } /** * @dev Only fall back when the sender is not the admin. */ function _willFallback() internal { require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin"); super._willFallback(); } } // File: contracts/FiatTokenProxy.sol /** * Copyright CENTRE SECZ 2018 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ pragma solidity ^0.4.24; /** * @title FiatTokenProxy * @dev This contract proxies FiatToken calls and enables FiatToken upgrades */ contract FiatTokenProxy is AdminUpgradeabilityProxy { constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) { } }
File 4 of 6: FluidDexT1
// SPDX-License-Identifier: MIT pragma solidity 0.8.21; interface IProxy { function setAdmin(address newAdmin_) external; function setDummyImplementation(address newDummyImplementation_) external; function addImplementation(address implementation_, bytes4[] calldata sigs_) external; function removeImplementation(address implementation_) external; function getAdmin() external view returns (address); function getDummyImplementation() external view returns (address); function getImplementationSigs(address impl_) external view returns (bytes4[] memory); function getSigsImplementation(bytes4 sig_) external view returns (address); function readFromStorage(bytes32 slot_) external view returns (uint256 result_); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice implements calculation of address for contracts deployed through CREATE. /// Accepts contract deployed from which address & nonce library AddressCalcs { /// @notice Computes the address of a contract based /// @param deployedFrom_ Address from which the contract was deployed /// @param nonce_ Nonce at which the contract was deployed /// @return contract_ Address of deployed contract function addressCalc(address deployedFrom_, uint nonce_) internal pure returns (address contract_) { // @dev based on https://ethereum.stackexchange.com/a/61413 // nonce of smart contract always starts with 1. so, with nonce 0 there won't be any deployment // hence, nonce of vault deployment starts with 1. bytes memory data; if (nonce_ == 0x00) { return address(0); } else if (nonce_ <= 0x7f) { data = abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployedFrom_, uint8(nonce_)); } else if (nonce_ <= 0xff) { data = abi.encodePacked(bytes1(0xd7), bytes1(0x94), deployedFrom_, bytes1(0x81), uint8(nonce_)); } else if (nonce_ <= 0xffff) { data = abi.encodePacked(bytes1(0xd8), bytes1(0x94), deployedFrom_, bytes1(0x82), uint16(nonce_)); } else if (nonce_ <= 0xffffff) { data = abi.encodePacked(bytes1(0xd9), bytes1(0x94), deployedFrom_, bytes1(0x83), uint24(nonce_)); } else { data = abi.encodePacked(bytes1(0xda), bytes1(0x94), deployedFrom_, bytes1(0x84), uint32(nonce_)); } return address(uint160(uint256(keccak256(data)))); } }// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits. /// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision /// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can /// result in significant gas cost reduction due to storage space reduction. /// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision. /// @dev roundUp is more like a increase 1, which happens everytime for the same number. /// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number. library BigMathMinified { /// @dev constants to use for `roundUp` input param to increase readability bool internal constant ROUND_DOWN = false; bool internal constant ROUND_UP = true; /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision). /// e.g.: /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits] /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary) /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000 /// ^-------------------- 51(exponent) -------------- ^ /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563) /// exponent = 0011,0011 (51) /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179) /// /// @param normal number which needs to be converted into Big Number /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision)) /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent)) /// @param roundUp signals if result should be rounded down or up /// @return bigNumber converted bigNumber (coefficient << exponent) function toBigNumber( uint256 normal, uint256 coefficientSize, uint256 exponentSize, bool roundUp ) internal pure returns (uint256 bigNumber) { assembly { let lastBit_ let number_ := normal if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit_ := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit_ := add(lastBit_, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit_ := add(lastBit_, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit_ := add(lastBit_, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit_ := add(lastBit_, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit_ := add(lastBit_, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit_ := add(lastBit_, 0x2) } if gt(number_, 0x1) { lastBit_ := add(lastBit_, 1) } if gt(number_, 0) { lastBit_ := add(lastBit_, 1) } if lt(lastBit_, coefficientSize) { // for throw exception lastBit_ := coefficientSize } let exponent := sub(lastBit_, coefficientSize) let coefficient := shr(exponent, normal) if and(roundUp, gt(exponent, 0)) { // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number coefficient := add(coefficient, 1) if eq(shl(coefficientSize, 1), coefficient) { // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1. coefficient := shl(sub(coefficientSize, 1), 1) exponent := add(exponent, 1) } } if iszero(lt(exponent, shl(exponentSize, 1))) { // if exponent is >= exponentSize, the normal number is too big to fit within // BigNumber with too small sizes for coefficient and exponent revert(0, 0) } bigNumber := shl(exponentSize, coefficient) bigNumber := add(bigNumber, exponent) } } /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask` function fromBigNumber( uint256 bigNumber, uint256 exponentSize, uint256 exponentMask ) internal pure returns (uint256 normal) { assembly { let coefficient := shr(exponentSize, bigNumber) let exponent := and(bigNumber, exponentMask) normal := shl(exponent, coefficient) } } /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format). /// e.g. /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 /// lastBit = ^--------------------------------- 83 ----------------------------------------^ function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) { assembly { let number_ := normal if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit := add(lastBit, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit := add(lastBit, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit := add(lastBit, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit := add(lastBit, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit := add(lastBit, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit := add(lastBit, 0x2) } if gt(number_, 0x1) { lastBit := add(lastBit, 1) } if gt(number_, 0) { lastBit := add(lastBit, 1) } } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { BigMathMinified } from "./bigMathMinified.sol"; import { DexSlotsLink } from "./dexSlotsLink.sol"; // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // @DEV ATTENTION: ON ANY CHANGES HERE, MAKE SURE THAT LOGIC IN VAULTS WILL STILL BE VALID. // SOME CODE THERE ASSUMES DEXCALCS == LIQUIDITYCALCS. // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! /// @notice implements calculation methods used for Fluid Dex such as updated withdrawal / borrow limits. library DexCalcs { // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant X14 = 0x3fff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; /////////////////////////////////////////////////////////////////////////// ////////// CALC LIMITS ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates withdrawal limit before an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitBeforeOperate( uint256 userSupplyData_, uint256 userSupply_ ) internal view returns (uint256 currentWithdrawalLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet). // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet. // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be // a deposit anyway. Important is that it would not revert. // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit // is the fully expanded limit immediately. // extract last set withdrawal limit uint256 lastWithdrawalLimit_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64; lastWithdrawalLimit_ = (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) << (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK); if (lastWithdrawalLimit_ == 0) { // withdrawal limit is not activated. Max withdrawal allowed return 0; } uint256 maxWithdrawableLimit_; uint256 temp_; unchecked { // extract max withdrawable percent of user supply and // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed. // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxWithdrawableLimit_ = (((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) / FOUR_DECIMALS; // time elapsed since last withdrawal limit was set (in seconds) // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before. // last timestamp can not be > current timestamp temp_ = block.timestamp - ((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33); } // calculate withdrawable amount of expandPercent that is elapsed of expandDuration. // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%. // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed. temp_ = (maxWithdrawableLimit_ * temp_) / // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit) ((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0 // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount. // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration, // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0 // which will cause minimum (fully expanded) withdrawal limit to be set in lines below. unchecked { // underflow explicitly checked & handled currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0; // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion. // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - maxWithdrawableLimit_; } // if withdrawal limit is decreased below minimum then set minimum // (e.g. when more than expandDuration time has elapsed) if (temp_ > currentWithdrawalLimit_) { currentWithdrawalLimit_ = temp_; } } /// @dev calculates withdrawal limit after an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate` /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitAfterOperate( uint256 userSupplyData_, uint256 userSupply_, uint256 newWithdrawalLimit_ ) internal pure returns (uint256) { // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed uint256 temp_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // if user supply is below base limit then max withdrawals are allowed if (userSupply_ < temp_) { return 0; } // temp_ => withdrawal limit expandPercent (is in 1e2 decimals) temp_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14; unchecked { // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent)) // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS); } // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit. // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where // increased deposit amount outpaces withrawals. if (temp_ > newWithdrawalLimit_) { return temp_; } return newWithdrawalLimit_; } /// @dev calculates borrow limit before an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitBeforeOperate( uint256 userBorrowData_, uint256 userBorrow_ ) internal view returns (uint256 currentBorrowLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit. // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0. // temp_ = extract borrow expand percent (is in 1e2 decimals) uint256 temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; uint256 maxExpansionLimit_; uint256 maxExpandedBorrowLimit_; unchecked { // calculate max expansion limit: Max amount limit can expand to since last interaction // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS); // calculate max borrow limit: Max point limit can increase to since last interaction maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_; } // currentBorrowLimit_ = extract base borrow limit currentBorrowLimit_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; currentBorrowLimit_ = (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) << (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK); if (maxExpandedBorrowLimit_ < currentBorrowLimit_) { return currentBorrowLimit_; } // time elapsed since last borrow limit was set (in seconds) unchecked { // temp_ = timeElapsed_ (last timestamp can not be > current timestamp) temp_ = block.timestamp - ((userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp } // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit currentBorrowLimit_ = // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`. // divisor is extract expand duration (after this, full expansion to expandPercentage happened). ((maxExpansionLimit_ * temp_) / ((userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0 // extract last set borrow limit BigMathMinified.fromBigNumber( (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion, // so set to `maxExpandedBorrowLimit_` in that case. // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big) if (currentBorrowLimit_ > maxExpandedBorrowLimit_) { currentBorrowLimit_ = maxExpandedBorrowLimit_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (currentBorrowLimit_ > temp_) { currentBorrowLimit_ = temp_; } } /// @dev calculates borrow limit after an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate` /// @return borrowLimit_ updated borrow limit that should be written to storage. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitAfterOperate( uint256 userBorrowData_, uint256 userBorrow_, uint256 newBorrowLimit_ ) internal pure returns (uint256 borrowLimit_) { // temp_ = extract borrow expand percent uint256 temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals) unchecked { // borrowLimit_ = calculate maximum borrow limit at full expansion. // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS); } // temp_ = extract base borrow limit temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (borrowLimit_ < temp_) { // below base limit, borrow limit is always base limit return temp_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // make sure fully expanded borrow limit is not above hard max borrow limit if (borrowLimit_ > temp_) { borrowLimit_ = temp_; } // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit. // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant) if (newBorrowLimit_ > borrowLimit_) { return borrowLimit_; } return newBorrowLimit_; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice library that helps in reading / working with storage slot data of Fluid Dex. /// @dev as all data for Fluid Dex is internal, any data must be fetched directly through manual /// slot reading through this library or, if gas usage is less important, through the FluidDexResolver. library DexSlotsLink { /// @dev storage slot for variables at Dex uint256 internal constant DEX_VARIABLES_SLOT = 0; /// @dev storage slot for variables2 at Dex uint256 internal constant DEX_VARIABLES2_SLOT = 1; /// @dev storage slot for total supply shares at Dex uint256 internal constant DEX_TOTAL_SUPPLY_SHARES_SLOT = 2; /// @dev storage slot for user supply mapping at Dex uint256 internal constant DEX_USER_SUPPLY_MAPPING_SLOT = 3; /// @dev storage slot for total borrow shares at Dex uint256 internal constant DEX_TOTAL_BORROW_SHARES_SLOT = 4; /// @dev storage slot for user borrow mapping at Dex uint256 internal constant DEX_USER_BORROW_MAPPING_SLOT = 5; /// @dev storage slot for oracle mapping at Dex uint256 internal constant DEX_ORACLE_MAPPING_SLOT = 6; /// @dev storage slot for range and threshold shifts at Dex uint256 internal constant DEX_RANGE_THRESHOLD_SHIFTS_SLOT = 7; /// @dev storage slot for center price shift at Dex uint256 internal constant DEX_CENTER_PRICE_SHIFT_SLOT = 8; // -------------------------------- // @dev stacked uint256 storage slots bits position data for each: // UserSupplyData uint256 internal constant BITS_USER_SUPPLY_ALLOWED = 0; uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1; uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65; uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200; // UserBorrowData uint256 internal constant BITS_USER_BORROW_ALLOWED = 0; uint256 internal constant BITS_USER_BORROW_AMOUNT = 1; uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65; uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200; uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218; // -------------------------------- /// @notice Calculating the slot ID for Dex contract for single mapping at `slot_` for `key_` function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) { return keccak256(abi.encode(key_, slot_)); } /// @notice Calculating the slot ID for Dex contract for double mapping at `slot_` for `key1_` and `key2_` function calculateDoubleMappingStorageSlot( uint256 slot_, address key1_, address key2_ ) internal pure returns (bytes32) { bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_)); return keccak256(abi.encode(key2_, intermediateSlot_)); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; library LibsErrorTypes { /***********************************| | LiquidityCalcs | |__________________________________*/ /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet) uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001; /// @notice thrown when rate data is set to a version that is not implemented uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002; /// @notice thrown when the calculated borrow rate turns negative. This should never happen. uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003; /***********************************| | SafeTransfer | |__________________________________*/ /// @notice thrown when safe transfer from for an ERC20 fails uint256 internal constant SafeTransfer__TransferFromFailed = 71001; /// @notice thrown when safe transfer for an ERC20 fails uint256 internal constant SafeTransfer__TransferFailed = 71002; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol"; import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol"; import { BigMathMinified } from "./bigMathMinified.sol"; /// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices, /// borrow rate, withdrawal / borrow limits, revenue amount. library LiquidityCalcs { error FluidLiquidityCalcsError(uint256 errorId_); /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535 event BorrowRateMaxCap(); /// @dev constants as from Liquidity variables.sol uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant TWELVE_DECIMALS = 1e12; uint256 internal constant X14 = 0x3fff; uint256 internal constant X15 = 0x7fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; /////////////////////////////////////////////////////////////////////////// ////////// CALC EXCHANGE PRICES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage. /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @return supplyExchangePrice_ updated supplyExchangePrice /// @return borrowExchangePrice_ updated borrowExchangePrice function calcExchangePrices( uint256 exchangePricesAndConfig_ ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { // Extracting exchange prices supplyExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64; borrowExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64; if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero); } uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate unchecked { // last timestamp can not be > current timestamp uint256 secondsSinceLastUpdate_ = block.timestamp - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33); uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) & X15; if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) { // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // calculate new borrow exchange price. // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_. // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0. borrowExchangePrice_ += (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS); // FOR SUPPLY EXCHANGE PRICE: // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest. // formula: previous price * supply rate * secondsSinceLastUpdate_. // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And // ratioSupplyYield = utilization * supplyRatio * borrowRatio // // Example: // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50. // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%. // yield is 10 (so half a year must have passed). // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60. // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70. // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2). // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield). // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield): // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%. // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5% // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5% // increase in supplyExchangePrice, assuming 100 as previous price. // 100 * 22,5% * 1/2 (half a year) = 0,1125. // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20. // -------------- 1. calculate ratioSupplyYield -------------------------------- // step1: utilization * supplyRatio (or actually part of lenders receiving yield) // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15; if (temp_ == 1) { // if no raw supply: no exchange price update needed // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest if (temp_ & 1 == 1) { // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = temp_ >> 1; // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return // in the if statement a little above. // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee. // supplyRawInterest must become worth 30. totalSupply must become 110. // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2. // so ratioSupplyYield must come out as 2.5 (250%). // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted. temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision) // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%). temp_ = // utilization * (100% + 100% / supplyRatio) (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS); // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31 } else { // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) temp_ = temp_ >> 1; // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0 // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%). temp_ = // 1e27 * utilization * (100% + supplyRatio) / 100% (1e27 * ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS + temp_)) / (FOUR_DECIMALS * FOUR_DECIMALS); // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27 } // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31 // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield) if (borrowRatio_ & 1 == 1) { // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered // at the beginning of the method by early return if `borrowRatio_ == 1`. // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%. // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed. // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666% // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_); // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield). } else { // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%. borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_))); // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%. // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101. // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield). } // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%. // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8 temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54; // 2. calculate supply rate // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield. // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate) // Note that all calculation divisions for supplyExchangePrice are rounded down. // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest // but more suppliers not earning interest. temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate temp_ * // ratioSupplyYield (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17. // 3. calculate increase in supply exchange price supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS)); // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0. } } /////////////////////////////////////////////////////////////////////////// ////////// CALC REVENUE ///////// /////////////////////////////////////////////////////////////////////////// /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage /// and the current balance of the Fluid liquidity contract for the token. /// @param totalAmounts_ total amounts packed uint256 read from storage /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this))) /// @return revenueAmount_ collectable revenue amount function calcRevenue( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_ ) internal view returns (uint256 revenueAmount_) { // @dev no need to super-optimize this method as it is only used by admin // calculate the new exchange prices based on earned interest (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_); // total supply = interest free + with interest converted from raw uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_); if (totalSupply_ > 0) { // available revenue: balanceOf(token) + totalBorrowings - totalLendings. revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_); // ensure there is no possible case because of rounding etc. where this would revert, // explicitly check if > revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0; // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization // can only be revenue. } else { // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck revenueAmount_ = liquidityTokenBalance_; } } /////////////////////////////////////////////////////////////////////////// ////////// CALC LIMITS ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates withdrawal limit before an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitBeforeOperate( uint256 userSupplyData_, uint256 userSupply_ ) internal view returns (uint256 currentWithdrawalLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet). // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet. // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be // a deposit anyway. Important is that it would not revert. // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit // is the fully expanded limit immediately. // extract last set withdrawal limit uint256 lastWithdrawalLimit_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64; lastWithdrawalLimit_ = (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) << (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK); if (lastWithdrawalLimit_ == 0) { // withdrawal limit is not activated. Max withdrawal allowed return 0; } uint256 maxWithdrawableLimit_; uint256 temp_; unchecked { // extract max withdrawable percent of user supply and // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed. // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxWithdrawableLimit_ = (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) / FOUR_DECIMALS; // time elapsed since last withdrawal limit was set (in seconds) // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before. // last timestamp can not be > current timestamp temp_ = block.timestamp - ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33); } // calculate withdrawable amount of expandPercent that is elapsed of expandDuration. // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%. // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed. temp_ = (maxWithdrawableLimit_ * temp_) / // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit) ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0 // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount. // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration, // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0 // which will cause minimum (fully expanded) withdrawal limit to be set in lines below. unchecked { // underflow explicitly checked & handled currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0; // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion. // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - maxWithdrawableLimit_; } // if withdrawal limit is decreased below minimum then set minimum // (e.g. when more than expandDuration time has elapsed) if (temp_ > currentWithdrawalLimit_) { currentWithdrawalLimit_ = temp_; } } /// @dev calculates withdrawal limit after an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate` /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitAfterOperate( uint256 userSupplyData_, uint256 userSupply_, uint256 newWithdrawalLimit_ ) internal pure returns (uint256) { // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // if user supply is below base limit then max withdrawals are allowed if (userSupply_ < temp_) { return 0; } // temp_ => withdrawal limit expandPercent (is in 1e2 decimals) temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14; unchecked { // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent)) // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS); } // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit. // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where // increased deposit amount outpaces withrawals. if (temp_ > newWithdrawalLimit_) { return temp_; } return newWithdrawalLimit_; } /// @dev calculates borrow limit before an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitBeforeOperate( uint256 userBorrowData_, uint256 userBorrow_ ) internal view returns (uint256 currentBorrowLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit. // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0. // temp_ = extract borrow expand percent (is in 1e2 decimals) uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; uint256 maxExpansionLimit_; uint256 maxExpandedBorrowLimit_; unchecked { // calculate max expansion limit: Max amount limit can expand to since last interaction // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS); // calculate max borrow limit: Max point limit can increase to since last interaction maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_; } // currentBorrowLimit_ = extract base borrow limit currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; currentBorrowLimit_ = (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) << (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK); if (maxExpandedBorrowLimit_ < currentBorrowLimit_) { return currentBorrowLimit_; } // time elapsed since last borrow limit was set (in seconds) unchecked { // temp_ = timeElapsed_ (last timestamp can not be > current timestamp) temp_ = block.timestamp - ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp } // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit currentBorrowLimit_ = // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`. // divisor is extract expand duration (after this, full expansion to expandPercentage happened). ((maxExpansionLimit_ * temp_) / ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0 // extract last set borrow limit BigMathMinified.fromBigNumber( (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion, // so set to `maxExpandedBorrowLimit_` in that case. // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big) if (currentBorrowLimit_ > maxExpandedBorrowLimit_) { currentBorrowLimit_ = maxExpandedBorrowLimit_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (currentBorrowLimit_ > temp_) { currentBorrowLimit_ = temp_; } } /// @dev calculates borrow limit after an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate` /// @return borrowLimit_ updated borrow limit that should be written to storage. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitAfterOperate( uint256 userBorrowData_, uint256 userBorrow_, uint256 newBorrowLimit_ ) internal pure returns (uint256 borrowLimit_) { // temp_ = extract borrow expand percent uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals) unchecked { // borrowLimit_ = calculate maximum borrow limit at full expansion. // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS); } // temp_ = extract base borrow limit temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (borrowLimit_ < temp_) { // below base limit, borrow limit is always base limit return temp_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // make sure fully expanded borrow limit is not above hard max borrow limit if (borrowLimit_ > temp_) { borrowLimit_ = temp_; } // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit. // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant) if (newBorrowLimit_ > borrowLimit_) { return borrowLimit_; } return newBorrowLimit_; } /////////////////////////////////////////////////////////////////////////// ////////// CALC RATES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev Calculates new borrow rate from utilization for a token /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500) function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) { // extract rate version: 4 bits (0xF) starting from bit 0 uint256 rateVersion_ = (rateData_ & 0xF); if (rateVersion_ == 1) { rate_ = calcRateV1(rateData_, utilization_); } else if (rateVersion_ == 2) { rate_ = calcRateV2(rateData_, utilization_); } else { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion); } if (rate_ > X16) { // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space. // this is unlikely to ever happen if configs stay within expected levels. rate_ = X16; // emit event to more easily become aware emit BorrowRateMaxCap(); } } /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e2 precision function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v1 (one kink) ------------------------------------------------------ /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 188 bits => 68-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16; if (utilization_ < kink1_) { // if utilization is less than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // else utilization is greater than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink1_; x2_ = FOUR_DECIMALS; // 100% } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e4 precision function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v2 (two kinks) ----------------------------------------------------- /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 156 bits => 100-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16; if (utilization_ < kink1_) { // if utilization is less than kink1 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // extract kink2: 16 bits (0xFFFF) starting from bit 52 uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16; if (utilization_ < kink2_) { // if utilization is less than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; x1_ = kink1_; x2_ = kink2_; } else { // else utilization is greater than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink2_; x2_ = FOUR_DECIMALS; } } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_` function getTotalSupply( uint256 totalAmounts_, uint256 supplyExchangePrice_ ) internal pure returns (uint256 totalSupply_) { // totalSupply_ => supplyInterestFree totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64; totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK); uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK); // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION); } /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_` function getTotalBorrow( uint256 totalAmounts_, uint256 borrowExchangePrice_ ) internal pure returns (uint256 totalBorrow_) { // totalBorrow_ => borrowInterestFree // no & mask needed for borrow interest free as it occupies the last bits in the storage slot totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK); uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64; totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK); // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice library that helps in reading / working with storage slot data of Fluid Liquidity. /// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual /// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver. library LiquiditySlotsLink { /// @dev storage slot for status at Liquidity uint256 internal constant LIQUIDITY_STATUS_SLOT = 1; /// @dev storage slot for auths mapping at Liquidity uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2; /// @dev storage slot for guardians mapping at Liquidity uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3; /// @dev storage slot for user class mapping at Liquidity uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4; /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5; /// @dev storage slot for rateData mapping at Liquidity uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6; /// @dev storage slot for totalAmounts mapping at Liquidity uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7; /// @dev storage slot for user supply double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8; /// @dev storage slot for user borrow double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11; // -------------------------------- // @dev stacked uint256 storage slots bits position data for each: // ExchangePricesAndConfig uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0; uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16; uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30; uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44; uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234; uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249; // RateData: uint256 internal constant BITS_RATE_DATA_VERSION = 0; // RateData: V1 uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52; // RateData: V2 uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84; // TotalAmounts uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0; uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192; // UserSupplyData uint256 internal constant BITS_USER_SUPPLY_MODE = 0; uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1; uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65; uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200; uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255; // UserBorrowData uint256 internal constant BITS_USER_BORROW_MODE = 0; uint256 internal constant BITS_USER_BORROW_AMOUNT = 1; uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65; uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200; uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218; uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255; // Configs2 uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0; // -------------------------------- /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_` function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) { return keccak256(abi.encode(key_, slot_)); } /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_` function calculateDoubleMappingStorageSlot( uint256 slot_, address key1_, address key2_ ) internal pure returns (bytes32) { bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_)); return keccak256(abi.encode(key2_, intermediateSlot_)); } } // SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol"; /// @notice provides minimalistic methods for safe transfers, e.g. ERC20 safeTransferFrom library SafeTransfer { uint256 internal constant MAX_NATIVE_TRANSFER_GAS = 20000; // pass max. 20k gas for native transfers error FluidSafeTransferError(uint256 errorId_); /// @dev Transfer `amount_` of `token_` from `from_` to `to_`, spending the approval given by `from_` to the /// calling contract. If `token_` returns no value, non-reverting calls are assumed to be successful. /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L31-L63 function safeTransferFrom(address token_, address from_, address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from_" argument. mstore(add(freeMemoryPointer, 36), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to_" argument. mstore(add(freeMemoryPointer, 68), amount_) // Append the "amount_" argument. Masking not required as it's a full 32 byte type. success_ := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token_, 0, freeMemoryPointer, 100, 0, 32) ) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFromFailed); } } /// @dev Transfer `amount_` of `token_` to `to_`. /// If `token_` returns no value, non-reverting calls are assumed to be successful. /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L65-L95 function safeTransfer(address token_, address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to_" argument. mstore(add(freeMemoryPointer, 36), amount_) // Append the "amount_" argument. Masking not required as it's a full 32 byte type. success_ := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token_, 0, freeMemoryPointer, 68, 0, 32) ) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed); } } /// @dev Transfer `amount_` of ` native token to `to_`. /// Minimally modified from Solmate SafeTransferLib (Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L15-L25 function safeTransferNative(address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. Pass limited gas success_ := call(MAX_NATIVE_TRANSFER_GAS, to_, amount_, 0, 0, 0, 0) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed); } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice implements a method to read uint256 data from storage at a bytes32 storage slot key. contract StorageRead { function readFromStorage(bytes32 slot_) public view returns (uint256 result_) { assembly { result_ := sload(slot_) // read value from the storage slot } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; abstract contract Structs { struct AddressBool { address addr; bool value; } struct AddressUint256 { address addr; uint256 value; } /// @notice struct to set borrow rate data for version 1 struct RateDataV1Params { /// /// @param token for rate data address token; /// /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast uint256 kink; /// /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100 /// i.e. constant minimum borrow rate /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then) uint256 rateAtUtilizationZero; /// /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700 uint256 rateAtUtilizationKink; /// /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500 uint256 rateAtUtilizationMax; } /// @notice struct to set borrow rate data for version 2 struct RateDataV2Params { /// /// @param token for rate data address token; /// /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster uint256 kink1; /// /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast uint256 kink2; /// /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100 /// i.e. constant minimum borrow rate /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then) uint256 rateAtUtilizationZero; /// /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700 uint256 rateAtUtilizationKink1; /// /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200 uint256 rateAtUtilizationKink2; /// /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500 uint256 rateAtUtilizationMax; } /// @notice struct to set token config struct TokenConfig { /// /// @param token address address token; /// /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100 uint256 fee; /// /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100 uint256 threshold; /// /// @param maxUtilization maximum allowed utilization. in 1e2: 100% = 10_000; 1% = 100 /// set to 100% to disable and have default limit of 100% (avoiding SLOAD). uint256 maxUtilization; } /// @notice struct to set user supply & withdrawal config struct UserSupplyConfig { /// /// @param user address address user; /// /// @param token address address token; /// /// @param mode: 0 = without interest. 1 = with interest uint8 mode; /// /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100 /// Also used to calculate rate at which withdrawal limit should decrease (instant). uint256 expandPercent; /// /// @param expandDuration withdrawal limit expand duration in seconds. /// used to calculate rate together with expandPercent uint256 expandDuration; /// /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 baseWithdrawalLimit; } /// @notice struct to set user borrow & payback config struct UserBorrowConfig { /// /// @param user address address user; /// /// @param token address address token; /// /// @param mode: 0 = without interest. 1 = with interest uint8 mode; /// /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100 /// Also used to calculate rate at which debt limit should decrease (instant). uint256 expandPercent; /// /// @param expandDuration debt limit expand duration in seconds. /// used to calculate rate together with expandPercent uint256 expandDuration; /// /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 baseDebtCeiling; /// /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 maxDebtCeiling; } } //SPDX-License-Identifier: MIT pragma solidity 0.8.21; import { IProxy } from "../../infiniteProxy/interfaces/iProxy.sol"; import { Structs as AdminModuleStructs } from "../adminModule/structs.sol"; interface IFluidLiquidityAdmin { /// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract. /// auths can be helpful in reducing governance overhead where it's not needed. /// @param authsStatus_ array of structs setting allowed status for an address. /// status true => add auth, false => remove auth function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external; /// @notice adds/removes guardians. Only callable by Governance. /// @param guardiansStatus_ array of structs setting allowed status for an address. /// status true => add guardian, false => remove guardian function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external; /// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance. /// @param revenueCollector_ new revenue collector address function updateRevenueCollector(address revenueCollector_) external; /// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths. /// @param newStatus_ new status /// status = 2 -> pause, status = 1 -> resume. function changeStatus(uint256 newStatus_) external; /// @notice update tokens rate data version 1. Only callable by Auths. /// @param tokensRateData_ array of RateDataV1Params with rate data to set for each token function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external; /// @notice update tokens rate data version 2. Only callable by Auths. /// @param tokensRateData_ array of RateDataV2Params with rate data to set for each token function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external; /// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold. /// Only callable by Auths. /// @param tokenConfigs_ contains token address, fee & utilization threshold function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external; /// @notice updates user classes: 0 is for new protocols, 1 is for established protocols. /// Only callable by Auths. /// @param userClasses_ struct array of uint256 value to assign for each user address function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external; /// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits. /// Only callable by Auths. /// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external; /// @notice sets a new withdrawal limit as the current limit for a certain user /// @param user_ user address for which to update the withdrawal limit /// @param token_ token address for which to update the withdrawal limit /// @param newLimit_ new limit until which user supply can decrease to. /// Important: input in raw. Must account for exchange price in input param calculation. /// Note any limit that is < max expansion or > current user supply will set max expansion limit or /// current user supply as limit respectively. /// - set 0 to make maximum possible withdrawable: instant full expansion, and if that goes /// below base limit then fully down to 0. /// - set type(uint256).max to make current withdrawable 0 (sets current user supply as limit). function updateUserWithdrawalLimit(address user_, address token_, uint256 newLimit_) external; /// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits. /// Only callable by Auths. /// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external; /// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians). /// Only callable by Guardians. /// @param user_ address of user to pause operations for /// @param supplyTokens_ token addresses to pause withdrawals for /// @param borrowTokens_ token addresses to pause borrowings for function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external; /// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians). /// Only callable by Guardians. /// @param user_ address of user to unpause operations for /// @param supplyTokens_ token addresses to unpause withdrawals for /// @param borrowTokens_ token addresses to unpause borrowings for function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external; /// @notice collects revenue for tokens to configured revenueCollector address. /// @param tokens_ array of tokens to collect revenue for /// @dev Note that this can revert if token balance is < revenueAmount (utilization > 100%) function collectRevenue(address[] calldata tokens_) external; /// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage. /// @param tokens_ tokens to update exchange prices for /// @return supplyExchangePrices_ new supply rates of overall system for each token /// @return borrowExchangePrices_ new borrow rates of overall system for each token function updateExchangePrices( address[] calldata tokens_ ) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_); } interface IFluidLiquidityLogic is IFluidLiquidityAdmin { /// @notice Single function which handles supply, withdraw, borrow & payback /// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native) /// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing /// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing /// @param withdrawTo_ if withdrawal then to which address /// @param borrowTo_ if borrow then to which address /// @param callbackData_ callback data passed to `liquidityCallback` method of protocol /// @return memVar3_ updated supplyExchangePrice /// @return memVar4_ updated borrowExchangePrice /// @dev to trigger skipping in / out transfers (gas optimization): /// - ` callbackData_` MUST be encoded so that "from" address is the last 20 bytes in the last 32 bytes slot, /// also for native token operations where liquidityCallback is not triggered! /// from address must come at last position if there is more data. I.e. encode like: /// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end /// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end. /// - this "from" address must match withdrawTo_ or borrowTo_ and must be == `msg.sender` /// - `callbackData_` must in addition to the from address as described above include bytes32 SKIP_TRANSFERS /// in the slot before (bytes 32 to 63) /// - `msg.value` must be 0. /// - Amounts must be either: /// - supply(+) == borrow(+), withdraw(-) == payback(-). /// - Liquidity must be on the winning side (deposit < borrow OR payback < withdraw). function operate( address token_, int256 supplyAmount_, int256 borrowAmount_, address withdrawTo_, address borrowTo_, bytes calldata callbackData_ ) external payable returns (uint256 memVar3_, uint256 memVar4_); } interface IFluidLiquidity is IProxy, IFluidLiquidityLogic {} // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { Structs } from "./poolT1/coreModule/structs.sol"; abstract contract Error { error FluidDexError(uint256 errorId_); error FluidDexFactoryError(uint256 errorId); /// @notice used to simulate swap to find the output amount error FluidDexSwapResult(uint256 amountOut); error FluidDexPerfectLiquidityOutput(uint256 token0Amt, uint token1Amt); error FluidDexSingleTokenOutput(uint256 tokenAmt); error FluidDexLiquidityOutput(uint256 shares_); error FluidDexPricesAndExchangeRates(Structs.PricesAndExchangePrice pex_); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; library ErrorTypes { /***********************************| | DexT1 | |__________________________________*/ /// @notice thrown at reentrancy uint256 internal constant DexT1__AlreadyEntered = 51001; uint256 internal constant DexT1__NotAnAuth = 51002; uint256 internal constant DexT1__SmartColNotEnabled = 51003; uint256 internal constant DexT1__SmartDebtNotEnabled = 51004; uint256 internal constant DexT1__PoolNotInitialized = 51005; uint256 internal constant DexT1__TokenReservesTooLow = 51006; uint256 internal constant DexT1__EthAndAmountInMisMatch = 51007; uint256 internal constant DexT1__EthSentForNonNativeSwap = 51008; uint256 internal constant DexT1__NoSwapRoute = 51009; uint256 internal constant DexT1__NotEnoughAmountOut = 51010; uint256 internal constant DexT1__LiquidityLayerTokenUtilizationCapReached = 51011; uint256 internal constant DexT1__HookReturnedFalse = 51012; // Either user's config are not set or user is paused uint256 internal constant DexT1__UserSupplyInNotOn = 51013; // Either user's config are not set or user is paused uint256 internal constant DexT1__UserDebtInNotOn = 51014; // Thrown when contract asks for more token0 or token1 than what user's wants to give on deposit uint256 internal constant DexT1__AboveDepositMax = 51015; uint256 internal constant DexT1__MsgValueLowOnDepositOrPayback = 51016; uint256 internal constant DexT1__WithdrawLimitReached = 51017; // Thrown when contract gives less token0 or token1 than what user's wants on withdraw uint256 internal constant DexT1__BelowWithdrawMin = 51018; uint256 internal constant DexT1__DebtLimitReached = 51019; // Thrown when contract gives less token0 or token1 than what user's wants on borrow uint256 internal constant DexT1__BelowBorrowMin = 51020; // Thrown when contract asks for more token0 or token1 than what user's wants on payback uint256 internal constant DexT1__AbovePaybackMax = 51021; uint256 internal constant DexT1__InvalidDepositAmts = 51022; uint256 internal constant DexT1__DepositAmtsZero = 51023; uint256 internal constant DexT1__SharesMintedLess = 51024; uint256 internal constant DexT1__WithdrawalNotEnough = 51025; uint256 internal constant DexT1__InvalidWithdrawAmts = 51026; uint256 internal constant DexT1__WithdrawAmtsZero = 51027; uint256 internal constant DexT1__WithdrawExcessSharesBurn = 51028; uint256 internal constant DexT1__InvalidBorrowAmts = 51029; uint256 internal constant DexT1__BorrowAmtsZero = 51030; uint256 internal constant DexT1__BorrowExcessSharesMinted = 51031; uint256 internal constant DexT1__PaybackAmtTooHigh = 51032; uint256 internal constant DexT1__InvalidPaybackAmts = 51033; uint256 internal constant DexT1__PaybackAmtsZero = 51034; uint256 internal constant DexT1__PaybackSharedBurnedLess = 51035; uint256 internal constant DexT1__NothingToArbitrage = 51036; uint256 internal constant DexT1__MsgSenderNotLiquidity = 51037; // On liquidity callback reentrancy bit should be on uint256 internal constant DexT1__ReentrancyBitShouldBeOn = 51038; // Thrown is reentrancy is already on and someone tries to fetch oracle price. Should not be possible to this uint256 internal constant DexT1__OraclePriceFetchAlreadyEntered = 51039; // Thrown when swap changes the current price by more than 5% uint256 internal constant DexT1__OracleUpdateHugeSwapDiff = 51040; uint256 internal constant DexT1__Token0ShouldBeSmallerThanToken1 = 51041; uint256 internal constant DexT1__OracleMappingOverflow = 51042; /// @notice thrown if governance has paused the swapping & arbitrage so only perfect functions are usable uint256 internal constant DexT1__SwapAndArbitragePaused = 51043; uint256 internal constant DexT1__ExceedsAmountInMax = 51044; /// @notice thrown if amount in is too high or too low uint256 internal constant DexT1__SwapInLimitingAmounts = 51045; /// @notice thrown if amount out is too high or too low uint256 internal constant DexT1__SwapOutLimitingAmounts = 51046; uint256 internal constant DexT1__MintAmtOverflow = 51047; uint256 internal constant DexT1__BurnAmtOverflow = 51048; uint256 internal constant DexT1__LimitingAmountsSwapAndNonPerfectActions = 51049; uint256 internal constant DexT1__InsufficientOracleData = 51050; uint256 internal constant DexT1__SharesAmountInsufficient = 51051; uint256 internal constant DexT1__CenterPriceOutOfRange = 51052; uint256 internal constant DexT1__DebtReservesTooLow = 51053; uint256 internal constant DexT1__SwapAndDepositTooLowOrTooHigh = 51054; uint256 internal constant DexT1__WithdrawAndSwapTooLowOrTooHigh = 51055; uint256 internal constant DexT1__BorrowAndSwapTooLowOrTooHigh = 51056; uint256 internal constant DexT1__SwapAndPaybackTooLowOrTooHigh = 51057; uint256 internal constant DexT1__InvalidImplementation = 51058; uint256 internal constant DexT1__OnlyDelegateCallAllowed = 51059; uint256 internal constant DexT1__IncorrectDataLength = 51060; uint256 internal constant DexT1__AmountToSendLessThanAmount = 51061; uint256 internal constant DexT1__InvalidCollateralReserves = 51062; uint256 internal constant DexT1__InvalidDebtReserves = 51063; uint256 internal constant DexT1__SupplySharesOverflow = 51064; uint256 internal constant DexT1__BorrowSharesOverflow = 51065; uint256 internal constant DexT1__OracleNotActive = 51066; /***********************************| | DEX Admin | |__________________________________*/ /// @notice thrown when pool is not initialized uint256 internal constant DexT1Admin__PoolNotInitialized = 52001; uint256 internal constant DexT1Admin__SmartColIsAlreadyOn = 52002; uint256 internal constant DexT1Admin__SmartDebtIsAlreadyOn = 52003; /// @notice thrown when any of the configs value overflow the maximum limit uint256 internal constant DexT1Admin__ConfigOverflow = 52004; uint256 internal constant DexT1Admin__AddressNotAContract = 52005; uint256 internal constant DexT1Admin__InvalidParams = 52006; uint256 internal constant DexT1Admin__UserNotDefined = 52007; uint256 internal constant DexT1Admin__OnlyDelegateCallAllowed = 52008; uint256 internal constant DexT1Admin__UnexpectedPoolState = 52009; /// @notice thrown when trying to pause or unpause but user is already in the target pause state uint256 internal constant DexT1Admin__InvalidPauseToggle = 52009; /***********************************| | DEX Factory | |__________________________________*/ uint256 internal constant DexFactory__InvalidOperation = 53001; uint256 internal constant DexFactory__Unauthorized = 53002; uint256 internal constant DexFactory__SameTokenNotAllowed = 53003; uint256 internal constant DexFactory__TokenConfigNotProper = 53004; uint256 internal constant DexFactory__InvalidParams = 53005; uint256 internal constant DexFactory__OnlyDelegateCallAllowed = 53006; uint256 internal constant DexFactory__InvalidDexAddress = 53007; } // SPDX-License-Identifier: MIT pragma solidity 0.8.21; interface IFluidDexFactory { /// @notice Global auth is auth for all dexes function isGlobalAuth(address auth_) external view returns (bool); /// @notice Dex auth is auth for a specific dex function isDexAuth(address vault_, address auth_) external view returns (bool); /// @notice Total dexes deployed. function totalDexes() external view returns (uint256); /// @notice Compute dexAddress function getDexAddress(uint256 dexId_) external view returns (address); /// @notice read uint256 `result_` for a storage `slot_` key function readFromStorage(bytes32 slot_) external view returns (uint256 result_); } // SPDX-License-Identifier: MIT pragma solidity 0.8.21; interface IFluidDexT1 { error FluidDexError(uint256 errorId); /// @notice used to simulate swap to find the output amount error FluidDexSwapResult(uint256 amountOut); error FluidDexPerfectLiquidityOutput(uint256 token0Amt, uint token1Amt); error FluidDexSingleTokenOutput(uint256 tokenAmt); error FluidDexLiquidityOutput(uint256 shares); error FluidDexPricesAndExchangeRates(PricesAndExchangePrice pex_); /// @notice returns the dex id function DEX_ID() external view returns (uint256); /// @notice reads uint256 data `result_` from storage at a bytes32 storage `slot_` key. function readFromStorage(bytes32 slot_) external view returns (uint256 result_); struct Implementations { address shift; address admin; address colOperations; address debtOperations; address perfectOperationsAndOracle; } struct ConstantViews { uint256 dexId; address liquidity; address factory; Implementations implementations; address deployerContract; address token0; address token1; bytes32 supplyToken0Slot; bytes32 borrowToken0Slot; bytes32 supplyToken1Slot; bytes32 borrowToken1Slot; bytes32 exchangePriceToken0Slot; bytes32 exchangePriceToken1Slot; uint256 oracleMapping; } struct ConstantViews2 { uint token0NumeratorPrecision; uint token0DenominatorPrecision; uint token1NumeratorPrecision; uint token1DenominatorPrecision; } struct PricesAndExchangePrice { uint lastStoredPrice; // last stored price in 1e27 decimals uint centerPrice; // last stored price in 1e27 decimals uint upperRange; // price at upper range in 1e27 decimals uint lowerRange; // price at lower range in 1e27 decimals uint geometricMean; // geometric mean of upper range & lower range in 1e27 decimals uint supplyToken0ExchangePrice; uint borrowToken0ExchangePrice; uint supplyToken1ExchangePrice; uint borrowToken1ExchangePrice; } struct CollateralReserves { uint token0RealReserves; uint token1RealReserves; uint token0ImaginaryReserves; uint token1ImaginaryReserves; } struct DebtReserves { uint token0Debt; uint token1Debt; uint token0RealReserves; uint token1RealReserves; uint token0ImaginaryReserves; uint token1ImaginaryReserves; } function getCollateralReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0SupplyExchangePrice_, uint token1SupplyExchangePrice_ ) external view returns (CollateralReserves memory c_); function getDebtReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0BorrowExchangePrice_, uint token1BorrowExchangePrice_ ) external view returns (DebtReserves memory d_); // reverts with FluidDexPricesAndExchangeRates(pex_); function getPricesAndExchangePrices() external; function constantsView() external view returns (ConstantViews memory constantsView_); function constantsView2() external view returns (ConstantViews2 memory constantsView2_); struct Oracle { uint twap1by0; // TWAP price uint lowestPrice1by0; // lowest price point uint highestPrice1by0; // highest price point uint twap0by1; // TWAP price uint lowestPrice0by1; // lowest price point uint highestPrice0by1; // highest price point } /// @dev This function allows users to swap a specific amount of input tokens for output tokens /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountIn_ The exact amount of input tokens to swap /// @param amountOutMin_ The minimum amount of output tokens the user is willing to accept /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountOut_ /// @return amountOut_ The amount of output tokens received from the swap function swapIn( bool swap0to1_, uint256 amountIn_, uint256 amountOutMin_, address to_ ) external payable returns (uint256 amountOut_); /// @dev Swap tokens with perfect amount out /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountOut_ The exact amount of tokens to receive after swap /// @param amountInMax_ Maximum amount of tokens to swap in /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountIn_ /// @return amountIn_ The amount of input tokens used for the swap function swapOut( bool swap0to1_, uint256 amountOut_, uint256 amountInMax_, address to_ ) external payable returns (uint256 amountIn_); /// @dev Deposit tokens in equal proportion to the current pool ratio /// @param shares_ The number of shares to mint /// @param maxToken0Deposit_ Maximum amount of token0 to deposit /// @param maxToken1Deposit_ Maximum amount of token1 to deposit /// @param estimate_ If true, function will revert with estimated deposit amounts without executing the deposit /// @return token0Amt_ Amount of token0 deposited /// @return token1Amt_ Amount of token1 deposited function depositPerfect( uint shares_, uint maxToken0Deposit_, uint maxToken1Deposit_, bool estimate_ ) external payable returns (uint token0Amt_, uint token1Amt_); /// @dev This function allows users to withdraw a perfect amount of collateral liquidity /// @param shares_ The number of shares to withdraw /// @param minToken0Withdraw_ The minimum amount of token0 the user is willing to accept /// @param minToken1Withdraw_ The minimum amount of token1 the user is willing to accept /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with token0Amt_ & token1Amt_ /// @return token0Amt_ The amount of token0 withdrawn /// @return token1Amt_ The amount of token1 withdrawn function withdrawPerfect( uint shares_, uint minToken0Withdraw_, uint minToken1Withdraw_, address to_ ) external returns (uint token0Amt_, uint token1Amt_); /// @dev This function allows users to borrow tokens in equal proportion to the current debt pool ratio /// @param shares_ The number of shares to borrow /// @param minToken0Borrow_ Minimum amount of token0 to borrow /// @param minToken1Borrow_ Minimum amount of token1 to borrow /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with token0Amt_ & token1Amt_ /// @return token0Amt_ Amount of token0 borrowed /// @return token1Amt_ Amount of token1 borrowed function borrowPerfect( uint shares_, uint minToken0Borrow_, uint minToken1Borrow_, address to_ ) external returns (uint token0Amt_, uint token1Amt_); /// @dev This function allows users to pay back borrowed tokens in equal proportion to the current debt pool ratio /// @param shares_ The number of shares to pay back /// @param maxToken0Payback_ Maximum amount of token0 to pay back /// @param maxToken1Payback_ Maximum amount of token1 to pay back /// @param estimate_ If true, function will revert with estimated payback amounts without executing the payback /// @return token0Amt_ Amount of token0 paid back /// @return token1Amt_ Amount of token1 paid back function paybackPerfect( uint shares_, uint maxToken0Payback_, uint maxToken1Payback_, bool estimate_ ) external payable returns (uint token0Amt_, uint token1Amt_); /// @dev This function allows users to deposit tokens in any proportion into the col pool /// @param token0Amt_ The amount of token0 to deposit /// @param token1Amt_ The amount of token1 to deposit /// @param minSharesAmt_ The minimum amount of shares the user expects to receive /// @param estimate_ If true, function will revert with estimated shares without executing the deposit /// @return shares_ The amount of shares minted for the deposit function deposit( uint token0Amt_, uint token1Amt_, uint minSharesAmt_, bool estimate_ ) external payable returns (uint shares_); /// @dev This function allows users to withdraw tokens in any proportion from the col pool /// @param token0Amt_ The amount of token0 to withdraw /// @param token1Amt_ The amount of token1 to withdraw /// @param maxSharesAmt_ The maximum number of shares the user is willing to burn /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with shares_ /// @return shares_ The number of shares burned for the withdrawal function withdraw( uint token0Amt_, uint token1Amt_, uint maxSharesAmt_, address to_ ) external returns (uint shares_); /// @dev This function allows users to borrow tokens in any proportion from the debt pool /// @param token0Amt_ The amount of token0 to borrow /// @param token1Amt_ The amount of token1 to borrow /// @param maxSharesAmt_ The maximum amount of shares the user is willing to receive /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with shares_ /// @return shares_ The amount of borrow shares minted to represent the borrowed amount function borrow( uint token0Amt_, uint token1Amt_, uint maxSharesAmt_, address to_ ) external returns (uint shares_); /// @dev This function allows users to payback tokens in any proportion to the debt pool /// @param token0Amt_ The amount of token0 to payback /// @param token1Amt_ The amount of token1 to payback /// @param minSharesAmt_ The minimum amount of shares the user expects to burn /// @param estimate_ If true, function will revert with estimated shares without executing the payback /// @return shares_ The amount of borrow shares burned for the payback function payback( uint token0Amt_, uint token1Amt_, uint minSharesAmt_, bool estimate_ ) external payable returns (uint shares_); /// @dev This function allows users to withdraw their collateral with perfect shares in one token /// @param shares_ The number of shares to burn for withdrawal /// @param minToken0_ The minimum amount of token0 the user expects to receive (set to 0 if withdrawing in token1) /// @param minToken1_ The minimum amount of token1 the user expects to receive (set to 0 if withdrawing in token0) /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with withdrawAmt_ /// @return withdrawAmt_ The amount of tokens withdrawn in the chosen token function withdrawPerfectInOneToken( uint shares_, uint minToken0_, uint minToken1_, address to_ ) external returns ( uint withdrawAmt_ ); /// @dev This function allows users to payback their debt with perfect shares in one token /// @param shares_ The number of shares to burn for payback /// @param maxToken0_ The maximum amount of token0 the user is willing to pay (set to 0 if paying back in token1) /// @param maxToken1_ The maximum amount of token1 the user is willing to pay (set to 0 if paying back in token0) /// @param estimate_ If true, the function will revert with the estimated payback amount without executing the payback /// @return paybackAmt_ The amount of tokens paid back in the chosen token function paybackPerfectInOneToken( uint shares_, uint maxToken0_, uint maxToken1_, bool estimate_ ) external payable returns ( uint paybackAmt_ ); /// @dev the oracle assumes last set price of pool till the next swap happens. /// There's a possibility that during that time some interest is generated hence the last stored price is not the 100% correct price for the whole duration /// but the difference due to interest will be super low so this difference is ignored /// For example 2 swaps happened 10min (600 seconds) apart and 1 token has 10% higher interest than other. /// then that token will accrue about 10% * 600 / secondsInAYear = ~0.0002% /// @param secondsAgos_ array of seconds ago for which TWAP is needed. If user sends [10, 30, 60] then twaps_ will return [10-0, 30-10, 60-30] /// @return twaps_ twap price, lowest price (aka minima) & highest price (aka maxima) between secondsAgo checkpoints /// @return currentPrice_ price of pool after the most recent swap function oraclePrice( uint[] memory secondsAgos_ ) external view returns ( Oracle[] memory twaps_, uint currentPrice_ ); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { StorageRead } from "../../../../libraries/storageRead.sol"; interface ITokenDecimals { function decimals() external view returns (uint8); } abstract contract ConstantVariables is StorageRead { /*////////////////////////////////////////////////////////////// CONSTANTS / IMMUTABLES //////////////////////////////////////////////////////////////*/ address internal constant TEAM_MULTISIG = 0x4F6F977aCDD1177DCD81aB83074855EcB9C2D49e; address internal constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; uint256 internal constant NATIVE_TOKEN_DECIMALS = 18; address internal constant ADDRESS_DEAD = 0x000000000000000000000000000000000000dEaD; uint256 internal constant TOKENS_DECIMALS_PRECISION = 12; uint256 internal constant TOKENS_DECIMALS = 1e12; uint256 internal constant SMALL_COEFFICIENT_SIZE = 10; uint256 internal constant DEFAULT_COEFFICIENT_SIZE = 56; uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant X2 = 0x3; uint256 internal constant X3 = 0x7; uint256 internal constant X5 = 0x1f; uint256 internal constant X7 = 0x7f; uint256 internal constant X8 = 0xff; uint256 internal constant X9 = 0x1ff; uint256 internal constant X10 = 0x3ff; uint256 internal constant X11 = 0x7ff; uint256 internal constant X14 = 0x3fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X17 = 0x1ffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X20 = 0xfffff; uint256 internal constant X22 = 0x3fffff; uint256 internal constant X23 = 0x7fffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X28 = 0xfffffff; uint256 internal constant X30 = 0x3fffffff; uint256 internal constant X32 = 0xffffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X40 = 0xffffffffff; uint256 internal constant X64 = 0xffffffffffffffff; uint256 internal constant X96 = 0xffffffffffffffffffffffff; uint256 internal constant X128 = 0xffffffffffffffffffffffffffffffff; uint256 internal constant TWO_DECIMALS = 1e2; uint256 internal constant THREE_DECIMALS = 1e3; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant FIVE_DECIMALS = 1e5; uint256 internal constant SIX_DECIMALS = 1e6; uint256 internal constant EIGHT_DECIMALS = 1e8; uint256 internal constant NINE_DECIMALS = 1e9; uint256 internal constant PRICE_PRECISION = 1e27; uint256 internal constant ORACLE_PRECISION = 1e18; // 100% uint256 internal constant ORACLE_LIMIT = 5 * 1e16; // 5% /// after swap token0 reserves should not be less than token1InToken0 / MINIMUM_LIQUIDITY_SWAP /// after swap token1 reserves should not be less than token0InToken1 / MINIMUM_LIQUIDITY_SWAP uint256 internal constant MINIMUM_LIQUIDITY_SWAP = 1e4; /// after user operations (deposit, withdraw, borrow, payback) token0 reserves should not be less than token1InToken0 / MINIMUM_LIQUIDITY_USER_OPERATIONS /// after user operations (deposit, withdraw, borrow, payback) token1 reserves should not be less than token0InToken0 / MINIMUM_LIQUIDITY_USER_OPERATIONS uint256 internal constant MINIMUM_LIQUIDITY_USER_OPERATIONS = 1e6; /// To skip transfers in liquidity layer if token in & out is same and liquidity layer is on the winning side bytes32 internal constant SKIP_TRANSFERS = keccak256(bytes("SKIP_TRANSFERS")); function _decimals(address token_) internal view returns (uint256) { return (token_ == NATIVE_TOKEN) ? NATIVE_TOKEN_DECIMALS : ITokenDecimals(token_).decimals(); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; abstract contract Variables { /*////////////////////////////////////////////////////////////// STORAGE VARIABLES //////////////////////////////////////////////////////////////*/ /// First 1 bit => 0 => re-entrancy. If 0 then allow transaction to go, else throw. /// Next 40 bits => 1-40 => last to last stored price. BigNumber (32 bits precision, 8 bits exponent) /// Next 40 bits => 41-80 => last stored price of pool. BigNumber (32 bits precision, 8 bits exponent) /// Next 40 bits => 81-120 => center price. Center price from where the ranges will be calculated. BigNumber (32 bits precision, 8 bits exponent) /// Next 33 bits => 121-153 => last interaction time stamp /// Next 22 bits => 154-175 => max 4194303 seconds (~1165 hrs, ~48.5 days), time difference between last to last and last price stored /// Next 3 bits => 176-178 => oracle checkpoint, if 0 then first slot, if 7 then last slot /// Next 16 bits => 179-194 => current mapping or oracle, after every 8 transaction it will increase by 1. Max capacity is 65535 but it can be lower than that check dexVariables2 /// Next 1 bit => 195 => is oracle active? uint internal dexVariables; /// Next 1 bit => 0 => is smart collateral enabled? /// Next 1 bit => 1 => is smart debt enabled? /// Next 17 bits => 2-18 => fee (1% = 10000, max value: 100000 = 10%, fee should not be more than 10%) /// Next 7 bits => 19-25 => revenue cut from fee (1 = 1%, 100 = 100%). If fee is 1000 = 0.1% and revenue cut is 10 = 10% then governance get 0.01% of every swap /// Next 1 bit => 26 => percent active change going on or not, 0 = false, 1 = true, if true than that means governance has updated the below percents and the update should happen with a specified time. /// Next 20 bits => 27-46 => upperPercent (1% = 10000, max value: 104.8575%) upperRange - upperRange * upperPercent = centerPrice. Hence, upperRange = centerPrice / (1 - upperPercent) /// Next 20 bits => 47-66 => lowerPercent. lowerRange = centerPrice - centerPrice * lowerPercent. /// Next 1 bit => 67 => threshold percent active change going on or not, 0 = false, 1 = true, if true than that means governance has updated the below percents and the update should happen with a specified time. /// Next 10 bits => 68-77 => upper shift threshold percent, 1 = 0.1%. 1000 = 100%. if currentPrice > (centerPrice + (upperRange - centerPrice) * (1000 - upperShiftThresholdPercent) / 1000) then trigger shift /// Next 10 bits => 78-87 => lower shift threshold percent, 1 = 0.1%. 1000 = 100%. if currentPrice < (centerPrice - (centerPrice - lowerRange) * (1000 - lowerShiftThresholdPercent) / 1000) then trigger shift /// Next 24 bits => 88-111 => Shifting time (~194 days) (rate = (% up + % down) / time ?) /// Next 30 bits => 112-131 => Address of center price if center price should be fetched externally, for example, for wstETH <> ETH pool, fetch wstETH exchange rate into stETH from wstETH contract. /// Why fetch it externally? Because let's say pool width is 0.1% and wstETH temporarily got depeg of 0.5% then pool will start to shift to newer pricing /// but we don't want pool to shift to 0.5% because we know the depeg will recover so to avoid the loss for users. /// Next 30 bits => 142-171 => Hooks bits, calculate hook address by storing deployment nonce from factory. /// Next 28 bits => 172-199 => max center price. BigNumber (20 bits precision, 8 bits exponent) /// Next 28 bits => 200-227 => min center price. BigNumber (20 bits precision, 8 bits exponent) /// Next 10 bits => 228-237 => utilization limit of token0. Max value 1000 = 100%, if 100% then no need to check the utilization. /// Next 10 bits => 238-247 => utilization limit of token1. Max value 1000 = 100%, if 100% then no need to check the utilization. /// Next 1 bit => 248 => is center price shift active /// Last 1 bit => 255 => Pause swap & arbitrage (only perfect functions will be usable), if we need to pause entire DEX then that can be done through pausing DEX on Liquidity Layer uint internal dexVariables2; /// first 128 bits => 0-127 => total supply shares /// last 128 bits => 128-255 => max supply shares uint internal _totalSupplyShares; /// @dev user supply data: user -> data /// Aside from 1st bit, entire bits here are same as liquidity layer _userSupplyData. Hence exact same supply & borrow limit library can be used /// First 1 bit => 0 => is user allowed to supply? 0 = not allowed, 1 = allowed /// Next 64 bits => 1- 64 => user supply amount/shares; BigMath: 56 | 8 /// Next 64 bits => 65-128 => previous user withdrawal limit; BigMath: 56 | 8 /// Next 33 bits => 129-161 => last triggered process timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 14 bits => 162-175 => expand withdrawal limit percentage (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). /// @dev shrinking is instant /// Next 24 bits => 176-199 => withdrawal limit expand duration in seconds.(Max value 16_777_215; ~4_660 hours, ~194 days) /// Next 18 bits => 200-217 => base withdrawal limit: below this, 100% withdrawals can be done (aka shares can be burned); BigMath: 10 | 8 /// Next 38 bits => 218-255 => empty for future use mapping(address => uint) internal _userSupplyData; /// first 128 bits => 0-127 => total borrow shares /// last 128 bits => 128-255 => max borrow shares uint internal _totalBorrowShares; /// @dev user borrow data: user -> data /// Aside from 1st bit, entire bits here are same as liquidity layer _userBorrowData. Hence exact same supply & borrow limit library function can be used /// First 1 bit => 0 => is user allowed to borrow? 0 = not allowed, 1 = allowed /// Next 64 bits => 1- 64 => user debt amount/shares; BigMath: 56 | 8 /// Next 64 bits => 65-128 => previous user debt ceiling; BigMath: 56 | 8 /// Next 33 bits => 129-161 => last triggered process timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 14 bits => 162-175 => expand debt ceiling percentage (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// @dev shrinking is instant /// Next 24 bits => 176-199 => debt ceiling expand duration in seconds (Max value 16_777_215; ~4_660 hours, ~194 days) /// Next 18 bits => 200-217 => base debt ceiling: below this, there's no debt ceiling limits; BigMath: 10 | 8 /// Next 18 bits => 218-235 => max debt ceiling: absolute maximum debt ceiling can expand to; BigMath: 10 | 8 /// Next 20 bits => 236-255 => empty for future use mapping(address => uint) internal _userBorrowData; /// Price difference between last swap of last block & last swap of new block /// If last swap happened at Block B - 4 and next swap happened after 4 blocks at Block B then it will store that difference /// considering time difference between these 4 blocks is 48 seconds, hence time will be stored as 48 /// New oracle update: /// time to 9 bits and precision to 22 bits /// if time exceeds 9 bits which is 511 sec or ~8.5 min then we will use 2 oracle slot to store the data /// we will leave the both time slot as 0 and on first sign + precision slot we will store time and /// on second sign + precision slot we will store sign & precision /// First 9 bits => 0- 8 => time, 511 seconds /// Next 1 bit => 9 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 10- 31 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 32- 40 => time, 511 seconds /// Next 1 bit => 41 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 42- 63 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 64- 72 => time, 511 seconds /// Next 1 bit => 73 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 74- 95 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 96-104 => time, 511 seconds /// Next 1 bit => 105 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 106-127 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 128-136 => time, 511 seconds /// Next 1 bit => 137 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 138-159 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 160-168 => time, 511 seconds /// Next 1 bit => 169 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 170-191 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 192-200 => time, 511 seconds /// Next 1 bit => 201 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 202-223 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% /// Next 9 bits => 224-232 => time, 511 seconds /// Next 1 bit => 233 => sign of percent in change, if 1 then 0 or positive, else negative /// Next 22 bits => 234-255 => 4194303, change in price, max change is capped to 5%, so 4194303 = 5%, 1 = 0.0000011920931797249746% mapping(uint => uint) internal _oracle; /// First 20 bits => 0-19 => old upper shift /// Next 20 bits => 20-39 => old lower shift /// Next 20 bits => 40-59 => in seconds, ~12 days max, shift can last for max ~12 days /// Next 33 bits => 60-92 => timestamp of when the shift has started. uint128 internal _rangeShift; /// First 10 bits => 0- 9 => old upper shift /// Next 10 bits => 10-19 => empty so we can use same helper function /// Next 10 bits => 20-29 => old lower shift /// Next 10 bits => 30-39 => empty so we can use same helper function /// Next 20 bits => 40-59 => in seconds, ~12 days max, shift can last for max ~12 days /// Next 33 bits => 60-92 => timestamp of when the shift has started. /// Next 24 bits => 93-116 => old threshold time uint128 internal _thresholdShift; /// Shifting is fuzzy and with time it'll keep on getting closer and then eventually get over /// First 33 bits => 0 -32 => starting timestamp /// Next 20 bits => 33-52 => % shift /// Next 20 bits => 53-72 => time to shift that percent uint256 internal _centerPriceShift; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { CoreHelpers } from "../helpers/coreHelpers.sol"; import { SafeTransfer } from "../../../../../libraries/safeTransfer.sol"; import { DexSlotsLink } from "../../../../../libraries/dexSlotsLink.sol"; import { DexCalcs } from "../../../../../libraries/dexCalcs.sol"; import { BigMathMinified } from "../../../../../libraries/bigMathMinified.sol"; import { ErrorTypes } from "../../../errorTypes.sol"; import { IFluidDexT1 } from "../../../interfaces/iDexT1.sol"; interface IDexCallback { function dexCallback(address token_, uint256 amount_) external; } /// @title FluidDexT1 /// @notice Implements core logics for Fluid Dex protocol. /// Note Token transfers happen directly from user to Liquidity contract and vice-versa. contract FluidDexT1 is CoreHelpers { using BigMathMinified for uint256; constructor(ConstantViews memory constantViews_) CoreHelpers(constantViews_) { // any implementations should not be zero if ( constantViews_.implementations.shift == address(0) || constantViews_.implementations.admin == address(0) || constantViews_.implementations.colOperations == address(0) || constantViews_.implementations.debtOperations == address(0) || constantViews_.implementations.perfectOperationsAndSwapOut == address(0) ) { revert FluidDexError(ErrorTypes.DexT1__InvalidImplementation); } } struct SwapInExtras { address to; uint amountOutMin; bool isCallback; } /// @dev This function allows users to swap a specific amount of input tokens for output tokens /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountIn_ The exact amount of input tokens to swap /// @param extras_ Additional parameters for the swap: /// - to: Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountOut_ /// - amountOutMin: The minimum amount of output tokens the user expects to receive /// - isCallback: If true, indicates that the input tokens should be transferred via a callback /// @return amountOut_ The amount of output tokens received from the swap function _swapIn( bool swap0to1_, uint256 amountIn_, SwapInExtras memory extras_ ) internal returns (uint256 amountOut_) { uint dexVariables_ = dexVariables; uint dexVariables2_ = dexVariables2; if ((dexVariables2_ >> 255) == 1) revert FluidDexError(ErrorTypes.DexT1__SwapAndArbitragePaused); _check(dexVariables_, dexVariables2_); if (extras_.to == address(0)) extras_.to = msg.sender; SwapInMemory memory s_; if (swap0to1_) { (s_.tokenIn, s_.tokenOut) = (TOKEN_0, TOKEN_1); unchecked { s_.amtInAdjusted = (amountIn_ * TOKEN_0_NUMERATOR_PRECISION) / TOKEN_0_DENOMINATOR_PRECISION; } } else { (s_.tokenIn, s_.tokenOut) = (TOKEN_1, TOKEN_0); unchecked { s_.amtInAdjusted = (amountIn_ * TOKEN_1_NUMERATOR_PRECISION) / TOKEN_1_DENOMINATOR_PRECISION; } } _verifySwapAndNonPerfectActions(s_.amtInAdjusted, amountIn_); PricesAndExchangePrice memory pex_ = _getPricesAndExchangePrices(dexVariables_, dexVariables2_); if (msg.value > 0) { if (msg.value != amountIn_) revert FluidDexError(ErrorTypes.DexT1__EthAndAmountInMisMatch); if (s_.tokenIn != NATIVE_TOKEN) revert FluidDexError(ErrorTypes.DexT1__EthSentForNonNativeSwap); } // is smart collateral pool enabled uint temp_ = dexVariables2_ & 1; // is smart debt pool enabled uint temp2_ = (dexVariables2_ >> 1) & 1; uint temp3_; uint temp4_; // extracting fee temp3_ = ((dexVariables2_ >> 2) & X17); unchecked { // revenueCut in 6 decimals, to have proper precision // if fee = 1% and revenue cut = 10% then revenueCut = 1e8 - (10000 * 10) = 99900000 s_.revenueCut = EIGHT_DECIMALS - ((((dexVariables2_ >> 19) & X7) * temp3_)); // fee in 4 decimals // 1 - fee. If fee is 1% then withoutFee will be 1e6 - 1e4 // s_.fee => 1 - withdraw fee s_.fee = SIX_DECIMALS - temp3_; } CollateralReservesSwap memory cs_; DebtReservesSwap memory ds_; if (temp_ == 1) { // smart collateral is enabled { CollateralReserves memory c_ = _getCollateralReserves( pex_.geometricMean, pex_.upperRange, pex_.lowerRange, pex_.supplyToken0ExchangePrice, pex_.supplyToken1ExchangePrice ); if (swap0to1_) { ( cs_.tokenInRealReserves, cs_.tokenOutRealReserves, cs_.tokenInImaginaryReserves, cs_.tokenOutImaginaryReserves ) = ( c_.token0RealReserves, c_.token1RealReserves, c_.token0ImaginaryReserves, c_.token1ImaginaryReserves ); } else { ( cs_.tokenInRealReserves, cs_.tokenOutRealReserves, cs_.tokenInImaginaryReserves, cs_.tokenOutImaginaryReserves ) = ( c_.token1RealReserves, c_.token0RealReserves, c_.token1ImaginaryReserves, c_.token0ImaginaryReserves ); } } } if (temp2_ == 1) { // smart debt is enabled { DebtReserves memory d_ = _getDebtReserves( pex_.geometricMean, pex_.upperRange, pex_.lowerRange, pex_.borrowToken0ExchangePrice, pex_.borrowToken1ExchangePrice ); if (swap0to1_) { ( ds_.tokenInDebt, ds_.tokenOutDebt, ds_.tokenInRealReserves, ds_.tokenOutRealReserves, ds_.tokenInImaginaryReserves, ds_.tokenOutImaginaryReserves ) = ( d_.token0Debt, d_.token1Debt, d_.token0RealReserves, d_.token1RealReserves, d_.token0ImaginaryReserves, d_.token1ImaginaryReserves ); } else { ( ds_.tokenInDebt, ds_.tokenOutDebt, ds_.tokenInRealReserves, ds_.tokenOutRealReserves, ds_.tokenInImaginaryReserves, ds_.tokenOutImaginaryReserves ) = ( d_.token1Debt, d_.token0Debt, d_.token1RealReserves, d_.token0RealReserves, d_.token1ImaginaryReserves, d_.token0ImaginaryReserves ); } } } // limiting amtInAdjusted to be not more than 50% of both (collateral & debt) imaginary tokenIn reserves combined // basically, if this throws that means user is trying to swap 0.5x tokenIn if current tokenIn imaginary reserves is x // let's take x as token0 here, that means, initially the pool pricing might be: // token1Reserve / x and new pool pricing will become token1Reserve / 1.5x (token1Reserve will decrease after swap but for simplicity ignoring that) // So pool price is decreased by ~33.33% (oracle will throw error in this case as it only allows 5% price difference but better to limit it before hand) unchecked { if (s_.amtInAdjusted > ((cs_.tokenInImaginaryReserves + ds_.tokenInImaginaryReserves) / 2)) revert FluidDexError(ErrorTypes.DexT1__SwapInLimitingAmounts); } if (temp_ == 1 && temp2_ == 1) { // unless both pools are enabled s_.swapRoutingAmt will be 0 s_.swapRoutingAmt = _swapRoutingIn( s_.amtInAdjusted, cs_.tokenOutImaginaryReserves, cs_.tokenInImaginaryReserves, ds_.tokenOutImaginaryReserves, ds_.tokenInImaginaryReserves ); } // In below if else statement temps are: // temp_ => deposit amt // temp2_ => withdraw amt // temp3_ => payback amt // temp4_ => borrow amt if (int(s_.amtInAdjusted) > s_.swapRoutingAmt && s_.swapRoutingAmt > 0) { // swap will route from the both pools // temp_ = amountInCol_ temp_ = uint(s_.swapRoutingAmt); unchecked { // temp3_ = amountInDebt_ temp3_ = s_.amtInAdjusted - temp_; } (temp2_, temp4_) = (0, 0); // debt pool price will be the same as collateral pool after the swap s_.withdrawTo = extras_.to; s_.borrowTo = extras_.to; } else if ((temp_ == 1 && temp2_ == 0) || (s_.swapRoutingAmt >= int(s_.amtInAdjusted))) { // entire swap will route through collateral pool (temp_, temp2_, temp3_, temp4_) = (s_.amtInAdjusted, 0, 0, 0); // price can slightly differ from debt pool but difference will be very small. Probably <0.01% for active DEX pools. s_.withdrawTo = extras_.to; } else if ((temp_ == 0 && temp2_ == 1) || (s_.swapRoutingAmt <= 0)) { // entire swap will route through debt pool (temp_, temp2_, temp3_, temp4_) = (0, 0, s_.amtInAdjusted, 0); // price can slightly differ from collateral pool but difference will be very small. Probably <0.01% for active DEX pools. s_.borrowTo = extras_.to; } else { // swap should never reach this point but if it does then reverting revert FluidDexError(ErrorTypes.DexT1__NoSwapRoute); } if (temp_ > 0) { // temp2_ = amountOutCol_ temp2_ = _getAmountOut( ((temp_ * s_.fee) / SIX_DECIMALS), cs_.tokenInImaginaryReserves, cs_.tokenOutImaginaryReserves ); swap0to1_ ? _verifyToken1Reserves( (cs_.tokenInRealReserves + temp_), (cs_.tokenOutRealReserves - temp2_), pex_.centerPrice, MINIMUM_LIQUIDITY_SWAP ) : _verifyToken0Reserves( (cs_.tokenOutRealReserves - temp2_), (cs_.tokenInRealReserves + temp_), pex_.centerPrice, MINIMUM_LIQUIDITY_SWAP ); } if (temp3_ > 0) { // temp4_ = amountOutDebt_ temp4_ = _getAmountOut( ((temp3_ * s_.fee) / SIX_DECIMALS), ds_.tokenInImaginaryReserves, ds_.tokenOutImaginaryReserves ); swap0to1_ ? _verifyToken1Reserves( (ds_.tokenInRealReserves + temp3_), (ds_.tokenOutRealReserves - temp4_), pex_.centerPrice, MINIMUM_LIQUIDITY_SWAP ) : _verifyToken0Reserves( (ds_.tokenOutRealReserves - temp4_), (ds_.tokenInRealReserves + temp3_), pex_.centerPrice, MINIMUM_LIQUIDITY_SWAP ); } // (temp_ + temp3_) == amountIn_ == msg.value (for native token), if there is revenue cut then this statement is not true temp_ = (temp_ * s_.revenueCut) / EIGHT_DECIMALS; temp3_ = (temp3_ * s_.revenueCut) / EIGHT_DECIMALS; // from whatever pool higher amount of swap is routing we are taking that as final price, does not matter much because both pools final price should be same if (temp_ > temp3_) { // new pool price from col pool s_.price = swap0to1_ ? ((cs_.tokenOutImaginaryReserves - temp2_) * 1e27) / (cs_.tokenInImaginaryReserves + temp_) : ((cs_.tokenInImaginaryReserves + temp_) * 1e27) / (cs_.tokenOutImaginaryReserves - temp2_); } else { // new pool price from debt pool s_.price = swap0to1_ ? ((ds_.tokenOutImaginaryReserves - temp4_) * 1e27) / (ds_.tokenInImaginaryReserves + temp3_) : ((ds_.tokenInImaginaryReserves + temp3_) * 1e27) / (ds_.tokenOutImaginaryReserves - temp4_); } // converting into normal token amounts if (swap0to1_) { temp_ = ((temp_ * TOKEN_0_DENOMINATOR_PRECISION) / TOKEN_0_NUMERATOR_PRECISION); temp3_ = ((temp3_ * TOKEN_0_DENOMINATOR_PRECISION) / TOKEN_0_NUMERATOR_PRECISION); // only adding uncheck in out amount unchecked { temp2_ = ((temp2_ * TOKEN_1_DENOMINATOR_PRECISION) / TOKEN_1_NUMERATOR_PRECISION); temp4_ = ((temp4_ * TOKEN_1_DENOMINATOR_PRECISION) / TOKEN_1_NUMERATOR_PRECISION); } } else { temp_ = ((temp_ * TOKEN_1_DENOMINATOR_PRECISION) / TOKEN_1_NUMERATOR_PRECISION); temp3_ = ((temp3_ * TOKEN_1_DENOMINATOR_PRECISION) / TOKEN_1_NUMERATOR_PRECISION); // only adding uncheck in out amount unchecked { temp2_ = ((temp2_ * TOKEN_0_DENOMINATOR_PRECISION) / TOKEN_0_NUMERATOR_PRECISION); temp4_ = ((temp4_ * TOKEN_0_DENOMINATOR_PRECISION) / TOKEN_0_NUMERATOR_PRECISION); } } unchecked { amountOut_ = temp2_ + temp4_; } // if address dead then reverting with amountOut if (extras_.to == ADDRESS_DEAD) revert FluidDexSwapResult(amountOut_); if (amountOut_ < extras_.amountOutMin) revert FluidDexError(ErrorTypes.DexT1__NotEnoughAmountOut); // allocating to avoid stack-too-deep error // not setting in the callbackData as last 2nd to avoid SKIP_TRANSFERS clashing s_.data = abi.encode(amountIn_, extras_.isCallback, msg.sender); // true/false is to decide if dex should do callback or directly transfer from user // deposit & payback token in at liquidity LIQUIDITY.operate{ value: msg.value }(s_.tokenIn, int(temp_), -int(temp3_), address(0), address(0), s_.data); // withdraw & borrow token out at liquidity LIQUIDITY.operate(s_.tokenOut, -int(temp2_), int(temp4_), s_.withdrawTo, s_.borrowTo, new bytes(0)); // if hook exists then calling hook temp_ = (dexVariables2_ >> 142) & X30; if (temp_ > 0) { s_.swap0to1 = swap0to1_; _hookVerify(temp_, 1, s_.swap0to1, s_.price); } swap0to1_ ? _utilizationVerify(((dexVariables2_ >> 238) & X10), EXCHANGE_PRICE_TOKEN_1_SLOT) : _utilizationVerify(((dexVariables2_ >> 228) & X10), EXCHANGE_PRICE_TOKEN_0_SLOT); dexVariables = _updateOracle(s_.price, pex_.centerPrice, dexVariables_); emit Swap(swap0to1_, amountIn_, amountOut_, extras_.to); } /// @dev Swap tokens with perfect amount in /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountIn_ The exact amount of tokens to swap in /// @param amountOutMin_ The minimum amount of tokens to receive after swap /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountOut_ /// @return amountOut_ The amount of output tokens received from the swap function swapIn( bool swap0to1_, uint256 amountIn_, uint256 amountOutMin_, address to_ ) public payable returns (uint256 amountOut_) { return _swapIn(swap0to1_, amountIn_, SwapInExtras(to_, amountOutMin_, false)); } /// @dev Swap tokens with perfect amount in and callback functionality /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountIn_ The exact amount of tokens to swap in /// @param amountOutMin_ The minimum amount of tokens to receive after swap /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountOut_ /// @return amountOut_ The amount of output tokens received from the swap function swapInWithCallback( bool swap0to1_, uint256 amountIn_, uint256 amountOutMin_, address to_ ) public payable returns (uint256 amountOut_) { return _swapIn(swap0to1_, amountIn_, SwapInExtras(to_, amountOutMin_, true)); } /// @dev Swap tokens with perfect amount out /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountOut_ The exact amount of tokens to receive after swap /// @param amountInMax_ Maximum amount of tokens to swap in /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountIn_ /// @return amountIn_ The amount of input tokens used for the swap function swapOut( bool swap0to1_, uint256 amountOut_, uint256 amountInMax_, address to_ ) public payable returns (uint256 amountIn_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256)); } /// @dev Swap tokens with perfect amount out and callback functionality /// @param swap0to1_ Direction of swap. If true, swaps token0 for token1; if false, swaps token1 for token0 /// @param amountOut_ The exact amount of tokens to receive after swap /// @param amountInMax_ Maximum amount of tokens to swap in /// @param to_ Recipient of swapped tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with amountIn_ /// @return amountIn_ The amount of input tokens used for the swap function swapOutWithCallback( bool swap0to1_, uint256 amountOut_, uint256 amountInMax_, address to_ ) public payable returns (uint256 amountIn_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256)); } /// @dev Deposit tokens in equal proportion to the current pool ratio /// @param shares_ The number of shares to mint /// @param maxToken0Deposit_ Maximum amount of token0 to deposit /// @param maxToken1Deposit_ Maximum amount of token1 to deposit /// @param estimate_ If true, function will revert with estimated deposit amounts without executing the deposit /// @return token0Amt_ Amount of token0 deposited /// @return token1Amt_ Amount of token1 deposited function depositPerfect( uint shares_, uint maxToken0Deposit_, uint maxToken1Deposit_, bool estimate_ ) public payable returns (uint token0Amt_, uint token1Amt_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256, uint256)); } /// @dev This function allows users to withdraw a perfect amount of collateral liquidity /// @param shares_ The number of shares to withdraw /// @param minToken0Withdraw_ The minimum amount of token0 the user is willing to accept /// @param minToken1Withdraw_ The minimum amount of token1 the user is willing to accept /// @param to_ Recipient of withdrawn tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with token0Amt_ & token1Amt_ /// @return token0Amt_ The amount of token0 withdrawn /// @return token1Amt_ The amount of token1 withdrawn function withdrawPerfect( uint shares_, uint minToken0Withdraw_, uint minToken1Withdraw_, address to_ ) public returns (uint token0Amt_, uint token1Amt_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256, uint256)); } /// @dev This function allows users to borrow tokens in equal proportion to the current debt pool ratio /// @param shares_ The number of shares to borrow /// @param minToken0Borrow_ Minimum amount of token0 to borrow /// @param minToken1Borrow_ Minimum amount of token1 to borrow /// @param to_ Recipient of borrowed tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with token0Amt_ & token1Amt_ /// @return token0Amt_ Amount of token0 borrowed /// @return token1Amt_ Amount of token1 borrowed function borrowPerfect( uint shares_, uint minToken0Borrow_, uint minToken1Borrow_, address to_ ) public returns (uint token0Amt_, uint token1Amt_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256, uint256)); } /// @dev This function allows users to pay back borrowed tokens in equal proportion to the current debt pool ratio /// @param shares_ The number of shares to pay back /// @param maxToken0Payback_ Maximum amount of token0 to pay back /// @param maxToken1Payback_ Maximum amount of token1 to pay back /// @param estimate_ If true, function will revert with estimated payback amounts without executing the payback /// @return token0Amt_ Amount of token0 paid back /// @return token1Amt_ Amount of token1 paid back function paybackPerfect( uint shares_, uint maxToken0Payback_, uint maxToken1Payback_, bool estimate_ ) public payable returns (uint token0Amt_, uint token1Amt_) { return abi.decode(_spell(PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION, msg.data), (uint256, uint256)); } /// @dev This function allows users to deposit tokens in any proportion into the col pool /// @param token0Amt_ The amount of token0 to deposit /// @param token1Amt_ The amount of token1 to deposit /// @param minSharesAmt_ The minimum amount of shares the user expects to receive /// @param estimate_ If true, function will revert with estimated shares without executing the deposit /// @return shares_ The amount of shares minted for the deposit function deposit( uint token0Amt_, uint token1Amt_, uint minSharesAmt_, bool estimate_ ) public payable returns (uint shares_) { return abi.decode(_spell(COL_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev This function allows users to withdraw tokens in any proportion from the col pool /// @param token0Amt_ The amount of token0 to withdraw /// @param token1Amt_ The amount of token1 to withdraw /// @param maxSharesAmt_ The maximum number of shares the user is willing to burn /// @param to_ Recipient of withdrawn tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with shares_ /// @return shares_ The number of shares burned for the withdrawal function withdraw( uint token0Amt_, uint token1Amt_, uint maxSharesAmt_, address to_ ) public returns (uint shares_) { return abi.decode(_spell(COL_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev This function allows users to borrow tokens in any proportion from the debt pool /// @param token0Amt_ The amount of token0 to borrow /// @param token1Amt_ The amount of token1 to borrow /// @param maxSharesAmt_ The maximum amount of shares the user is willing to receive /// @param to_ Recipient of borrowed tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with shares_ /// @return shares_ The amount of borrow shares minted to represent the borrowed amount function borrow( uint token0Amt_, uint token1Amt_, uint maxSharesAmt_, address to_ ) public returns (uint shares_) { return abi.decode(_spell(DEBT_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev This function allows users to payback tokens in any proportion to the debt pool /// @param token0Amt_ The amount of token0 to payback /// @param token1Amt_ The amount of token1 to payback /// @param minSharesAmt_ The minimum amount of shares the user expects to burn /// @param estimate_ If true, function will revert with estimated shares without executing the payback /// @return shares_ The amount of borrow shares burned for the payback function payback( uint token0Amt_, uint token1Amt_, uint minSharesAmt_, bool estimate_ ) public payable returns (uint shares_) { return abi.decode(_spell(DEBT_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev This function allows users to withdraw their collateral with perfect shares in one token /// @param shares_ The number of shares to burn for withdrawal /// @param minToken0_ The minimum amount of token0 the user expects to receive (set to 0 if withdrawing in token1) /// @param minToken1_ The minimum amount of token1 the user expects to receive (set to 0 if withdrawing in token0) /// @param to_ Recipient of withdrawn tokens. If to_ == address(0) then out tokens will be sent to msg.sender. If to_ == ADDRESS_DEAD then function will revert with withdrawAmt_ /// @return withdrawAmt_ The amount of tokens withdrawn in the chosen token function withdrawPerfectInOneToken( uint shares_, uint minToken0_, uint minToken1_, address to_ ) public returns (uint withdrawAmt_) { return abi.decode(_spell(COL_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev This function allows users to payback their debt with perfect shares in one token /// @param shares_ The number of shares to burn for payback /// @param maxToken0_ The maximum amount of token0 the user is willing to pay (set to 0 if paying back in token1) /// @param maxToken1_ The maximum amount of token1 the user is willing to pay (set to 0 if paying back in token0) /// @param estimate_ If true, the function will revert with the estimated payback amount without executing the payback /// @return paybackAmt_ The amount of tokens paid back in the chosen token function paybackPerfectInOneToken( uint shares_, uint maxToken0_, uint maxToken1_, bool estimate_ ) public payable returns (uint paybackAmt_) { return abi.decode(_spell(DEBT_OPERATIONS_IMPLEMENTATION, msg.data), (uint256)); } /// @dev liquidity callback for cheaper token transfers in case of deposit or payback. /// only callable by Liquidity during an operation. function liquidityCallback(address token_, uint amount_, bytes calldata data_) external { if (msg.sender != address(LIQUIDITY)) revert FluidDexError(ErrorTypes.DexT1__MsgSenderNotLiquidity); if (dexVariables & 1 == 0) revert FluidDexError(ErrorTypes.DexT1__ReentrancyBitShouldBeOn); if (data_.length != 96) revert FluidDexError(ErrorTypes.DexT1__IncorrectDataLength); (uint amountToSend_, bool isCallback_, address from_) = abi.decode(data_, (uint, bool, address)); if (amountToSend_ < amount_) revert FluidDexError(ErrorTypes.DexT1__AmountToSendLessThanAmount); if (isCallback_) { IDexCallback(from_).dexCallback(token_, amountToSend_); } else { SafeTransfer.safeTransferFrom(token_, from_, address(LIQUIDITY), amountToSend_); } } /// @dev the oracle assumes last set price of pool till the next swap happens. /// There's a possibility that during that time some interest is generated hence the last stored price is not the 100% correct price for the whole duration /// but the difference due to interest will be super low so this difference is ignored /// For example 2 swaps happened 10min (600 seconds) apart and 1 token has 10% higher interest than other. /// then that token will accrue about 10% * 600 / secondsInAYear = ~0.0002% /// @param secondsAgos_ array of seconds ago for which TWAP is needed. If user sends [10, 30, 60] then twaps_ will return [10-0, 30-10, 60-30] /// @return twaps_ twap price, lowest price (aka minima) & highest price (aka maxima) between secondsAgo checkpoints /// @return currentPrice_ price of pool after the most recent swap function oraclePrice( uint[] memory secondsAgos_ ) external view returns (Oracle[] memory twaps_, uint currentPrice_) { OraclePriceMemory memory o_; uint dexVariables_ = dexVariables; if ((dexVariables_ >> 195) & 1 == 0) { revert FluidDexError(ErrorTypes.DexT1__OracleNotActive); } twaps_ = new Oracle[](secondsAgos_.length); uint totalTime_; uint time_; uint i; uint secondsAgo_ = secondsAgos_[0]; currentPrice_ = (dexVariables_ >> 41) & X40; currentPrice_ = (currentPrice_ >> DEFAULT_EXPONENT_SIZE) << (currentPrice_ & DEFAULT_EXPONENT_MASK); uint price_ = currentPrice_; o_.lowestPrice1by0 = currentPrice_; o_.highestPrice1by0 = currentPrice_; uint twap1by0_; uint twap0by1_; uint j; o_.oracleSlot = (dexVariables_ >> 176) & X3; o_.oracleMap = (dexVariables_ >> 179) & X16; // if o_.oracleSlot == 7 then it'll enter the if statement in the below while loop o_.oracle = o_.oracleSlot < 7 ? _oracle[o_.oracleMap] : 0; uint slotData_; uint percentDiff_; if (((dexVariables_ >> 121) & X33) < block.timestamp) { // last swap didn't occured in this block. // hence last price is current price of pool & also the last price time_ = block.timestamp - ((dexVariables_ >> 121) & X33); } else { // last swap occured in this block, that means current price is active for 0 secs. Hence TWAP for it will be 0. ++j; } while (true) { if (j == 2) { if (++o_.oracleSlot == 8) { o_.oracleSlot = 0; if (o_.oracleMap == 0) { o_.oracleMap = TOTAL_ORACLE_MAPPING; } o_.oracle = _oracle[--o_.oracleMap]; } slotData_ = (o_.oracle >> (o_.oracleSlot * 32)) & X32; if (slotData_ > 0) { time_ = slotData_ & X9; if (time_ == 0) { // time is in precision & sign bits time_ = slotData_ >> 9; // if o_.oracleSlot is 7 then precision & bits and stored in 1 less map if (o_.oracleSlot == 7) { o_.oracleSlot = 0; if (o_.oracleMap == 0) { o_.oracleMap = TOTAL_ORACLE_MAPPING; } o_.oracle = _oracle[--o_.oracleMap]; slotData_ = o_.oracle & X32; } else { ++o_.oracleSlot; slotData_ = (o_.oracle >> (o_.oracleSlot * 32)) & X32; } } percentDiff_ = slotData_ >> 10; percentDiff_ = (ORACLE_LIMIT * percentDiff_) / X22; if (((slotData_ >> 9) & 1 == 1)) { // if positive then old price was lower than current hence subtracting price_ = price_ - (price_ * percentDiff_) / ORACLE_PRECISION; } else { // if negative then old price was higher than current hence adding price_ = price_ + (price_ * percentDiff_) / ORACLE_PRECISION; } } else { // oracle data does not exist. Probably due to pool recently got initialized and not have much swaps. revert FluidDexError(ErrorTypes.DexT1__InsufficientOracleData); } } else if (j == 1) { // last & last to last price price_ = (dexVariables_ >> 1) & X40; price_ = (price_ >> DEFAULT_EXPONENT_SIZE) << (price_ & DEFAULT_EXPONENT_MASK); time_ = (dexVariables_ >> 154) & X22; ++j; } else if (j == 0) { ++j; } totalTime_ += time_; if (o_.lowestPrice1by0 > price_) o_.lowestPrice1by0 = price_; if (o_.highestPrice1by0 < price_) o_.highestPrice1by0 = price_; if (totalTime_ < secondsAgo_) { twap1by0_ += price_ * time_; twap0by1_ += (1e54 / price_) * time_; } else { time_ = time_ + secondsAgo_ - totalTime_; twap1by0_ += price_ * time_; twap0by1_ += (1e54 / price_) * time_; // also auto checks that secondsAgos_ should not be == 0 twap1by0_ = twap1by0_ / secondsAgo_; twap0by1_ = twap0by1_ / secondsAgo_; twaps_[i] = Oracle( twap1by0_, o_.lowestPrice1by0, o_.highestPrice1by0, twap0by1_, (1e54 / o_.highestPrice1by0), (1e54 / o_.lowestPrice1by0) ); // TWAP for next secondsAgo will start with price_ o_.lowestPrice1by0 = price_; o_.highestPrice1by0 = price_; while (++i < secondsAgos_.length) { // secondsAgo_ = [60, 15, 0] time_ = totalTime_ - secondsAgo_; // updating total time as new seconds ago started totalTime_ = time_; // also auto checks that secondsAgos_[i + 1] > secondsAgos_[i] secondsAgo_ = secondsAgos_[i] - secondsAgos_[i - 1]; if (totalTime_ < secondsAgo_) { twap1by0_ = price_ * time_; twap0by1_ = (1e54 / price_) * time_; // if time_ comes out as 0 here then lowestPrice & highestPrice should not be price_, it should be next price_ that we will calculate if (time_ == 0) { o_.lowestPrice1by0 = type(uint).max; o_.highestPrice1by0 = 0; } break; } else { time_ = time_ + secondsAgo_ - totalTime_; // twap1by0_ = price_ here twap1by0_ = price_ * time_; // twap0by1_ = (1e54 / price_) * time_; twap0by1_ = (1e54 / price_) * time_; twap1by0_ = twap1by0_ / secondsAgo_; twap0by1_ = twap0by1_ / secondsAgo_; twaps_[i] = Oracle( twap1by0_, o_.lowestPrice1by0, o_.highestPrice1by0, twap0by1_, (1e54 / o_.highestPrice1by0), (1e54 / o_.lowestPrice1by0) ); } } if (i == secondsAgos_.length) return (twaps_, currentPrice_); // oracle fetch over } } } function getPricesAndExchangePrices() public { uint dexVariables_ = dexVariables; uint dexVariables2_ = dexVariables2; _check(dexVariables_, dexVariables2_); PricesAndExchangePrice memory pex_ = _getPricesAndExchangePrices(dexVariables, dexVariables2); revert FluidDexPricesAndExchangeRates(pex_); } /// @dev Internal fallback function to handle calls to non-existent functions /// @notice This function is called when a transaction is sent to the contract without matching any other function /// @notice It checks if the caller is authorized, enables re-entrancy protection, delegates the call to the admin implementation, and then disables re-entrancy protection /// @notice Only authorized callers (global or dex auth) can trigger this function /// @notice This function uses assembly to perform a delegatecall to the admin implementation to update configs related to DEX function _fallback() private { if (!(DEX_FACTORY.isGlobalAuth(msg.sender) || DEX_FACTORY.isDexAuth(address(this), msg.sender))) { revert FluidDexError(ErrorTypes.DexT1__NotAnAuth); } uint dexVariables_ = dexVariables; if (dexVariables_ & 1 == 1) revert FluidDexError(ErrorTypes.DexT1__AlreadyEntered); // enabling re-entrancy dexVariables = dexVariables_ | 1; // Delegate the current call to `ADMIN_IMPLEMENTATION`. _spell(ADMIN_IMPLEMENTATION, msg.data); // disabling re-entrancy // directly fetching from storage so updates from Admin module will get auto covered dexVariables = dexVariables & ~uint(1); } fallback() external payable { _fallback(); } receive() external payable { if (msg.sig != 0x00000000) { _fallback(); } } /// @notice returns all Vault constants function constantsView() external view returns (ConstantViews memory constantsView_) { constantsView_.dexId = DEX_ID; constantsView_.liquidity = address(LIQUIDITY); constantsView_.factory = address(DEX_FACTORY); constantsView_.token0 = TOKEN_0; constantsView_.token1 = TOKEN_1; constantsView_.implementations.shift = SHIFT_IMPLEMENTATION; constantsView_.implementations.admin = ADMIN_IMPLEMENTATION; constantsView_.implementations.colOperations = COL_OPERATIONS_IMPLEMENTATION; constantsView_.implementations.debtOperations = DEBT_OPERATIONS_IMPLEMENTATION; constantsView_.implementations.perfectOperationsAndSwapOut = PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION; constantsView_.deployerContract = DEPLOYER_CONTRACT; constantsView_.supplyToken0Slot = SUPPLY_TOKEN_0_SLOT; constantsView_.borrowToken0Slot = BORROW_TOKEN_0_SLOT; constantsView_.supplyToken1Slot = SUPPLY_TOKEN_1_SLOT; constantsView_.borrowToken1Slot = BORROW_TOKEN_1_SLOT; constantsView_.exchangePriceToken0Slot = EXCHANGE_PRICE_TOKEN_0_SLOT; constantsView_.exchangePriceToken1Slot = EXCHANGE_PRICE_TOKEN_1_SLOT; constantsView_.oracleMapping = TOTAL_ORACLE_MAPPING; } /// @notice returns all Vault constants function constantsView2() external view returns (ConstantViews2 memory constantsView2_) { constantsView2_.token0NumeratorPrecision = TOKEN_0_NUMERATOR_PRECISION; constantsView2_.token0DenominatorPrecision = TOKEN_0_DENOMINATOR_PRECISION; constantsView2_.token1NumeratorPrecision = TOKEN_1_NUMERATOR_PRECISION; constantsView2_.token1DenominatorPrecision = TOKEN_1_DENOMINATOR_PRECISION; } /// @notice Calculates the real and imaginary reserves for collateral tokens /// @dev This function retrieves the supply of both tokens from the liquidity layer, /// adjusts them based on exchange prices, and calculates imaginary reserves /// based on the geometric mean and price range /// @param geometricMean_ The geometric mean of the token prices /// @param upperRange_ The upper price range /// @param lowerRange_ The lower price range /// @param token0SupplyExchangePrice_ The exchange price for token0 from liquidity layer /// @param token1SupplyExchangePrice_ The exchange price for token1 from liquidity layer /// @return c_ A struct containing the calculated real and imaginary reserves for both tokens: /// - token0RealReserves: The real reserves of token0 /// - token1RealReserves: The real reserves of token1 /// - token0ImaginaryReserves: The imaginary reserves of token0 /// - token1ImaginaryReserves: The imaginary reserves of token1 function getCollateralReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0SupplyExchangePrice_, uint token1SupplyExchangePrice_ ) public view returns (CollateralReserves memory c_) { return _getCollateralReserves( geometricMean_, upperRange_, lowerRange_, token0SupplyExchangePrice_, token1SupplyExchangePrice_ ); } /// @notice Calculates the debt reserves for both tokens /// @param geometricMean_ The geometric mean of the upper and lower price ranges /// @param upperRange_ The upper price range /// @param lowerRange_ The lower price range /// @param token0BorrowExchangePrice_ The exchange price of token0 from liquidity layer /// @param token1BorrowExchangePrice_ The exchange price of token1 from liquidity layer /// @return d_ The calculated debt reserves for both tokens, containing: /// - token0Debt: The debt amount of token0 /// - token1Debt: The debt amount of token1 /// - token0RealReserves: The real reserves of token0 derived from token1 debt /// - token1RealReserves: The real reserves of token1 derived from token0 debt /// - token0ImaginaryReserves: The imaginary debt reserves of token0 /// - token1ImaginaryReserves: The imaginary debt reserves of token1 function getDebtReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0BorrowExchangePrice_, uint token1BorrowExchangePrice_ ) public view returns (DebtReserves memory d_) { return _getDebtReserves( geometricMean_, upperRange_, lowerRange_, token0BorrowExchangePrice_, token1BorrowExchangePrice_ ); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; abstract contract Events { /// @notice Emitted on token swaps /// @param swap0to1 Indicates whether the swap is from token0 to token1 or vice-versa. /// @param amountIn The amount of tokens to be sent to the vault to swap. /// @param amountOut The amount of tokens user got from the swap. /// @param to Recepient of swapped tokens. event Swap(bool swap0to1, uint256 amountIn, uint256 amountOut, address to); /// @notice Emitted when liquidity is added with shares specified. /// @param shares Expected exact shares to be received. /// @param token0Amt Amount of token0 deposited. /// @param token0Amt Amount of token1 deposited. event LogDepositPerfectColLiquidity(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when liquidity is withdrawn with shares specified. /// @param shares shares burned /// @param token0Amt Amount of token0 withdrawn. /// @param token1Amt Amount of token1 withdrawn. event LogWithdrawPerfectColLiquidity(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when liquidity is borrowed with shares specified. /// @param shares shares minted /// @param token0Amt Amount of token0 borrowed. /// @param token1Amt Amount of token1 borrowed. event LogBorrowPerfectDebtLiquidity(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when liquidity is paid back with shares specified. /// @param shares shares burned /// @param token0Amt Amount of token0 paid back. /// @param token1Amt Amount of token1 paid back. event LogPaybackPerfectDebtLiquidity(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when liquidity is deposited with specified token0 & token1 amount /// @param amount0 Amount of token0 deposited. /// @param amount1 Amount of token1 deposited. /// @param shares Amount of shares minted. event LogDepositColLiquidity(uint amount0, uint amount1, uint shares); /// @notice Emitted when liquidity is withdrawn with specified token0 & token1 amount /// @param amount0 Amount of token0 withdrawn. /// @param amount1 Amount of token1 withdrawn. /// @param shares Amount of shares burned. event LogWithdrawColLiquidity(uint amount0, uint amount1, uint shares); /// @notice Emitted when liquidity is borrowed with specified token0 & token1 amount /// @param amount0 Amount of token0 borrowed. /// @param amount1 Amount of token1 borrowed. /// @param shares Amount of shares minted. event LogBorrowDebtLiquidity(uint amount0, uint amount1, uint shares); /// @notice Emitted when liquidity is paid back with specified token0 & token1 amount /// @param amount0 Amount of token0 paid back. /// @param amount1 Amount of token1 paid back. /// @param shares Amount of shares burned. event LogPaybackDebtLiquidity(uint amount0, uint amount1, uint shares); /// @notice Emitted when liquidity is withdrawn with shares specified into one token only. /// @param shares shares burned /// @param token0Amt Amount of token0 withdrawn. /// @param token1Amt Amount of token1 withdrawn. event LogWithdrawColInOneToken(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when liquidity is paid back with shares specified from one token only. /// @param shares shares burned /// @param token0Amt Amount of token0 paid back. /// @param token1Amt Amount of token1 paid back. event LogPaybackDebtInOneToken(uint shares, uint token0Amt, uint token1Amt); /// @notice Emitted when internal arbitrage between 2 pools happen /// @param routing if positive then routing is amtIn of token0 in deposit & borrow else token0 withdraw & payback /// @param amtOut if routing is positive then token1 withdraw & payback amount else token1 deposit & borrow event LogArbitrage(int routing, uint amtOut); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { FixedPointMathLib } from "solmate/src/utils/FixedPointMathLib.sol"; import { Variables } from "../../common/variables.sol"; import { ImmutableVariables } from "../immutableVariables.sol"; import { Events } from "../events.sol"; import { ErrorTypes } from "../../../errorTypes.sol"; import { IHook, ICenterPrice } from "../interfaces.sol"; import { LiquiditySlotsLink } from "../../../../../libraries/liquiditySlotsLink.sol"; import { LiquidityCalcs } from "../../../../../libraries/liquidityCalcs.sol"; import { DexSlotsLink } from "../../../../../libraries/dexSlotsLink.sol"; import { DexCalcs } from "../../../../../libraries/dexCalcs.sol"; import { BigMathMinified } from "../../../../../libraries/bigMathMinified.sol"; import { AddressCalcs } from "../../../../../libraries/addressCalcs.sol"; interface IShifting { /// @dev Calculates the new upper and lower range values during an active range shift /// @param upperRange_ The target upper range value /// @param lowerRange_ The target lower range value /// @param dexVariables2_ needed in case shift is ended and we need to update dexVariables2 /// @return The updated upper range, lower range, and dexVariables2 function _calcRangeShifting( uint upperRange_, uint lowerRange_, uint dexVariables2_ ) external payable returns (uint, uint, uint); /// @dev Calculates the new threshold values during an active threshold shift /// @param upperThreshold_ The target upper threshold value /// @param lowerThreshold_ The target lower threshold value /// @param dexVariables2_ needed in case shift is ended and we need to update dexVariables2 /// @return The updated upper threshold, lower threshold, and dexVariables2 function _calcThresholdShifting( uint upperThreshold_, uint lowerThreshold_, uint dexVariables2_ ) external payable returns (uint, uint, uint); /// @dev Calculates the new center price during an active center price shift /// @param dexVariables_ The current state of dex variables /// @param dexVariables2_ Additional dex variables /// @return The updated center price function _calcCenterPrice( uint dexVariables_, uint dexVariables2_ ) external payable returns (uint); } abstract contract CoreHelpers is Variables, ImmutableVariables, Events { using BigMathMinified for uint256; /// @dev do any arbitrary call /// @param target_ Address to which the call needs to be delegated /// @param data_ Data to execute at the delegated address function _spell(address target_, bytes memory data_) internal returns (bytes memory response_) { assembly { let succeeded := delegatecall(gas(), target_, add(data_, 0x20), mload(data_), 0, 0) let size := returndatasize() response_ := mload(0x40) mstore(0x40, add(response_, and(add(add(size, 0x20), 0x1f), not(0x1f)))) mstore(response_, size) returndatacopy(add(response_, 0x20), 0, size) if iszero(succeeded) { // throw if delegatecall failed returndatacopy(0x00, 0x00, size) revert(0x00, size) } } } /// @dev Given an input amount of asset and pair reserves, returns the maximum output amount of the other asset /// @param amountIn_ The amount of input asset. /// @param iReserveIn_ Imaginary token reserve with input amount. /// @param iReserveOut_ Imaginary token reserve of output amount. function _getAmountOut( uint256 amountIn_, uint iReserveIn_, uint iReserveOut_ ) internal pure returns (uint256 amountOut_) { unchecked { // Both numerator and denominator are scaled to 1e6 to factor in fee scaling. uint256 numerator_ = amountIn_ * iReserveOut_; uint256 denominator_ = iReserveIn_ + amountIn_; // Using the swap formula: (AmountIn * iReserveY) / (iReserveX + AmountIn) amountOut_ = numerator_ / denominator_; } } /// @dev Given an output amount of asset and pair reserves, returns the input amount of the other asset /// @param amountOut_ Desired output amount of the asset. /// @param iReserveIn_ Imaginary token reserve of input amount. /// @param iReserveOut_ Imaginary token reserve of output amount. function _getAmountIn( uint256 amountOut_, uint iReserveIn_, uint iReserveOut_ ) internal pure returns (uint256 amountIn_) { // Both numerator and denominator are scaled to 1e6 to factor in fee scaling. uint256 numerator_ = amountOut_ * iReserveIn_; uint256 denominator_ = iReserveOut_ - amountOut_; // Using the swap formula: (AmountOut * iReserveX) / (iReserveY - AmountOut) amountIn_ = numerator_ / denominator_; } /// @param t total amount in /// @param x imaginary reserves of token out of collateral /// @param y imaginary reserves of token in of collateral /// @param x2 imaginary reserves of token out of debt /// @param y2 imaginary reserves of token in of debt /// @return a_ how much swap should go through collateral pool. Remaining will go from debt /// note if a < 0 then entire trade route through debt pool and debt pool arbitrage with col pool /// note if a > t then entire trade route through col pool and col pool arbitrage with debt pool /// note if a > 0 & a < t then swap will route through both pools function _swapRoutingIn(uint t, uint x, uint y, uint x2, uint y2) internal pure returns (int a_) { // Main equations: // 1. out = x * a / (y + a) // 2. out2 = x2 * (t - a) / (y2 + (t - a)) // final price should be same // 3. (y + a) / (x - out) = (y2 + (t - a)) / (x2 - out2) // derivation: https://chatgpt.com/share/dce6f381-ee5f-4d5f-b6ea-5996e84d5b57 // adding 1e18 precision uint xyRoot_ = FixedPointMathLib.sqrt(x * y * 1e18); uint x2y2Root_ = FixedPointMathLib.sqrt(x2 * y2 * 1e18); a_ = (int(y2 * xyRoot_ + t * xyRoot_) - int(y * x2y2Root_)) / int(xyRoot_ + x2y2Root_); } /// @param t total amount out /// @param x imaginary reserves of token in of collateral /// @param y imaginary reserves of token out of collateral /// @param x2 imaginary reserves of token in of debt /// @param y2 imaginary reserves of token out of debt /// @return a_ how much swap should go through collateral pool. Remaining will go from debt /// note if a < 0 then entire trade route through debt pool and debt pool arbitrage with col pool /// note if a > t then entire trade route through col pool and col pool arbitrage with debt pool /// note if a > 0 & a < t then swap will route through both pools function _swapRoutingOut(uint t, uint x, uint y, uint x2, uint y2) internal pure returns (int a_) { // Main equations: // 1. in = (x * a) / (y - a) // 2. in2 = (x2 * (t - a)) / (y2 - (t - a)) // final price should be same // 3. (y - a) / (x + in) = (y2 - (t - a)) / (x2 + in2) // derivation: https://chatgpt.com/share/6585bc28-841f-49ec-aea2-1e5c5b7f4fa9 // adding 1e18 precision uint xyRoot_ = FixedPointMathLib.sqrt(x * y * 1e18); uint x2y2Root_ = FixedPointMathLib.sqrt(x2 * y2 * 1e18); // 1e18 precision gets cancelled out in division a_ = (int(t * xyRoot_ + y * x2y2Root_) - int(y2 * xyRoot_)) / int(xyRoot_ + x2y2Root_); } function _utilizationVerify(uint utilizationLimit_, bytes32 exchangePriceSlot_) internal view { if (utilizationLimit_ < THREE_DECIMALS) { utilizationLimit_ = utilizationLimit_ * 10; // extracting utilization of token from liquidity layer uint liquidityLayerUtilization_ = LIQUIDITY.readFromStorage(exchangePriceSlot_); liquidityLayerUtilization_ = (liquidityLayerUtilization_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14; // Note: this can go slightly above the utilization limit if no update is written to storage at liquidity layer // if swap was not big enough to go far enough above or any other storage update threshold write cause there // so just to keep in mind when configuring the actual limit reachable can be utilizationLimit_ + storageUpdateThreshold at Liquidity if (liquidityLayerUtilization_ > utilizationLimit_) revert FluidDexError(ErrorTypes.DexT1__LiquidityLayerTokenUtilizationCapReached); } } function _check(uint dexVariables_, uint dexVariables2_) internal { if (dexVariables_ & 1 == 1) revert FluidDexError(ErrorTypes.DexT1__AlreadyEntered); if (dexVariables2_ & 3 == 0) revert FluidDexError(ErrorTypes.DexT1__PoolNotInitialized); // enabling re-entrancy dexVariables = dexVariables_ | 1; } /// @dev if token0 reserves are too low w.r.t token1 then revert, this is to avoid edge case scenario and making sure that precision on calculations should be high enough function _verifyToken0Reserves( uint token0Reserves_, uint token1Reserves_, uint centerPrice_, uint minLiquidity_ ) internal pure { if (((token0Reserves_) < ((token1Reserves_ * 1e27) / (centerPrice_ * minLiquidity_)))) { revert FluidDexError(ErrorTypes.DexT1__TokenReservesTooLow); } } /// @dev if token1 reserves are too low w.r.t token0 then revert, this is to avoid edge case scenario and making sure that precision on calculations should be high enough function _verifyToken1Reserves( uint token0Reserves_, uint token1Reserves_, uint centerPrice_, uint minLiquidity_ ) internal pure { if (((token1Reserves_) < ((token0Reserves_ * centerPrice_) / (1e27 * minLiquidity_)))) { revert FluidDexError(ErrorTypes.DexT1__TokenReservesTooLow); } } function _verifySwapAndNonPerfectActions(uint amountAdjusted_, uint amount_) internal pure { // after shifting amount should not become 0 // limiting to six decimals which means in case of USDC, USDT it's 1 wei, for WBTC 100 wei, for ETH 1000 gwei if (amountAdjusted_ < SIX_DECIMALS || amountAdjusted_ > X96 || amount_ < TWO_DECIMALS || amount_ > X128) revert FluidDexError(ErrorTypes.DexT1__LimitingAmountsSwapAndNonPerfectActions); } /// @dev Calculates the new upper and lower range values during an active range shift /// @param upperRange_ The target upper range value /// @param lowerRange_ The target lower range value /// @param dexVariables2_ needed in case shift is ended and we need to update dexVariables2 /// @return The updated upper range, lower range, and dexVariables2 /// @notice This function handles the gradual shifting of range values over time /// @notice If the shift is complete, it updates the state and clears the shift data function _calcRangeShifting( uint upperRange_, uint lowerRange_, uint dexVariables2_ ) internal returns (uint, uint, uint) { return abi.decode( _spell( SHIFT_IMPLEMENTATION, abi.encodeWithSelector( IShifting._calcRangeShifting.selector, upperRange_, lowerRange_, dexVariables2_ ) ), (uint, uint, uint) ); } /// @dev Calculates the new upper and lower threshold values during an active threshold shift /// @param upperThreshold_ The target upper threshold value /// @param lowerThreshold_ The target lower threshold value /// @param thresholdTime_ The time passed since shifting started /// @return The updated upper threshold, lower threshold, and threshold time /// @notice This function handles the gradual shifting of threshold values over time /// @notice If the shift is complete, it updates the state and clears the shift data function _calcThresholdShifting( uint upperThreshold_, uint lowerThreshold_, uint thresholdTime_ ) internal returns (uint, uint, uint) { return abi.decode( _spell( SHIFT_IMPLEMENTATION, abi.encodeWithSelector( IShifting._calcThresholdShifting.selector, upperThreshold_, lowerThreshold_, thresholdTime_ ) ), (uint, uint, uint) ); } /// @dev Calculates the new center price during an active price shift /// @param dexVariables_ The current state of dex variables /// @param dexVariables2_ Additional dex variables /// @return newCenterPrice_ The updated center price /// @notice This function gradually shifts the center price towards a new target price over time /// @notice It uses an external price source (via ICenterPrice) to determine the target price /// @notice The shift continues until the current price reaches the target, or the shift duration ends /// @notice Once the shift is complete, it updates the state and clears the shift data /// @notice The shift rate is dynamic and depends on: /// @notice - Time remaining in the shift duration /// @notice - The new center price (fetched externally, which may change) /// @notice - The current (old) center price /// @notice This results in a fuzzy shifting mechanism where the rate can change as these parameters evolve /// @notice The externally fetched new center price is expected to not differ significantly from the last externally fetched center price function _calcCenterPrice(uint dexVariables_, uint dexVariables2_) internal returns (uint newCenterPrice_) { return abi.decode( _spell( SHIFT_IMPLEMENTATION, abi.encodeWithSelector(IShifting._calcCenterPrice.selector, dexVariables_, dexVariables2_) ), (uint) ); } /// @notice Calculates and returns the current prices and exchange prices for the pool /// @param dexVariables_ The first set of DEX variables containing various pool parameters /// @param dexVariables2_ The second set of DEX variables containing additional pool parameters /// @return pex_ A struct containing the calculated prices and exchange prices: /// - pex_.lastStoredPrice: The last stored price in 1e27 decimals /// - pex_.centerPrice: The calculated or fetched center price in 1e27 decimals /// - pex_.upperRange: The upper range price limit in 1e27 decimals /// - pex_.lowerRange: The lower range price limit in 1e27 decimals /// - pex_.geometricMean: The geometric mean of upper range & lower range in 1e27 decimals /// - pex_.supplyToken0ExchangePrice: The current exchange price for supplying token0 /// - pex_.borrowToken0ExchangePrice: The current exchange price for borrowing token0 /// - pex_.supplyToken1ExchangePrice: The current exchange price for supplying token1 /// - pex_.borrowToken1ExchangePrice: The current exchange price for borrowing token1 /// @dev This function performs the following operations: /// 1. Determines the center price (either from storage, external source, or calculated) /// 2. Retrieves the last stored price from dexVariables_ /// 3. Calculates the upper and lower range prices based on the center price and range percentages /// 4. Checks if rebalancing is needed based on threshold settings /// 5. Adjusts prices if necessary based on the time elapsed and threshold conditions /// 6. Update the dexVariables2_ if changes were made /// 7. Returns the calculated prices and exchange prices in the PricesAndExchangePrice struct function _getPricesAndExchangePrices( uint dexVariables_, uint dexVariables2_ ) internal returns (PricesAndExchangePrice memory pex_) { uint centerPrice_; if (((dexVariables2_ >> 248) & 1) == 0) { // centerPrice_ => center price hook centerPrice_ = (dexVariables2_ >> 112) & X30; if (centerPrice_ == 0) { centerPrice_ = (dexVariables_ >> 81) & X40; centerPrice_ = (centerPrice_ >> DEFAULT_EXPONENT_SIZE) << (centerPrice_ & DEFAULT_EXPONENT_MASK); } else { // center price should be fetched from external source. For exmaple, in case of wstETH <> ETH pool, // we would want the center price to be pegged to wstETH exchange rate into ETH centerPrice_ = ICenterPrice(AddressCalcs.addressCalc(DEPLOYER_CONTRACT, centerPrice_)).centerPrice(); } } else { // an active centerPrice_ shift is going on centerPrice_ = _calcCenterPrice(dexVariables_, dexVariables2_); } uint lastStoredPrice_ = (dexVariables_ >> 41) & X40; lastStoredPrice_ = (lastStoredPrice_ >> DEFAULT_EXPONENT_SIZE) << (lastStoredPrice_ & DEFAULT_EXPONENT_MASK); uint upperRange_ = ((dexVariables2_ >> 27) & X20); uint lowerRange_ = ((dexVariables2_ >> 47) & X20); if (((dexVariables2_ >> 26) & 1) == 1) { // an active range shift is going on (upperRange_, lowerRange_, dexVariables2_) = _calcRangeShifting(upperRange_, lowerRange_, dexVariables2_); } unchecked { // adding into unchecked because upperRange_ & lowerRange_ can only be > 0 & < SIX_DECIMALS // 1% = 1e4, 100% = 1e6 upperRange_ = (centerPrice_ * SIX_DECIMALS) / (SIX_DECIMALS - upperRange_); // 1% = 1e4, 100% = 1e6 lowerRange_ = (centerPrice_ * (SIX_DECIMALS - lowerRange_)) / SIX_DECIMALS; } bool changed_; { // goal will be to keep threshold percents 0 if center price is fetched from external source // checking if threshold are set non 0 then only rebalancing is on if (((dexVariables2_ >> 68) & X20) > 0) { uint upperThreshold_ = (dexVariables2_ >> 68) & X10; uint lowerThreshold_ = (dexVariables2_ >> 78) & X10; uint shiftingTime_ = (dexVariables2_ >> 88) & X24; if (((dexVariables2_ >> 67) & 1) == 1) { // if active shift is going on for threshold then calculate threshold real time (upperThreshold_, lowerThreshold_, shiftingTime_) = _calcThresholdShifting( upperThreshold_, lowerThreshold_, shiftingTime_ ); } unchecked { if ( lastStoredPrice_ > (centerPrice_ + ((upperRange_ - centerPrice_) * (THREE_DECIMALS - upperThreshold_)) / THREE_DECIMALS) ) { uint timeElapsed_ = block.timestamp - ((dexVariables_ >> 121) & X33); // price shifting towards upper range if (timeElapsed_ < shiftingTime_) { centerPrice_ = centerPrice_ + ((upperRange_ - centerPrice_) * timeElapsed_) / shiftingTime_; } else { // 100% price shifted centerPrice_ = upperRange_; } changed_ = true; } else if ( lastStoredPrice_ < (centerPrice_ - ((centerPrice_ - lowerRange_) * (THREE_DECIMALS - lowerThreshold_)) / THREE_DECIMALS) ) { uint timeElapsed_ = block.timestamp - ((dexVariables_ >> 121) & X33); // price shifting towards lower range if (timeElapsed_ < shiftingTime_) { centerPrice_ = centerPrice_ - ((centerPrice_ - lowerRange_) * timeElapsed_) / shiftingTime_; } else { // 100% price shifted centerPrice_ = lowerRange_; } changed_ = true; } } } } // temp_ => max center price uint temp_ = (dexVariables2_ >> 172) & X28; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (centerPrice_ > temp_) { // if center price is greater than max center price centerPrice_ = temp_; changed_ = true; } else { // check if center price is less than min center price // temp_ => min center price temp_ = (dexVariables2_ >> 200) & X28; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (centerPrice_ < temp_) { centerPrice_ = temp_; changed_ = true; } } // if centerPrice_ is changed then calculating upper and lower range again if (changed_) { upperRange_ = ((dexVariables2_ >> 27) & X20); lowerRange_ = ((dexVariables2_ >> 47) & X20); if (((dexVariables2_ >> 26) & 1) == 1) { (upperRange_, lowerRange_, dexVariables2_) = _calcRangeShifting( upperRange_, lowerRange_, dexVariables2_ ); } unchecked { // adding into unchecked because upperRange_ & lowerRange_ can only be > 0 & < SIX_DECIMALS // 1% = 1e4, 100% = 1e6 upperRange_ = (centerPrice_ * SIX_DECIMALS) / (SIX_DECIMALS - upperRange_); // 1% = 1e4, 100% = 1e6 lowerRange_ = (centerPrice_ * (SIX_DECIMALS - lowerRange_)) / SIX_DECIMALS; } } pex_.lastStoredPrice = lastStoredPrice_; pex_.centerPrice = centerPrice_; pex_.upperRange = upperRange_; pex_.lowerRange = lowerRange_; unchecked { if (upperRange_ < 1e38) { // 1e38 * 1e38 = 1e76 which is less than max uint limit pex_.geometricMean = FixedPointMathLib.sqrt(upperRange_ * lowerRange_); } else { // upperRange_ price is pretty large hence lowerRange_ will also be pretty large pex_.geometricMean = FixedPointMathLib.sqrt((upperRange_ / 1e18) * (lowerRange_ / 1e18)) * 1e18; } } // Exchange price will remain same as Liquidity Layer (pex_.supplyToken0ExchangePrice, pex_.borrowToken0ExchangePrice) = LiquidityCalcs.calcExchangePrices( LIQUIDITY.readFromStorage(EXCHANGE_PRICE_TOKEN_0_SLOT) ); (pex_.supplyToken1ExchangePrice, pex_.borrowToken1ExchangePrice) = LiquidityCalcs.calcExchangePrices( LIQUIDITY.readFromStorage(EXCHANGE_PRICE_TOKEN_1_SLOT) ); } /// @dev getting reserves outside range. /// @param gp_ is geometric mean pricing of upper percent & lower percent /// @param pa_ price of upper range or lower range /// @param rx_ real reserves of token0 or token1 /// @param ry_ whatever is rx_ the other will be ry_ function _calculateReservesOutsideRange( uint gp_, uint pa_, uint rx_, uint ry_ ) internal pure returns (uint xa_, uint yb_) { // equations we have: // 1. x*y = k // 2. xa*ya = k // 3. xb*yb = k // 4. Pa = ya / xa = upperRange_ (known) // 5. Pb = yb / xb = lowerRange_ (known) // 6. x - xa = rx = real reserve of x (known) // 7. y - yb = ry = real reserve of y (known) // With solving we get: // ((Pa*Pb)^(1/2) - Pa)*xa^2 + (rx * (Pa*Pb)^(1/2) + ry)*xa + rx*ry = 0 // yb = yb = xa * (Pa * Pb)^(1/2) // xa = (GP⋅rx + ry + (-rx⋅ry⋅4⋅(GP - Pa) + (GP⋅rx + ry)^2)^0.5) / (2Pa - 2GP) // multiply entire equation by 1e27 to remove the price decimals precision of 1e27 // xa = (GP⋅rx + ry⋅1e27 + (rx⋅ry⋅4⋅(Pa - GP)⋅1e27 + (GP⋅rx + ry⋅1e27)^2)^0.5) / 2*(Pa - GP) // dividing the equation with 2*(Pa - GP). Pa is always > GP so answer will be positive. // xa = (((GP⋅rx + ry⋅1e27) / 2*(Pa - GP)) + (((rx⋅ry⋅4⋅(Pa - GP)⋅1e27) / 4*(Pa - GP)^2) + ((GP⋅rx + ry⋅1e27) / 2*(Pa - GP))^2)^0.5) // xa = (((GP⋅rx + ry⋅1e27) / 2*(Pa - GP)) + (((rx⋅ry⋅1e27) / (Pa - GP)) + ((GP⋅rx + ry⋅1e27) / 2*(Pa - GP))^2)^0.5) // dividing in 3 parts for simplification: // part1 = (Pa - GP) // part2 = (GP⋅rx + ry⋅1e27) / (2*part1) // part3 = rx⋅ry // note: part1 will almost always be < 1e28 but in case it goes above 1e27 then it's extremely unlikely it'll go above > 1e29 uint p1_ = pa_ - gp_; uint p2_ = ((gp_ * rx_) + (ry_ * 1e27)) / (2 * p1_); uint p3_ = rx_ * ry_; // to avoid overflowing p3_ = (p3_ < 1e50) ? ((p3_ * 1e27) / p1_) : (p3_ / p1_) * 1e27; // xa = part2 + (part3 + (part2 * part2))^(1/2) // yb = xa_ * gp_ xa_ = p2_ + FixedPointMathLib.sqrt((p3_ + (p2_ * p2_))); yb_ = (xa_ * gp_) / 1e27; } /// @dev Retrieves collateral amount from liquidity layer for a given token /// @param supplyTokenSlot_ The storage slot for the supply token data /// @param tokenExchangePrice_ The exchange price of the token /// @param isToken0_ Boolean indicating if the token is token0 (true) or token1 (false) /// @return tokenSupply_ The calculated liquidity collateral amount function _getLiquidityCollateral( bytes32 supplyTokenSlot_, uint tokenExchangePrice_, bool isToken0_ ) internal view returns (uint tokenSupply_) { uint tokenSupplyData_ = LIQUIDITY.readFromStorage(supplyTokenSlot_); tokenSupply_ = (tokenSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64; tokenSupply_ = (tokenSupply_ >> DEFAULT_EXPONENT_SIZE) << (tokenSupply_ & DEFAULT_EXPONENT_MASK); if (tokenSupplyData_ & 1 == 1) { // supply with interest is on unchecked { tokenSupply_ = (tokenSupply_ * tokenExchangePrice_) / LiquidityCalcs.EXCHANGE_PRICES_PRECISION; } } unchecked { tokenSupply_ = isToken0_ ? ((tokenSupply_ * TOKEN_0_NUMERATOR_PRECISION) / TOKEN_0_DENOMINATOR_PRECISION) : ((tokenSupply_ * TOKEN_1_NUMERATOR_PRECISION) / TOKEN_1_DENOMINATOR_PRECISION); } } /// @notice Calculates the real and imaginary reserves for collateral tokens /// @dev This function retrieves the supply of both tokens from the liquidity layer, /// adjusts them based on exchange prices, and calculates imaginary reserves /// based on the geometric mean and price range /// @param geometricMean_ The geometric mean of the token prices /// @param upperRange_ The upper price range /// @param lowerRange_ The lower price range /// @param token0SupplyExchangePrice_ The exchange price for token0 from liquidity layer /// @param token1SupplyExchangePrice_ The exchange price for token1 from liquidity layer /// @return c_ A struct containing the calculated real and imaginary reserves for both tokens: /// - token0RealReserves: The real reserves of token0 /// - token1RealReserves: The real reserves of token1 /// - token0ImaginaryReserves: The imaginary reserves of token0 /// - token1ImaginaryReserves: The imaginary reserves of token1 function _getCollateralReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0SupplyExchangePrice_, uint token1SupplyExchangePrice_ ) internal view returns (CollateralReserves memory c_) { uint token0Supply_ = _getLiquidityCollateral(SUPPLY_TOKEN_0_SLOT, token0SupplyExchangePrice_, true); uint token1Supply_ = _getLiquidityCollateral(SUPPLY_TOKEN_1_SLOT, token1SupplyExchangePrice_, false); if (geometricMean_ < 1e27) { (c_.token0ImaginaryReserves, c_.token1ImaginaryReserves) = _calculateReservesOutsideRange( geometricMean_, upperRange_, token0Supply_, token1Supply_ ); } else { // inversing, something like `xy = k` so for calculation we are making everything related to x into y & y into x // 1 / geometricMean for new geometricMean // 1 / lowerRange will become upper range // 1 / upperRange will become lower range (c_.token1ImaginaryReserves, c_.token0ImaginaryReserves) = _calculateReservesOutsideRange( (1e54 / geometricMean_), (1e54 / lowerRange_), token1Supply_, token0Supply_ ); } c_.token0RealReserves = token0Supply_; c_.token1RealReserves = token1Supply_; unchecked { c_.token0ImaginaryReserves += token0Supply_; c_.token1ImaginaryReserves += token1Supply_; } } /// @notice Calculates the real and imaginary debt reserves for both tokens /// @dev This function uses a quadratic equation to determine the debt reserves /// based on the geometric mean price and the current debt amounts /// @param gp_ The geometric mean price of upper range & lower range /// @param pb_ The price of lower range /// @param dx_ The debt amount of one token /// @param dy_ The debt amount of the other token /// @return rx_ The real debt reserve of the first token /// @return ry_ The real debt reserve of the second token /// @return irx_ The imaginary debt reserve of the first token /// @return iry_ The imaginary debt reserve of the second token function _calculateDebtReserves( uint gp_, uint pb_, uint dx_, uint dy_ ) internal pure returns (uint rx_, uint ry_, uint irx_, uint iry_) { // Assigning letter to knowns: // c = debtA // d = debtB // e = upperPrice // f = lowerPrice // g = upperPrice^1/2 // h = lowerPrice^1/2 // c = 1 // d = 2000 // e = 2222.222222 // f = 1800 // g = 2222.222222^1/2 // h = 1800^1/2 // Assigning letter to unknowns: // w = realDebtReserveA // x = realDebtReserveB // y = imaginaryDebtReserveA // z = imaginaryDebtReserveB // k = k // below quadratic will give answer of realDebtReserveB // A, B, C of quadratic equation: // A = h // B = dh - cfg // C = -cfdh // A = lowerPrice^1/2 // B = debtB⋅lowerPrice^1/2 - debtA⋅lowerPrice⋅upperPrice^1/2 // C = -(debtA⋅lowerPrice⋅debtB⋅lowerPrice^1/2) // x = (cfg − dh + (4cdf(h^2)+(cfg−dh)^2))^(1/2)) / 2h // simplifying dividing by h, note h = f^1/2 // x = ((c⋅g⋅(f^1/2) − d) / 2 + ((4⋅c⋅d⋅f⋅f) / (4h^2) + ((c⋅f⋅g) / 2h − (d⋅h) / 2h)^2))^(1/2)) // x = ((c⋅g⋅(f^1/2) − d) / 2 + ((c⋅d⋅f) + ((c⋅g⋅(f^1/2) − d) / 2)^2))^(1/2)) // dividing in 3 parts for simplification: // part1 = (c⋅g⋅(f^1/2) − d) / 2 // part2 = (c⋅d⋅f) // x = (part1 + (part2 + part1^2)^(1/2)) // note: part1 will almost always be < 1e27 but in case it goes above 1e27 then it's extremely unlikely it'll go above > 1e28 // part1 = ((debtA * upperPrice^1/2 * lowerPrice^1/2) - debtB) / 2 // note: upperPrice^1/2 * lowerPrice^1/2 = geometric mean // part1 = ((debtA * geometricMean) - debtB) / 2 // part2 = debtA * debtB * lowerPrice // converting decimals properly as price is in 1e27 decimals // part1 = ((debtA * geometricMean) - (debtB * 1e27)) / (2 * 1e27) // part2 = (debtA * debtB * lowerPrice) / 1e27 // final x equals: // x = (part1 + (part2 + part1^2)^(1/2)) int p1_ = (int(dx_ * gp_) - int(dy_ * 1e27)) / (2 * 1e27); uint p2_ = (dx_ * dy_); p2_ = p2_ < 1e50 ? (p2_ * pb_) / 1e27 : (p2_ / 1e27) * pb_; ry_ = uint(p1_ + int(FixedPointMathLib.sqrt((p2_ + uint(p1_ * p1_))))); // finding z: // x^2 - zx + cfz = 0 // z*(x - cf) = x^2 // z = x^2 / (x - cf) // z = x^2 / (x - debtA * lowerPrice) // converting decimals properly as price is in 1e27 decimals // z = (x^2 * 1e27) / ((x * 1e27) - (debtA * lowerPrice)) iry_ = ((ry_ * 1e27) - (dx_ * pb_)); if (iry_ < SIX_DECIMALS) { // almost impossible situation to ever get here revert FluidDexError(ErrorTypes.DexT1__DebtReservesTooLow); } if (ry_ < 1e25) { iry_ = (ry_ * ry_ * 1e27) / iry_; } else { // note: it can never result in negative as final result will always be in positive iry_ = (ry_ * ry_) / (iry_ / 1e27); } // finding y // x = z * c / (y + c) // y + c = z * c / x // y = (z * c / x) - c // y = (z * debtA / x) - debtA irx_ = ((iry_ * dx_) / ry_) - dx_; // finding w // w = y * d / (z + d) // w = (y * debtB) / (z + debtB) rx_ = (irx_ * dy_) / (iry_ + dy_); } /// @notice Calculates the debt amount for a given token from liquidity layer /// @param borrowTokenSlot_ The storage slot for the token's borrow data /// @param tokenExchangePrice_ The current exchange price of the token /// @param isToken0_ Boolean indicating if this is for token0 (true) or token1 (false) /// @return tokenDebt_ The calculated debt amount for the token function _getLiquidityDebt( bytes32 borrowTokenSlot_, uint tokenExchangePrice_, bool isToken0_ ) internal view returns (uint tokenDebt_) { uint tokenBorrowData_ = LIQUIDITY.readFromStorage(borrowTokenSlot_); tokenDebt_ = (tokenBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64; tokenDebt_ = (tokenDebt_ >> 8) << (tokenDebt_ & X8); if (tokenBorrowData_ & 1 == 1) { // borrow with interest is on unchecked { tokenDebt_ = (tokenDebt_ * tokenExchangePrice_) / LiquidityCalcs.EXCHANGE_PRICES_PRECISION; } } unchecked { tokenDebt_ = isToken0_ ? ((tokenDebt_ * TOKEN_0_NUMERATOR_PRECISION) / TOKEN_0_DENOMINATOR_PRECISION) : ((tokenDebt_ * TOKEN_1_NUMERATOR_PRECISION) / TOKEN_1_DENOMINATOR_PRECISION); } } /// @notice Calculates the debt reserves for both tokens /// @param geometricMean_ The geometric mean of the upper and lower price ranges /// @param upperRange_ The upper price range /// @param lowerRange_ The lower price range /// @param token0BorrowExchangePrice_ The exchange price of token0 from liquidity layer /// @param token1BorrowExchangePrice_ The exchange price of token1 from liquidity layer /// @return d_ The calculated debt reserves for both tokens, containing: /// - token0Debt: The debt amount of token0 /// - token1Debt: The debt amount of token1 /// - token0RealReserves: The real reserves of token0 derived from token1 debt /// - token1RealReserves: The real reserves of token1 derived from token0 debt /// - token0ImaginaryReserves: The imaginary debt reserves of token0 /// - token1ImaginaryReserves: The imaginary debt reserves of token1 function _getDebtReserves( uint geometricMean_, uint upperRange_, uint lowerRange_, uint token0BorrowExchangePrice_, uint token1BorrowExchangePrice_ ) internal view returns (DebtReserves memory d_) { uint token0Debt_ = _getLiquidityDebt(BORROW_TOKEN_0_SLOT, token0BorrowExchangePrice_, true); uint token1Debt_ = _getLiquidityDebt(BORROW_TOKEN_1_SLOT, token1BorrowExchangePrice_, false); d_.token0Debt = token0Debt_; d_.token1Debt = token1Debt_; if (geometricMean_ < 1e27) { ( d_.token0RealReserves, d_.token1RealReserves, d_.token0ImaginaryReserves, d_.token1ImaginaryReserves ) = _calculateDebtReserves(geometricMean_, lowerRange_, token0Debt_, token1Debt_); } else { // inversing, something like `xy = k` so for calculation we are making everything related to x into y & y into x // 1 / geometricMean for new geometricMean // 1 / lowerRange will become upper range // 1 / upperRange will become lower range ( d_.token1RealReserves, d_.token0RealReserves, d_.token1ImaginaryReserves, d_.token0ImaginaryReserves ) = _calculateDebtReserves((1e54 / geometricMean_), (1e54 / upperRange_), token1Debt_, token0Debt_); } } function _priceDiffCheck(uint oldPrice_, uint newPrice_) internal pure returns (int priceDiff_) { // check newPrice_ & oldPrice_ difference should not be more than 5% // old price w.r.t new price priceDiff_ = int(ORACLE_PRECISION) - int((oldPrice_ * ORACLE_PRECISION) / newPrice_); unchecked { if ((priceDiff_ > int(ORACLE_LIMIT)) || (priceDiff_ < -int(ORACLE_LIMIT))) { // if oracle price difference is more than 5% then revert // in 1 swap price should only change by <= 5% // if a total fall by let's say 8% then in current block price can only fall by 5% and // in next block it'll fall the remaining 3% revert FluidDexError(ErrorTypes.DexT1__OracleUpdateHugeSwapDiff); } } } function _updateOracle(uint newPrice_, uint centerPrice_, uint dexVariables_) internal returns (uint) { // time difference between last & current swap uint timeDiff_ = block.timestamp - ((dexVariables_ >> 121) & X33); uint temp_; uint temp2_; uint temp3_; if (timeDiff_ == 0) { // doesn't matter if oracle is on or off when timediff = 0 code for both is same // temp_ => oldCenterPrice temp_ = (dexVariables_ >> 81) & X40; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // Ensure that the center price is within the acceptable range of the old center price if it's not the first swap in the same block unchecked { if ( (centerPrice_ < (((EIGHT_DECIMALS - 1) * temp_) / EIGHT_DECIMALS)) || (centerPrice_ > (((EIGHT_DECIMALS + 1) * temp_) / EIGHT_DECIMALS)) ) { revert FluidDexError(ErrorTypes.DexT1__CenterPriceOutOfRange); } } // olderPrice_ => temp_ temp_ = (dexVariables_ >> 1) & X40; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); _priceDiffCheck(temp_, newPrice_); // 2nd swap in same block no need to update anything around oracle, only need to update last swap price in dexVariables return ((dexVariables_ & 0xfffffffffffffffffffffffffffffffffffffffffffe0000000001ffffffffff) | (newPrice_.toBigNumber(32, 8, BigMathMinified.ROUND_DOWN) << 41)); } if (((dexVariables_ >> 195) & 1) == 0) { // if oracle is not active then just returning updated DEX variable temp_ = ((dexVariables_ >> 41) & X40); temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); _priceDiffCheck(temp_, newPrice_); return ((dexVariables_ & 0xfffffffffffffffffffffffffc00000000000000000000000000000000000001) | (((dexVariables_ >> 41) & X40) << 1) | (newPrice_.toBigNumber(32, 8, BigMathMinified.ROUND_DOWN) << 41) | (centerPrice_.toBigNumber(32, 8, BigMathMinified.ROUND_DOWN) << 81) | (block.timestamp << 121)); } else { // oracle is active hence update oracle // olderPrice_ => temp_ temp_ = (dexVariables_ >> 1) & X40; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // oldPrice_ => temp2_ temp2_ = (dexVariables_ >> 41) & X40; temp2_ = (temp2_ >> DEFAULT_EXPONENT_SIZE) << (temp2_ & DEFAULT_EXPONENT_MASK); int priceDiff_ = _priceDiffCheck(temp2_, newPrice_); unchecked { // older price w.r.t old price priceDiff_ = int(ORACLE_PRECISION) - int((temp_ * ORACLE_PRECISION) / temp2_); } // priceDiffInPercentAndSign_ => temp3_ // priceDiff_ will always be lower than ORACLE_LIMIT due to above check unchecked { if (priceDiff_ < 0) { temp3_ = ((uint(-priceDiff_) * X22) / ORACLE_LIMIT) << 1; } else { // if greater than or equal to 0 then make sign flag 1 temp3_ = (((uint(priceDiff_) * X22) / ORACLE_LIMIT) << 1) | 1; } } if (timeDiff_ > X22) { // if time difference is this then that means DEX has been inactive ~45 days // that means oracle price of this DEX should not be used. timeDiff_ = X22; } // temp_ => lastTimeDiff_ temp_ = (dexVariables_ >> 154) & X22; uint nextOracleSlot_ = ((dexVariables_ >> 176) & X3); uint oracleMap_ = (dexVariables_ >> 179) & X16; if (temp_ > X9) { if (nextOracleSlot_ > 0) { // if greater than 0 then current slot has 2 or more oracle slot empty // First 9 bits are of time, so not using that temp3_ = (temp3_ << 41) | (temp_ << 9); _oracle[oracleMap_] = _oracle[oracleMap_] | (temp3_ << (--nextOracleSlot_ * 32)); if (nextOracleSlot_ > 0) { --nextOracleSlot_; } else { // if == 0 that means the oracle slots will get filled and shift to next oracle map nextOracleSlot_ = 7; unchecked { oracleMap_ = (oracleMap_ + 1) % TOTAL_ORACLE_MAPPING; } _oracle[oracleMap_] = 0; } } else { // if == 0 // then seconds will be in last map // precision will be in last map + 1 // Storing precision & sign slot in first precision & sign slot and leaving time slot empty temp3_ = temp3_ << 9; _oracle[oracleMap_] = _oracle[oracleMap_] | temp3_; nextOracleSlot_ = 6; // storing 6 here as 7 is going to occupied right now unchecked { oracleMap_ = (oracleMap_ + 1) % TOTAL_ORACLE_MAPPING; } // Storing time in 2nd precision & sign and leaving time slot empty _oracle[oracleMap_] = temp_ << ((7 * 32) + 9); } } else { temp3_ = (temp3_ << 9) | temp_; unchecked { if (nextOracleSlot_ < 7) { _oracle[oracleMap_] = _oracle[oracleMap_] | (temp3_ << (nextOracleSlot_ * 32)); } else { _oracle[oracleMap_] = temp3_ << ((7 * 32)); } } if (nextOracleSlot_ > 0) { --nextOracleSlot_; } else { nextOracleSlot_ = 7; unchecked { oracleMap_ = (oracleMap_ + 1) % TOTAL_ORACLE_MAPPING; } _oracle[oracleMap_] = 0; } } // doing this due to stack too deep error when using params memory variables temp_ = newPrice_; temp2_ = centerPrice_; temp3_ = dexVariables_; // then update last price return ((temp3_ & 0xfffffffffffffff8000000000000000000000000000000000000000000000001) | (((temp3_ >> 41) & X40) << 1) | (temp_.toBigNumber(32, 8, BigMathMinified.ROUND_DOWN) << 41) | (temp2_.toBigNumber(32, 8, BigMathMinified.ROUND_DOWN) << 81) | (block.timestamp << 121) | (timeDiff_ << 154) | (nextOracleSlot_ << 176) | (oracleMap_ << 179)); } } function _hookVerify(uint hookAddress_, uint mode_, bool swap0to1_, uint price_) internal { try IHook(AddressCalcs.addressCalc(DEPLOYER_CONTRACT, hookAddress_)).dexPrice( mode_, swap0to1_, TOKEN_0, TOKEN_1, price_ ) returns (bool isOk_) { if (!isOk_) revert FluidDexError(ErrorTypes.DexT1__HookReturnedFalse); } catch (bytes memory /*lowLevelData*/) { // skip checking hook nothing } } function _updateSupplyShares(uint newTotalShares_) internal { uint totalSupplyShares_ = _totalSupplyShares; // new total shares are greater than old total shares && new total shares are greater than max supply shares if ( (newTotalShares_ > (totalSupplyShares_ & X128)) && newTotalShares_ > (totalSupplyShares_ >> 128) ) { revert FluidDexError(ErrorTypes.DexT1__SupplySharesOverflow); } // keeping max supply shares intact _totalSupplyShares = ((totalSupplyShares_ >> 128) << 128) | newTotalShares_; } function _updateBorrowShares(uint newTotalShares_) internal { uint totalBorrowShares_ = _totalBorrowShares; // new total shares are greater than old total shares && new total shares are greater than max borrow shares if ( (newTotalShares_ > (totalBorrowShares_ & X128)) && newTotalShares_ > (totalBorrowShares_ >> 128) ) { revert FluidDexError(ErrorTypes.DexT1__BorrowSharesOverflow); } // keeping max borrow shares intact _totalBorrowShares = ((totalBorrowShares_ >> 128) << 128) | newTotalShares_; } constructor(ConstantViews memory constantViews_) ImmutableVariables(constantViews_) {} } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { IFluidLiquidity } from "../../../../liquidity/interfaces/iLiquidity.sol"; import { Structs } from "./structs.sol"; import { ConstantVariables } from "../common/constantVariables.sol"; import { IFluidDexFactory } from "../../interfaces/iDexFactory.sol"; import { Error } from "../../error.sol"; import { ErrorTypes } from "../../errorTypes.sol"; abstract contract ImmutableVariables is ConstantVariables, Structs, Error { /*////////////////////////////////////////////////////////////// CONSTANTS / IMMUTABLES //////////////////////////////////////////////////////////////*/ uint256 public immutable DEX_ID; /// @dev Address of token 0 address internal immutable TOKEN_0; /// @dev Address of token 1 address internal immutable TOKEN_1; address internal immutable THIS_CONTRACT; uint256 internal immutable TOKEN_0_NUMERATOR_PRECISION; uint256 internal immutable TOKEN_0_DENOMINATOR_PRECISION; uint256 internal immutable TOKEN_1_NUMERATOR_PRECISION; uint256 internal immutable TOKEN_1_DENOMINATOR_PRECISION; /// @dev Address of liquidity contract IFluidLiquidity internal immutable LIQUIDITY; /// @dev Address of DEX factory contract IFluidDexFactory internal immutable DEX_FACTORY; /// @dev Address of Shift implementation address internal immutable SHIFT_IMPLEMENTATION; /// @dev Address of Admin implementation address internal immutable ADMIN_IMPLEMENTATION; /// @dev Address of Col Operations implementation address internal immutable COL_OPERATIONS_IMPLEMENTATION; /// @dev Address of Debt Operations implementation address internal immutable DEBT_OPERATIONS_IMPLEMENTATION; /// @dev Address of Perfect Operations and Swap Out implementation address internal immutable PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION; /// @dev Address of contract used for deploying center price & hook related contract address internal immutable DEPLOYER_CONTRACT; /// @dev Liquidity layer slots bytes32 internal immutable SUPPLY_TOKEN_0_SLOT; bytes32 internal immutable BORROW_TOKEN_0_SLOT; bytes32 internal immutable SUPPLY_TOKEN_1_SLOT; bytes32 internal immutable BORROW_TOKEN_1_SLOT; bytes32 internal immutable EXCHANGE_PRICE_TOKEN_0_SLOT; bytes32 internal immutable EXCHANGE_PRICE_TOKEN_1_SLOT; uint256 internal immutable TOTAL_ORACLE_MAPPING; function _calcNumeratorAndDenominator( address token_ ) private view returns (uint256 numerator_, uint256 denominator_) { uint256 decimals_ = _decimals(token_); if (decimals_ > TOKENS_DECIMALS_PRECISION) { numerator_ = 1; denominator_ = 10 ** (decimals_ - TOKENS_DECIMALS_PRECISION); } else { numerator_ = 10 ** (TOKENS_DECIMALS_PRECISION - decimals_); denominator_ = 1; } } constructor(ConstantViews memory constants_) { THIS_CONTRACT = address(this); DEX_ID = constants_.dexId; LIQUIDITY = IFluidLiquidity(constants_.liquidity); DEX_FACTORY = IFluidDexFactory(constants_.factory); TOKEN_0 = constants_.token0; TOKEN_1 = constants_.token1; if (TOKEN_0 >= TOKEN_1) revert FluidDexError(ErrorTypes.DexT1__Token0ShouldBeSmallerThanToken1); (TOKEN_0_NUMERATOR_PRECISION, TOKEN_0_DENOMINATOR_PRECISION) = _calcNumeratorAndDenominator(TOKEN_0); (TOKEN_1_NUMERATOR_PRECISION, TOKEN_1_DENOMINATOR_PRECISION) = _calcNumeratorAndDenominator(TOKEN_1); if (constants_.implementations.shift != address(0)) { SHIFT_IMPLEMENTATION = constants_.implementations.shift; } else { SHIFT_IMPLEMENTATION = address(this); } if (constants_.implementations.admin != address(0)) { ADMIN_IMPLEMENTATION = constants_.implementations.admin; } else { ADMIN_IMPLEMENTATION = address(this); } if (constants_.implementations.colOperations != address(0)) { COL_OPERATIONS_IMPLEMENTATION = constants_.implementations.colOperations; } else { COL_OPERATIONS_IMPLEMENTATION = address(this); } if (constants_.implementations.debtOperations != address(0)) { DEBT_OPERATIONS_IMPLEMENTATION = constants_.implementations.debtOperations; } else { DEBT_OPERATIONS_IMPLEMENTATION = address(this); } if (constants_.implementations.perfectOperationsAndSwapOut != address(0)) { PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION = constants_.implementations.perfectOperationsAndSwapOut; } else { PERFECT_OPERATIONS_AND_SWAP_OUT_IMPLEMENTATION = address(this); } DEPLOYER_CONTRACT = constants_.deployerContract; SUPPLY_TOKEN_0_SLOT = constants_.supplyToken0Slot; BORROW_TOKEN_0_SLOT = constants_.borrowToken0Slot; SUPPLY_TOKEN_1_SLOT = constants_.supplyToken1Slot; BORROW_TOKEN_1_SLOT = constants_.borrowToken1Slot; EXCHANGE_PRICE_TOKEN_0_SLOT = constants_.exchangePriceToken0Slot; EXCHANGE_PRICE_TOKEN_1_SLOT = constants_.exchangePriceToken1Slot; if (constants_.oracleMapping > X16) revert FluidDexError(ErrorTypes.DexT1__OracleMappingOverflow); TOTAL_ORACLE_MAPPING = constants_.oracleMapping; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; interface IHook { /// @notice Hook function to check for liquidation opportunities before external swaps /// @dev The primary use of this hook is to check if a particular pair vault has liquidation available. /// If liquidation is available, it gives priority to the liquidation process before allowing external swaps. /// In most cases, this hook will not be set. /// @param id_ Identifier for the operation type: 1 for swap, 2 for internal arbitrage /// @param swap0to1_ Direction of the swap: true if swapping token0 for token1, false otherwise /// @param token0_ Address of the first token in the pair /// @param token1_ Address of the second token in the pair /// @param price_ The price ratio of token1 to token0, expressed with 27 decimal places /// @return isOk_ Boolean indicating whether the operation should proceed function dexPrice( uint id_, bool swap0to1_, address token0_, address token1_, uint price_ ) external returns (bool isOk_); } interface ICenterPrice { /// @notice Retrieves the center price for the pool /// @dev This function is marked as non-constant (potentially state-changing) to allow flexibility in price fetching mechanisms. /// While typically used as a read-only operation, this design permits write operations if needed for certain token pairs /// (e.g., fetching up-to-date exchange rates that may require state changes). /// @return price The current price ratio of token1 to token0, expressed with 27 decimal places function centerPrice() external returns (uint price); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; abstract contract Structs { struct PricesAndExchangePrice { uint lastStoredPrice; // last stored price in 1e27 decimals uint centerPrice; // last stored price in 1e27 decimals uint upperRange; // price at upper range in 1e27 decimals uint lowerRange; // price at lower range in 1e27 decimals uint geometricMean; // geometric mean of upper range & lower range in 1e27 decimals uint supplyToken0ExchangePrice; uint borrowToken0ExchangePrice; uint supplyToken1ExchangePrice; uint borrowToken1ExchangePrice; } struct ExchangePrices { uint supplyToken0ExchangePrice; uint borrowToken0ExchangePrice; uint supplyToken1ExchangePrice; uint borrowToken1ExchangePrice; } struct CollateralReserves { uint token0RealReserves; uint token1RealReserves; uint token0ImaginaryReserves; uint token1ImaginaryReserves; } struct CollateralReservesSwap { uint tokenInRealReserves; uint tokenOutRealReserves; uint tokenInImaginaryReserves; uint tokenOutImaginaryReserves; } struct DebtReserves { uint token0Debt; uint token1Debt; uint token0RealReserves; uint token1RealReserves; uint token0ImaginaryReserves; uint token1ImaginaryReserves; } struct DebtReservesSwap { uint tokenInDebt; uint tokenOutDebt; uint tokenInRealReserves; uint tokenOutRealReserves; uint tokenInImaginaryReserves; uint tokenOutImaginaryReserves; } struct SwapInMemory { address tokenIn; address tokenOut; uint256 amtInAdjusted; address withdrawTo; address borrowTo; uint price; // price of pool after swap uint fee; // fee of pool uint revenueCut; // revenue cut of pool bool swap0to1; int swapRoutingAmt; bytes data; // just added to avoid stack-too-deep error } struct SwapOutMemory { address tokenIn; address tokenOut; uint256 amtOutAdjusted; address withdrawTo; address borrowTo; uint price; // price of pool after swap uint fee; uint revenueCut; // revenue cut of pool bool swap0to1; int swapRoutingAmt; bytes data; // just added to avoid stack-too-deep error uint msgValue; } struct DepositColMemory { uint256 token0AmtAdjusted; uint256 token1AmtAdjusted; uint256 token0ReservesInitial; uint256 token1ReservesInitial; } struct WithdrawColMemory { uint256 token0AmtAdjusted; uint256 token1AmtAdjusted; uint256 token0ReservesInitial; uint256 token1ReservesInitial; address to; } struct BorrowDebtMemory { uint256 token0AmtAdjusted; uint256 token1AmtAdjusted; uint256 token0DebtInitial; uint256 token1DebtInitial; address to; } struct PaybackDebtMemory { uint256 token0AmtAdjusted; uint256 token1AmtAdjusted; uint256 token0DebtInitial; uint256 token1DebtInitial; } struct OraclePriceMemory { uint lowestPrice1by0; uint highestPrice1by0; uint oracleSlot; uint oracleMap; uint oracle; } struct Oracle { uint twap1by0; // TWAP price uint lowestPrice1by0; // lowest price point uint highestPrice1by0; // highest price point uint twap0by1; // TWAP price uint lowestPrice0by1; // lowest price point uint highestPrice0by1; // highest price point } struct Implementations { address shift; address admin; address colOperations; address debtOperations; address perfectOperationsAndSwapOut; } struct ConstantViews { uint256 dexId; address liquidity; address factory; Implementations implementations; address deployerContract; address token0; address token1; bytes32 supplyToken0Slot; bytes32 borrowToken0Slot; bytes32 supplyToken1Slot; bytes32 borrowToken1Slot; bytes32 exchangePriceToken0Slot; bytes32 exchangePriceToken1Slot; uint256 oracleMapping; } struct ConstantViews2 { uint token0NumeratorPrecision; uint token0DenominatorPrecision; uint token1NumeratorPrecision; uint token1DenominatorPrecision; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant MAX_UINT256 = 2**256 - 1; uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // Divide x * y by the denominator. z := div(mul(x, y), denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // If x * y modulo the denominator is strictly greater than 0, // 1 is added to round up the division of x * y by the denominator. z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Mod x by y. Note this will return // 0 instead of reverting if y is zero. z := mod(x, y) } } function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { // Divide x by y. Note this will return // 0 instead of reverting if y is zero. r := div(x, y) } } function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Add 1 to x * y if x % y > 0. Note this will // return 0 instead of reverting if y is zero. z := add(gt(mod(x, y), 0), div(x, y)) } } }
File 5 of 6: FiatTokenV2_2
/** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol"; import { EIP712 } from "../util/EIP712.sol"; // solhint-disable func-name-mixedcase /** * @title FiatToken V2.2 * @notice ERC20 Token backed by fiat reserves, version 2.2 */ contract FiatTokenV2_2 is FiatTokenV2_1 { /** * @notice Initialize v2.2 * @param accountsToBlacklist A list of accounts to migrate from the old blacklist * @param newSymbol New token symbol * data structure to the new blacklist data structure. */ function initializeV2_2( address[] calldata accountsToBlacklist, string calldata newSymbol ) external { // solhint-disable-next-line reason-string require(_initializedVersion == 2); // Update fiat token symbol symbol = newSymbol; // Add previously blacklisted accounts to the new blacklist data structure // and remove them from the old blacklist data structure. for (uint256 i = 0; i < accountsToBlacklist.length; i++) { require( _deprecatedBlacklisted[accountsToBlacklist[i]], "FiatTokenV2_2: Blacklisting previously unblacklisted account!" ); _blacklist(accountsToBlacklist[i]); delete _deprecatedBlacklisted[accountsToBlacklist[i]]; } _blacklist(address(this)); delete _deprecatedBlacklisted[address(this)]; _initializedVersion = 3; } /** * @dev Internal function to get the current chain id. * @return The current chain id. */ function _chainId() internal virtual view returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } /** * @inheritdoc EIP712Domain */ function _domainSeparator() internal override view returns (bytes32) { return EIP712.makeDomainSeparator(name, "2", _chainId()); } /** * @notice Update allowance with a signed permit * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function permit( address owner, address spender, uint256 value, uint256 deadline, bytes memory signature ) external whenNotPaused { _permit(owner, spender, value, deadline, signature); } /** * @notice Execute a transfer with a signed authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, signature ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, signature ); } /** * @notice Attempt to cancel an authorization * @dev Works only if the authorization is not yet used. * EOA wallet signatures should be packed in the order of r, s, v. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function cancelAuthorization( address authorizer, bytes32 nonce, bytes memory signature ) external whenNotPaused { _cancelAuthorization(authorizer, nonce, signature); } /** * @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates. * If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the * account's balanceAndBlacklistState. This flips the high bit for the account to 1, * indicating that the account is blacklisted. * * If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their * balances. This clears the high bit for the account, indicating that the account is unblacklisted. * @param _account The address of the account. * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted. */ function _setBlacklistState(address _account, bool _shouldBlacklist) internal override { balanceAndBlacklistStates[_account] = _shouldBlacklist ? balanceAndBlacklistStates[_account] | (1 << 255) : _balanceOf(_account); } /** * @dev Helper method that sets the balance of an account on balanceAndBlacklistStates. * Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value, * we need to ensure that the updated balance does not exceed (2^255 - 1). * Since blacklisted accounts' balances cannot be updated, the method will also * revert if the account is blacklisted * @param _account The address of the account. * @param _balance The new fiat token balance of the account (max: (2^255 - 1)). */ function _setBalance(address _account, uint256 _balance) internal override { require( _balance <= ((1 << 255) - 1), "FiatTokenV2_2: Balance exceeds (2^255 - 1)" ); require( !_isBlacklisted(_account), "FiatTokenV2_2: Account is blacklisted" ); balanceAndBlacklistStates[_account] = _balance; } /** * @inheritdoc Blacklistable */ function _isBlacklisted(address _account) internal override view returns (bool) { return balanceAndBlacklistStates[_account] >> 255 == 1; } /** * @dev Helper method to obtain the balance of an account. Since balances * are stored in the last 255 bits of the balanceAndBlacklistStates value, * we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the * balanceAndBlacklistState to obtain the balance. * @param _account The address of the account. * @return The fiat token balance of the account. */ function _balanceOf(address _account) internal override view returns (uint256) { return balanceAndBlacklistStates[_account] & ((1 << 255) - 1); } /** * @inheritdoc FiatTokenV1 */ function approve(address spender, uint256 value) external override whenNotPaused returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @inheritdoc FiatTokenV2 */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external override whenNotPaused { _permit(owner, spender, value, deadline, v, r, s); } /** * @inheritdoc FiatTokenV2 */ function increaseAllowance(address spender, uint256 increment) external override whenNotPaused returns (bool) { _increaseAllowance(msg.sender, spender, increment); return true; } /** * @inheritdoc FiatTokenV2 */ function decreaseAllowance(address spender, uint256 decrement) external override whenNotPaused returns (bool) { _decreaseAllowance(msg.sender, spender, decrement); return true; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable func-name-mixedcase /** * @title FiatToken V2.1 * @notice ERC20 Token backed by fiat reserves, version 2.1 */ contract FiatTokenV2_1 is FiatTokenV2 { /** * @notice Initialize v2.1 * @param lostAndFound The address to which the locked funds are sent */ function initializeV2_1(address lostAndFound) external { // solhint-disable-next-line reason-string require(_initializedVersion == 1); uint256 lockedAmount = _balanceOf(address(this)); if (lockedAmount > 0) { _transfer(address(this), lostAndFound, lockedAmount); } _blacklist(address(this)); _initializedVersion = 2; } /** * @notice Version string for the EIP712 domain separator * @return Version string */ function version() external pure returns (string memory) { return "2"; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol"; import { EIP712 } from "../util/EIP712.sol"; import { EIP3009 } from "./EIP3009.sol"; import { EIP2612 } from "./EIP2612.sol"; /** * @title FiatToken V2 * @notice ERC20 Token backed by fiat reserves, version 2 */ contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 { uint8 internal _initializedVersion; /** * @notice Initialize v2 * @param newName New token name */ function initializeV2(string calldata newName) external { // solhint-disable-next-line reason-string require(initialized && _initializedVersion == 0); name = newName; _DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator( newName, "2" ); _initializedVersion = 1; } /** * @notice Increase the allowance by a given increment * @param spender Spender's address * @param increment Amount of increase in allowance * @return True if successful */ function increaseAllowance(address spender, uint256 increment) external virtual whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _increaseAllowance(msg.sender, spender, increment); return true; } /** * @notice Decrease the allowance by a given decrement * @param spender Spender's address * @param decrement Amount of decrease in allowance * @return True if successful */ function decreaseAllowance(address spender, uint256 decrement) external virtual whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _decreaseAllowance(msg.sender, spender, decrement); return true; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Attempt to cancel an authorization * @dev Works only if the authorization is not yet used. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused { _cancelAuthorization(authorizer, nonce, v, r, s); } /** * @notice Update allowance with a signed permit * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual whenNotPaused notBlacklisted(owner) notBlacklisted(spender) { _permit(owner, spender, value, deadline, v, r, s); } /** * @dev Internal function to increase the allowance by a given increment * @param owner Token owner's address * @param spender Spender's address * @param increment Amount of increase */ function _increaseAllowance( address owner, address spender, uint256 increment ) internal override { _approve(owner, spender, allowed[owner][spender].add(increment)); } /** * @dev Internal function to decrease the allowance by a given decrement * @param owner Token owner's address * @param spender Spender's address * @param decrement Amount of decrease */ function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal override { _approve( owner, spender, allowed[owner][spender].sub( decrement, "ERC20: decreased allowance below zero" ) ); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; // solhint-disable func-name-mixedcase /** * @title EIP712 Domain */ contract EIP712Domain { // was originally DOMAIN_SEPARATOR // but that has been moved to a method so we can override it in V2_2+ bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR; /** * @notice Get the EIP712 Domain Separator. * @return The bytes32 EIP712 domain separator. */ function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } /** * @dev Internal method to get the EIP712 Domain Separator. * @return The bytes32 EIP712 domain separator. */ function _domainSeparator() internal virtual view returns (bytes32) { return _DEPRECATED_CACHED_DOMAIN_SEPARATOR; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol"; import { EIP712Domain } from "./EIP712Domain.sol"; import { SignatureChecker } from "../util/SignatureChecker.sol"; import { MessageHashUtils } from "../util/MessageHashUtils.sol"; /** * @title EIP-3009 * @notice Provide internal implementation for gas-abstracted transfers * @dev Contracts that inherit from this must wrap these with publicly * accessible functions, optionally adding modifiers where necessary */ abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain { // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267; // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8; // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)") bytes32 public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429; /** * @dev authorizer address => nonce => bool (true if nonce is used) */ mapping(address => mapping(bytes32 => bool)) private _authorizationStates; event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce); event AuthorizationCanceled( address indexed authorizer, bytes32 indexed nonce ); /** * @notice Returns the state of an authorization * @dev Nonces are randomly generated 32-byte data unique to the * authorizer's address * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @return True if the nonce is used */ function authorizationState(address authorizer, bytes32 nonce) external view returns (bool) { return _authorizationStates[authorizer][nonce]; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, abi.encodePacked(r, s, v) ); } /** * @notice Execute a transfer with a signed authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) internal { _requireValidAuthorization(from, nonce, validAfter, validBefore); _requireValidSignature( from, keccak256( abi.encode( TRANSFER_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ) ), signature ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, abi.encodePacked(r, s, v) ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) internal { require(to == msg.sender, "FiatTokenV2: caller must be the payee"); _requireValidAuthorization(from, nonce, validAfter, validBefore); _requireValidSignature( from, keccak256( abi.encode( RECEIVE_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ) ), signature ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Attempt to cancel an authorization * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v)); } /** * @notice Attempt to cancel an authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _cancelAuthorization( address authorizer, bytes32 nonce, bytes memory signature ) internal { _requireUnusedAuthorization(authorizer, nonce); _requireValidSignature( authorizer, keccak256( abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce) ), signature ); _authorizationStates[authorizer][nonce] = true; emit AuthorizationCanceled(authorizer, nonce); } /** * @notice Validates that signature against input data struct * @param signer Signer's address * @param dataHash Hash of encoded data struct * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _requireValidSignature( address signer, bytes32 dataHash, bytes memory signature ) private view { require( SignatureChecker.isValidSignatureNow( signer, MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash), signature ), "FiatTokenV2: invalid signature" ); } /** * @notice Check that an authorization is unused * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _requireUnusedAuthorization(address authorizer, bytes32 nonce) private view { require( !_authorizationStates[authorizer][nonce], "FiatTokenV2: authorization is used or canceled" ); } /** * @notice Check that authorization is valid * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) */ function _requireValidAuthorization( address authorizer, bytes32 nonce, uint256 validAfter, uint256 validBefore ) private view { require( now > validAfter, "FiatTokenV2: authorization is not yet valid" ); require(now < validBefore, "FiatTokenV2: authorization is expired"); _requireUnusedAuthorization(authorizer, nonce); } /** * @notice Mark an authorization as used * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _markAuthorizationAsUsed(address authorizer, bytes32 nonce) private { _authorizationStates[authorizer][nonce] = true; emit AuthorizationUsed(authorizer, nonce); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol"; import { EIP712Domain } from "./EIP712Domain.sol"; import { MessageHashUtils } from "../util/MessageHashUtils.sol"; import { SignatureChecker } from "../util/SignatureChecker.sol"; /** * @title EIP-2612 * @notice Provide internal implementation for gas-abstracted approvals */ abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain { // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)") bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint256) private _permitNonces; /** * @notice Nonces for permit * @param owner Token owner's address (Authorizer) * @return Next nonce */ function nonces(address owner) external view returns (uint256) { return _permitNonces[owner]; } /** * @notice Verify a signed approval permit and execute if valid * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { _permit(owner, spender, value, deadline, abi.encodePacked(r, s, v)); } /** * @notice Verify a signed approval permit and execute if valid * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param signature Signature byte array signed by an EOA wallet or a contract wallet */ function _permit( address owner, address spender, uint256 value, uint256 deadline, bytes memory signature ) internal { require( deadline == type(uint256).max || deadline >= now, "FiatTokenV2: permit is expired" ); bytes32 typedDataHash = MessageHashUtils.toTypedDataHash( _domainSeparator(), keccak256( abi.encode( PERMIT_TYPEHASH, owner, spender, value, _permitNonces[owner]++, deadline ) ) ); require( SignatureChecker.isValidSignatureNow( owner, typedDataHash, signature ), "EIP2612: invalid signature" ); _approve(owner, spender, value); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol"; abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 { function _increaseAllowance( address owner, address spender, uint256 increment ) internal virtual; function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal virtual; } /** * SPDX-License-Identifier: MIT * * Copyright (c) 2016 Smart Contract Solutions, Inc. * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; import { Ownable } from "./Ownable.sol"; /** * @notice Base contract which allows children to implement an emergency stop * mechanism * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol * Modifications: * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018) * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018) * 3. Removed whenPaused (6/14/2018) * 4. Switches ownable library to use ZeppelinOS (7/12/18) * 5. Remove constructor (7/13/18) * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20) * 7. Make public functions external (5/27/20) */ contract Pausable is Ownable { event Pause(); event Unpause(); event PauserChanged(address indexed newAddress); address public pauser; bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused, "Pausable: paused"); _; } /** * @dev throws if called by any account other than the pauser */ modifier onlyPauser() { require(msg.sender == pauser, "Pausable: caller is not the pauser"); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyPauser { paused = true; emit Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyPauser { paused = false; emit Unpause(); } /** * @notice Updates the pauser address. * @param _newPauser The address of the new pauser. */ function updatePauser(address _newPauser) external onlyOwner { require( _newPauser != address(0), "Pausable: new pauser is the zero address" ); pauser = _newPauser; emit PauserChanged(pauser); } } /** * SPDX-License-Identifier: MIT * * Copyright (c) 2018 zOS Global Limited. * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @notice The Ownable contract has an owner address, and provides basic * authorization control functions * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol * Modifications: * 1. Consolidate OwnableStorage into this contract (7/13/18) * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20) * 3. Make public functions external (5/27/20) */ contract Ownable { // Owner of the contract address private _owner; /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event OwnershipTransferred(address previousOwner, address newOwner); /** * @dev The constructor sets the original owner of the contract to the sender account. */ constructor() public { setOwner(msg.sender); } /** * @dev Tells the address of the owner * @return the address of the owner */ function owner() external view returns (address) { return _owner; } /** * @dev Sets a new owner address */ function setOwner(address newOwner) internal { _owner = newOwner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == _owner, "Ownable: caller is not the owner"); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) external onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); emit OwnershipTransferred(_owner, newOwner); setOwner(newOwner); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol"; import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol"; import { Ownable } from "./Ownable.sol"; import { Pausable } from "./Pausable.sol"; import { Blacklistable } from "./Blacklistable.sol"; /** * @title FiatToken * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable { using SafeMath for uint256; string public name; string public symbol; uint8 public decimals; string public currency; address public masterMinter; bool internal initialized; /// @dev A mapping that stores the balance and blacklist states for a given address. /// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise). /// The last 255 bits define the balance for the address. mapping(address => uint256) internal balanceAndBlacklistStates; mapping(address => mapping(address => uint256)) internal allowed; uint256 internal totalSupply_ = 0; mapping(address => bool) internal minters; mapping(address => uint256) internal minterAllowed; event Mint(address indexed minter, address indexed to, uint256 amount); event Burn(address indexed burner, uint256 amount); event MinterConfigured(address indexed minter, uint256 minterAllowedAmount); event MinterRemoved(address indexed oldMinter); event MasterMinterChanged(address indexed newMasterMinter); /** * @notice Initializes the fiat token contract. * @param tokenName The name of the fiat token. * @param tokenSymbol The symbol of the fiat token. * @param tokenCurrency The fiat currency that the token represents. * @param tokenDecimals The number of decimals that the token uses. * @param newMasterMinter The masterMinter address for the fiat token. * @param newPauser The pauser address for the fiat token. * @param newBlacklister The blacklister address for the fiat token. * @param newOwner The owner of the fiat token. */ function initialize( string memory tokenName, string memory tokenSymbol, string memory tokenCurrency, uint8 tokenDecimals, address newMasterMinter, address newPauser, address newBlacklister, address newOwner ) public { require(!initialized, "FiatToken: contract is already initialized"); require( newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); require( newPauser != address(0), "FiatToken: new pauser is the zero address" ); require( newBlacklister != address(0), "FiatToken: new blacklister is the zero address" ); require( newOwner != address(0), "FiatToken: new owner is the zero address" ); name = tokenName; symbol = tokenSymbol; currency = tokenCurrency; decimals = tokenDecimals; masterMinter = newMasterMinter; pauser = newPauser; blacklister = newBlacklister; setOwner(newOwner); initialized = true; } /** * @dev Throws if called by any account other than a minter. */ modifier onlyMinters() { require(minters[msg.sender], "FiatToken: caller is not a minter"); _; } /** * @notice Mints fiat tokens to an address. * @param _to The address that will receive the minted tokens. * @param _amount The amount of tokens to mint. Must be less than or equal * to the minterAllowance of the caller. * @return True if the operation was successful. */ function mint(address _to, uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) notBlacklisted(_to) returns (bool) { require(_to != address(0), "FiatToken: mint to the zero address"); require(_amount > 0, "FiatToken: mint amount not greater than 0"); uint256 mintingAllowedAmount = minterAllowed[msg.sender]; require( _amount <= mintingAllowedAmount, "FiatToken: mint amount exceeds minterAllowance" ); totalSupply_ = totalSupply_.add(_amount); _setBalance(_to, _balanceOf(_to).add(_amount)); minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount); emit Mint(msg.sender, _to, _amount); emit Transfer(address(0), _to, _amount); return true; } /** * @dev Throws if called by any account other than the masterMinter */ modifier onlyMasterMinter() { require( msg.sender == masterMinter, "FiatToken: caller is not the masterMinter" ); _; } /** * @notice Gets the minter allowance for an account. * @param minter The address to check. * @return The remaining minter allowance for the account. */ function minterAllowance(address minter) external view returns (uint256) { return minterAllowed[minter]; } /** * @notice Checks if an account is a minter. * @param account The address to check. * @return True if the account is a minter, false if the account is not a minter. */ function isMinter(address account) external view returns (bool) { return minters[account]; } /** * @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on * behalf of the token owner. * @param owner The token owner's address. * @param spender The spender's address. * @return The remaining allowance. */ function allowance(address owner, address spender) external override view returns (uint256) { return allowed[owner][spender]; } /** * @notice Gets the totalSupply of the fiat token. * @return The totalSupply of the fiat token. */ function totalSupply() external override view returns (uint256) { return totalSupply_; } /** * @notice Gets the fiat token balance of an account. * @param account The address to check. * @return balance The fiat token balance of the account. */ function balanceOf(address account) external override view returns (uint256) { return _balanceOf(account); } /** * @notice Sets a fiat token allowance for a spender to spend on behalf of the caller. * @param spender The spender's address. * @param value The allowance amount. * @return True if the operation was successful. */ function approve(address spender, uint256 value) external virtual override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Internal function to set allowance. * @param owner Token owner's address. * @param spender Spender's address. * @param value Allowance amount. */ function _approve( address owner, address spender, uint256 value ) internal override { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @notice Transfers tokens from an address to another by spending the caller's allowance. * @dev The caller must have some fiat token allowance on the payer's tokens. * @param from Payer's address. * @param to Payee's address. * @param value Transfer amount. * @return True if the operation was successful. */ function transferFrom( address from, address to, uint256 value ) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(from) notBlacklisted(to) returns (bool) { require( value <= allowed[from][msg.sender], "ERC20: transfer amount exceeds allowance" ); _transfer(from, to, value); allowed[from][msg.sender] = allowed[from][msg.sender].sub(value); return true; } /** * @notice Transfers tokens from the caller. * @param to Payee's address. * @param value Transfer amount. * @return True if the operation was successful. */ function transfer(address to, uint256 value) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(to) returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Internal function to process transfers. * @param from Payer's address. * @param to Payee's address. * @param value Transfer amount. */ function _transfer( address from, address to, uint256 value ) internal override { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); require( value <= _balanceOf(from), "ERC20: transfer amount exceeds balance" ); _setBalance(from, _balanceOf(from).sub(value)); _setBalance(to, _balanceOf(to).add(value)); emit Transfer(from, to, value); } /** * @notice Adds or updates a new minter with a mint allowance. * @param minter The address of the minter. * @param minterAllowedAmount The minting amount allowed for the minter. * @return True if the operation was successful. */ function configureMinter(address minter, uint256 minterAllowedAmount) external whenNotPaused onlyMasterMinter returns (bool) { minters[minter] = true; minterAllowed[minter] = minterAllowedAmount; emit MinterConfigured(minter, minterAllowedAmount); return true; } /** * @notice Removes a minter. * @param minter The address of the minter to remove. * @return True if the operation was successful. */ function removeMinter(address minter) external onlyMasterMinter returns (bool) { minters[minter] = false; minterAllowed[minter] = 0; emit MinterRemoved(minter); return true; } /** * @notice Allows a minter to burn some of its own tokens. * @dev The caller must be a minter, must not be blacklisted, and the amount to burn * should be less than or equal to the account's balance. * @param _amount the amount of tokens to be burned. */ function burn(uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) { uint256 balance = _balanceOf(msg.sender); require(_amount > 0, "FiatToken: burn amount not greater than 0"); require(balance >= _amount, "FiatToken: burn amount exceeds balance"); totalSupply_ = totalSupply_.sub(_amount); _setBalance(msg.sender, balance.sub(_amount)); emit Burn(msg.sender, _amount); emit Transfer(msg.sender, address(0), _amount); } /** * @notice Updates the master minter address. * @param _newMasterMinter The address of the new master minter. */ function updateMasterMinter(address _newMasterMinter) external onlyOwner { require( _newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); masterMinter = _newMasterMinter; emit MasterMinterChanged(masterMinter); } /** * @inheritdoc Blacklistable */ function _blacklist(address _account) internal override { _setBlacklistState(_account, true); } /** * @inheritdoc Blacklistable */ function _unBlacklist(address _account) internal override { _setBlacklistState(_account, false); } /** * @dev Helper method that sets the blacklist state of an account. * @param _account The address of the account. * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted. */ function _setBlacklistState(address _account, bool _shouldBlacklist) internal virtual { _deprecatedBlacklisted[_account] = _shouldBlacklist; } /** * @dev Helper method that sets the balance of an account. * @param _account The address of the account. * @param _balance The new fiat token balance of the account. */ function _setBalance(address _account, uint256 _balance) internal virtual { balanceAndBlacklistStates[_account] = _balance; } /** * @inheritdoc Blacklistable */ function _isBlacklisted(address _account) internal virtual override view returns (bool) { return _deprecatedBlacklisted[_account]; } /** * @dev Helper method to obtain the balance of an account. * @param _account The address of the account. * @return The fiat token balance of the account. */ function _balanceOf(address _account) internal virtual view returns (uint256) { return balanceAndBlacklistStates[_account]; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { Ownable } from "./Ownable.sol"; /** * @title Blacklistable Token * @dev Allows accounts to be blacklisted by a "blacklister" role */ abstract contract Blacklistable is Ownable { address public blacklister; mapping(address => bool) internal _deprecatedBlacklisted; event Blacklisted(address indexed _account); event UnBlacklisted(address indexed _account); event BlacklisterChanged(address indexed newBlacklister); /** * @dev Throws if called by any account other than the blacklister. */ modifier onlyBlacklister() { require( msg.sender == blacklister, "Blacklistable: caller is not the blacklister" ); _; } /** * @dev Throws if argument account is blacklisted. * @param _account The address to check. */ modifier notBlacklisted(address _account) { require( !_isBlacklisted(_account), "Blacklistable: account is blacklisted" ); _; } /** * @notice Checks if account is blacklisted. * @param _account The address to check. * @return True if the account is blacklisted, false if the account is not blacklisted. */ function isBlacklisted(address _account) external view returns (bool) { return _isBlacklisted(_account); } /** * @notice Adds account to blacklist. * @param _account The address to blacklist. */ function blacklist(address _account) external onlyBlacklister { _blacklist(_account); emit Blacklisted(_account); } /** * @notice Removes account from blacklist. * @param _account The address to remove from the blacklist. */ function unBlacklist(address _account) external onlyBlacklister { _unBlacklist(_account); emit UnBlacklisted(_account); } /** * @notice Updates the blacklister address. * @param _newBlacklister The address of the new blacklister. */ function updateBlacklister(address _newBlacklister) external onlyOwner { require( _newBlacklister != address(0), "Blacklistable: new blacklister is the zero address" ); blacklister = _newBlacklister; emit BlacklisterChanged(blacklister); } /** * @dev Checks if account is blacklisted. * @param _account The address to check. * @return true if the account is blacklisted, false otherwise. */ function _isBlacklisted(address _account) internal virtual view returns (bool); /** * @dev Helper method that blacklists an account. * @param _account The address to blacklist. */ function _blacklist(address _account) internal virtual; /** * @dev Helper method that unblacklists an account. * @param _account The address to unblacklist. */ function _unBlacklist(address _account) internal virtual; } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; abstract contract AbstractFiatTokenV1 is IERC20 { function _approve( address owner, address spender, uint256 value ) internal virtual; function _transfer( address from, address to, uint256 value ) internal virtual; } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { Ownable } from "../v1/Ownable.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; contract Rescuable is Ownable { using SafeERC20 for IERC20; address private _rescuer; event RescuerChanged(address indexed newRescuer); /** * @notice Returns current rescuer * @return Rescuer's address */ function rescuer() external view returns (address) { return _rescuer; } /** * @notice Revert if called by any account other than the rescuer. */ modifier onlyRescuer() { require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer"); _; } /** * @notice Rescue ERC20 tokens locked up in this contract. * @param tokenContract ERC20 token contract address * @param to Recipient address * @param amount Amount to withdraw */ function rescueERC20( IERC20 tokenContract, address to, uint256 amount ) external onlyRescuer { tokenContract.safeTransfer(to, amount); } /** * @notice Updates the rescuer address. * @param newRescuer The address of the new rescuer. */ function updateRescuer(address newRescuer) external onlyOwner { require( newRescuer != address(0), "Rescuable: new rescuer is the zero address" ); _rescuer = newRescuer; emit RescuerChanged(newRescuer); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; import { Rescuable } from "./Rescuable.sol"; /** * @title FiatTokenV1_1 * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1_1 is FiatTokenV1, Rescuable { } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { ECRecover } from "./ECRecover.sol"; import { IERC1271 } from "../interface/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets. * * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`. * @param signer Address of the claimed signer * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash */ function isValidSignatureNow( address signer, bytes32 digest, bytes memory signature ) external view returns (bool) { if (!isContract(signer)) { return ECRecover.recover(digest, signature) == signer; } return isValidERC1271SignatureNow(signer, digest, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * @param signer Address of the claimed signer * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 digest, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector( IERC1271.isValidSignature.selector, digest, signature ) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } /** * @dev Checks if the input address is a smart contract. */ function isContract(address addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(addr) } return size > 0; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * @param domainSeparator Domain separator * @param structHash Hashed EIP-712 data struct * @return digest The keccak256 digest of an EIP-712 typed data */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @title EIP712 * @notice A library that provides EIP712 helper functions */ library EIP712 { /** * @notice Make EIP712 domain separator * @param name Contract name * @param version Contract version * @param chainId Blockchain ID * @return Domain separator */ function makeDomainSeparator( string memory name, string memory version, uint256 chainId ) internal view returns (bytes32) { return keccak256( abi.encode( // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)") 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f, keccak256(bytes(name)), keccak256(bytes(version)), chainId, address(this) ) ); } /** * @notice Make EIP712 domain separator * @param name Contract name * @param version Contract version * @return Domain separator */ function makeDomainSeparator(string memory name, string memory version) internal view returns (bytes32) { uint256 chainId; assembly { chainId := chainid() } return makeDomainSeparator(name, version, chainId); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @title ECRecover * @notice A library that provides a safe ECDSA recovery function */ library ECRecover { /** * @notice Recover signer's address from a signed message * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol * Modifications: Accept v, r, and s as separate arguments * @param digest Keccak-256 hash digest of the signed message * @param v v of the signature * @param r r of the signature * @param s s of the signature * @return Signer address */ function recover( bytes32 digest, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if ( uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 ) { revert("ECRecover: invalid signature 's' value"); } if (v != 27 && v != 28) { revert("ECRecover: invalid signature 'v' value"); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(digest, v, r, s); require(signer != address(0), "ECRecover: invalid signature"); return signer; } /** * @notice Recover signer's address from a signed message * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash * @return Signer address */ function recover(bytes32 digest, bytes memory signature) internal pure returns (address) { require(signature.length == 65, "ECRecover: invalid signature length"); bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return recover(digest, v, r, s); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with the provided data hash * @return magicValue bytes4 magic value 0x1626ba7e when function passes */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
File 6 of 6: FluidLiquidityUserModule
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol) pragma solidity ^0.8.0; import "../token/ERC20/IERC20.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits. /// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision /// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can /// result in significant gas cost reduction due to storage space reduction. /// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision. /// @dev roundUp is more like a increase 1, which happens everytime for the same number. /// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number. library BigMathMinified { /// @dev constants to use for `roundUp` input param to increase readability bool internal constant ROUND_DOWN = false; bool internal constant ROUND_UP = true; /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision). /// e.g.: /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits] /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary) /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000 /// ^-------------------- 51(exponent) -------------- ^ /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563) /// exponent = 0011,0011 (51) /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179) /// /// @param normal number which needs to be converted into Big Number /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision)) /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent)) /// @param roundUp signals if result should be rounded down or up /// @return bigNumber converted bigNumber (coefficient << exponent) function toBigNumber( uint256 normal, uint256 coefficientSize, uint256 exponentSize, bool roundUp ) internal pure returns (uint256 bigNumber) { assembly { let lastBit_ let number_ := normal if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit_ := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit_ := add(lastBit_, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit_ := add(lastBit_, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit_ := add(lastBit_, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit_ := add(lastBit_, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit_ := add(lastBit_, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit_ := add(lastBit_, 0x2) } if gt(number_, 0x1) { lastBit_ := add(lastBit_, 1) } if gt(number_, 0) { lastBit_ := add(lastBit_, 1) } if lt(lastBit_, coefficientSize) { // for throw exception lastBit_ := coefficientSize } let exponent := sub(lastBit_, coefficientSize) let coefficient := shr(exponent, normal) if and(roundUp, gt(exponent, 0)) { // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number coefficient := add(coefficient, 1) if eq(shl(coefficientSize, 1), coefficient) { // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1. coefficient := shl(sub(coefficientSize, 1), 1) exponent := add(exponent, 1) } } if iszero(lt(exponent, shl(exponentSize, 1))) { // if exponent is >= exponentSize, the normal number is too big to fit within // BigNumber with too small sizes for coefficient and exponent revert(0, 0) } bigNumber := shl(exponentSize, coefficient) bigNumber := add(bigNumber, exponent) } } /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask` function fromBigNumber( uint256 bigNumber, uint256 exponentSize, uint256 exponentMask ) internal pure returns (uint256 normal) { assembly { let coefficient := shr(exponentSize, bigNumber) let exponent := and(bigNumber, exponentMask) normal := shl(exponent, coefficient) } } /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format). /// e.g. /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 /// lastBit = ^--------------------------------- 83 ----------------------------------------^ function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) { assembly { let number_ := normal if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit := add(lastBit, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit := add(lastBit, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit := add(lastBit, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit := add(lastBit, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit := add(lastBit, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit := add(lastBit, 0x2) } if gt(number_, 0x1) { lastBit := add(lastBit, 1) } if gt(number_, 0) { lastBit := add(lastBit, 1) } } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; library LibsErrorTypes { /***********************************| | LiquidityCalcs | |__________________________________*/ /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet) uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001; /// @notice thrown when rate data is set to a version that is not implemented uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002; /// @notice thrown when the calculated borrow rate turns negative. This should never happen. uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003; /***********************************| | SafeTransfer | |__________________________________*/ /// @notice thrown when safe transfer from for an ERC20 fails uint256 internal constant SafeTransfer__TransferFromFailed = 71001; /// @notice thrown when safe transfer for an ERC20 fails uint256 internal constant SafeTransfer__TransferFailed = 71002; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol"; import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol"; import { BigMathMinified } from "./bigMathMinified.sol"; /// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices, /// borrow rate, withdrawal / borrow limits, revenue amount. library LiquidityCalcs { error FluidLiquidityCalcsError(uint256 errorId_); /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535 event BorrowRateMaxCap(); /// @dev constants as from Liquidity variables.sol uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant TWELVE_DECIMALS = 1e12; uint256 internal constant X14 = 0x3fff; uint256 internal constant X15 = 0x7fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; /////////////////////////////////////////////////////////////////////////// ////////// CALC EXCHANGE PRICES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage. /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @return supplyExchangePrice_ updated supplyExchangePrice /// @return borrowExchangePrice_ updated borrowExchangePrice function calcExchangePrices( uint256 exchangePricesAndConfig_ ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { // Extracting exchange prices supplyExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64; borrowExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64; if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero); } uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate unchecked { // last timestamp can not be > current timestamp uint256 secondsSinceLastUpdate_ = block.timestamp - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33); uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) & X15; if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) { // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // calculate new borrow exchange price. // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_. // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0. borrowExchangePrice_ += (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS); // FOR SUPPLY EXCHANGE PRICE: // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest. // formula: previous price * supply rate * secondsSinceLastUpdate_. // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And // ratioSupplyYield = utilization * supplyRatio * borrowRatio // // Example: // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50. // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%. // yield is 10 (so half a year must have passed). // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60. // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70. // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2). // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield). // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield): // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%. // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5% // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5% // increase in supplyExchangePrice, assuming 100 as previous price. // 100 * 22,5% * 1/2 (half a year) = 0,1125. // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20. // -------------- 1. calculate ratioSupplyYield -------------------------------- // step1: utilization * supplyRatio (or actually part of lenders receiving yield) // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15; if (temp_ == 1) { // if no raw supply: no exchange price update needed // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest if (temp_ & 1 == 1) { // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = temp_ >> 1; // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return // in the if statement a little above. // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee. // supplyRawInterest must become worth 30. totalSupply must become 110. // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2. // so ratioSupplyYield must come out as 2.5 (250%). // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted. temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision) // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%). temp_ = // utilization * (100% + 100% / supplyRatio) (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS); // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31 } else { // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) temp_ = temp_ >> 1; // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0 // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%). temp_ = // 1e27 * utilization * (100% + supplyRatio) / 100% (1e27 * ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS + temp_)) / (FOUR_DECIMALS * FOUR_DECIMALS); // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27 } // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31 // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield) if (borrowRatio_ & 1 == 1) { // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered // at the beginning of the method by early return if `borrowRatio_ == 1`. // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%. // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed. // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666% // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_); // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield). } else { // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%. borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_))); // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%. // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101. // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield). } // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%. // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8 temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54; // 2. calculate supply rate // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield. // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate) // Note that all calculation divisions for supplyExchangePrice are rounded down. // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest // but more suppliers not earning interest. temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate temp_ * // ratioSupplyYield (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17. // 3. calculate increase in supply exchange price supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS)); // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0. } } /////////////////////////////////////////////////////////////////////////// ////////// CALC REVENUE ///////// /////////////////////////////////////////////////////////////////////////// /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage /// and the current balance of the Fluid liquidity contract for the token. /// @param totalAmounts_ total amounts packed uint256 read from storage /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this))) /// @return revenueAmount_ collectable revenue amount function calcRevenue( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_ ) internal view returns (uint256 revenueAmount_) { // @dev no need to super-optimize this method as it is only used by admin // calculate the new exchange prices based on earned interest (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_); // total supply = interest free + with interest converted from raw uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_); if (totalSupply_ > 0) { // available revenue: balanceOf(token) + totalBorrowings - totalLendings. revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_); // ensure there is no possible case because of rounding etc. where this would revert, // explicitly check if > revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0; // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization // can only be revenue. } else { // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck revenueAmount_ = liquidityTokenBalance_; } } /////////////////////////////////////////////////////////////////////////// ////////// CALC LIMITS ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates withdrawal limit before an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitBeforeOperate( uint256 userSupplyData_, uint256 userSupply_ ) internal view returns (uint256 currentWithdrawalLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet). // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet. // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be // a deposit anyway. Important is that it would not revert. // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit // is the fully expanded limit immediately. // extract last set withdrawal limit uint256 lastWithdrawalLimit_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64; lastWithdrawalLimit_ = (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) << (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK); if (lastWithdrawalLimit_ == 0) { // withdrawal limit is not activated. Max withdrawal allowed return 0; } uint256 maxWithdrawableLimit_; uint256 temp_; unchecked { // extract max withdrawable percent of user supply and // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed. // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxWithdrawableLimit_ = (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) / FOUR_DECIMALS; // time elapsed since last withdrawal limit was set (in seconds) // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before. // last timestamp can not be > current timestamp temp_ = block.timestamp - ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33); } // calculate withdrawable amount of expandPercent that is elapsed of expandDuration. // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%. // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed. temp_ = (maxWithdrawableLimit_ * temp_) / // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit) ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0 // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount. // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration, // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0 // which will cause minimum (fully expanded) withdrawal limit to be set in lines below. unchecked { // underflow explicitly checked & handled currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0; // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion. // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - maxWithdrawableLimit_; } // if withdrawal limit is decreased below minimum then set minimum // (e.g. when more than expandDuration time has elapsed) if (temp_ > currentWithdrawalLimit_) { currentWithdrawalLimit_ = temp_; } } /// @dev calculates withdrawal limit after an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate` /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitAfterOperate( uint256 userSupplyData_, uint256 userSupply_, uint256 newWithdrawalLimit_ ) internal pure returns (uint256) { // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // if user supply is below base limit then max withdrawals are allowed if (userSupply_ < temp_) { return 0; } // temp_ => withdrawal limit expandPercent (is in 1e2 decimals) temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14; unchecked { // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent)) // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS); } // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit. // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where // increased deposit amount outpaces withrawals. if (temp_ > newWithdrawalLimit_) { return temp_; } return newWithdrawalLimit_; } /// @dev calculates borrow limit before an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitBeforeOperate( uint256 userBorrowData_, uint256 userBorrow_ ) internal view returns (uint256 currentBorrowLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit. // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0. // temp_ = extract borrow expand percent (is in 1e2 decimals) uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; uint256 maxExpansionLimit_; uint256 maxExpandedBorrowLimit_; unchecked { // calculate max expansion limit: Max amount limit can expand to since last interaction // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS); // calculate max borrow limit: Max point limit can increase to since last interaction maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_; } // currentBorrowLimit_ = extract base borrow limit currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; currentBorrowLimit_ = (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) << (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK); if (maxExpandedBorrowLimit_ < currentBorrowLimit_) { return currentBorrowLimit_; } // time elapsed since last borrow limit was set (in seconds) unchecked { // temp_ = timeElapsed_ (last timestamp can not be > current timestamp) temp_ = block.timestamp - ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp } // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit currentBorrowLimit_ = // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`. // divisor is extract expand duration (after this, full expansion to expandPercentage happened). ((maxExpansionLimit_ * temp_) / ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0 // extract last set borrow limit BigMathMinified.fromBigNumber( (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion, // so set to `maxExpandedBorrowLimit_` in that case. // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big) if (currentBorrowLimit_ > maxExpandedBorrowLimit_) { currentBorrowLimit_ = maxExpandedBorrowLimit_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (currentBorrowLimit_ > temp_) { currentBorrowLimit_ = temp_; } } /// @dev calculates borrow limit after an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate` /// @return borrowLimit_ updated borrow limit that should be written to storage. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitAfterOperate( uint256 userBorrowData_, uint256 userBorrow_, uint256 newBorrowLimit_ ) internal pure returns (uint256 borrowLimit_) { // temp_ = extract borrow expand percent uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals) unchecked { // borrowLimit_ = calculate maximum borrow limit at full expansion. // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS); } // temp_ = extract base borrow limit temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (borrowLimit_ < temp_) { // below base limit, borrow limit is always base limit return temp_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // make sure fully expanded borrow limit is not above hard max borrow limit if (borrowLimit_ > temp_) { borrowLimit_ = temp_; } // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit. // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant) if (newBorrowLimit_ > borrowLimit_) { return borrowLimit_; } return newBorrowLimit_; } /////////////////////////////////////////////////////////////////////////// ////////// CALC RATES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev Calculates new borrow rate from utilization for a token /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500) function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) { // extract rate version: 4 bits (0xF) starting from bit 0 uint256 rateVersion_ = (rateData_ & 0xF); if (rateVersion_ == 1) { rate_ = calcRateV1(rateData_, utilization_); } else if (rateVersion_ == 2) { rate_ = calcRateV2(rateData_, utilization_); } else { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion); } if (rate_ > X16) { // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space. // this is unlikely to ever happen if configs stay within expected levels. rate_ = X16; // emit event to more easily become aware emit BorrowRateMaxCap(); } } /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e2 precision function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v1 (one kink) ------------------------------------------------------ /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 188 bits => 68-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16; if (utilization_ < kink1_) { // if utilization is less than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // else utilization is greater than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink1_; x2_ = FOUR_DECIMALS; // 100% } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e4 precision function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v2 (two kinks) ----------------------------------------------------- /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 156 bits => 100-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16; if (utilization_ < kink1_) { // if utilization is less than kink1 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // extract kink2: 16 bits (0xFFFF) starting from bit 52 uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16; if (utilization_ < kink2_) { // if utilization is less than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; x1_ = kink1_; x2_ = kink2_; } else { // else utilization is greater than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink2_; x2_ = FOUR_DECIMALS; } } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_` function getTotalSupply( uint256 totalAmounts_, uint256 supplyExchangePrice_ ) internal pure returns (uint256 totalSupply_) { // totalSupply_ => supplyInterestFree totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64; totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK); uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK); // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION); } /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_` function getTotalBorrow( uint256 totalAmounts_, uint256 borrowExchangePrice_ ) internal pure returns (uint256 totalBorrow_) { // totalBorrow_ => borrowInterestFree // no & mask needed for borrow interest free as it occupies the last bits in the storage slot totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK); uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64; totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK); // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice library that helps in reading / working with storage slot data of Fluid Liquidity. /// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual /// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver. library LiquiditySlotsLink { /// @dev storage slot for status at Liquidity uint256 internal constant LIQUIDITY_STATUS_SLOT = 1; /// @dev storage slot for auths mapping at Liquidity uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2; /// @dev storage slot for guardians mapping at Liquidity uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3; /// @dev storage slot for user class mapping at Liquidity uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4; /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5; /// @dev storage slot for rateData mapping at Liquidity uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6; /// @dev storage slot for totalAmounts mapping at Liquidity uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7; /// @dev storage slot for user supply double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8; /// @dev storage slot for user borrow double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11; // -------------------------------- // @dev stacked uint256 storage slots bits position data for each: // ExchangePricesAndConfig uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0; uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16; uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30; uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44; uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234; uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249; // RateData: uint256 internal constant BITS_RATE_DATA_VERSION = 0; // RateData: V1 uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52; // RateData: V2 uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84; // TotalAmounts uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0; uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192; // UserSupplyData uint256 internal constant BITS_USER_SUPPLY_MODE = 0; uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1; uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65; uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200; uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255; // UserBorrowData uint256 internal constant BITS_USER_BORROW_MODE = 0; uint256 internal constant BITS_USER_BORROW_AMOUNT = 1; uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65; uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200; uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218; uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255; // Configs2 uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0; // -------------------------------- /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_` function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) { return keccak256(abi.encode(key_, slot_)); } /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_` function calculateDoubleMappingStorageSlot( uint256 slot_, address key1_, address key2_ ) internal pure returns (bytes32) { bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_)); return keccak256(abi.encode(key2_, intermediateSlot_)); } } // SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol"; /// @notice provides minimalistic methods for safe transfers, e.g. ERC20 safeTransferFrom library SafeTransfer { uint256 internal constant MAX_NATIVE_TRANSFER_GAS = 20000; // pass max. 20k gas for native transfers error FluidSafeTransferError(uint256 errorId_); /// @dev Transfer `amount_` of `token_` from `from_` to `to_`, spending the approval given by `from_` to the /// calling contract. If `token_` returns no value, non-reverting calls are assumed to be successful. /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L31-L63 function safeTransferFrom(address token_, address from_, address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from_" argument. mstore(add(freeMemoryPointer, 36), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to_" argument. mstore(add(freeMemoryPointer, 68), amount_) // Append the "amount_" argument. Masking not required as it's a full 32 byte type. success_ := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token_, 0, freeMemoryPointer, 100, 0, 32) ) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFromFailed); } } /// @dev Transfer `amount_` of `token_` to `to_`. /// If `token_` returns no value, non-reverting calls are assumed to be successful. /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L65-L95 function safeTransfer(address token_, address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to_" argument. mstore(add(freeMemoryPointer, 36), amount_) // Append the "amount_" argument. Masking not required as it's a full 32 byte type. success_ := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token_, 0, freeMemoryPointer, 68, 0, 32) ) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed); } } /// @dev Transfer `amount_` of ` native token to `to_`. /// Minimally modified from Solmate SafeTransferLib (Custom Error): /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L15-L25 function safeTransferNative(address to_, uint256 amount_) internal { bool success_; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. Pass limited gas success_ := call(MAX_NATIVE_TRANSFER_GAS, to_, amount_, 0, 0, 0, 0) } if (!success_) { revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed); } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { Variables } from "./variables.sol"; import { ErrorTypes } from "../errorTypes.sol"; import { Error } from "../error.sol"; /// @dev ReentrancyGuard based on OpenZeppelin implementation. /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/security/ReentrancyGuard.sol abstract contract ReentrancyGuard is Variables, Error { uint8 internal constant REENTRANCY_NOT_ENTERED = 1; uint8 internal constant REENTRANCY_ENTERED = 2; constructor() { // on logic contracts, switch reentrancy to entered so no call is possible (forces delegatecall) _status = REENTRANCY_ENTERED; } /// @dev Prevents a contract from calling itself, directly or indirectly. /// See OpenZeppelin implementation for more info modifier reentrancy() { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == REENTRANCY_ENTERED) { revert FluidLiquidityError(ErrorTypes.LiquidityHelpers__Reentrancy); } // Any calls to nonReentrant after this point will fail _status = REENTRANCY_ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = REENTRANCY_NOT_ENTERED; } } abstract contract CommonHelpers is ReentrancyGuard { /// @dev Returns the current admin (governance). function _getGovernanceAddr() internal view returns (address governance_) { assembly { governance_ := sload(GOVERNANCE_SLOT) } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; contract ConstantVariables { /// @dev Storage slot with the admin of the contract. Logic from "proxy.sol". /// This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is validated in the constructor. bytes32 internal constant GOVERNANCE_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12; /// @dev address that is mapped to the chain native token address internal constant NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev decimals for native token // !! Double check compatibility with all code if this ever changes for a deployment !! uint8 internal constant NATIVE_TOKEN_DECIMALS = 18; /// @dev Minimum token decimals for any token that can be listed at Liquidity (inclusive) uint8 internal constant MIN_TOKEN_DECIMALS = 6; /// @dev Maximum token decimals for any token that can be listed at Liquidity (inclusive) uint8 internal constant MAX_TOKEN_DECIMALS = 18; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; /// @dev limit any total amount to be half of type(uint128).max (~3.4e38) at type(int128).max (~1.7e38) as safety /// measure for any potential overflows / unexpected outcomes. This is checked for total borrow / supply. uint256 internal constant MAX_TOKEN_AMOUNT_CAP = uint256(uint128(type(int128).max)); /// @dev limit for triggering a revert if sent along excess input amount diff is bigger than this percentage (in 1e2) uint256 internal constant MAX_INPUT_AMOUNT_EXCESS = 100; // 1% /// @dev if this bytes32 is set in the calldata, then token transfers are skipped as long as Liquidity layer is on the winning side. bytes32 internal constant SKIP_TRANSFERS = keccak256(bytes("SKIP_TRANSFERS")); /// @dev time after which a write to storage of exchangePricesAndConfig will happen always. uint256 internal constant FORCE_STORAGE_WRITE_AFTER_TIME = 1 days; /// @dev constants used for BigMath conversion from and to storage uint256 internal constant SMALL_COEFFICIENT_SIZE = 10; uint256 internal constant DEFAULT_COEFFICIENT_SIZE = 56; uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; /// @dev constants to increase readability for using bit masks uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant TWELVE_DECIMALS = 1e12; uint256 internal constant X8 = 0xff; uint256 internal constant X14 = 0x3fff; uint256 internal constant X15 = 0x7fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; } contract Variables is ConstantVariables { /// @dev address of contract that gets sent the revenue. Configurable by governance address internal _revenueCollector; // 12 bytes empty // ----- storage slot 1 ------ /// @dev paused status: status = 1 -> normal. status = 2 -> paused. /// not tightly packed with revenueCollector address to allow for potential changes later that improve gas more /// (revenueCollector is only rarely used by admin methods, where optimization is not as important). /// to be replaced with transient storage once EIP-1153 Transient storage becomes available with dencun upgrade. uint256 internal _status; // ----- storage slot 2 ------ /// @dev Auths can set most config values. E.g. contracts that automate certain flows like e.g. adding a new fToken. /// Governance can add/remove auths. /// Governance is auth by default mapping(address => uint256) internal _isAuth; // ----- storage slot 3 ------ /// @dev Guardians can pause lower class users /// Governance can add/remove guardians /// Governance is guardian by default mapping(address => uint256) internal _isGuardian; // ----- storage slot 4 ------ /// @dev class defines which protocols can be paused by guardians /// Currently there are 2 classes: 0 can be paused by guardians. 1 cannot be paused by guardians. /// New protocols are added as class 0 and will be upgraded to 1 over time. mapping(address => uint256) internal _userClass; // ----- storage slot 5 ------ /// @dev exchange prices and token config per token: token -> exchange prices & config /// First 16 bits => 0- 15 => borrow rate (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 14 bits => 16- 29 => fee on interest from borrowers to lenders (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). configurable. /// Next 14 bits => 30- 43 => last stored utilization (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// Next 14 bits => 44- 57 => update on storage threshold (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). configurable. /// Next 33 bits => 58- 90 => last update timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 64 bits => 91-154 => supply exchange price (1e12 -> max value 18_446_744,073709551615) /// Next 64 bits => 155-218 => borrow exchange price (1e12 -> max value 18_446_744,073709551615) /// Next 1 bit => 219-219 => if 0 then ratio is supplyInterestFree / supplyWithInterest else ratio is supplyWithInterest / supplyInterestFree /// Next 14 bits => 220-233 => supplyRatio: supplyInterestFree / supplyWithInterest (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// Next 1 bit => 234-234 => if 0 then ratio is borrowInterestFree / borrowWithInterest else ratio is borrowWithInterest / borrowInterestFree /// Next 14 bits => 235-248 => borrowRatio: borrowInterestFree / borrowWithInterest (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// Next 1 bit => 249-249 => flag for token uses config storage slot 2. (signals SLOAD for additional config slot is needed during execution) /// Last 6 bits => 250-255 => empty for future use /// if more free bits are needed in the future, update on storage threshold bits could be reduced to 7 bits /// (can plan to add `MAX_TOKEN_CONFIG_UPDATE_THRESHOLD` but need to adjust more bits) /// if more bits absolutely needed then we can convert fee, utilization, update on storage threshold, /// supplyRatio & borrowRatio from 14 bits to 10bits (1023 max number) where 1000 = 100% & 1 = 0.1% mapping(address => uint256) internal _exchangePricesAndConfig; // ----- storage slot 6 ------ /// @dev Rate related data per token: token -> rate data /// READ (SLOAD): all actions; WRITE (SSTORE): only on set config admin actions /// token => rate related data /// First 4 bits => 0-3 => rate version /// rest of the bits are rate dependent: /// For rate v1 (one kink) ------------------------------------------------------ /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 188 bits => 68-255 => empty for future use /// For rate v2 (two kinks) ----------------------------------------------------- /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 156 bits => 100-255 => empty for future use mapping(address => uint256) internal _rateData; // ----- storage slot 7 ------ /// @dev total supply / borrow amounts for with / without interest per token: token -> amounts /// First 64 bits => 0- 63 => total supply with interest in raw (totalSupply = totalSupplyRaw * supplyExchangePrice); BigMath: 56 | 8 /// Next 64 bits => 64-127 => total interest free supply in normal token amount (totalSupply = totalSupply); BigMath: 56 | 8 /// Next 64 bits => 128-191 => total borrow with interest in raw (totalBorrow = totalBorrowRaw * borrowExchangePrice); BigMath: 56 | 8 /// Next 64 bits => 192-255 => total interest free borrow in normal token amount (totalBorrow = totalBorrow); BigMath: 56 | 8 mapping(address => uint256) internal _totalAmounts; // ----- storage slot 8 ------ /// @dev user supply data per token: user -> token -> data /// First 1 bit => 0 => mode: user supply with or without interest /// 0 = without, amounts are in normal (i.e. no need to multiply with exchange price) /// 1 = with interest, amounts are in raw (i.e. must multiply with exchange price to get actual token amounts) /// Next 64 bits => 1- 64 => user supply amount (normal or raw depends on 1st bit); BigMath: 56 | 8 /// Next 64 bits => 65-128 => previous user withdrawal limit (normal or raw depends on 1st bit); BigMath: 56 | 8 /// Next 33 bits => 129-161 => last triggered process timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 14 bits => 162-175 => expand withdrawal limit percentage (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). /// @dev shrinking is instant /// Next 24 bits => 176-199 => withdrawal limit expand duration in seconds.(Max value 16_777_215; ~4_660 hours, ~194 days) /// Next 18 bits => 200-217 => base withdrawal limit: below this, 100% withdrawals can be done (normal or raw depends on 1st bit); BigMath: 10 | 8 /// Next 37 bits => 218-254 => empty for future use /// Last bit => 255-255 => is user paused (1 = paused, 0 = not paused) mapping(address => mapping(address => uint256)) internal _userSupplyData; // ----- storage slot 9 ------ /// @dev user borrow data per token: user -> token -> data /// First 1 bit => 0 => mode: user borrow with or without interest /// 0 = without, amounts are in normal (i.e. no need to multiply with exchange price) /// 1 = with interest, amounts are in raw (i.e. must multiply with exchange price to get actual token amounts) /// Next 64 bits => 1- 64 => user borrow amount (normal or raw depends on 1st bit); BigMath: 56 | 8 /// Next 64 bits => 65-128 => previous user debt ceiling (normal or raw depends on 1st bit); BigMath: 56 | 8 /// Next 33 bits => 129-161 => last triggered process timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 14 bits => 162-175 => expand debt ceiling percentage (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// @dev shrinking is instant /// Next 24 bits => 176-199 => debt ceiling expand duration in seconds (Max value 16_777_215; ~4_660 hours, ~194 days) /// Next 18 bits => 200-217 => base debt ceiling: below this, there's no debt ceiling limits (normal or raw depends on 1st bit); BigMath: 10 | 8 /// Next 18 bits => 218-235 => max debt ceiling: absolute maximum debt ceiling can expand to (normal or raw depends on 1st bit); BigMath: 10 | 8 /// Next 19 bits => 236-254 => empty for future use /// Last bit => 255-255 => is user paused (1 = paused, 0 = not paused) mapping(address => mapping(address => uint256)) internal _userBorrowData; // ----- storage slot 10 ------ /// @dev list of allowed tokens at Liquidity. tokens that are once configured can never be completely removed. so this /// array is append-only. address[] internal _listedTokens; // ----- storage slot 11 ------ /// @dev expanded token configs per token: token -> config data slot 2. /// Use of this is signaled by `_exchangePricesAndConfig` bit 249. /// First 14 bits => 0- 13 => max allowed utilization (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). configurable. /// Last 242 bits => 14-255 => empty for future use mapping(address => uint256) internal _configs2; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; contract Error { error FluidLiquidityError(uint256 errorId_); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; library ErrorTypes { /***********************************| | Admin Module | |__________________________________*/ /// @notice thrown when an input address is zero uint256 internal constant AdminModule__AddressZero = 10001; /// @notice thrown when msg.sender is not governance uint256 internal constant AdminModule__OnlyGovernance = 10002; /// @notice thrown when msg.sender is not auth uint256 internal constant AdminModule__OnlyAuths = 10003; /// @notice thrown when msg.sender is not guardian uint256 internal constant AdminModule__OnlyGuardians = 10004; /// @notice thrown when base withdrawal limit, base debt limit or max withdrawal limit is sent as 0 uint256 internal constant AdminModule__LimitZero = 10005; /// @notice thrown whenever an invalid input param is given uint256 internal constant AdminModule__InvalidParams = 10006; /// @notice thrown if user class 1 is paused (can not be paused) uint256 internal constant AdminModule__UserNotPausable = 10007; /// @notice thrown if user is tried to be unpaused but is not paused in the first place uint256 internal constant AdminModule__UserNotPaused = 10008; /// @notice thrown if user is not defined yet: Governance didn't yet set any config for this user on a particular token uint256 internal constant AdminModule__UserNotDefined = 10009; /// @notice thrown if a token is configured in an invalid order: 1. Set rate config for token 2. Set token config 3. allow any user. uint256 internal constant AdminModule__InvalidConfigOrder = 10010; /// @notice thrown if revenue is collected when revenue collector address is not set uint256 internal constant AdminModule__RevenueCollectorNotSet = 10011; /// @notice all ValueOverflow errors below are thrown if a certain input param overflows the allowed storage size uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_ZERO = 10012; uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_KINK = 10013; uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_MAX = 10014; uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_KINK1 = 10015; uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_KINK2 = 10016; uint256 internal constant AdminModule__ValueOverflow__RATE_AT_UTIL_MAX_V2 = 10017; uint256 internal constant AdminModule__ValueOverflow__FEE = 10018; uint256 internal constant AdminModule__ValueOverflow__THRESHOLD = 10019; uint256 internal constant AdminModule__ValueOverflow__EXPAND_PERCENT = 10020; uint256 internal constant AdminModule__ValueOverflow__EXPAND_DURATION = 10021; uint256 internal constant AdminModule__ValueOverflow__EXPAND_PERCENT_BORROW = 10022; uint256 internal constant AdminModule__ValueOverflow__EXPAND_DURATION_BORROW = 10023; uint256 internal constant AdminModule__ValueOverflow__EXCHANGE_PRICES = 10024; uint256 internal constant AdminModule__ValueOverflow__UTILIZATION = 10025; /// @notice thrown when an address is not a contract uint256 internal constant AdminModule__AddressNotAContract = 10026; uint256 internal constant AdminModule__ValueOverflow__MAX_UTILIZATION = 10027; /// @notice thrown if a token that is being listed has not between 6 and 18 decimals uint256 internal constant AdminModule__TokenInvalidDecimalsRange = 10028; /***********************************| | User Module | |__________________________________*/ /// @notice thrown when user operations are paused for an interacted token uint256 internal constant UserModule__UserNotDefined = 11001; /// @notice thrown when user operations are paused for an interacted token uint256 internal constant UserModule__UserPaused = 11002; /// @notice thrown when user's try to withdraw below withdrawal limit uint256 internal constant UserModule__WithdrawalLimitReached = 11003; /// @notice thrown when user's try to borrow above borrow limit uint256 internal constant UserModule__BorrowLimitReached = 11004; /// @notice thrown when user sent supply/withdraw and borrow/payback both as 0 uint256 internal constant UserModule__OperateAmountsZero = 11005; /// @notice thrown when user sent supply/withdraw or borrow/payback both as bigger than 2**128 uint256 internal constant UserModule__OperateAmountOutOfBounds = 11006; /// @notice thrown when the operate amount for supply / withdraw / borrow / payback is below the minimum amount /// that would cause a storage difference after BigMath & rounding imprecision. Extremely unlikely to ever happen /// for all normal use-cases. uint256 internal constant UserModule__OperateAmountInsufficient = 11007; /// @notice thrown when withdraw or borrow is executed but withdrawTo or borrowTo is the zero address uint256 internal constant UserModule__ReceiverNotDefined = 11008; /// @notice thrown when user did send excess or insufficient amount (beyond rounding issues) uint256 internal constant UserModule__TransferAmountOutOfBounds = 11009; /// @notice thrown when user sent msg.value along for an operation not for the native token uint256 internal constant UserModule__MsgValueForNonNativeToken = 11010; /// @notice thrown when a borrow operation is done when utilization is above 100% uint256 internal constant UserModule__MaxUtilizationReached = 11011; /// @notice all ValueOverflow errors below are thrown if a certain input param or calc result overflows the allowed storage size uint256 internal constant UserModule__ValueOverflow__EXCHANGE_PRICES = 11012; uint256 internal constant UserModule__ValueOverflow__UTILIZATION = 11013; uint256 internal constant UserModule__ValueOverflow__TOTAL_SUPPLY = 11014; uint256 internal constant UserModule__ValueOverflow__TOTAL_BORROW = 11015; /// @notice thrown when SKIP_TRANSFERS is set but the input params are invalid for skipping transfers uint256 internal constant UserModule__SkipTransfersInvalid = 11016; /***********************************| | LiquidityHelpers | |__________________________________*/ /// @notice thrown when a reentrancy happens uint256 internal constant LiquidityHelpers__Reentrancy = 12001; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; contract Events { /// @notice emitted on any `operate()` execution: deposit / supply / withdraw / borrow. /// includes info related to the executed operation, new total amounts (packed uint256 of BigMath numbers as in storage) /// and exchange prices (packed uint256 as in storage). /// @param user protocol that triggered this operation (e.g. via an fToken or via Vault protocol) /// @param token token address for which this operation was executed /// @param supplyAmount supply amount for the operation. if >0 then a deposit happened, if <0 then a withdrawal happened. /// if 0 then nothing. /// @param borrowAmount borrow amount for the operation. if >0 then a borrow happened, if <0 then a payback happened. /// if 0 then nothing. /// @param withdrawTo address that funds where withdrawn to (if supplyAmount <0) /// @param borrowTo address that funds where borrowed to (if borrowAmount >0) /// @param totalAmounts updated total amounts, stacked uint256 as written to storage: /// First 64 bits => 0- 63 => total supply with interest in raw (totalSupply = totalSupplyRaw * supplyExchangePrice); BigMath: 56 | 8 /// Next 64 bits => 64-127 => total interest free supply in normal token amount (totalSupply = totalSupply); BigMath: 56 | 8 /// Next 64 bits => 128-191 => total borrow with interest in raw (totalBorrow = totalBorrowRaw * borrowExchangePrice); BigMath: 56 | 8 /// Next 64 bits => 192-255 => total interest free borrow in normal token amount (totalBorrow = totalBorrow); BigMath: 56 | 8 /// @param exchangePricesAndConfig updated exchange prices and configs storage slot. Contains updated supply & borrow exchange price: /// First 16 bits => 0- 15 => borrow rate (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 14 bits => 16- 29 => fee on interest from borrowers to lenders (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). configurable. /// Next 14 bits => 30- 43 => last stored utilization (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// Next 14 bits => 44- 57 => update on storage threshold (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383). configurable. /// Next 33 bits => 58- 90 => last update timestamp (enough until 16 March 2242 -> max value 8589934591) /// Next 64 bits => 91-154 => supply exchange price (1e12 -> max value 18_446_744,073709551615) /// Next 64 bits => 155-218 => borrow exchange price (1e12 -> max value 18_446_744,073709551615) /// Next 1 bit => 219-219 => if 0 then ratio is supplyInterestFree / supplyWithInterest else ratio is supplyWithInterest / supplyInterestFree /// Next 14 bits => 220-233 => supplyRatio: supplyInterestFree / supplyWithInterest (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) /// Next 1 bit => 234-234 => if 0 then ratio is borrowInterestFree / borrowWithInterest else ratio is borrowWithInterest / borrowInterestFree /// Next 14 bits => 235-248 => borrowRatio: borrowInterestFree / borrowWithInterest (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) event LogOperate( address indexed user, address indexed token, int256 supplyAmount, int256 borrowAmount, address withdrawTo, address borrowTo, uint256 totalAmounts, uint256 exchangePricesAndConfig ); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol"; import { FixedPointMathLib } from "solmate/src/utils/FixedPointMathLib.sol"; import { BigMathMinified } from "../../libraries/bigMathMinified.sol"; import { LiquidityCalcs } from "../../libraries/liquidityCalcs.sol"; import { LiquiditySlotsLink } from "../../libraries/liquiditySlotsLink.sol"; import { SafeTransfer } from "../../libraries/safeTransfer.sol"; import { CommonHelpers } from "../common/helpers.sol"; import { Events } from "./events.sol"; import { ErrorTypes } from "../errorTypes.sol"; import { Error } from "../error.sol"; interface IProtocol { function liquidityCallback(address token_, uint256 amount_, bytes calldata data_) external; } abstract contract CoreInternals is Error, CommonHelpers, Events { using BigMathMinified for uint256; /// @dev supply or withdraw for both with interest & interest free. /// positive `amount_` is deposit, negative `amount_` is withdraw. function _supplyOrWithdraw( address token_, int256 amount_, uint256 supplyExchangePrice_ ) internal returns (int256 newSupplyInterestRaw_, int256 newSupplyInterestFree_) { uint256 userSupplyData_ = _userSupplyData[msg.sender][token_]; if (userSupplyData_ == 0) { revert FluidLiquidityError(ErrorTypes.UserModule__UserNotDefined); } if ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_IS_PAUSED) & 1 == 1) { revert FluidLiquidityError(ErrorTypes.UserModule__UserPaused); } // extract user supply amount uint256 userSupply_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64; userSupply_ = (userSupply_ >> DEFAULT_EXPONENT_SIZE) << (userSupply_ & DEFAULT_EXPONENT_MASK); // calculate current, updated (expanded etc.) withdrawal limit uint256 newWithdrawalLimit_ = LiquidityCalcs.calcWithdrawalLimitBeforeOperate(userSupplyData_, userSupply_); // calculate updated user supply amount if (userSupplyData_ & 1 == 1) { // mode: with interest if (amount_ > 0) { // convert amount from normal to raw (divide by exchange price) -> round down for deposit newSupplyInterestRaw_ = (amount_ * int256(EXCHANGE_PRICES_PRECISION)) / int256(supplyExchangePrice_); userSupply_ = userSupply_ + uint256(newSupplyInterestRaw_); } else { // convert amount from normal to raw (divide by exchange price) -> round up for withdraw newSupplyInterestRaw_ = -int256( FixedPointMathLib.mulDivUp(uint256(-amount_), EXCHANGE_PRICES_PRECISION, supplyExchangePrice_) ); // if withdrawal is more than user's supply then solidity will throw here userSupply_ = userSupply_ - uint256(-newSupplyInterestRaw_); } } else { // mode: without interest newSupplyInterestFree_ = amount_; if (newSupplyInterestFree_ > 0) { userSupply_ = userSupply_ + uint256(newSupplyInterestFree_); } else { // if withdrawal is more than user's supply then solidity will throw here userSupply_ = userSupply_ - uint256(-newSupplyInterestFree_); } } if (amount_ < 0 && userSupply_ < newWithdrawalLimit_) { // if withdraw, then check the user supply after withdrawal is above withdrawal limit revert FluidLiquidityError(ErrorTypes.UserModule__WithdrawalLimitReached); } // calculate withdrawal limit to store as previous withdrawal limit in storage newWithdrawalLimit_ = LiquidityCalcs.calcWithdrawalLimitAfterOperate( userSupplyData_, userSupply_, newWithdrawalLimit_ ); // Converting user's supply into BigNumber userSupply_ = userSupply_.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_DOWN ); if (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64) == userSupply_) { // make sure that operate amount is not so small that it wouldn't affect storage update. if a difference // is present then rounding will be in the right direction to avoid any potential manipulation. revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountInsufficient); } // Converting withdrawal limit into BigNumber newWithdrawalLimit_ = newWithdrawalLimit_.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_DOWN ); // Updating on storage _userSupplyData[msg.sender][token_] = // mask to update bits 1-161 (supply amount, withdrawal limit, timestamp) (userSupplyData_ & 0xfffffffffffffffffffffffc0000000000000000000000000000000000000001) | (userSupply_ << LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) | // converted to BigNumber can not overflow (newWithdrawalLimit_ << LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) | // converted to BigNumber can not overflow (block.timestamp << LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP); } /// @dev borrow or payback for both with interest & interest free. /// positive `amount_` is borrow, negative `amount_` is payback. function _borrowOrPayback( address token_, int256 amount_, uint256 borrowExchangePrice_ ) internal returns (int256 newBorrowInterestRaw_, int256 newBorrowInterestFree_) { uint256 userBorrowData_ = _userBorrowData[msg.sender][token_]; if (userBorrowData_ == 0) { revert FluidLiquidityError(ErrorTypes.UserModule__UserNotDefined); } if ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_IS_PAUSED) & 1 == 1) { revert FluidLiquidityError(ErrorTypes.UserModule__UserPaused); } // extract user borrow amount uint256 userBorrow_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64; userBorrow_ = (userBorrow_ >> DEFAULT_EXPONENT_SIZE) << (userBorrow_ & DEFAULT_EXPONENT_MASK); // calculate current, updated (expanded etc.) borrow limit uint256 newBorrowLimit_ = LiquidityCalcs.calcBorrowLimitBeforeOperate(userBorrowData_, userBorrow_); // calculate updated user borrow amount if (userBorrowData_ & 1 == 1) { // with interest if (amount_ > 0) { // convert amount normal to raw (divide by exchange price) -> round up for borrow newBorrowInterestRaw_ = int256( FixedPointMathLib.mulDivUp(uint256(amount_), EXCHANGE_PRICES_PRECISION, borrowExchangePrice_) ); userBorrow_ = userBorrow_ + uint256(newBorrowInterestRaw_); } else { // convert amount from normal to raw (divide by exchange price) -> round down for payback newBorrowInterestRaw_ = (amount_ * int256(EXCHANGE_PRICES_PRECISION)) / int256(borrowExchangePrice_); userBorrow_ = userBorrow_ - uint256(-newBorrowInterestRaw_); } } else { // without interest newBorrowInterestFree_ = amount_; if (newBorrowInterestFree_ > 0) { // borrowing userBorrow_ = userBorrow_ + uint256(newBorrowInterestFree_); } else { // payback userBorrow_ = userBorrow_ - uint256(-newBorrowInterestFree_); } } if (amount_ > 0 && userBorrow_ > newBorrowLimit_) { // if borrow, then check the user borrow amount after borrowing is below borrow limit revert FluidLiquidityError(ErrorTypes.UserModule__BorrowLimitReached); } // calculate borrow limit to store as previous borrow limit in storage newBorrowLimit_ = LiquidityCalcs.calcBorrowLimitAfterOperate(userBorrowData_, userBorrow_, newBorrowLimit_); // Converting user's borrowings into bignumber userBorrow_ = userBorrow_.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_UP ); if (((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64) == userBorrow_) { // make sure that operate amount is not so small that it wouldn't affect storage update. if a difference // is present then rounding will be in the right direction to avoid any potential manipulation. revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountInsufficient); } // Converting borrow limit into bignumber newBorrowLimit_ = newBorrowLimit_.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_DOWN ); // Updating on storage _userBorrowData[msg.sender][token_] = // mask to update bits 1-161 (borrow amount, borrow limit, timestamp) (userBorrowData_ & 0xfffffffffffffffffffffffc0000000000000000000000000000000000000001) | (userBorrow_ << LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) | // converted to BigNumber can not overflow (newBorrowLimit_ << LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) | // converted to BigNumber can not overflow (block.timestamp << LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP); } /// @dev checks if `supplyAmount_` & `borrowAmount_` amounts transfers can be skipped (DEX-protocol use-case). /// - Requirements: /// - ` callbackData_` MUST be encoded so that "from" address is the last 20 bytes in the last 32 bytes slot, /// also for native token operations where liquidityCallback is not triggered! /// from address must come at last position if there is more data. I.e. encode like: /// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end /// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end. /// - this "from" address must match withdrawTo_ or borrowTo_ and must be == `msg.sender` /// - `callbackData_` must in addition to the from address as described above include bytes32 SKIP_TRANSFERS /// in the slot before (bytes 32 to 63) /// - `msg.value` must be 0. /// - Amounts must be either: /// - supply(+) == borrow(+), withdraw(-) == payback(-). /// - Liquidity must be on the winning side (deposit < borrow OR payback < withdraw). function _isInOutBalancedOut( int256 supplyAmount_, int256 borrowAmount_, address withdrawTo_, address borrowTo_, bytes memory callbackData_ ) internal view returns (bool) { // callbackData_ being at least > 63 in length is already verified before calling this method. // 1. SKIP_TRANSFERS must be set in callbackData_ 32 bytes before last 32 bytes bytes32 skipTransfers_; assembly { skipTransfers_ := mload( add( // add padding for length as present for dynamic arrays in memory add(callbackData_, 32), // Load from memory offset of 2 slots (64 bytes): 1 slot: bytes32 skipTransfers_ + 2 slot: address inFrom_ sub(mload(callbackData_), 64) ) ) } if (skipTransfers_ != SKIP_TRANSFERS) { return false; } // after here, if invalid, protocol intended to skip transfers, but something is invalid. so we don't just // NOT skip transfers, we actually revert because there must be something wrong on protocol side. // 2. amounts must be // a) equal: supply(+) == borrow(+), withdraw(-) == payback(-) OR // b) Liquidity must be on the winning side. // EITHER: // deposit and borrow, both positive. there must be more borrow than deposit. // so supply amount must be less, e.g. 80 deposit and 100 borrow. // OR: // withdraw and payback, both negative. there must be more withdraw than payback. // so supplyAmount must be less (e.g. -100 withdraw and -80 payback ) if ( msg.value != 0 || // no msg.value should be sent along when trying to skip transfers. supplyAmount_ == 0 || borrowAmount_ == 0 || // it must be a 2 actions operation, not just e.g. only deposit or only payback. supplyAmount_ > borrowAmount_ // allow case a) and b): supplyAmount must be <= ) { revert FluidLiquidityError(ErrorTypes.UserModule__SkipTransfersInvalid); } // 3. inFrom_ must be in last 32 bytes and must match receiver address inFrom_; assembly { inFrom_ := mload( add( // add padding for length as present for dynamic arrays in memory add(callbackData_, 32), // assembly expects address with leading zeros / left padded so need to use 32 as length here sub(mload(callbackData_), 32) ) ) } if (supplyAmount_ > 0) { // deposit and borrow if (!(inFrom_ == borrowTo_ && inFrom_ == msg.sender)) { revert FluidLiquidityError(ErrorTypes.UserModule__SkipTransfersInvalid); } } else { // withdraw and payback if (!(inFrom_ == withdrawTo_ && inFrom_ == msg.sender)) { revert FluidLiquidityError(ErrorTypes.UserModule__SkipTransfersInvalid); } } return true; } } interface IZtakingPool { ///@notice Stake a specified amount of a particular supported token into the Ztaking Pool ///@param _token The token to deposit/stake in the Ztaking Pool ///@param _for The user to deposit/stake on behalf of ///@param _amount The amount of token to deposit/stake into the Ztaking Pool function depositFor(address _token, address _for, uint256 _amount) external; ///@notice Withdraw a specified amount of a particular supported token previously staked into the Ztaking Pool ///@param _token The token to withdraw from the Ztaking Pool ///@param _amount The amount of token to withdraw from the Ztaking Pool function withdraw(address _token, uint256 _amount) external; } /// @title Fluid Liquidity UserModule /// @notice Fluid Liquidity public facing endpoint logic contract that implements the `operate()` method. /// operate can be used to deposit, withdraw, borrow & payback funds, given that they have the necessary /// user config allowance. Interacting users must be allowed via the Fluid Liquidity AdminModule first. /// Intended users are thus allow-listed protocols, e.g. the Lending protocol (fTokens), Vault protocol etc. /// @dev For view methods / accessing data, use the "LiquidityResolver" periphery contract. contract FluidLiquidityUserModule is CoreInternals { using BigMathMinified for uint256; address private constant WEETH = 0xCd5fE23C85820F7B72D0926FC9b05b43E359b7ee; address private constant WEETHS = 0x917ceE801a67f933F2e6b33fC0cD1ED2d5909D88; IZtakingPool private constant ZIRCUIT = IZtakingPool(0xF047ab4c75cebf0eB9ed34Ae2c186f3611aEAfa6); /// @dev struct for vars used in operate() that would otherwise cause a Stack too deep error struct OperateMemoryVars { bool skipTransfers; uint256 supplyExchangePrice; uint256 borrowExchangePrice; uint256 supplyRawInterest; uint256 supplyInterestFree; uint256 borrowRawInterest; uint256 borrowInterestFree; uint256 totalAmounts; uint256 exchangePricesAndConfig; } /// @notice inheritdoc IFluidLiquidity function operate( address token_, int256 supplyAmount_, int256 borrowAmount_, address withdrawTo_, address borrowTo_, bytes calldata callbackData_ ) external payable reentrancy returns (uint256 memVar3_, uint256 memVar4_) { if (supplyAmount_ == 0 && borrowAmount_ == 0) { revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountsZero); } if ( supplyAmount_ < type(int128).min || supplyAmount_ > type(int128).max || borrowAmount_ < type(int128).min || borrowAmount_ > type(int128).max ) { revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountOutOfBounds); } if ((supplyAmount_ < 0 && withdrawTo_ == address(0)) || (borrowAmount_ > 0 && borrowTo_ == address(0))) { revert FluidLiquidityError(ErrorTypes.UserModule__ReceiverNotDefined); } if (token_ != NATIVE_TOKEN_ADDRESS && msg.value > 0) { // revert: there should not be msg.value if the token is not the native token revert FluidLiquidityError(ErrorTypes.UserModule__MsgValueForNonNativeToken); } OperateMemoryVars memory o_; // @dev temporary memory variables used as helper in between to avoid assigning new memory variables uint256 memVar_; // memVar2_ => operateAmountIn: deposit + payback uint256 memVar2_ = uint256((supplyAmount_ > 0 ? supplyAmount_ : int256(0))) + uint256((borrowAmount_ < 0 ? -borrowAmount_ : int256(0))); // check if token transfers can be skipped. see `_isInOutBalancedOut` for details. if ( callbackData_.length > 63 && _isInOutBalancedOut(supplyAmount_, borrowAmount_, withdrawTo_, borrowTo_, callbackData_) ) { memVar2_ = 0; // set to 0 to skip transfers IN o_.skipTransfers = true; // set flag to true to skip transfers OUT } if (token_ == NATIVE_TOKEN_ADDRESS) { unchecked { // check supply and payback amount is covered by available sent msg.value and // protection that msg.value is not unintentionally way more than actually used in operate() if ( memVar2_ > msg.value || msg.value > (memVar2_ * (FOUR_DECIMALS + MAX_INPUT_AMOUNT_EXCESS)) / FOUR_DECIMALS ) { revert FluidLiquidityError(ErrorTypes.UserModule__TransferAmountOutOfBounds); } } memVar2_ = 0; // set to 0 to skip transfers IN more gas efficient. No need for native token. } // if supply or payback or both -> transfer token amount from sender to here. // for native token this is already covered by msg.value checks in operate(). memVar2_ is set to 0 // for same amounts in same operate(): supply(+) == borrow(+), withdraw(-) == payback(-). memVar2_ is set to 0 if (memVar2_ > 0) { // memVar_ => initial token balance of this contract memVar_ = IERC20(token_).balanceOf(address(this)); // trigger protocol to send token amount and pass callback data IProtocol(msg.sender).liquidityCallback(token_, memVar2_, callbackData_); // memVar_ => current token balance of this contract - initial balance memVar_ = IERC20(token_).balanceOf(address(this)) - memVar_; unchecked { if ( memVar_ < memVar2_ || memVar_ > (memVar2_ * (FOUR_DECIMALS + MAX_INPUT_AMOUNT_EXCESS)) / FOUR_DECIMALS ) { // revert if protocol did not send enough to cover supply / payback // or if protocol sent more than expected, with 1% tolerance for any potential rounding issues (and for DEX revenue cut) revert FluidLiquidityError(ErrorTypes.UserModule__TransferAmountOutOfBounds); } } // ---------- temporary code start ----------------------- // temporary addition for weETH & weETHs: if token is weETH or weETHs -> deposit to Zircuit if (token_ == WEETH) { if (IERC20(WEETH).allowance(address(this), address(ZIRCUIT)) > 0) { ZIRCUIT.depositFor(WEETH, address(this), memVar_); } } else if (token_ == WEETHS) { if ((IERC20(WEETHS).allowance(address(this), address(ZIRCUIT)) > 0)) { ZIRCUIT.depositFor(WEETHS, address(this), memVar_); } } // temporary code also includes: WEETH, WEETHS & ZIRCUIT constant, IZtakingPool interface // ---------- temporary code end ----------------------- } o_.exchangePricesAndConfig = _exchangePricesAndConfig[token_]; // calculate updated exchange prices (o_.supplyExchangePrice, o_.borrowExchangePrice) = LiquidityCalcs.calcExchangePrices( o_.exchangePricesAndConfig ); // Extract total supply / borrow amounts for the token o_.totalAmounts = _totalAmounts[token_]; memVar_ = o_.totalAmounts & X64; o_.supplyRawInterest = (memVar_ >> DEFAULT_EXPONENT_SIZE) << (memVar_ & DEFAULT_EXPONENT_MASK); memVar_ = (o_.totalAmounts >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64; o_.supplyInterestFree = (memVar_ >> DEFAULT_EXPONENT_SIZE) << (memVar_ & DEFAULT_EXPONENT_MASK); memVar_ = (o_.totalAmounts >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64; o_.borrowRawInterest = (memVar_ >> DEFAULT_EXPONENT_SIZE) << (memVar_ & DEFAULT_EXPONENT_MASK); // no & mask needed for borrow interest free as it occupies the last bits in the storage slot memVar_ = (o_.totalAmounts >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); o_.borrowInterestFree = (memVar_ >> DEFAULT_EXPONENT_SIZE) << (memVar_ & DEFAULT_EXPONENT_MASK); if (supplyAmount_ != 0) { // execute supply or withdraw and update total amounts { uint256 totalAmountsBefore_ = o_.totalAmounts; (int256 newSupplyInterestRaw_, int256 newSupplyInterestFree_) = _supplyOrWithdraw( token_, supplyAmount_, o_.supplyExchangePrice ); // update total amounts. this is done here so that values are only written to storage once // if a borrow / payback also happens in the same `operate()` call if (newSupplyInterestFree_ == 0) { // Note newSupplyInterestFree_ can ONLY be 0 if mode is with interest, // easy to check as that variable is NOT the result of a dvision etc. // supply or withdraw with interest -> raw amount if (newSupplyInterestRaw_ > 0) { o_.supplyRawInterest += uint256(newSupplyInterestRaw_); } else { unchecked { o_.supplyRawInterest = o_.supplyRawInterest > uint256(-newSupplyInterestRaw_) ? o_.supplyRawInterest - uint256(-newSupplyInterestRaw_) : 0; // withdraw amount is > total supply -> withdraw total supply down to 0 // Note no risk here as if the user withdraws more than supplied it would revert already // earlier. Total amounts can end up < sum of user amounts because of rounding } } // Note check for revert {UserModule}__ValueOverflow__TOTAL_SUPPLY is further down when we anyway // calculate the normal amount from raw // Converting the updated total amount into big number for storage memVar_ = o_.supplyRawInterest.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_DOWN ); // update total supply with interest at total amounts in storage (only update changed values) o_.totalAmounts = // mask to update bits 0-63 (o_.totalAmounts & 0xffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000) | memVar_; // converted to BigNumber can not overflow } else { // supply or withdraw interest free -> normal amount if (newSupplyInterestFree_ > 0) { o_.supplyInterestFree += uint256(newSupplyInterestFree_); } else { unchecked { o_.supplyInterestFree = o_.supplyInterestFree > uint256(-newSupplyInterestFree_) ? o_.supplyInterestFree - uint256(-newSupplyInterestFree_) : 0; // withdraw amount is > total supply -> withdraw total supply down to 0 // Note no risk here as if the user withdraws more than supplied it would revert already // earlier. Total amounts can end up < sum of user amounts because of rounding } } if (o_.supplyInterestFree > MAX_TOKEN_AMOUNT_CAP) { // only withdrawals allowed if total supply interest free reaches MAX_TOKEN_AMOUNT_CAP revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__TOTAL_SUPPLY); } // Converting the updated total amount into big number for storage memVar_ = o_.supplyInterestFree.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_DOWN ); // update total supply interest free at total amounts in storage (only update changed values) o_.totalAmounts = // mask to update bits 64-127 (o_.totalAmounts & 0xffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff) | (memVar_ << LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE); // converted to BigNumber can not overflow } if (totalAmountsBefore_ == o_.totalAmounts) { // make sure that operate amount is not so small that it wouldn't affect storage update. if a difference // is present then rounding will be in the right direction to avoid any potential manipulation. revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountInsufficient); } } } if (borrowAmount_ != 0) { // execute borrow or payback and update total amounts { uint256 totalAmountsBefore_ = o_.totalAmounts; (int256 newBorrowInterestRaw_, int256 newBorrowInterestFree_) = _borrowOrPayback( token_, borrowAmount_, o_.borrowExchangePrice ); // update total amounts. this is done here so that values are only written to storage once // if a supply / withdraw also happens in the same `operate()` call if (newBorrowInterestFree_ == 0) { // Note newBorrowInterestFree_ can ONLY be 0 if mode is with interest, // easy to check as that variable is NOT the result of a dvision etc. // borrow or payback with interest -> raw amount if (newBorrowInterestRaw_ > 0) { o_.borrowRawInterest += uint256(newBorrowInterestRaw_); } else { unchecked { o_.borrowRawInterest = o_.borrowRawInterest > uint256(-newBorrowInterestRaw_) ? o_.borrowRawInterest - uint256(-newBorrowInterestRaw_) : 0; // payback amount is > total borrow -> payback total borrow down to 0 } } // Note check for revert UserModule__ValueOverflow__TOTAL_BORROW is further down when we anyway // calculate the normal amount from raw // Converting the updated total amount into big number for storage memVar_ = o_.borrowRawInterest.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_UP ); // update total borrow with interest at total amounts in storage (only update changed values) o_.totalAmounts = // mask to update bits 128-191 (o_.totalAmounts & 0xffffffffffffffff0000000000000000ffffffffffffffffffffffffffffffff) | (memVar_ << LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST); // converted to BigNumber can not overflow } else { // borrow or payback interest free -> normal amount if (newBorrowInterestFree_ > 0) { o_.borrowInterestFree += uint256(newBorrowInterestFree_); } else { unchecked { o_.borrowInterestFree = o_.borrowInterestFree > uint256(-newBorrowInterestFree_) ? o_.borrowInterestFree - uint256(-newBorrowInterestFree_) : 0; // payback amount is > total borrow -> payback total borrow down to 0 } } if (o_.borrowInterestFree > MAX_TOKEN_AMOUNT_CAP) { // only payback allowed if total borrow interest free reaches MAX_TOKEN_AMOUNT_CAP revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__TOTAL_BORROW); } // Converting the updated total amount into big number for storage memVar_ = o_.borrowInterestFree.toBigNumber( DEFAULT_COEFFICIENT_SIZE, DEFAULT_EXPONENT_SIZE, BigMathMinified.ROUND_UP ); // update total borrow interest free at total amounts in storage (only update changed values) o_.totalAmounts = // mask to update bits 192-255 (o_.totalAmounts & 0x0000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff) | (memVar_ << LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); // converted to BigNumber can not overflow } if (totalAmountsBefore_ == o_.totalAmounts) { // make sure that operate amount is not so small that it wouldn't affect storage update. if a difference // is present then rounding will be in the right direction to avoid any potential manipulation. revert FluidLiquidityError(ErrorTypes.UserModule__OperateAmountInsufficient); } } } // Updating total amounts on storage _totalAmounts[token_] = o_.totalAmounts; { // update exchange prices / utilization / ratios // exchangePricesAndConfig is only written to storage if either utilization, supplyRatio or borrowRatio // change is above the required storageUpdateThreshold config value or if the last write was > 1 day ago. // 1. calculate new supply ratio, borrow ratio & utilization. // 2. check if last storage write was > 1 day ago. // 3. If false -> check if utilization is above update threshold // 4. If false -> check if supply ratio is above update threshold // 5. If false -> check if borrow ratio is above update threshold // 6. If any true, then update on storage // ########## calculating supply ratio ########## // supplyWithInterest in normal amount memVar3_ = ((o_.supplyRawInterest * o_.supplyExchangePrice) / EXCHANGE_PRICES_PRECISION); if (memVar3_ > MAX_TOKEN_AMOUNT_CAP && supplyAmount_ > 0) { // only withdrawals allowed if total supply raw reaches MAX_TOKEN_AMOUNT_CAP revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__TOTAL_SUPPLY); } // memVar_ => total supply. set here so supplyWithInterest (memVar3_) is only calculated once. For utilization memVar_ = o_.supplyInterestFree + memVar3_; if (memVar3_ > o_.supplyInterestFree) { // memVar3_ is ratio with 1 bit as 0 as supply interest raw is bigger memVar3_ = ((o_.supplyInterestFree * FOUR_DECIMALS) / memVar3_) << 1; // because of checking to divide by bigger amount, ratio can never be > 100% } else if (memVar3_ < o_.supplyInterestFree) { // memVar3_ is ratio with 1 bit as 1 as supply interest free is bigger memVar3_ = (((memVar3_ * FOUR_DECIMALS) / o_.supplyInterestFree) << 1) | 1; // because of checking to divide by bigger amount, ratio can never be > 100% } else if (memVar_ > 0) { // supplies match exactly (memVar3_ == o_.supplyInterestFree) and total supplies are not 0 // -> set ratio to 1 (with first bit set to 0, doesn't matter) memVar3_ = FOUR_DECIMALS << 1; } // else if total supply = 0, memVar3_ (supplyRatio) is already 0. // ########## calculating borrow ratio ########## // borrowWithInterest in normal amount memVar4_ = ((o_.borrowRawInterest * o_.borrowExchangePrice) / EXCHANGE_PRICES_PRECISION); if (memVar4_ > MAX_TOKEN_AMOUNT_CAP && borrowAmount_ > 0) { // only payback allowed if total borrow raw reaches MAX_TOKEN_AMOUNT_CAP revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__TOTAL_BORROW); } // memVar2_ => total borrow. set here so borrowWithInterest (memVar4_) is only calculated once. For utilization memVar2_ = o_.borrowInterestFree + memVar4_; if (memVar4_ > o_.borrowInterestFree) { // memVar4_ is ratio with 1 bit as 0 as borrow interest raw is bigger memVar4_ = ((o_.borrowInterestFree * FOUR_DECIMALS) / memVar4_) << 1; // because of checking to divide by bigger amount, ratio can never be > 100% } else if (memVar4_ < o_.borrowInterestFree) { // memVar4_ is ratio with 1 bit as 1 as borrow interest free is bigger memVar4_ = (((memVar4_ * FOUR_DECIMALS) / o_.borrowInterestFree) << 1) | 1; // because of checking to divide by bigger amount, ratio can never be > 100% } else if (memVar2_ > 0) { // borrows match exactly (memVar4_ == o_.borrowInterestFree) and total borrows are not 0 // -> set ratio to 1 (with first bit set to 0, doesn't matter) memVar4_ = FOUR_DECIMALS << 1; } // else if total borrow = 0, memVar4_ (borrowRatio) is already 0. // calculate utilization. If there is no supply, utilization must be 0 (avoid division by 0) uint256 utilization_; if (memVar_ > 0) { utilization_ = ((memVar2_ * FOUR_DECIMALS) / memVar_); // for borrow operations, ensure max utilization is not reached if (borrowAmount_ > 0) { // memVar_ => max utilization // if any max utilization other than 100% is set, the flag usesConfigs2 in // exchangePricesAndConfig is 1. (optimized to avoid SLOAD if not needed). memVar_ = (o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_USES_CONFIGS2) & 1 == 1 ? (_configs2[token_] & X14) // read configured max utilization : FOUR_DECIMALS; // default max utilization = 100% if (utilization_ > memVar_) { revert FluidLiquidityError(ErrorTypes.UserModule__MaxUtilizationReached); } } } // check if time difference is big enough (> 1 day) unchecked { if ( block.timestamp > // extract last update timestamp + 1 day (((o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33) + FORCE_STORAGE_WRITE_AFTER_TIME) ) { memVar_ = 1; // set write to storage flag } else { memVar_ = 0; } } if (memVar_ == 0) { // time difference is not big enough to cause storage write -> check utilization // memVar_ => extract last utilization memVar_ = (o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14; // memVar2_ => storage update threshold in percent memVar2_ = (o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD) & X14; unchecked { // set memVar_ to 1 if current utilization to previous utilization difference is > update storage threshold memVar_ = (utilization_ > memVar_ ? utilization_ - memVar_ : memVar_ - utilization_) > memVar2_ ? 1 : 0; if (memVar_ == 0) { // utilization & time difference is not big enough -> check supplyRatio difference // memVar_ => extract last supplyRatio memVar_ = (o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15; // set memVar_ to 1 if current supplyRatio to previous supplyRatio difference is > update storage threshold if ((memVar_ & 1) == (memVar3_ & 1)) { memVar_ = memVar_ >> 1; memVar_ = ( (memVar3_ >> 1) > memVar_ ? (memVar3_ >> 1) - memVar_ : memVar_ - (memVar3_ >> 1) ) > memVar2_ ? 1 : 0; // memVar3_ = supplyRatio, memVar_ = previous supplyRatio, memVar2_ = update storage threshold } else { // if inverse bit is changing then always update on storage memVar_ = 1; } if (memVar_ == 0) { // utilization, time, and supplyRatio difference is not big enough -> check borrowRatio difference // memVar_ => extract last borrowRatio memVar_ = (o_.exchangePricesAndConfig >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) & X15; // set memVar_ to 1 if current borrowRatio to previous borrowRatio difference is > update storage threshold if ((memVar_ & 1) == (memVar4_ & 1)) { memVar_ = memVar_ >> 1; memVar_ = ( (memVar4_ >> 1) > memVar_ ? (memVar4_ >> 1) - memVar_ : memVar_ - (memVar4_ >> 1) ) > memVar2_ ? 1 : 0; // memVar4_ = borrowRatio, memVar_ = previous borrowRatio, memVar2_ = update storage threshold } else { // if inverse bit is changing then always update on storage memVar_ = 1; } } } } } // memVar_ is 1 if either time diff was enough or if // utilization, supplyRatio or borrowRatio difference was > update storage threshold if (memVar_ == 1) { // memVar_ => calculate new borrow rate for utilization. includes value overflow check. memVar_ = LiquidityCalcs.calcBorrowRateFromUtilization(_rateData[token_], utilization_); // ensure values written to storage do not exceed the dedicated bit space in packed uint256 slots if (o_.supplyExchangePrice > X64 || o_.borrowExchangePrice > X64) { revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__EXCHANGE_PRICES); } if (utilization_ > X14) { revert FluidLiquidityError(ErrorTypes.UserModule__ValueOverflow__UTILIZATION); } o_.exchangePricesAndConfig = (o_.exchangePricesAndConfig & // mask to update bits: 0-15 (borrow rate), 30-43 (utilization), 58-248 (timestamp, exchange prices, ratios) 0xfe000000000000000000000000000000000000000000000003fff0003fff0000) | memVar_ | // calcBorrowRateFromUtilization already includes an overflow check (utilization_ << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) | (block.timestamp << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) | (o_.supplyExchangePrice << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) | (o_.borrowExchangePrice << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) | // ratios can never be > 100%, no overflow check needed (memVar3_ << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) | // supplyRatio (memVar3_ holds that value) (memVar4_ << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO); // borrowRatio (memVar4_ holds that value) // Updating on storage _exchangePricesAndConfig[token_] = o_.exchangePricesAndConfig; } else { // do not update in storage but update o_.exchangePricesAndConfig for updated exchange prices at // event emit of LogOperate o_.exchangePricesAndConfig = (o_.exchangePricesAndConfig & // mask to update bits: 91-218 (exchange prices) 0xfffffffffc00000000000000000000000000000007ffffffffffffffffffffff) | (o_.supplyExchangePrice << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) | (o_.borrowExchangePrice << LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE); } } // sending tokens to user at the end after updating everything // only transfer to user in case of withdraw or borrow. // do not transfer for same amounts in same operate(): supply(+) == borrow(+), withdraw(-) == payback(-). (DEX protocol use-case) if ((supplyAmount_ < 0 || borrowAmount_ > 0) && !o_.skipTransfers) { // sending tokens to user at the end after updating everything // set memVar2_ to borrowAmount (if borrow) or reset memVar2_ var to 0 because // it is used with > 0 check below to transfer withdraw / borrow / both memVar2_ = borrowAmount_ > 0 ? uint256(borrowAmount_) : 0; if (supplyAmount_ < 0) { unchecked { memVar_ = uint256(-supplyAmount_); } } else { memVar_ = 0; } if (memVar_ > 0 && memVar2_ > 0 && withdrawTo_ == borrowTo_) { // if user is doing borrow & withdraw together and address for both is the same // then transfer tokens of borrow & withdraw together to save on gas if (token_ == NATIVE_TOKEN_ADDRESS) { SafeTransfer.safeTransferNative(withdrawTo_, memVar_ + memVar2_); } else { SafeTransfer.safeTransfer(token_, withdrawTo_, memVar_ + memVar2_); } } else { if (token_ == NATIVE_TOKEN_ADDRESS) { // if withdraw if (memVar_ > 0) { SafeTransfer.safeTransferNative(withdrawTo_, memVar_); } // if borrow if (memVar2_ > 0) { SafeTransfer.safeTransferNative(borrowTo_, memVar2_); } } else { // if withdraw if (memVar_ > 0) { // ---------- temporary code start ----------------------- // temporary addition for weETH & weETHs: if token is weETH or weETHs -> withdraw from Zircuit if (token_ == WEETH) { if ((IERC20(WEETH).balanceOf(address(this)) < memVar_)) { ZIRCUIT.withdraw(WEETH, memVar_); } } else if (token_ == WEETHS) { if ((IERC20(WEETHS).balanceOf(address(this)) < memVar_)) { ZIRCUIT.withdraw(WEETHS, memVar_); } } // temporary code also includes: WEETH, WEETHS & ZIRCUIT constant, IZtakingPool interface // ---------- temporary code end ----------------------- SafeTransfer.safeTransfer(token_, withdrawTo_, memVar_); } // if borrow if (memVar2_ > 0) { SafeTransfer.safeTransfer(token_, borrowTo_, memVar2_); } } } } // emit Operate event emit LogOperate( msg.sender, token_, supplyAmount_, borrowAmount_, withdrawTo_, borrowTo_, o_.totalAmounts, o_.exchangePricesAndConfig ); // set return values memVar3_ = o_.supplyExchangePrice; memVar4_ = o_.borrowExchangePrice; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant MAX_UINT256 = 2**256 - 1; uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // Divide x * y by the denominator. z := div(mul(x, y), denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // If x * y modulo the denominator is strictly greater than 0, // 1 is added to round up the division of x * y by the denominator. z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Mod x by y. Note this will return // 0 instead of reverting if y is zero. z := mod(x, y) } } function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { // Divide x by y. Note this will return // 0 instead of reverting if y is zero. r := div(x, y) } } function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Add 1 to x * y if x % y > 0. Note this will // return 0 instead of reverting if y is zero. z := add(gt(mod(x, y), 0), div(x, y)) } } }