Transaction Hash:
Block:
21235536 at Nov-21-2024 10:33:47 AM +UTC
Transaction Fee:
0.000322759964153568 ETH
$0.78
Gas Used:
27,894 Gas / 11.570945872 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 13.518730541745209966 Eth | 13.518731170857336734 Eth | 0.000000629112126768 | |
0x9a28888C...5b569d42F |
0.000470254894588147 Eth
Nonce: 7
|
0.000147494930434579 Eth
Nonce: 8
| 0.000322759964153568 |
Execution Trace
ETH 0.0001
L1ChugSplashProxy.e11013dd( )
-
ProxyAdmin.STATICCALL( )
File 1 of 2: L1ChugSplashProxy
File 2 of 2: ProxyAdmin
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } }
File 2 of 2: ProxyAdmin
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @custom:legacy * @title AddressManager * @notice AddressManager is a legacy contract that was used in the old version of the Optimism * system to manage a registry of string names to addresses. We now use a more standard * proxy system instead, but this contract is still necessary for backwards compatibility * with several older contracts. */ contract AddressManager is Ownable { /** * @notice Mapping of the hashes of string names to addresses. */ mapping(bytes32 => address) private addresses; /** * @notice Emitted when an address is modified in the registry. * * @param name String name being set in the registry. * @param newAddress Address set for the given name. * @param oldAddress Address that was previously set for the given name. */ event AddressSet(string indexed name, address newAddress, address oldAddress); /** * @notice Changes the address associated with a particular name. * * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * @notice Retrieves the address associated with a given name. * * @param _name Name to retrieve an address for. * * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /** * @notice Computes the hash of a name. * * @param _name Name to compute a hash for. * * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Proxy } from "./Proxy.sol"; import { AddressManager } from "../legacy/AddressManager.sol"; import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol"; /** * @title IStaticERC1967Proxy * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface. */ interface IStaticERC1967Proxy { function implementation() external view returns (address); function admin() external view returns (address); } /** * @title IStaticL1ChugSplashProxy * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface. */ interface IStaticL1ChugSplashProxy { function getImplementation() external view returns (address); function getOwner() external view returns (address); } /** * @title ProxyAdmin * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy, * based on the OpenZeppelin implementation. It has backwards compatibility logic to work * with the various types of proxies that have been deployed by Optimism in the past. */ contract ProxyAdmin is Ownable { /** * @notice The proxy types that the ProxyAdmin can manage. * * @custom:value ERC1967 Represents an ERC1967 compliant transparent proxy interface. * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy). * @custom:value RESOLVED Represents the ResolvedDelegate proxy (legacy). */ enum ProxyType { ERC1967, CHUGSPLASH, RESOLVED } /** * @notice A mapping of proxy types, used for backwards compatibility. */ mapping(address => ProxyType) public proxyType; /** * @notice A reverse mapping of addresses to names held in the AddressManager. This must be * manually kept up to date with changes in the AddressManager for this contract * to be able to work as an admin for the ResolvedDelegateProxy type. */ mapping(address => string) public implementationName; /** * @notice The address of the address manager, this is required to manage the * ResolvedDelegateProxy type. */ AddressManager public addressManager; /** * @notice A legacy upgrading indicator used by the old Chugsplash Proxy. */ bool internal upgrading; /** * @param _owner Address of the initial owner of this contract. */ constructor(address _owner) Ownable() { _transferOwnership(_owner); } /** * @notice Sets the proxy type for a given address. Only required for non-standard (legacy) * proxy types. * * @param _address Address of the proxy. * @param _type Type of the proxy. */ function setProxyType(address _address, ProxyType _type) external onlyOwner { proxyType[_address] = _type; } /** * @notice Sets the implementation name for a given address. Only required for * ResolvedDelegateProxy type proxies that have an implementation name. * * @param _address Address of the ResolvedDelegateProxy. * @param _name Name of the implementation for the proxy. */ function setImplementationName(address _address, string memory _name) external onlyOwner { implementationName[_address] = _name; } /** * @notice Set the address of the AddressManager. This is required to manage legacy * ResolvedDelegateProxy type proxy contracts. * * @param _address Address of the AddressManager. */ function setAddressManager(AddressManager _address) external onlyOwner { addressManager = _address; } /** * @custom:legacy * @notice Set an address in the address manager. Since only the owner of the AddressManager * can directly modify addresses and the ProxyAdmin will own the AddressManager, this * gives the owner of the ProxyAdmin the ability to modify addresses directly. * * @param _name Name to set within the AddressManager. * @param _address Address to attach to the given name. */ function setAddress(string memory _name, address _address) external onlyOwner { addressManager.setAddress(_name, _address); } /** * @custom:legacy * @notice Set the upgrading status for the Chugsplash proxy type. * * @param _upgrading Whether or not the system is upgrading. */ function setUpgrading(bool _upgrading) external onlyOwner { upgrading = _upgrading; } /** * @custom:legacy * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening. * * @return Whether or not there is an upgrade going on. May not actually tell you whether an * upgrade is going on, since we don't currently plan to use this variable for anything * other than a legacy indicator to fix a UX bug in the ChugSplash proxy. */ function isUpgrading() external view returns (bool) { return upgrading; } /** * @notice Returns the implementation of the given proxy address. * * @param _proxy Address of the proxy to get the implementation of. * * @return Address of the implementation of the proxy. */ function getProxyImplementation(address _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).implementation(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getImplementation(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.getAddress(implementationName[_proxy]); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Returns the admin of the given proxy address. * * @param _proxy Address of the proxy to get the admin of. * * @return Address of the admin of the proxy. */ function getProxyAdmin(address payable _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).admin(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getOwner(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.owner(); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Updates the admin of the given proxy address. * * @param _proxy Address of the proxy to update. * @param _newAdmin Address of the new proxy admin. */ function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).changeAdmin(_newAdmin); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setOwner(_newAdmin); } else if (ptype == ProxyType.RESOLVED) { addressManager.transferOwnership(_newAdmin); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Changes a proxy's implementation contract. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. */ function upgrade(address payable _proxy, address _implementation) public onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeTo(_implementation); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setStorage( // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc, bytes32(uint256(uint160(_implementation))) ); } else if (ptype == ProxyType.RESOLVED) { string memory name = implementationName[_proxy]; addressManager.setAddress(name, _implementation); } else { // It should not be possible to retrieve a ProxyType value which is not matched by // one of the previous conditions. assert(false); } } /** * @notice Changes a proxy's implementation contract and delegatecalls the new implementation * with some given data. Useful for atomic upgrade-and-initialize calls. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. * @param _data Data to trigger the new implementation with. */ function upgradeAndCall( address payable _proxy, address _implementation, bytes memory _data ) external payable onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data); } else { // reverts if proxy type is unknown upgrade(_proxy, _implementation); (bool success, ) = _proxy.call{ value: msg.value }(_data); require(success, "ProxyAdmin: call to proxy after upgrade failed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }