ETH Price: $3,605.21 (+7.94%)

Transaction Decoder

Block:
19149881 at Feb-03-2024 07:23:11 PM +UTC
Transaction Fee:
0.002062474694146488 ETH $7.44
Gas Used:
151,779 Gas / 13.588669672 Gwei

Emitted Events:

102 PondCoin.Approval( owner=[Sender] 0xb23de95bbac2756dff3310a8009822524642a5df, spender=[Receiver] PondWater, value=100000000000000000000 )
103 PondCoin.Transfer( from=[Sender] 0xb23de95bbac2756dff3310a8009822524642a5df, to=[Receiver] PondWater, value=128113192272747950000000000 )
104 PondWater.Lock( locker=[Sender] 0xb23de95bbac2756dff3310a8009822524642a5df, id=13453, locked=128113192272747950000000000, startsAt=2822, lockedFor=128 )

Account State Difference:

  Address   Before After State Difference Code
2.338291422174299257 Eth2.338321777974299257 Eth0.0000303558
0x423f4e61...7Ed631eea
0xb23dE95B...24642A5dF
0.051701830773145099 Eth
Nonce: 77
0.049639356078998611 Eth
Nonce: 78
0.002062474694146488
0xed96E69d...3c8A1B470
(Pond Coin: Pond Water)

Execution Trace

PondWater.lock( _amount=128113192272747950000000000, _lockPeriodIndex=7 ) => ( lockId=13453 )
  • PondCoin.transferFrom( from=0xb23dE95BBAC2756Dff3310a8009822524642A5dF, to=0xed96E69d54609D9f2cFf8AaCD66CCF83c8A1B470, amount=128113192272747950000000000 ) => ( True )
  • MiningRigV3.STATICCALL( )
    File 1 of 3: PondWater
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor() {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be _NOT_ENTERED
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
        }
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == _ENTERED;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
         * Revert on invalid signature.
         */
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return
                success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
    pragma solidity ^0.8.0;
    import "../../utils/introspection/IERC165.sol";
    /**
     * @dev Required interface of an ERC721 compliant contract.
     */
    interface IERC721 is IERC165 {
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
        /**
         * @dev Returns the number of tokens in ``owner``'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
         * are aware of the ERC721 protocol to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId) external;
        /**
         * @dev Transfers `tokenId` token from `from` to `to`.
         *
         * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
         * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
         * understand this adds an external call which potentially creates a reentrancy vulnerability.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 tokenId) external;
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external;
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool approved) external;
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC721.sol";
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    interface IERC721Metadata is IERC721 {
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    // Common.sol
    //
    // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
    // always operate with SD59x18 and UD60x18 numbers.
    /*//////////////////////////////////////////////////////////////////////////
                                    CUSTOM ERRORS
    //////////////////////////////////////////////////////////////////////////*/
    /// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
    error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
    /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
    error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
    /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
    error PRBMath_MulDivSigned_InputTooSmall();
    /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
    error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
    /*//////////////////////////////////////////////////////////////////////////
                                        CONSTANTS
    //////////////////////////////////////////////////////////////////////////*/
    /// @dev The maximum value a uint128 number can have.
    uint128 constant MAX_UINT128 = type(uint128).max;
    /// @dev The maximum value a uint40 number can have.
    uint40 constant MAX_UINT40 = type(uint40).max;
    /// @dev The unit number, which the decimal precision of the fixed-point types.
    uint256 constant UNIT = 1e18;
    /// @dev The unit number inverted mod 2^256.
    uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
    /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
    /// bit in the binary representation of `UNIT`.
    uint256 constant UNIT_LPOTD = 262144;
    /*//////////////////////////////////////////////////////////////////////////
                                        FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    /// @custom:smtchecker abstract-function-nondet
    function exp2(uint256 x) pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;
            // The following logic multiplies the result by $\\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
            //
            // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
            // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
            // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
            // we know that `x & 0xFF` is also 1.
            if (x & 0xFF00000000000000 > 0) {
                if (x & 0x8000000000000000 > 0) {
                    result = (result * 0x16A09E667F3BCC909) >> 64;
                }
                if (x & 0x4000000000000000 > 0) {
                    result = (result * 0x1306FE0A31B7152DF) >> 64;
                }
                if (x & 0x2000000000000000 > 0) {
                    result = (result * 0x1172B83C7D517ADCE) >> 64;
                }
                if (x & 0x1000000000000000 > 0) {
                    result = (result * 0x10B5586CF9890F62A) >> 64;
                }
                if (x & 0x800000000000000 > 0) {
                    result = (result * 0x1059B0D31585743AE) >> 64;
                }
                if (x & 0x400000000000000 > 0) {
                    result = (result * 0x102C9A3E778060EE7) >> 64;
                }
                if (x & 0x200000000000000 > 0) {
                    result = (result * 0x10163DA9FB33356D8) >> 64;
                }
                if (x & 0x100000000000000 > 0) {
                    result = (result * 0x100B1AFA5ABCBED61) >> 64;
                }
            }
            if (x & 0xFF000000000000 > 0) {
                if (x & 0x80000000000000 > 0) {
                    result = (result * 0x10058C86DA1C09EA2) >> 64;
                }
                if (x & 0x40000000000000 > 0) {
                    result = (result * 0x1002C605E2E8CEC50) >> 64;
                }
                if (x & 0x20000000000000 > 0) {
                    result = (result * 0x100162F3904051FA1) >> 64;
                }
                if (x & 0x10000000000000 > 0) {
                    result = (result * 0x1000B175EFFDC76BA) >> 64;
                }
                if (x & 0x8000000000000 > 0) {
                    result = (result * 0x100058BA01FB9F96D) >> 64;
                }
                if (x & 0x4000000000000 > 0) {
                    result = (result * 0x10002C5CC37DA9492) >> 64;
                }
                if (x & 0x2000000000000 > 0) {
                    result = (result * 0x1000162E525EE0547) >> 64;
                }
                if (x & 0x1000000000000 > 0) {
                    result = (result * 0x10000B17255775C04) >> 64;
                }
            }
            if (x & 0xFF0000000000 > 0) {
                if (x & 0x800000000000 > 0) {
                    result = (result * 0x1000058B91B5BC9AE) >> 64;
                }
                if (x & 0x400000000000 > 0) {
                    result = (result * 0x100002C5C89D5EC6D) >> 64;
                }
                if (x & 0x200000000000 > 0) {
                    result = (result * 0x10000162E43F4F831) >> 64;
                }
                if (x & 0x100000000000 > 0) {
                    result = (result * 0x100000B1721BCFC9A) >> 64;
                }
                if (x & 0x80000000000 > 0) {
                    result = (result * 0x10000058B90CF1E6E) >> 64;
                }
                if (x & 0x40000000000 > 0) {
                    result = (result * 0x1000002C5C863B73F) >> 64;
                }
                if (x & 0x20000000000 > 0) {
                    result = (result * 0x100000162E430E5A2) >> 64;
                }
                if (x & 0x10000000000 > 0) {
                    result = (result * 0x1000000B172183551) >> 64;
                }
            }
            if (x & 0xFF00000000 > 0) {
                if (x & 0x8000000000 > 0) {
                    result = (result * 0x100000058B90C0B49) >> 64;
                }
                if (x & 0x4000000000 > 0) {
                    result = (result * 0x10000002C5C8601CC) >> 64;
                }
                if (x & 0x2000000000 > 0) {
                    result = (result * 0x1000000162E42FFF0) >> 64;
                }
                if (x & 0x1000000000 > 0) {
                    result = (result * 0x10000000B17217FBB) >> 64;
                }
                if (x & 0x800000000 > 0) {
                    result = (result * 0x1000000058B90BFCE) >> 64;
                }
                if (x & 0x400000000 > 0) {
                    result = (result * 0x100000002C5C85FE3) >> 64;
                }
                if (x & 0x200000000 > 0) {
                    result = (result * 0x10000000162E42FF1) >> 64;
                }
                if (x & 0x100000000 > 0) {
                    result = (result * 0x100000000B17217F8) >> 64;
                }
            }
            if (x & 0xFF000000 > 0) {
                if (x & 0x80000000 > 0) {
                    result = (result * 0x10000000058B90BFC) >> 64;
                }
                if (x & 0x40000000 > 0) {
                    result = (result * 0x1000000002C5C85FE) >> 64;
                }
                if (x & 0x20000000 > 0) {
                    result = (result * 0x100000000162E42FF) >> 64;
                }
                if (x & 0x10000000 > 0) {
                    result = (result * 0x1000000000B17217F) >> 64;
                }
                if (x & 0x8000000 > 0) {
                    result = (result * 0x100000000058B90C0) >> 64;
                }
                if (x & 0x4000000 > 0) {
                    result = (result * 0x10000000002C5C860) >> 64;
                }
                if (x & 0x2000000 > 0) {
                    result = (result * 0x1000000000162E430) >> 64;
                }
                if (x & 0x1000000 > 0) {
                    result = (result * 0x10000000000B17218) >> 64;
                }
            }
            if (x & 0xFF0000 > 0) {
                if (x & 0x800000 > 0) {
                    result = (result * 0x1000000000058B90C) >> 64;
                }
                if (x & 0x400000 > 0) {
                    result = (result * 0x100000000002C5C86) >> 64;
                }
                if (x & 0x200000 > 0) {
                    result = (result * 0x10000000000162E43) >> 64;
                }
                if (x & 0x100000 > 0) {
                    result = (result * 0x100000000000B1721) >> 64;
                }
                if (x & 0x80000 > 0) {
                    result = (result * 0x10000000000058B91) >> 64;
                }
                if (x & 0x40000 > 0) {
                    result = (result * 0x1000000000002C5C8) >> 64;
                }
                if (x & 0x20000 > 0) {
                    result = (result * 0x100000000000162E4) >> 64;
                }
                if (x & 0x10000 > 0) {
                    result = (result * 0x1000000000000B172) >> 64;
                }
            }
            if (x & 0xFF00 > 0) {
                if (x & 0x8000 > 0) {
                    result = (result * 0x100000000000058B9) >> 64;
                }
                if (x & 0x4000 > 0) {
                    result = (result * 0x10000000000002C5D) >> 64;
                }
                if (x & 0x2000 > 0) {
                    result = (result * 0x1000000000000162E) >> 64;
                }
                if (x & 0x1000 > 0) {
                    result = (result * 0x10000000000000B17) >> 64;
                }
                if (x & 0x800 > 0) {
                    result = (result * 0x1000000000000058C) >> 64;
                }
                if (x & 0x400 > 0) {
                    result = (result * 0x100000000000002C6) >> 64;
                }
                if (x & 0x200 > 0) {
                    result = (result * 0x10000000000000163) >> 64;
                }
                if (x & 0x100 > 0) {
                    result = (result * 0x100000000000000B1) >> 64;
                }
            }
            if (x & 0xFF > 0) {
                if (x & 0x80 > 0) {
                    result = (result * 0x10000000000000059) >> 64;
                }
                if (x & 0x40 > 0) {
                    result = (result * 0x1000000000000002C) >> 64;
                }
                if (x & 0x20 > 0) {
                    result = (result * 0x10000000000000016) >> 64;
                }
                if (x & 0x10 > 0) {
                    result = (result * 0x1000000000000000B) >> 64;
                }
                if (x & 0x8 > 0) {
                    result = (result * 0x10000000000000006) >> 64;
                }
                if (x & 0x4 > 0) {
                    result = (result * 0x10000000000000003) >> 64;
                }
                if (x & 0x2 > 0) {
                    result = (result * 0x10000000000000001) >> 64;
                }
                if (x & 0x1 > 0) {
                    result = (result * 0x10000000000000001) >> 64;
                }
            }
            // In the code snippet below, two operations are executed simultaneously:
            //
            // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
            // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
            // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
            //
            // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
            // integer part, $2^n$.
            result *= UNIT;
            result >>= (191 - (x >> 64));
        }
    }
    /// @notice Finds the zero-based index of the first 1 in the binary representation of x.
    ///
    /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
    ///
    /// Each step in this implementation is equivalent to this high-level code:
    ///
    /// ```solidity
    /// if (x >= 2 ** 128) {
    ///     x >>= 128;
    ///     result += 128;
    /// }
    /// ```
    ///
    /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
    /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
    ///
    /// The Yul instructions used below are:
    ///
    /// - "gt" is "greater than"
    /// - "or" is the OR bitwise operator
    /// - "shl" is "shift left"
    /// - "shr" is "shift right"
    ///
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return result The index of the most significant bit as a uint256.
    /// @custom:smtchecker abstract-function-nondet
    function msb(uint256 x) pure returns (uint256 result) {
        // 2^128
        assembly ("memory-safe") {
            let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^64
        assembly ("memory-safe") {
            let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^32
        assembly ("memory-safe") {
            let factor := shl(5, gt(x, 0xFFFFFFFF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^16
        assembly ("memory-safe") {
            let factor := shl(4, gt(x, 0xFFFF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^8
        assembly ("memory-safe") {
            let factor := shl(3, gt(x, 0xFF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^4
        assembly ("memory-safe") {
            let factor := shl(2, gt(x, 0xF))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^2
        assembly ("memory-safe") {
            let factor := shl(1, gt(x, 0x3))
            x := shr(factor, x)
            result := or(result, factor)
        }
        // 2^1
        // No need to shift x any more.
        assembly ("memory-safe") {
            let factor := gt(x, 0x1)
            result := or(result, factor)
        }
    }
    /// @notice Calculates x*y÷denominator with 512-bit precision.
    ///
    /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - The denominator must not be zero.
    /// - The result must fit in uint256.
    ///
    /// @param x The multiplicand as a uint256.
    /// @param y The multiplier as a uint256.
    /// @param denominator The divisor as a uint256.
    /// @return result The result as a uint256.
    /// @custom:smtchecker abstract-function-nondet
    function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly ("memory-safe") {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }
        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                return prod0 / denominator;
            }
        }
        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath_MulDiv_Overflow(x, y, denominator);
        }
        ////////////////////////////////////////////////////////////////////////////
        // 512 by 256 division
        ////////////////////////////////////////////////////////////////////////////
        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly ("memory-safe") {
            // Compute remainder using the mulmod Yul instruction.
            remainder := mulmod(x, y, denominator)
            // Subtract 256 bit number from 512-bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }
        unchecked {
            // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
            // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
            // For more detail, see https://cs.stackexchange.com/q/138556/92363.
            uint256 lpotdod = denominator & (~denominator + 1);
            uint256 flippedLpotdod;
            assembly ("memory-safe") {
                // Factor powers of two out of denominator.
                denominator := div(denominator, lpotdod)
                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)
                // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
                // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
                // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
                flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }
            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * flippedLpotdod;
            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;
            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256
            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
        }
    }
    /// @notice Calculates x*y÷1e18 with 512-bit precision.
    ///
    /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
    ///
    /// Notes:
    /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
    /// - The result is rounded toward zero.
    /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
    ///
    /// $$
    /// \\begin{cases}
    ///     x * y = MAX\\_UINT256 * UNIT \\\\
    ///     (x * y) \\% UNIT \\geq \\frac{UNIT}{2}
    /// \\end{cases}
    /// $$
    ///
    /// Requirements:
    /// - Refer to the requirements in {mulDiv}.
    /// - The result must fit in uint256.
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    /// @custom:smtchecker abstract-function-nondet
    function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly ("memory-safe") {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }
        if (prod1 == 0) {
            unchecked {
                return prod0 / UNIT;
            }
        }
        if (prod1 >= UNIT) {
            revert PRBMath_MulDiv18_Overflow(x, y);
        }
        uint256 remainder;
        assembly ("memory-safe") {
            remainder := mulmod(x, y, UNIT)
            result :=
                mul(
                    or(
                        div(sub(prod0, remainder), UNIT_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                    ),
                    UNIT_INVERSE
                )
        }
    }
    /// @notice Calculates x*y÷denominator with 512-bit precision.
    ///
    /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
    ///
    /// Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - Refer to the requirements in {mulDiv}.
    /// - None of the inputs can be `type(int256).min`.
    /// - The result must fit in int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    /// @custom:smtchecker abstract-function-nondet
    function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath_MulDivSigned_InputTooSmall();
        }
        // Get hold of the absolute values of x, y and the denominator.
        uint256 xAbs;
        uint256 yAbs;
        uint256 dAbs;
        unchecked {
            xAbs = x < 0 ? uint256(-x) : uint256(x);
            yAbs = y < 0 ? uint256(-y) : uint256(y);
            dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }
        // Compute the absolute value of x*y÷denominator. The result must fit in int256.
        uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
        if (resultAbs > uint256(type(int256).max)) {
            revert PRBMath_MulDivSigned_Overflow(x, y);
        }
        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly ("memory-safe") {
            // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }
        // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
        // If there are, the result should be negative. Otherwise, it should be positive.
        unchecked {
            result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
        }
    }
    /// @notice Calculates the square root of x using the Babylonian method.
    ///
    /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Notes:
    /// - If x is not a perfect square, the result is rounded down.
    /// - Credits to OpenZeppelin for the explanations in comments below.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as a uint256.
    /// @custom:smtchecker abstract-function-nondet
    function sqrt(uint256 x) pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }
        // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
        //
        // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
        //
        // $$
        // msb(x) <= x <= 2*msb(x)$
        // $$
        //
        // We write $msb(x)$ as $2^k$, and we get:
        //
        // $$
        // k = log_2(x)
        // $$
        //
        // Thus, we can write the initial inequality as:
        //
        // $$
        // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\\\
        // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\\\
        // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
        // $$
        //
        // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 2 ** 128) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 2 ** 64) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 2 ** 32) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 2 ** 16) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 2 ** 8) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 2 ** 4) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 2 ** 2) {
            result <<= 1;
        }
        // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
        // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
        // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
        // precision into the expected uint128 result.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            // If x is not a perfect square, round the result toward zero.
            uint256 roundedResult = x / result;
            if (result >= roundedResult) {
                result = roundedResult;
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    /*
    ██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
    ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
    ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
    ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
    ██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
    ╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝
    ██╗   ██╗██████╗ ██████╗ ██╗  ██╗ ██╗ █████╗
    ██║   ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
    ██║   ██║██║  ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
    ██║   ██║██║  ██║██╔═══╝  ██╔██╗  ██║██╔══██╗
    ╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
     ╚═════╝ ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═╝ ╚════╝
    */
    import "./ud2x18/Casting.sol";
    import "./ud2x18/Constants.sol";
    import "./ud2x18/Errors.sol";
    import "./ud2x18/ValueType.sol";
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    /*
    ██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
    ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
    ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
    ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
    ██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
    ╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝
    ██╗   ██╗██████╗  ██████╗  ██████╗ ██╗  ██╗ ██╗ █████╗
    ██║   ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
    ██║   ██║██║  ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
    ██║   ██║██║  ██║██╔═══██╗████╔╝██║ ██╔██╗  ██║██╔══██╗
    ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
     ╚═════╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝ ╚═╝ ╚════╝
    */
    import "./ud60x18/Casting.sol";
    import "./ud60x18/Constants.sol";
    import "./ud60x18/Conversions.sol";
    import "./ud60x18/Errors.sol";
    import "./ud60x18/Helpers.sol";
    import "./ud60x18/Math.sol";
    import "./ud60x18/ValueType.sol";
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "../Common.sol" as Common;
    import "./Errors.sol" as CastingErrors;
    import { SD59x18 } from "../sd59x18/ValueType.sol";
    import { UD2x18 } from "../ud2x18/ValueType.sol";
    import { UD60x18 } from "../ud60x18/ValueType.sol";
    import { SD1x18 } from "./ValueType.sol";
    /// @notice Casts an SD1x18 number into SD59x18.
    /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
    function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
        result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
    }
    /// @notice Casts an SD1x18 number into UD2x18.
    /// - x must be positive.
    function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
        int64 xInt = SD1x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
        }
        result = UD2x18.wrap(uint64(xInt));
    }
    /// @notice Casts an SD1x18 number into UD60x18.
    /// @dev Requirements:
    /// - x must be positive.
    function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
        int64 xInt = SD1x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
        }
        result = UD60x18.wrap(uint64(xInt));
    }
    /// @notice Casts an SD1x18 number into uint256.
    /// @dev Requirements:
    /// - x must be positive.
    function intoUint256(SD1x18 x) pure returns (uint256 result) {
        int64 xInt = SD1x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
        }
        result = uint256(uint64(xInt));
    }
    /// @notice Casts an SD1x18 number into uint128.
    /// @dev Requirements:
    /// - x must be positive.
    function intoUint128(SD1x18 x) pure returns (uint128 result) {
        int64 xInt = SD1x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
        }
        result = uint128(uint64(xInt));
    }
    /// @notice Casts an SD1x18 number into uint40.
    /// @dev Requirements:
    /// - x must be positive.
    /// - x must be less than or equal to `MAX_UINT40`.
    function intoUint40(SD1x18 x) pure returns (uint40 result) {
        int64 xInt = SD1x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
        }
        if (xInt > int64(uint64(Common.MAX_UINT40))) {
            revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
        }
        result = uint40(uint64(xInt));
    }
    /// @notice Alias for {wrap}.
    function sd1x18(int64 x) pure returns (SD1x18 result) {
        result = SD1x18.wrap(x);
    }
    /// @notice Unwraps an SD1x18 number into int64.
    function unwrap(SD1x18 x) pure returns (int64 result) {
        result = SD1x18.unwrap(x);
    }
    /// @notice Wraps an int64 number into SD1x18.
    function wrap(int64 x) pure returns (SD1x18 result) {
        result = SD1x18.wrap(x);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { SD1x18 } from "./ValueType.sol";
    /// @dev Euler's number as an SD1x18 number.
    SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
    /// @dev The maximum value an SD1x18 number can have.
    int64 constant uMAX_SD1x18 = 9_223372036854775807;
    SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
    /// @dev The maximum value an SD1x18 number can have.
    int64 constant uMIN_SD1x18 = -9_223372036854775808;
    SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
    /// @dev PI as an SD1x18 number.
    SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
    /// @dev The unit number, which gives the decimal precision of SD1x18.
    SD1x18 constant UNIT = SD1x18.wrap(1e18);
    int256 constant uUNIT = 1e18;
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { SD1x18 } from "./ValueType.sol";
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
    error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
    error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
    error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
    error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
    error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);
    /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
    error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Casting.sol" as Casting;
    /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
    /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
    /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
    /// storage.
    type SD1x18 is int64;
    /*//////////////////////////////////////////////////////////////////////////
                                        CASTING
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Casting.intoSD59x18,
        Casting.intoUD2x18,
        Casting.intoUD60x18,
        Casting.intoUint256,
        Casting.intoUint128,
        Casting.intoUint40,
        Casting.unwrap
    } for SD1x18 global;
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Errors.sol" as CastingErrors;
    import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
    import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
    import { SD1x18 } from "../sd1x18/ValueType.sol";
    import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
    import { UD2x18 } from "../ud2x18/ValueType.sol";
    import { UD60x18 } from "../ud60x18/ValueType.sol";
    import { SD59x18 } from "./ValueType.sol";
    /// @notice Casts an SD59x18 number into int256.
    /// @dev This is basically a functional alias for {unwrap}.
    function intoInt256(SD59x18 x) pure returns (int256 result) {
        result = SD59x18.unwrap(x);
    }
    /// @notice Casts an SD59x18 number into SD1x18.
    /// @dev Requirements:
    /// - x must be greater than or equal to `uMIN_SD1x18`.
    /// - x must be less than or equal to `uMAX_SD1x18`.
    function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < uMIN_SD1x18) {
            revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
        }
        if (xInt > uMAX_SD1x18) {
            revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
        }
        result = SD1x18.wrap(int64(xInt));
    }
    /// @notice Casts an SD59x18 number into UD2x18.
    /// @dev Requirements:
    /// - x must be positive.
    /// - x must be less than or equal to `uMAX_UD2x18`.
    function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
        }
        if (xInt > int256(uint256(uMAX_UD2x18))) {
            revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
        }
        result = UD2x18.wrap(uint64(uint256(xInt)));
    }
    /// @notice Casts an SD59x18 number into UD60x18.
    /// @dev Requirements:
    /// - x must be positive.
    function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
        }
        result = UD60x18.wrap(uint256(xInt));
    }
    /// @notice Casts an SD59x18 number into uint256.
    /// @dev Requirements:
    /// - x must be positive.
    function intoUint256(SD59x18 x) pure returns (uint256 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
        }
        result = uint256(xInt);
    }
    /// @notice Casts an SD59x18 number into uint128.
    /// @dev Requirements:
    /// - x must be positive.
    /// - x must be less than or equal to `uMAX_UINT128`.
    function intoUint128(SD59x18 x) pure returns (uint128 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
        }
        if (xInt > int256(uint256(MAX_UINT128))) {
            revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
        }
        result = uint128(uint256(xInt));
    }
    /// @notice Casts an SD59x18 number into uint40.
    /// @dev Requirements:
    /// - x must be positive.
    /// - x must be less than or equal to `MAX_UINT40`.
    function intoUint40(SD59x18 x) pure returns (uint40 result) {
        int256 xInt = SD59x18.unwrap(x);
        if (xInt < 0) {
            revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
        }
        if (xInt > int256(uint256(MAX_UINT40))) {
            revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
        }
        result = uint40(uint256(xInt));
    }
    /// @notice Alias for {wrap}.
    function sd(int256 x) pure returns (SD59x18 result) {
        result = SD59x18.wrap(x);
    }
    /// @notice Alias for {wrap}.
    function sd59x18(int256 x) pure returns (SD59x18 result) {
        result = SD59x18.wrap(x);
    }
    /// @notice Unwraps an SD59x18 number into int256.
    function unwrap(SD59x18 x) pure returns (int256 result) {
        result = SD59x18.unwrap(x);
    }
    /// @notice Wraps an int256 number into SD59x18.
    function wrap(int256 x) pure returns (SD59x18 result) {
        result = SD59x18.wrap(x);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { SD59x18 } from "./ValueType.sol";
    // NOTICE: the "u" prefix stands for "unwrapped".
    /// @dev Euler's number as an SD59x18 number.
    SD59x18 constant E = SD59x18.wrap(2_718281828459045235);
    /// @dev The maximum input permitted in {exp}.
    int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
    SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);
    /// @dev The maximum input permitted in {exp2}.
    int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
    SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);
    /// @dev Half the UNIT number.
    int256 constant uHALF_UNIT = 0.5e18;
    SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);
    /// @dev $log_2(10)$ as an SD59x18 number.
    int256 constant uLOG2_10 = 3_321928094887362347;
    SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);
    /// @dev $log_2(e)$ as an SD59x18 number.
    int256 constant uLOG2_E = 1_442695040888963407;
    SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);
    /// @dev The maximum value an SD59x18 number can have.
    int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
    SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);
    /// @dev The maximum whole value an SD59x18 number can have.
    int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
    SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);
    /// @dev The minimum value an SD59x18 number can have.
    int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
    SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);
    /// @dev The minimum whole value an SD59x18 number can have.
    int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
    SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);
    /// @dev PI as an SD59x18 number.
    SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);
    /// @dev The unit number, which gives the decimal precision of SD59x18.
    int256 constant uUNIT = 1e18;
    SD59x18 constant UNIT = SD59x18.wrap(1e18);
    /// @dev The unit number squared.
    int256 constant uUNIT_SQUARED = 1e36;
    SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);
    /// @dev Zero as an SD59x18 number.
    SD59x18 constant ZERO = SD59x18.wrap(0);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { SD59x18 } from "./ValueType.sol";
    /// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
    error PRBMath_SD59x18_Abs_MinSD59x18();
    /// @notice Thrown when ceiling a number overflows SD59x18.
    error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
    /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
    error PRBMath_SD59x18_Convert_Overflow(int256 x);
    /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
    error PRBMath_SD59x18_Convert_Underflow(int256 x);
    /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
    error PRBMath_SD59x18_Div_InputTooSmall();
    /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
    error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
    /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
    error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
    /// @notice Thrown when taking the binary exponent of a base greater than 192e18.
    error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
    /// @notice Thrown when flooring a number underflows SD59x18.
    error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
    /// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
    error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
    /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
    error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
    error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
    error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
    error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
    error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
    error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
    error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
    error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
    error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
    error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
    error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
    /// @notice Thrown when taking the logarithm of a number less than or equal to zero.
    error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
    /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
    error PRBMath_SD59x18_Mul_InputTooSmall();
    /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
    error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
    /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
    error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
    /// @notice Thrown when taking the square root of a negative number.
    error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
    /// @notice Thrown when the calculating the square root overflows SD59x18.
    error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { wrap } from "./Casting.sol";
    import { SD59x18 } from "./ValueType.sol";
    /// @notice Implements the checked addition operation (+) in the SD59x18 type.
    function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        return wrap(x.unwrap() + y.unwrap());
    }
    /// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
    function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
        return wrap(x.unwrap() & bits);
    }
    /// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
    function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        return wrap(x.unwrap() & y.unwrap());
    }
    /// @notice Implements the equal (=) operation in the SD59x18 type.
    function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() == y.unwrap();
    }
    /// @notice Implements the greater than operation (>) in the SD59x18 type.
    function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() > y.unwrap();
    }
    /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
    function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() >= y.unwrap();
    }
    /// @notice Implements a zero comparison check function in the SD59x18 type.
    function isZero(SD59x18 x) pure returns (bool result) {
        result = x.unwrap() == 0;
    }
    /// @notice Implements the left shift operation (<<) in the SD59x18 type.
    function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() << bits);
    }
    /// @notice Implements the lower than operation (<) in the SD59x18 type.
    function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() < y.unwrap();
    }
    /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
    function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() <= y.unwrap();
    }
    /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
    function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() % y.unwrap());
    }
    /// @notice Implements the not equal operation (!=) in the SD59x18 type.
    function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
        result = x.unwrap() != y.unwrap();
    }
    /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
    function not(SD59x18 x) pure returns (SD59x18 result) {
        result = wrap(~x.unwrap());
    }
    /// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
    function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() | y.unwrap());
    }
    /// @notice Implements the right shift operation (>>) in the SD59x18 type.
    function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() >> bits);
    }
    /// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
    function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() - y.unwrap());
    }
    /// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
    function unary(SD59x18 x) pure returns (SD59x18 result) {
        result = wrap(-x.unwrap());
    }
    /// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
    function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        unchecked {
            result = wrap(x.unwrap() + y.unwrap());
        }
    }
    /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
    function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        unchecked {
            result = wrap(x.unwrap() - y.unwrap());
        }
    }
    /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
    function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
        unchecked {
            result = wrap(-x.unwrap());
        }
    }
    /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
    function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() ^ y.unwrap());
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "../Common.sol" as Common;
    import "./Errors.sol" as Errors;
    import {
        uEXP_MAX_INPUT,
        uEXP2_MAX_INPUT,
        uHALF_UNIT,
        uLOG2_10,
        uLOG2_E,
        uMAX_SD59x18,
        uMAX_WHOLE_SD59x18,
        uMIN_SD59x18,
        uMIN_WHOLE_SD59x18,
        UNIT,
        uUNIT,
        uUNIT_SQUARED,
        ZERO
    } from "./Constants.sol";
    import { wrap } from "./Helpers.sol";
    import { SD59x18 } from "./ValueType.sol";
    /// @notice Calculates the absolute value of x.
    ///
    /// @dev Requirements:
    /// - x must be greater than `MIN_SD59x18`.
    ///
    /// @param x The SD59x18 number for which to calculate the absolute value.
    /// @param result The absolute value of x as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function abs(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt == uMIN_SD59x18) {
            revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
        }
        result = xInt < 0 ? wrap(-xInt) : x;
    }
    /// @notice Calculates the arithmetic average of x and y.
    ///
    /// @dev Notes:
    /// - The result is rounded toward zero.
    ///
    /// @param x The first operand as an SD59x18 number.
    /// @param y The second operand as an SD59x18 number.
    /// @return result The arithmetic average as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        int256 yInt = y.unwrap();
        unchecked {
            // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
            int256 sum = (xInt >> 1) + (yInt >> 1);
            if (sum < 0) {
                // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
                // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
                assembly ("memory-safe") {
                    result := add(sum, and(or(xInt, yInt), 1))
                }
            } else {
                // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
                result = wrap(sum + (xInt & yInt & 1));
            }
        }
    }
    /// @notice Yields the smallest whole number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
    ///
    /// @param x The SD59x18 number to ceil.
    /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function ceil(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt > uMAX_WHOLE_SD59x18) {
            revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
        }
        int256 remainder = xInt % uUNIT;
        if (remainder == 0) {
            result = x;
        } else {
            unchecked {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                int256 resultInt = xInt - remainder;
                if (xInt > 0) {
                    resultInt += uUNIT;
                }
                result = wrap(resultInt);
            }
        }
    }
    /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
    ///
    /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
    /// values separately.
    ///
    /// Notes:
    /// - Refer to the notes in {Common.mulDiv}.
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - Refer to the requirements in {Common.mulDiv}.
    /// - None of the inputs can be `MIN_SD59x18`.
    /// - The denominator must not be zero.
    /// - The result must fit in SD59x18.
    ///
    /// @param x The numerator as an SD59x18 number.
    /// @param y The denominator as an SD59x18 number.
    /// @param result The quotient as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        int256 yInt = y.unwrap();
        if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
            revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
        }
        // Get hold of the absolute values of x and y.
        uint256 xAbs;
        uint256 yAbs;
        unchecked {
            xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
            yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
        }
        // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
        uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
        if (resultAbs > uint256(uMAX_SD59x18)) {
            revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
        }
        // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
        // negative, 0 for positive or zero).
        bool sameSign = (xInt ^ yInt) > -1;
        // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
        unchecked {
            result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
        }
    }
    /// @notice Calculates the natural exponent of x using the following formula:
    ///
    /// $$
    /// e^x = 2^{x * log_2{e}}
    /// $$
    ///
    /// @dev Notes:
    /// - Refer to the notes in {exp2}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {exp2}.
    /// - x must be less than 133_084258667509499441.
    ///
    /// @param x The exponent as an SD59x18 number.
    /// @return result The result as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function exp(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        // This check prevents values greater than 192e18 from being passed to {exp2}.
        if (xInt > uEXP_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
        }
        unchecked {
            // Inline the fixed-point multiplication to save gas.
            int256 doubleUnitProduct = xInt * uLOG2_E;
            result = exp2(wrap(doubleUnitProduct / uUNIT));
        }
    }
    /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
    ///
    /// $$
    /// 2^{-x} = \\frac{1}{2^x}
    /// $$
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Notes:
    /// - If x is less than -59_794705707972522261, the result is zero.
    ///
    /// Requirements:
    /// - x must be less than 192e18.
    /// - The result must fit in SD59x18.
    ///
    /// @param x The exponent as an SD59x18 number.
    /// @return result The result as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function exp2(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt < 0) {
            // The inverse of any number less than this is truncated to zero.
            if (xInt < -59_794705707972522261) {
                return ZERO;
            }
            unchecked {
                // Inline the fixed-point inversion to save gas.
                result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
            }
        } else {
            // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
            if (xInt > uEXP2_MAX_INPUT) {
                revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
            }
            unchecked {
                // Convert x to the 192.64-bit fixed-point format.
                uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
                // It is safe to cast the result to int256 due to the checks above.
                result = wrap(int256(Common.exp2(x_192x64)));
            }
        }
    }
    /// @notice Yields the greatest whole number less than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
    /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
    ///
    /// @param x The SD59x18 number to floor.
    /// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function floor(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt < uMIN_WHOLE_SD59x18) {
            revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
        }
        int256 remainder = xInt % uUNIT;
        if (remainder == 0) {
            result = x;
        } else {
            unchecked {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                int256 resultInt = xInt - remainder;
                if (xInt < 0) {
                    resultInt -= uUNIT;
                }
                result = wrap(resultInt);
            }
        }
    }
    /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
    /// of the radix point for negative numbers.
    /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
    /// @param x The SD59x18 number to get the fractional part of.
    /// @param result The fractional part of x as an SD59x18 number.
    function frac(SD59x18 x) pure returns (SD59x18 result) {
        result = wrap(x.unwrap() % uUNIT);
    }
    /// @notice Calculates the geometric mean of x and y, i.e. $\\sqrt{x * y}$.
    ///
    /// @dev Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - x * y must fit in SD59x18.
    /// - x * y must not be negative, since complex numbers are not supported.
    ///
    /// @param x The first operand as an SD59x18 number.
    /// @param y The second operand as an SD59x18 number.
    /// @return result The result as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        int256 yInt = y.unwrap();
        if (xInt == 0 || yInt == 0) {
            return ZERO;
        }
        unchecked {
            // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
            int256 xyInt = xInt * yInt;
            if (xyInt / xInt != yInt) {
                revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
            }
            // The product must not be negative, since complex numbers are not supported.
            if (xyInt < 0) {
                revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
            }
            // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
            // during multiplication. See the comments in {Common.sqrt}.
            uint256 resultUint = Common.sqrt(uint256(xyInt));
            result = wrap(int256(resultUint));
        }
    }
    /// @notice Calculates the inverse of x.
    ///
    /// @dev Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - x must not be zero.
    ///
    /// @param x The SD59x18 number for which to calculate the inverse.
    /// @return result The inverse as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function inv(SD59x18 x) pure returns (SD59x18 result) {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
    /// @notice Calculates the natural logarithm of x using the following formula:
    ///
    /// $$
    /// ln{x} = log_2{x} / log_2{e}
    /// $$
    ///
    /// @dev Notes:
    /// - Refer to the notes in {log2}.
    /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
    ///
    /// Requirements:
    /// - Refer to the requirements in {log2}.
    ///
    /// @param x The SD59x18 number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function ln(SD59x18 x) pure returns (SD59x18 result) {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~195_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
    /// @notice Calculates the common logarithm of x using the following formula:
    ///
    /// $$
    /// log_{10}{x} = log_2{x} / log_2{10}
    /// $$
    ///
    /// However, if x is an exact power of ten, a hard coded value is returned.
    ///
    /// @dev Notes:
    /// - Refer to the notes in {log2}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {log2}.
    ///
    /// @param x The SD59x18 number for which to calculate the common logarithm.
    /// @return result The common logarithm as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function log10(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt < 0) {
            revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
        }
        // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
        // prettier-ignore
        assembly ("memory-safe") {
            switch x
            case 1 { result := mul(uUNIT, sub(0, 18)) }
            case 10 { result := mul(uUNIT, sub(1, 18)) }
            case 100 { result := mul(uUNIT, sub(2, 18)) }
            case 1000 { result := mul(uUNIT, sub(3, 18)) }
            case 10000 { result := mul(uUNIT, sub(4, 18)) }
            case 100000 { result := mul(uUNIT, sub(5, 18)) }
            case 1000000 { result := mul(uUNIT, sub(6, 18)) }
            case 10000000 { result := mul(uUNIT, sub(7, 18)) }
            case 100000000 { result := mul(uUNIT, sub(8, 18)) }
            case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
            case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
            case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
            case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
            case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
            case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
            case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
            case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
            case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := uUNIT }
            case 100000000000000000000 { result := mul(uUNIT, 2) }
            case 1000000000000000000000 { result := mul(uUNIT, 3) }
            case 10000000000000000000000 { result := mul(uUNIT, 4) }
            case 100000000000000000000000 { result := mul(uUNIT, 5) }
            case 1000000000000000000000000 { result := mul(uUNIT, 6) }
            case 10000000000000000000000000 { result := mul(uUNIT, 7) }
            case 100000000000000000000000000 { result := mul(uUNIT, 8) }
            case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
            case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
            case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
            case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
            case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
            case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
            case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
            case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
            case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
            case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
            case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
            case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
            default { result := uMAX_SD59x18 }
        }
        if (result.unwrap() == uMAX_SD59x18) {
            unchecked {
                // Inline the fixed-point division to save gas.
                result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
            }
        }
    }
    /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
    ///
    /// $$
    /// log_2{x} = n + log_2{y}, \\text{ where } y = x*2^{-n}, \\ y \\in [1, 2)
    /// $$
    ///
    /// For $0 \\leq x \\lt 1$, the input is inverted:
    ///
    /// $$
    /// log_2{x} = -log_2{\\frac{1}{x}}
    /// $$
    ///
    /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
    ///
    /// Notes:
    /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
    ///
    /// Requirements:
    /// - x must be greater than zero.
    ///
    /// @param x The SD59x18 number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function log2(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt <= 0) {
            revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
        }
        unchecked {
            int256 sign;
            if (xInt >= uUNIT) {
                sign = 1;
            } else {
                sign = -1;
                // Inline the fixed-point inversion to save gas.
                xInt = uUNIT_SQUARED / xInt;
            }
            // Calculate the integer part of the logarithm.
            uint256 n = Common.msb(uint256(xInt / uUNIT));
            // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
            // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
            int256 resultInt = int256(n) * uUNIT;
            // Calculate $y = x * 2^{-n}$.
            int256 y = xInt >> n;
            // If y is the unit number, the fractional part is zero.
            if (y == uUNIT) {
                return wrap(resultInt * sign);
            }
            // Calculate the fractional part via the iterative approximation.
            // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
            int256 DOUBLE_UNIT = 2e18;
            for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
                y = (y * y) / uUNIT;
                // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
                if (y >= DOUBLE_UNIT) {
                    // Add the 2^{-m} factor to the logarithm.
                    resultInt = resultInt + delta;
                    // Halve y, which corresponds to z/2 in the Wikipedia article.
                    y >>= 1;
                }
            }
            resultInt *= sign;
            result = wrap(resultInt);
        }
    }
    /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
    ///
    /// @dev Notes:
    /// - Refer to the notes in {Common.mulDiv18}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {Common.mulDiv18}.
    /// - None of the inputs can be `MIN_SD59x18`.
    /// - The result must fit in SD59x18.
    ///
    /// @param x The multiplicand as an SD59x18 number.
    /// @param y The multiplier as an SD59x18 number.
    /// @return result The product as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        int256 yInt = y.unwrap();
        if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
            revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
        }
        // Get hold of the absolute values of x and y.
        uint256 xAbs;
        uint256 yAbs;
        unchecked {
            xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
            yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
        }
        // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
        uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
        if (resultAbs > uint256(uMAX_SD59x18)) {
            revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
        }
        // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
        // negative, 0 for positive or zero).
        bool sameSign = (xInt ^ yInt) > -1;
        // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
        unchecked {
            result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
        }
    }
    /// @notice Raises x to the power of y using the following formula:
    ///
    /// $$
    /// x^y = 2^{log_2{x} * y}
    /// $$
    ///
    /// @dev Notes:
    /// - Refer to the notes in {exp2}, {log2}, and {mul}.
    /// - Returns `UNIT` for 0^0.
    ///
    /// Requirements:
    /// - Refer to the requirements in {exp2}, {log2}, and {mul}.
    ///
    /// @param x The base as an SD59x18 number.
    /// @param y Exponent to raise x to, as an SD59x18 number
    /// @return result x raised to power y, as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        int256 yInt = y.unwrap();
        // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
        if (xInt == 0) {
            return yInt == 0 ? UNIT : ZERO;
        }
        // If x is `UNIT`, the result is always `UNIT`.
        else if (xInt == uUNIT) {
            return UNIT;
        }
        // If y is zero, the result is always `UNIT`.
        if (yInt == 0) {
            return UNIT;
        }
        // If y is `UNIT`, the result is always x.
        else if (yInt == uUNIT) {
            return x;
        }
        // Calculate the result using the formula.
        result = exp2(mul(log2(x), y));
    }
    /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
    /// algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
    ///
    /// Notes:
    /// - Refer to the notes in {Common.mulDiv18}.
    /// - Returns `UNIT` for 0^0.
    ///
    /// Requirements:
    /// - Refer to the requirements in {abs} and {Common.mulDiv18}.
    /// - The result must fit in SD59x18.
    ///
    /// @param x The base as an SD59x18 number.
    /// @param y The exponent as a uint256.
    /// @return result The result as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
        uint256 xAbs = uint256(abs(x).unwrap());
        // Calculate the first iteration of the loop in advance.
        uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
        // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
        uint256 yAux = y;
        for (yAux >>= 1; yAux > 0; yAux >>= 1) {
            xAbs = Common.mulDiv18(xAbs, xAbs);
            // Equivalent to `y % 2 == 1`.
            if (yAux & 1 > 0) {
                resultAbs = Common.mulDiv18(resultAbs, xAbs);
            }
        }
        // The result must fit in SD59x18.
        if (resultAbs > uint256(uMAX_SD59x18)) {
            revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
        }
        unchecked {
            // Is the base negative and the exponent odd? If yes, the result should be negative.
            int256 resultInt = int256(resultAbs);
            bool isNegative = x.unwrap() < 0 && y & 1 == 1;
            if (isNegative) {
                resultInt = -resultInt;
            }
            result = wrap(resultInt);
        }
    }
    /// @notice Calculates the square root of x using the Babylonian method.
    ///
    /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Notes:
    /// - Only the positive root is returned.
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - x cannot be negative, since complex numbers are not supported.
    /// - x must be less than `MAX_SD59x18 / UNIT`.
    ///
    /// @param x The SD59x18 number for which to calculate the square root.
    /// @return result The result as an SD59x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function sqrt(SD59x18 x) pure returns (SD59x18 result) {
        int256 xInt = x.unwrap();
        if (xInt < 0) {
            revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
        }
        if (xInt > uMAX_SD59x18 / uUNIT) {
            revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
        }
        unchecked {
            // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
            // In this case, the two numbers are both the square root.
            uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
            result = wrap(int256(resultUint));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Casting.sol" as Casting;
    import "./Helpers.sol" as Helpers;
    import "./Math.sol" as Math;
    /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
    /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
    /// type int256.
    type SD59x18 is int256;
    /*//////////////////////////////////////////////////////////////////////////
                                        CASTING
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Casting.intoInt256,
        Casting.intoSD1x18,
        Casting.intoUD2x18,
        Casting.intoUD60x18,
        Casting.intoUint256,
        Casting.intoUint128,
        Casting.intoUint40,
        Casting.unwrap
    } for SD59x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                MATHEMATICAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Math.abs,
        Math.avg,
        Math.ceil,
        Math.div,
        Math.exp,
        Math.exp2,
        Math.floor,
        Math.frac,
        Math.gm,
        Math.inv,
        Math.log10,
        Math.log2,
        Math.ln,
        Math.mul,
        Math.pow,
        Math.powu,
        Math.sqrt
    } for SD59x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                    HELPER FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Helpers.add,
        Helpers.and,
        Helpers.eq,
        Helpers.gt,
        Helpers.gte,
        Helpers.isZero,
        Helpers.lshift,
        Helpers.lt,
        Helpers.lte,
        Helpers.mod,
        Helpers.neq,
        Helpers.not,
        Helpers.or,
        Helpers.rshift,
        Helpers.sub,
        Helpers.uncheckedAdd,
        Helpers.uncheckedSub,
        Helpers.uncheckedUnary,
        Helpers.xor
    } for SD59x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                        OPERATORS
    //////////////////////////////////////////////////////////////////////////*/
    // The global "using for" directive makes it possible to use these operators on the SD59x18 type.
    using {
        Helpers.add as +,
        Helpers.and2 as &,
        Math.div as /,
        Helpers.eq as ==,
        Helpers.gt as >,
        Helpers.gte as >=,
        Helpers.lt as <,
        Helpers.lte as <=,
        Helpers.mod as %,
        Math.mul as *,
        Helpers.neq as !=,
        Helpers.not as ~,
        Helpers.or as |,
        Helpers.sub as -,
        Helpers.unary as -,
        Helpers.xor as ^
    } for SD59x18 global;
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "../Common.sol" as Common;
    import "./Errors.sol" as Errors;
    import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
    import { SD1x18 } from "../sd1x18/ValueType.sol";
    import { SD59x18 } from "../sd59x18/ValueType.sol";
    import { UD60x18 } from "../ud60x18/ValueType.sol";
    import { UD2x18 } from "./ValueType.sol";
    /// @notice Casts a UD2x18 number into SD1x18.
    /// - x must be less than or equal to `uMAX_SD1x18`.
    function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
        uint64 xUint = UD2x18.unwrap(x);
        if (xUint > uint64(uMAX_SD1x18)) {
            revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
        }
        result = SD1x18.wrap(int64(xUint));
    }
    /// @notice Casts a UD2x18 number into SD59x18.
    /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
    function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
        result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
    }
    /// @notice Casts a UD2x18 number into UD60x18.
    /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
    function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
        result = UD60x18.wrap(UD2x18.unwrap(x));
    }
    /// @notice Casts a UD2x18 number into uint128.
    /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
    function intoUint128(UD2x18 x) pure returns (uint128 result) {
        result = uint128(UD2x18.unwrap(x));
    }
    /// @notice Casts a UD2x18 number into uint256.
    /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
    function intoUint256(UD2x18 x) pure returns (uint256 result) {
        result = uint256(UD2x18.unwrap(x));
    }
    /// @notice Casts a UD2x18 number into uint40.
    /// @dev Requirements:
    /// - x must be less than or equal to `MAX_UINT40`.
    function intoUint40(UD2x18 x) pure returns (uint40 result) {
        uint64 xUint = UD2x18.unwrap(x);
        if (xUint > uint64(Common.MAX_UINT40)) {
            revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
        }
        result = uint40(xUint);
    }
    /// @notice Alias for {wrap}.
    function ud2x18(uint64 x) pure returns (UD2x18 result) {
        result = UD2x18.wrap(x);
    }
    /// @notice Unwrap a UD2x18 number into uint64.
    function unwrap(UD2x18 x) pure returns (uint64 result) {
        result = UD2x18.unwrap(x);
    }
    /// @notice Wraps a uint64 number into UD2x18.
    function wrap(uint64 x) pure returns (UD2x18 result) {
        result = UD2x18.wrap(x);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { UD2x18 } from "./ValueType.sol";
    /// @dev Euler's number as a UD2x18 number.
    UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
    /// @dev The maximum value a UD2x18 number can have.
    uint64 constant uMAX_UD2x18 = 18_446744073709551615;
    UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
    /// @dev PI as a UD2x18 number.
    UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
    /// @dev The unit number, which gives the decimal precision of UD2x18.
    uint256 constant uUNIT = 1e18;
    UD2x18 constant UNIT = UD2x18.wrap(1e18);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { UD2x18 } from "./ValueType.sol";
    /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
    error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);
    /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
    error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Casting.sol" as Casting;
    /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
    /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
    /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
    /// storage.
    type UD2x18 is uint64;
    /*//////////////////////////////////////////////////////////////////////////
                                        CASTING
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Casting.intoSD1x18,
        Casting.intoSD59x18,
        Casting.intoUD60x18,
        Casting.intoUint256,
        Casting.intoUint128,
        Casting.intoUint40,
        Casting.unwrap
    } for UD2x18 global;
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Errors.sol" as CastingErrors;
    import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
    import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
    import { SD1x18 } from "../sd1x18/ValueType.sol";
    import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
    import { SD59x18 } from "../sd59x18/ValueType.sol";
    import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
    import { UD2x18 } from "../ud2x18/ValueType.sol";
    import { UD60x18 } from "./ValueType.sol";
    /// @notice Casts a UD60x18 number into SD1x18.
    /// @dev Requirements:
    /// - x must be less than or equal to `uMAX_SD1x18`.
    function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
        uint256 xUint = UD60x18.unwrap(x);
        if (xUint > uint256(int256(uMAX_SD1x18))) {
            revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
        }
        result = SD1x18.wrap(int64(uint64(xUint)));
    }
    /// @notice Casts a UD60x18 number into UD2x18.
    /// @dev Requirements:
    /// - x must be less than or equal to `uMAX_UD2x18`.
    function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
        uint256 xUint = UD60x18.unwrap(x);
        if (xUint > uMAX_UD2x18) {
            revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
        }
        result = UD2x18.wrap(uint64(xUint));
    }
    /// @notice Casts a UD60x18 number into SD59x18.
    /// @dev Requirements:
    /// - x must be less than or equal to `uMAX_SD59x18`.
    function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
        uint256 xUint = UD60x18.unwrap(x);
        if (xUint > uint256(uMAX_SD59x18)) {
            revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
        }
        result = SD59x18.wrap(int256(xUint));
    }
    /// @notice Casts a UD60x18 number into uint128.
    /// @dev This is basically an alias for {unwrap}.
    function intoUint256(UD60x18 x) pure returns (uint256 result) {
        result = UD60x18.unwrap(x);
    }
    /// @notice Casts a UD60x18 number into uint128.
    /// @dev Requirements:
    /// - x must be less than or equal to `MAX_UINT128`.
    function intoUint128(UD60x18 x) pure returns (uint128 result) {
        uint256 xUint = UD60x18.unwrap(x);
        if (xUint > MAX_UINT128) {
            revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
        }
        result = uint128(xUint);
    }
    /// @notice Casts a UD60x18 number into uint40.
    /// @dev Requirements:
    /// - x must be less than or equal to `MAX_UINT40`.
    function intoUint40(UD60x18 x) pure returns (uint40 result) {
        uint256 xUint = UD60x18.unwrap(x);
        if (xUint > MAX_UINT40) {
            revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
        }
        result = uint40(xUint);
    }
    /// @notice Alias for {wrap}.
    function ud(uint256 x) pure returns (UD60x18 result) {
        result = UD60x18.wrap(x);
    }
    /// @notice Alias for {wrap}.
    function ud60x18(uint256 x) pure returns (UD60x18 result) {
        result = UD60x18.wrap(x);
    }
    /// @notice Unwraps a UD60x18 number into uint256.
    function unwrap(UD60x18 x) pure returns (uint256 result) {
        result = UD60x18.unwrap(x);
    }
    /// @notice Wraps a uint256 number into the UD60x18 value type.
    function wrap(uint256 x) pure returns (UD60x18 result) {
        result = UD60x18.wrap(x);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { UD60x18 } from "./ValueType.sol";
    // NOTICE: the "u" prefix stands for "unwrapped".
    /// @dev Euler's number as a UD60x18 number.
    UD60x18 constant E = UD60x18.wrap(2_718281828459045235);
    /// @dev The maximum input permitted in {exp}.
    uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
    UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);
    /// @dev The maximum input permitted in {exp2}.
    uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
    UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);
    /// @dev Half the UNIT number.
    uint256 constant uHALF_UNIT = 0.5e18;
    UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);
    /// @dev $log_2(10)$ as a UD60x18 number.
    uint256 constant uLOG2_10 = 3_321928094887362347;
    UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);
    /// @dev $log_2(e)$ as a UD60x18 number.
    uint256 constant uLOG2_E = 1_442695040888963407;
    UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);
    /// @dev The maximum value a UD60x18 number can have.
    uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
    UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);
    /// @dev The maximum whole value a UD60x18 number can have.
    uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
    UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);
    /// @dev PI as a UD60x18 number.
    UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);
    /// @dev The unit number, which gives the decimal precision of UD60x18.
    uint256 constant uUNIT = 1e18;
    UD60x18 constant UNIT = UD60x18.wrap(uUNIT);
    /// @dev The unit number squared.
    uint256 constant uUNIT_SQUARED = 1e36;
    UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);
    /// @dev Zero as a UD60x18 number.
    UD60x18 constant ZERO = UD60x18.wrap(0);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
    import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
    import { UD60x18 } from "./ValueType.sol";
    /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
    /// @dev The result is rounded toward zero.
    /// @param x The UD60x18 number to convert.
    /// @return result The same number in basic integer form.
    function convert(UD60x18 x) pure returns (uint256 result) {
        result = UD60x18.unwrap(x) / uUNIT;
    }
    /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number converted to UD60x18.
    function convert(uint256 x) pure returns (UD60x18 result) {
        if (x > uMAX_UD60x18 / uUNIT) {
            revert PRBMath_UD60x18_Convert_Overflow(x);
        }
        unchecked {
            result = UD60x18.wrap(x * uUNIT);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { UD60x18 } from "./ValueType.sol";
    /// @notice Thrown when ceiling a number overflows UD60x18.
    error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);
    /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
    error PRBMath_UD60x18_Convert_Overflow(uint256 x);
    /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
    error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);
    /// @notice Thrown when taking the binary exponent of a base greater than 192e18.
    error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);
    /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
    error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
    error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
    error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
    error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
    error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);
    /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
    error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);
    /// @notice Thrown when taking the logarithm of a number less than 1.
    error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);
    /// @notice Thrown when calculating the square root overflows UD60x18.
    error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import { wrap } from "./Casting.sol";
    import { UD60x18 } from "./ValueType.sol";
    /// @notice Implements the checked addition operation (+) in the UD60x18 type.
    function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() + y.unwrap());
    }
    /// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
    function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() & bits);
    }
    /// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
    function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() & y.unwrap());
    }
    /// @notice Implements the equal operation (==) in the UD60x18 type.
    function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() == y.unwrap();
    }
    /// @notice Implements the greater than operation (>) in the UD60x18 type.
    function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() > y.unwrap();
    }
    /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
    function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() >= y.unwrap();
    }
    /// @notice Implements a zero comparison check function in the UD60x18 type.
    function isZero(UD60x18 x) pure returns (bool result) {
        // This wouldn't work if x could be negative.
        result = x.unwrap() == 0;
    }
    /// @notice Implements the left shift operation (<<) in the UD60x18 type.
    function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() << bits);
    }
    /// @notice Implements the lower than operation (<) in the UD60x18 type.
    function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() < y.unwrap();
    }
    /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
    function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() <= y.unwrap();
    }
    /// @notice Implements the checked modulo operation (%) in the UD60x18 type.
    function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() % y.unwrap());
    }
    /// @notice Implements the not equal operation (!=) in the UD60x18 type.
    function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
        result = x.unwrap() != y.unwrap();
    }
    /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
    function not(UD60x18 x) pure returns (UD60x18 result) {
        result = wrap(~x.unwrap());
    }
    /// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
    function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() | y.unwrap());
    }
    /// @notice Implements the right shift operation (>>) in the UD60x18 type.
    function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() >> bits);
    }
    /// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
    function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() - y.unwrap());
    }
    /// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
    function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        unchecked {
            result = wrap(x.unwrap() + y.unwrap());
        }
    }
    /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
    function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        unchecked {
            result = wrap(x.unwrap() - y.unwrap());
        }
    }
    /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
    function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(x.unwrap() ^ y.unwrap());
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "../Common.sol" as Common;
    import "./Errors.sol" as Errors;
    import { wrap } from "./Casting.sol";
    import {
        uEXP_MAX_INPUT,
        uEXP2_MAX_INPUT,
        uHALF_UNIT,
        uLOG2_10,
        uLOG2_E,
        uMAX_UD60x18,
        uMAX_WHOLE_UD60x18,
        UNIT,
        uUNIT,
        uUNIT_SQUARED,
        ZERO
    } from "./Constants.sol";
    import { UD60x18 } from "./ValueType.sol";
    /*//////////////////////////////////////////////////////////////////////////
                                MATHEMATICAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    /// @notice Calculates the arithmetic average of x and y using the following formula:
    ///
    /// $$
    /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
    /// $$
    ///
    /// In English, this is what this formula does:
    ///
    /// 1. AND x and y.
    /// 2. Calculate half of XOR x and y.
    /// 3. Add the two results together.
    ///
    /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
    /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
    ///
    /// @dev Notes:
    /// - The result is rounded toward zero.
    ///
    /// @param x The first operand as a UD60x18 number.
    /// @param y The second operand as a UD60x18 number.
    /// @return result The arithmetic average as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        uint256 yUint = y.unwrap();
        unchecked {
            result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
        }
    }
    /// @notice Yields the smallest whole number greater than or equal to x.
    ///
    /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
    /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
    ///
    /// @param x The UD60x18 number to ceil.
    /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function ceil(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        if (xUint > uMAX_WHOLE_UD60x18) {
            revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
        }
        assembly ("memory-safe") {
            // Equivalent to `x % UNIT`.
            let remainder := mod(x, uUNIT)
            // Equivalent to `UNIT - remainder`.
            let delta := sub(uUNIT, remainder)
            // Equivalent to `x + remainder > 0 ? delta : 0`.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }
    /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
    ///
    /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
    ///
    /// Notes:
    /// - Refer to the notes in {Common.mulDiv}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {Common.mulDiv}.
    ///
    /// @param x The numerator as a UD60x18 number.
    /// @param y The denominator as a UD60x18 number.
    /// @param result The quotient as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
    }
    /// @notice Calculates the natural exponent of x using the following formula:
    ///
    /// $$
    /// e^x = 2^{x * log_2{e}}
    /// $$
    ///
    /// @dev Requirements:
    /// - x must be less than 133_084258667509499441.
    ///
    /// @param x The exponent as a UD60x18 number.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function exp(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        // This check prevents values greater than 192e18 from being passed to {exp2}.
        if (xUint > uEXP_MAX_INPUT) {
            revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
        }
        unchecked {
            // Inline the fixed-point multiplication to save gas.
            uint256 doubleUnitProduct = xUint * uLOG2_E;
            result = exp2(wrap(doubleUnitProduct / uUNIT));
        }
    }
    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693
    ///
    /// Requirements:
    /// - x must be less than 192e18.
    /// - The result must fit in UD60x18.
    ///
    /// @param x The exponent as a UD60x18 number.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function exp2(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xUint > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
        }
        // Convert x to the 192.64-bit fixed-point format.
        uint256 x_192x64 = (xUint << 64) / uUNIT;
        // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
        result = wrap(Common.exp2(x_192x64));
    }
    /// @notice Yields the greatest whole number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The UD60x18 number to floor.
    /// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function floor(UD60x18 x) pure returns (UD60x18 result) {
        assembly ("memory-safe") {
            // Equivalent to `x % UNIT`.
            let remainder := mod(x, uUNIT)
            // Equivalent to `x - remainder > 0 ? remainder : 0)`.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }
    /// @notice Yields the excess beyond the floor of x using the odd function definition.
    /// @dev See https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The UD60x18 number to get the fractional part of.
    /// @param result The fractional part of x as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function frac(UD60x18 x) pure returns (UD60x18 result) {
        assembly ("memory-safe") {
            result := mod(x, uUNIT)
        }
    }
    /// @notice Calculates the geometric mean of x and y, i.e. $\\sqrt{x * y}$, rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit in UD60x18.
    ///
    /// @param x The first operand as a UD60x18 number.
    /// @param y The second operand as a UD60x18 number.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        uint256 yUint = y.unwrap();
        if (xUint == 0 || yUint == 0) {
            return ZERO;
        }
        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xyUint = xUint * yUint;
            if (xyUint / xUint != yUint) {
                revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
            }
            // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
            // during multiplication. See the comments in {Common.sqrt}.
            result = wrap(Common.sqrt(xyUint));
        }
    }
    /// @notice Calculates the inverse of x.
    ///
    /// @dev Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - x must not be zero.
    ///
    /// @param x The UD60x18 number for which to calculate the inverse.
    /// @return result The inverse as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function inv(UD60x18 x) pure returns (UD60x18 result) {
        unchecked {
            result = wrap(uUNIT_SQUARED / x.unwrap());
        }
    }
    /// @notice Calculates the natural logarithm of x using the following formula:
    ///
    /// $$
    /// ln{x} = log_2{x} / log_2{e}
    /// $$
    ///
    /// @dev Notes:
    /// - Refer to the notes in {log2}.
    /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
    ///
    /// Requirements:
    /// - Refer to the requirements in {log2}.
    ///
    /// @param x The UD60x18 number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function ln(UD60x18 x) pure returns (UD60x18 result) {
        unchecked {
            // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
            // {log2} can return is ~196_205294292027477728.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
        }
    }
    /// @notice Calculates the common logarithm of x using the following formula:
    ///
    /// $$
    /// log_{10}{x} = log_2{x} / log_2{10}
    /// $$
    ///
    /// However, if x is an exact power of ten, a hard coded value is returned.
    ///
    /// @dev Notes:
    /// - Refer to the notes in {log2}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {log2}.
    ///
    /// @param x The UD60x18 number for which to calculate the common logarithm.
    /// @return result The common logarithm as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function log10(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        if (xUint < uUNIT) {
            revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
        }
        // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
        // prettier-ignore
        assembly ("memory-safe") {
            switch x
            case 1 { result := mul(uUNIT, sub(0, 18)) }
            case 10 { result := mul(uUNIT, sub(1, 18)) }
            case 100 { result := mul(uUNIT, sub(2, 18)) }
            case 1000 { result := mul(uUNIT, sub(3, 18)) }
            case 10000 { result := mul(uUNIT, sub(4, 18)) }
            case 100000 { result := mul(uUNIT, sub(5, 18)) }
            case 1000000 { result := mul(uUNIT, sub(6, 18)) }
            case 10000000 { result := mul(uUNIT, sub(7, 18)) }
            case 100000000 { result := mul(uUNIT, sub(8, 18)) }
            case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
            case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
            case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
            case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
            case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
            case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
            case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
            case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
            case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := uUNIT }
            case 100000000000000000000 { result := mul(uUNIT, 2) }
            case 1000000000000000000000 { result := mul(uUNIT, 3) }
            case 10000000000000000000000 { result := mul(uUNIT, 4) }
            case 100000000000000000000000 { result := mul(uUNIT, 5) }
            case 1000000000000000000000000 { result := mul(uUNIT, 6) }
            case 10000000000000000000000000 { result := mul(uUNIT, 7) }
            case 100000000000000000000000000 { result := mul(uUNIT, 8) }
            case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
            case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
            case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
            case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
            case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
            case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
            case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
            case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
            case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
            case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
            case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
            case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
            default { result := uMAX_UD60x18 }
        }
        if (result.unwrap() == uMAX_UD60x18) {
            unchecked {
                // Inline the fixed-point division to save gas.
                result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
            }
        }
    }
    /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
    ///
    /// $$
    /// log_2{x} = n + log_2{y}, \\text{ where } y = x*2^{-n}, \\ y \\in [1, 2)
    /// $$
    ///
    /// For $0 \\leq x \\lt 1$, the input is inverted:
    ///
    /// $$
    /// log_2{x} = -log_2{\\frac{1}{x}}
    /// $$
    ///
    /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Notes:
    /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
    ///
    /// Requirements:
    /// - x must be greater than zero.
    ///
    /// @param x The UD60x18 number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function log2(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        if (xUint < uUNIT) {
            revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm.
            uint256 n = Common.msb(xUint / uUNIT);
            // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
            // n is at most 255 and UNIT is 1e18.
            uint256 resultUint = n * uUNIT;
            // Calculate $y = x * 2^{-n}$.
            uint256 y = xUint >> n;
            // If y is the unit number, the fractional part is zero.
            if (y == uUNIT) {
                return wrap(resultUint);
            }
            // Calculate the fractional part via the iterative approximation.
            // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
            uint256 DOUBLE_UNIT = 2e18;
            for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
                y = (y * y) / uUNIT;
                // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
                if (y >= DOUBLE_UNIT) {
                    // Add the 2^{-m} factor to the logarithm.
                    resultUint += delta;
                    // Halve y, which corresponds to z/2 in the Wikipedia article.
                    y >>= 1;
                }
            }
            result = wrap(resultUint);
        }
    }
    /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
    ///
    /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
    ///
    /// Notes:
    /// - Refer to the notes in {Common.mulDiv}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {Common.mulDiv}.
    ///
    /// @dev See the documentation in {Common.mulDiv18}.
    /// @param x The multiplicand as a UD60x18 number.
    /// @param y The multiplier as a UD60x18 number.
    /// @return result The product as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
    }
    /// @notice Raises x to the power of y.
    ///
    /// For $1 \\leq x \\leq \\infty$, the following standard formula is used:
    ///
    /// $$
    /// x^y = 2^{log_2{x} * y}
    /// $$
    ///
    /// For $0 \\leq x \\lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
    ///
    /// $$
    /// i = \\frac{1}{x}
    /// w = 2^{log_2{i} * y}
    /// x^y = \\frac{1}{w}
    /// $$
    ///
    /// @dev Notes:
    /// - Refer to the notes in {log2} and {mul}.
    /// - Returns `UNIT` for 0^0.
    /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
    ///
    /// Requirements:
    /// - Refer to the requirements in {exp2}, {log2}, and {mul}.
    ///
    /// @param x The base as a UD60x18 number.
    /// @param y The exponent as a UD60x18 number.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        uint256 yUint = y.unwrap();
        // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
        if (xUint == 0) {
            return yUint == 0 ? UNIT : ZERO;
        }
        // If x is `UNIT`, the result is always `UNIT`.
        else if (xUint == uUNIT) {
            return UNIT;
        }
        // If y is zero, the result is always `UNIT`.
        if (yUint == 0) {
            return UNIT;
        }
        // If y is `UNIT`, the result is always x.
        else if (yUint == uUNIT) {
            return x;
        }
        // If x is greater than `UNIT`, use the standard formula.
        if (xUint > uUNIT) {
            result = exp2(mul(log2(x), y));
        }
        // Conversely, if x is less than `UNIT`, use the equivalent formula.
        else {
            UD60x18 i = wrap(uUNIT_SQUARED / xUint);
            UD60x18 w = exp2(mul(log2(i), y));
            result = wrap(uUNIT_SQUARED / w.unwrap());
        }
    }
    /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
    /// algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
    ///
    /// Notes:
    /// - Refer to the notes in {Common.mulDiv18}.
    /// - Returns `UNIT` for 0^0.
    ///
    /// Requirements:
    /// - The result must fit in UD60x18.
    ///
    /// @param x The base as a UD60x18 number.
    /// @param y The exponent as a uint256.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
        // Calculate the first iteration of the loop in advance.
        uint256 xUint = x.unwrap();
        uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
        // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
        for (y >>= 1; y > 0; y >>= 1) {
            xUint = Common.mulDiv18(xUint, xUint);
            // Equivalent to `y % 2 == 1`.
            if (y & 1 > 0) {
                resultUint = Common.mulDiv18(resultUint, xUint);
            }
        }
        result = wrap(resultUint);
    }
    /// @notice Calculates the square root of x using the Babylonian method.
    ///
    /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Notes:
    /// - The result is rounded toward zero.
    ///
    /// Requirements:
    /// - x must be less than `MAX_UD60x18 / UNIT`.
    ///
    /// @param x The UD60x18 number for which to calculate the square root.
    /// @return result The result as a UD60x18 number.
    /// @custom:smtchecker abstract-function-nondet
    function sqrt(UD60x18 x) pure returns (UD60x18 result) {
        uint256 xUint = x.unwrap();
        unchecked {
            if (xUint > uMAX_UD60x18 / uUNIT) {
                revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
            }
            // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
            // In this case, the two numbers are both the square root.
            result = wrap(Common.sqrt(xUint * uUNIT));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.19;
    import "./Casting.sol" as Casting;
    import "./Helpers.sol" as Helpers;
    import "./Math.sol" as Math;
    /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
    /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
    /// @dev The value type is defined here so it can be imported in all other files.
    type UD60x18 is uint256;
    /*//////////////////////////////////////////////////////////////////////////
                                        CASTING
    //////////////////////////////////////////////////////////////////////////*/
    using {
        Casting.intoSD1x18,
        Casting.intoUD2x18,
        Casting.intoSD59x18,
        Casting.intoUint128,
        Casting.intoUint256,
        Casting.intoUint40,
        Casting.unwrap
    } for UD60x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                MATHEMATICAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    // The global "using for" directive makes the functions in this library callable on the UD60x18 type.
    using {
        Math.avg,
        Math.ceil,
        Math.div,
        Math.exp,
        Math.exp2,
        Math.floor,
        Math.frac,
        Math.gm,
        Math.inv,
        Math.ln,
        Math.log10,
        Math.log2,
        Math.mul,
        Math.pow,
        Math.powu,
        Math.sqrt
    } for UD60x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                    HELPER FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/
    // The global "using for" directive makes the functions in this library callable on the UD60x18 type.
    using {
        Helpers.add,
        Helpers.and,
        Helpers.eq,
        Helpers.gt,
        Helpers.gte,
        Helpers.isZero,
        Helpers.lshift,
        Helpers.lt,
        Helpers.lte,
        Helpers.mod,
        Helpers.neq,
        Helpers.not,
        Helpers.or,
        Helpers.rshift,
        Helpers.sub,
        Helpers.uncheckedAdd,
        Helpers.uncheckedSub,
        Helpers.xor
    } for UD60x18 global;
    /*//////////////////////////////////////////////////////////////////////////
                                        OPERATORS
    //////////////////////////////////////////////////////////////////////////*/
    // The global "using for" directive makes it possible to use these operators on the UD60x18 type.
    using {
        Helpers.add as +,
        Helpers.and2 as &,
        Math.div as /,
        Helpers.eq as ==,
        Helpers.gt as >,
        Helpers.gte as >=,
        Helpers.lt as <,
        Helpers.lte as <=,
        Helpers.or as |,
        Helpers.mod as %,
        Math.mul as *,
        Helpers.neq as !=,
        Helpers.not as ~,
        Helpers.sub as -,
        Helpers.xor as ^
    } for UD60x18 global;
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    /// @title IAdminable
    /// @notice Contract module that provides a basic access control mechanism, with an admin that can be
    /// granted exclusive access to specific functions. The inheriting contract must set the initial admin
    /// in the constructor.
    interface IAdminable {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when the admin is transferred.
        /// @param oldAdmin The address of the old admin.
        /// @param newAdmin The address of the new admin.
        event TransferAdmin(address indexed oldAdmin, address indexed newAdmin);
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice The address of the admin account or contract.
        function admin() external view returns (address);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Transfers the contract admin to a new address.
        ///
        /// @dev Notes:
        /// - Does not revert if the admin is the same.
        /// - This function can potentially leave the contract without an admin, thereby removing any
        /// functionality that is only available to the admin.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param newAdmin The address of the new admin.
        function transferAdmin(address newAdmin) external;
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { UD60x18 } from "@prb/math/src/UD60x18.sol";
    import { IAdminable } from "./IAdminable.sol";
    import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol";
    /// @title ISablierV2Base
    /// @notice Base logic for all Sablier V2 streaming contracts.
    interface ISablierV2Base is IAdminable {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset.
        /// @param admin The address of the contract admin.
        /// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for.
        /// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals.
        event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues);
        /// @notice Emitted when the admin sets a new comptroller contract.
        /// @param admin The address of the contract admin.
        /// @param oldComptroller The address of the old comptroller contract.
        /// @param newComptroller The address of the new comptroller contract.
        event SetComptroller(
            address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller
        );
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point
        /// number where 1e18 is 100%.
        /// @dev This value is hard coded as a constant.
        function MAX_FEE() external view returns (UD60x18);
        /// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol
        /// configuration.
        function comptroller() external view returns (ISablierV2Comptroller);
        /// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's
        /// decimals.
        /// @param asset The contract address of the ERC-20 asset to query.
        function protocolRevenues(IERC20 asset) external view returns (uint128 revenues);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset.
        ///
        /// @dev Emits a {ClaimProtocolRevenues} event.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues.
        function claimProtocolRevenues(IERC20 asset) external;
        /// @notice Assigns a new comptroller contract responsible for the protocol configuration.
        ///
        /// @dev Emits a {SetComptroller} event.
        ///
        /// Notes:
        /// - Does not revert if the comptroller is the same.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param newComptroller The address of the new comptroller contract.
        function setComptroller(ISablierV2Comptroller newComptroller) external;
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { UD60x18 } from "@prb/math/src/UD60x18.sol";
    import { IAdminable } from "./IAdminable.sol";
    /// @title ISablierV2Controller
    /// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the
    /// protocol fees.
    interface ISablierV2Comptroller is IAdminable {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when the admin sets a new flash fee.
        /// @param admin The address of the contract admin.
        /// @param oldFlashFee The old flash fee, denoted as a fixed-point number.
        /// @param newFlashFee The new flash fee, denoted as a fixed-point number.
        event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee);
        /// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset.
        /// @param admin The address of the contract admin.
        /// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for.
        /// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number.
        /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number.
        event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee);
        /// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning.
        /// @param admin The address of the contract admin.
        /// @param asset The contract address of the ERC-20 asset to toggle.
        /// @param newFlag Whether the ERC-20 asset can be flash loaned.
        event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag);
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%.
        ///
        /// @dev Notes:
        /// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee},
        /// which calculates the fee amount for a specified flash loan amount.
        /// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee.
        function flashFee() external view returns (UD60x18 fee);
        /// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned.
        /// @param token The contract address of the ERC-20 asset to check.
        function isFlashAsset(IERC20 token) external view returns (bool result);
        /// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset.
        /// @param asset The contract address of the ERC-20 asset to query.
        /// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%.
        function protocolFees(IERC20 asset) external view returns (UD60x18 fee);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset.
        ///
        /// @dev Emits a {SetFlashFee} event.
        ///
        /// Notes:
        /// - Does not revert if the fee is the same.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%.
        function setFlashFee(UD60x18 newFlashFee) external;
        /// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset.
        ///
        /// @dev Emits a {SetProtocolFee} event.
        ///
        /// Notes:
        /// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the
        /// PRBMath documentation for more detail on the logic of UD60x18.
        /// - Does not revert if the fee is the same.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param asset The contract address of the ERC-20 asset to update the fee for.
        /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%.
        function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external;
        /// @notice Toggles the flash loanability of an ERC-20 asset.
        ///
        /// @dev Emits a {ToggleFlashAsset} event.
        ///
        /// Requirements:
        /// - `msg.sender` must be the admin.
        ///
        /// @param asset The address of the ERC-20 asset to toggle.
        function toggleFlashAsset(IERC20 asset) external;
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
    import { Lockup } from "../types/DataTypes.sol";
    import { ISablierV2Base } from "./ISablierV2Base.sol";
    import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol";
    /// @title ISablierV2Lockup
    /// @notice Common logic between all Sablier V2 Lockup streaming contracts.
    interface ISablierV2Lockup is
        ISablierV2Base, // 1 inherited component
        IERC721Metadata // 2 inherited components
    {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when a stream is canceled.
        /// @param streamId The id of the stream.
        /// @param sender The address of the stream's sender.
        /// @param recipient The address of the stream's recipient.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
        /// decimals.
        /// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the
        /// asset's decimals.
        event CancelLockupStream(
            uint256 streamId,
            address indexed sender,
            address indexed recipient,
            IERC20 indexed asset,
            uint128 senderAmount,
            uint128 recipientAmount
        );
        /// @notice Emitted when a sender gives up the right to cancel a stream.
        /// @param streamId The id of the stream.
        event RenounceLockupStream(uint256 indexed streamId);
        /// @notice Emitted when the admin sets a new NFT descriptor contract.
        /// @param admin The address of the current contract admin.
        /// @param oldNFTDescriptor The address of the old NFT descriptor contract.
        /// @param newNFTDescriptor The address of the new NFT descriptor contract.
        event SetNFTDescriptor(
            address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor
        );
        /// @notice Emitted when assets are withdrawn from a stream.
        /// @param streamId The id of the stream.
        /// @param to The address that has received the withdrawn assets.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
        event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, IERC20 indexed asset, uint128 amount);
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Retrieves the address of the ERC-20 asset used for streaming.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getAsset(uint256 streamId) external view returns (IERC20 asset);
        /// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount);
        /// @notice Retrieves the stream's end time, which is a Unix timestamp.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getEndTime(uint256 streamId) external view returns (uint40 endTime);
        /// @notice Retrieves the stream's recipient.
        /// @dev Reverts if the NFT has been burned.
        /// @param streamId The stream id for the query.
        function getRecipient(uint256 streamId) external view returns (address recipient);
        /// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's
        /// decimals. This amount is always zero unless the stream was canceled.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount);
        /// @notice Retrieves the stream's sender.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getSender(uint256 streamId) external view returns (address sender);
        /// @notice Retrieves the stream's start time, which is a Unix timestamp.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getStartTime(uint256 streamId) external view returns (uint40 startTime);
        /// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount);
        /// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this
        /// flag is always `false`.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isCancelable(uint256 streamId) external view returns (bool result);
        /// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isCold(uint256 streamId) external view returns (bool result);
        /// @notice Retrieves a flag indicating whether the stream is depleted.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isDepleted(uint256 streamId) external view returns (bool result);
        /// @notice Retrieves a flag indicating whether the stream exists.
        /// @dev Does not revert if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isStream(uint256 streamId) external view returns (bool result);
        /// @notice Retrieves a flag indicating whether the stream NFT can be transferred.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isTransferable(uint256 streamId) external view returns (bool result);
        /// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function isWarm(uint256 streamId) external view returns (bool result);
        /// @notice Counter for stream ids, used in the create functions.
        function nextStreamId() external view returns (uint256);
        /// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units
        /// of the asset's decimals.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount);
        /// @notice Retrieves the stream's status.
        /// @param streamId The stream id for the query.
        function statusOf(uint256 streamId) external view returns (Lockup.Status status);
        /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);
        /// @notice Retrieves a flag indicating whether the stream was canceled.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function wasCanceled(uint256 streamId) external view returns (bool result);
        /// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's
        /// decimals.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Burns the NFT associated with the stream.
        ///
        /// @dev Emits a {Transfer} event.
        ///
        /// Requirements:
        /// - Must not be delegate called.
        /// - `streamId` must reference a depleted stream.
        /// - The NFT must exist.
        /// - `msg.sender` must be either the NFT owner or an approved third party.
        ///
        /// @param streamId The id of the stream NFT to burn.
        function burn(uint256 streamId) external;
        /// @notice Cancels the stream and refunds any remaining assets to the sender.
        ///
        /// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event.
        ///
        /// Notes:
        /// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the
        /// stream is marked as depleted.
        /// - This function attempts to invoke a hook on the recipient, if the resolved address is a contract.
        ///
        /// Requirements:
        /// - Must not be delegate called.
        /// - The stream must be warm and cancelable.
        /// - `msg.sender` must be the stream's sender.
        ///
        /// @param streamId The id of the stream to cancel.
        function cancel(uint256 streamId) external;
        /// @notice Cancels multiple streams and refunds any remaining assets to the sender.
        ///
        /// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events.
        ///
        /// Notes:
        /// - Refer to the notes in {cancel}.
        ///
        /// Requirements:
        /// - All requirements from {cancel} must be met for each stream.
        ///
        /// @param streamIds The ids of the streams to cancel.
        function cancelMultiple(uint256[] calldata streamIds) external;
        /// @notice Removes the right of the stream's sender to cancel the stream.
        ///
        /// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event.
        ///
        /// Notes:
        /// - This is an irreversible operation.
        /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract.
        ///
        /// Requirements:
        /// - Must not be delegate called.
        /// - `streamId` must reference a warm stream.
        /// - `msg.sender` must be the stream's sender.
        /// - The stream must be cancelable.
        ///
        /// @param streamId The id of the stream to renounce.
        function renounce(uint256 streamId) external;
        /// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs.
        ///
        /// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event.
        ///
        /// Notes:
        /// - Does not revert if the NFT descriptor is the same.
        ///
        /// Requirements:
        /// - `msg.sender` must be the contract admin.
        ///
        /// @param newNFTDescriptor The address of the new NFT descriptor contract.
        function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external;
        /// @notice Withdraws the provided amount of assets from the stream to the `to` address.
        ///
        /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
        ///
        /// Notes:
        /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract
        /// and `msg.sender` is either the sender or an approved operator.
        ///
        /// Requirements:
        /// - Must not be delegate called.
        /// - `streamId` must not reference a null or depleted stream.
        /// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party.
        /// - `to` must be the recipient if `msg.sender` is the stream's sender.
        /// - `to` must not be the zero address.
        /// - `amount` must be greater than zero and must not exceed the withdrawable amount.
        ///
        /// @param streamId The id of the stream to withdraw from.
        /// @param to The address receiving the withdrawn assets.
        /// @param amount The amount to withdraw, denoted in units of the asset's decimals.
        function withdraw(uint256 streamId, address to, uint128 amount) external;
        /// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`.
        ///
        /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
        ///
        /// Notes:
        /// - Refer to the notes in {withdraw}.
        ///
        /// Requirements:
        /// - Refer to the requirements in {withdraw}.
        ///
        /// @param streamId The id of the stream to withdraw from.
        /// @param to The address receiving the withdrawn assets.
        function withdrawMax(uint256 streamId, address to) external;
        /// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the
        /// NFT to `newRecipient`.
        ///
        /// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event.
        ///
        /// Notes:
        /// - If the withdrawable amount is zero, the withdrawal is skipped.
        /// - Refer to the notes in {withdraw}.
        ///
        /// Requirements:
        /// - `msg.sender` must be the stream's recipient.
        /// - Refer to the requirements in {withdraw}.
        /// - Refer to the requirements in {IERC721.transferFrom}.
        ///
        /// @param streamId The id of the stream NFT to transfer.
        /// @param newRecipient The address of the new owner of the stream NFT.
        function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external;
        /// @notice Withdraws assets from streams to the provided address `to`.
        ///
        /// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events.
        ///
        /// Notes:
        /// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient.
        ///
        /// Requirements:
        /// - All requirements from {withdraw} must be met for each stream.
        /// - There must be an equal number of `streamIds` and `amounts`.
        ///
        /// @param streamIds The ids of the streams to withdraw from.
        /// @param to The address receiving the withdrawn assets.
        /// @param amounts The amounts to withdraw, denoted in units of the asset's decimals.
        function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external;
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { Lockup, LockupLinear } from "../types/DataTypes.sol";
    import { ISablierV2Lockup } from "./ISablierV2Lockup.sol";
    /// @title ISablierV2LockupLinear
    /// @notice Creates and manages Lockup streams with linear streaming functions.
    interface ISablierV2LockupLinear is ISablierV2Lockup {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when a stream is created.
        /// @param streamId The id of the newly created stream.
        /// @param funder The address which funded the stream.
        /// @param sender The address streaming the assets, with the ability to cancel the stream.
        /// @param recipient The address receiving the assets.
        /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the
        /// broker fee amount, all denoted in units of the asset's decimals.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param cancelable Boolean indicating whether the stream will be cancelable or not.
        /// @param transferable Boolean indicating whether the stream NFT is transferable or not.
        /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
        /// timestamps.
        /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website.
        event CreateLockupLinearStream(
            uint256 streamId,
            address funder,
            address indexed sender,
            address indexed recipient,
            Lockup.CreateAmounts amounts,
            IERC20 indexed asset,
            bool cancelable,
            bool transferable,
            LockupLinear.Range range,
            address broker
        );
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Retrieves the stream's cliff time, which is a Unix timestamp.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime);
        /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time, (ii) cliff
        /// time, and (iii) end time, all as Unix timestamps.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getRange(uint256 streamId) external view returns (LockupLinear.Range memory range);
        /// @notice Retrieves the stream entity.
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function getStream(uint256 streamId) external view returns (LockupLinear.Stream memory stream);
        /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
        ///
        /// When the stream is warm, the streaming function is:
        ///
        /// $$
        /// f(x) = x * d + c
        /// $$
        ///
        /// Where:
        ///
        /// - $x$ is the elapsed time divided by the stream's total duration.
        /// - $d$ is the deposited amount.
        /// - $c$ is the cliff amount.
        ///
        /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited
        /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent
        /// to the total amount withdrawn.
        ///
        /// @dev Reverts if `streamId` references a null stream.
        /// @param streamId The stream id for the query.
        function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to
        /// the sum of `block.timestamp` and `params.durations.total`. The stream is funded by `msg.sender` and is wrapped
        /// in an ERC-721 NFT.
        ///
        /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
        ///
        /// Requirements:
        /// - All requirements in {createWithRange} must be met for the calculated parameters.
        ///
        /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
        /// @return streamId The id of the newly created stream.
        function createWithDurations(LockupLinear.CreateWithDurations calldata params)
            external
            returns (uint256 streamId);
        /// @notice Creates a stream with the provided start time and end time as the range. The stream is
        /// funded by `msg.sender` and is wrapped in an ERC-721 NFT.
        ///
        /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
        ///
        /// Notes:
        /// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past.
        ///
        /// Requirements:
        /// - Must not be delegate called.
        /// - `params.totalAmount` must be greater than zero.
        /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`.
        /// - `params.range.start` must be less than or equal to `params.range.cliff`.
        /// - `params.range.cliff` must be less than `params.range.end`.
        /// - `params.range.end` must be in the future.
        /// - `params.recipient` must not be the zero address.
        /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets.
        ///
        /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
        /// @return streamId The id of the newly created stream.
        function createWithRange(LockupLinear.CreateWithRange calldata params) external returns (uint256 streamId);
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
    /// @title ISablierV2NFTDescriptor
    /// @notice This contract generates the URI describing the Sablier V2 stream NFTs.
    /// @dev Inspired by Uniswap V3 Positions NFTs.
    interface ISablierV2NFTDescriptor {
        /// @notice Produces the URI describing a particular stream NFT.
        /// @dev This is a data URI with the JSON contents directly inlined.
        /// @param sablier The address of the Sablier contract the stream was created in.
        /// @param streamId The id of the stream for which to produce a description.
        /// @return uri The URI of the ERC721-compliant metadata.
        function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri);
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { UD2x18 } from "@prb/math/src/UD2x18.sol";
    import { UD60x18 } from "@prb/math/src/UD60x18.sol";
    // DataTypes.sol
    //
    // This file defines all structs used in V2 Core, most of which are organized under three namespaces:
    //
    // - Lockup
    // - LockupDynamic
    // - LockupLinear
    //
    // You will notice that some structs contain "slot" annotations - they are used to indicate the
    // storage layout of the struct. It is more gas efficient to group small data types together so
    // that they fit in a single 32-byte slot.
    /// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero.
    /// @param account The address receiving the broker's fee.
    /// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%.
    struct Broker {
        address account;
        UD60x18 fee;
    }
    /// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}.
    library Lockup {
        /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units
        /// of the asset's decimals.
        /// @dev Because the deposited and the withdrawn amount are often read together, declaring them in
        /// the same slot saves gas.
        /// @param deposited The initial amount deposited in the stream, net of fees.
        /// @param withdrawn The cumulative amount withdrawn from the stream.
        /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero.
        struct Amounts {
            // slot 0
            uint128 deposited;
            uint128 withdrawn;
            // slot 1
            uint128 refunded;
        }
        /// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount,
        /// all denoted in units of the asset's decimals.
        /// @param deposit The amount to deposit in the stream.
        /// @param protocolFee The protocol fee amount.
        /// @param brokerFee The broker fee amount.
        struct CreateAmounts {
            uint128 deposit;
            uint128 protocolFee;
            uint128 brokerFee;
        }
        /// @notice Enum representing the different statuses of a stream.
        /// @custom:value PENDING Stream created but not started; assets are in a pending state.
        /// @custom:value STREAMING Active stream where assets are currently being streamed.
        /// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them.
        /// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal.
        /// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded.
        enum Status {
            PENDING, // value 0
            STREAMING, // value 1
            SETTLED, // value 2
            CANCELED, // value 3
            DEPLETED // value 4
        }
    }
    /// @notice Namespace for the structs used in {SablierV2LockupDynamic}.
    library LockupDynamic {
        /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function.
        /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
        /// same as `msg.sender`.
        /// @param recipient The address receiving the assets.
        /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
        /// fees, all denoted in units of the asset's decimals.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param cancelable Indicates if the stream is cancelable.
        /// @param transferable Indicates if the stream NFT is transferable.
        /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
        /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
        /// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by
        /// starting from `block.timestamp` and adding each delta to the previous milestone.
        struct CreateWithDeltas {
            address sender;
            bool cancelable;
            bool transferable;
            address recipient;
            uint128 totalAmount;
            IERC20 asset;
            Broker broker;
            SegmentWithDelta[] segments;
        }
        /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones}
        /// function.
        /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
        /// same as `msg.sender`.
        /// @param startTime The Unix timestamp indicating the stream's start.
        /// @param cancelable Indicates if the stream is cancelable.
        /// @param transferable Indicates if the stream NFT is transferable.
        /// @param recipient The address receiving the assets.
        /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
        /// fees, all denoted in units of the asset's decimals.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
        /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
        /// @param segments Segments used to compose the custom streaming curve.
        struct CreateWithMilestones {
            address sender;
            uint40 startTime;
            bool cancelable;
            bool transferable;
            address recipient;
            uint128 totalAmount;
            IERC20 asset;
            Broker broker;
            Segment[] segments;
        }
        /// @notice Struct encapsulating the time range.
        /// @param start The Unix timestamp indicating the stream's start.
        /// @param end The Unix timestamp indicating the stream's end.
        struct Range {
            uint40 start;
            uint40 end;
        }
        /// @notice Segment struct used in the Lockup Dynamic stream.
        /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
        /// @param exponent The exponent of this segment, denoted as a fixed-point number.
        /// @param milestone The Unix timestamp indicating this segment's end.
        struct Segment {
            // slot 0
            uint128 amount;
            UD2x18 exponent;
            uint40 milestone;
        }
        /// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}.
        /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
        /// @param exponent The exponent of this segment, denoted as a fixed-point number.
        /// @param delta The time difference in seconds between this segment and the previous one.
        struct SegmentWithDelta {
            uint128 amount;
            UD2x18 exponent;
            uint40 delta;
        }
        /// @notice Lockup Dynamic stream.
        /// @dev The fields are arranged like this to save gas via tight variable packing.
        /// @param sender The address streaming the assets, with the ability to cancel the stream.
        /// @param startTime The Unix timestamp indicating the stream's start.
        /// @param endTime The Unix timestamp indicating the stream's end.
        /// @param isCancelable Boolean indicating if the stream is cancelable.
        /// @param wasCanceled Boolean indicating if the stream was canceled.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param isDepleted Boolean indicating if the stream is depleted.
        /// @param isStream Boolean indicating if the struct entity exists.
        /// @param isTransferable Boolean indicating if the stream NFT is transferable.
        /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
        /// asset's decimals.
        /// @param segments Segments used to compose the custom streaming curve.
        struct Stream {
            // slot 0
            address sender;
            uint40 startTime;
            uint40 endTime;
            bool isCancelable;
            bool wasCanceled;
            // slot 1
            IERC20 asset;
            bool isDepleted;
            bool isStream;
            bool isTransferable;
            // slot 2 and 3
            Lockup.Amounts amounts;
            // slots [4..n]
            Segment[] segments;
        }
    }
    /// @notice Namespace for the structs used in {SablierV2LockupLinear}.
    library LockupLinear {
        /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function.
        /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
        /// same as `msg.sender`.
        /// @param recipient The address receiving the assets.
        /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
        /// fees, all denoted in units of the asset's decimals.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param cancelable Indicates if the stream is cancelable.
        /// @param transferable Indicates if the stream NFT is transferable.
        /// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds.
        /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
        /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
        struct CreateWithDurations {
            address sender;
            address recipient;
            uint128 totalAmount;
            IERC20 asset;
            bool cancelable;
            bool transferable;
            Durations durations;
            Broker broker;
        }
        /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function.
        /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
        /// same as `msg.sender`.
        /// @param recipient The address receiving the assets.
        /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
        /// fees, all denoted in units of the asset's decimals.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param cancelable Indicates if the stream is cancelable.
        /// @param transferable Indicates if the stream NFT is transferable.
        /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
        /// timestamps.
        /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
        /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
        struct CreateWithRange {
            address sender;
            address recipient;
            uint128 totalAmount;
            IERC20 asset;
            bool cancelable;
            bool transferable;
            Range range;
            Broker broker;
        }
        /// @notice Struct encapsulating the cliff duration and the total duration.
        /// @param cliff The cliff duration in seconds.
        /// @param total The total duration in seconds.
        struct Durations {
            uint40 cliff;
            uint40 total;
        }
        /// @notice Struct encapsulating the time range.
        /// @param start The Unix timestamp for the stream's start.
        /// @param cliff The Unix timestamp for the cliff period's end.
        /// @param end The Unix timestamp for the stream's end.
        struct Range {
            uint40 start;
            uint40 cliff;
            uint40 end;
        }
        /// @notice Lockup Linear stream.
        /// @dev The fields are arranged like this to save gas via tight variable packing.
        /// @param sender The address streaming the assets, with the ability to cancel the stream.
        /// @param startTime The Unix timestamp indicating the stream's start.
        /// @param cliffTime The Unix timestamp indicating the cliff period's end.
        /// @param isCancelable Boolean indicating if the stream is cancelable.
        /// @param wasCanceled Boolean indicating if the stream was canceled.
        /// @param asset The contract address of the ERC-20 asset used for streaming.
        /// @param endTime The Unix timestamp indicating the stream's end.
        /// @param isDepleted Boolean indicating if the stream is depleted.
        /// @param isStream Boolean indicating if the struct entity exists.
        /// @param isTransferable Boolean indicating if the stream NFT is transferable.
        /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
        /// asset's decimals.
        struct Stream {
            // slot 0
            address sender;
            uint40 startTime;
            uint40 cliffTime;
            bool isCancelable;
            bool wasCanceled;
            // slot 1
            IERC20 asset;
            uint40 endTime;
            bool isDepleted;
            bool isStream;
            bool isTransferable;
            // slot 2 and 3
            Lockup.Amounts amounts;
        }
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { IAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
    import { ISablierV2Lockup } from "@sablier/v2-core/src/interfaces/ISablierV2Lockup.sol";
    /// @title ISablierV2MerkleStreamer
    /// @notice A contract that lets user claim Sablier streams using Merkle proofs. An interesting use case for
    /// MerkleStream is airstreams, which is a portmanteau of "airdrop" and "stream". This is an airdrop model where the
    /// tokens are distributed over time, as opposed to all at once.
    /// @dev This is the base interface for MerkleStreamer contracts. See the Sablier docs for more guidance on how
    /// streaming works: https://docs.sablier.com/.
    interface ISablierV2MerkleStreamer is IAdminable {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when a recipient claims a stream.
        event Claim(uint256 index, address indexed recipient, uint128 amount, uint256 indexed streamId);
        /// @notice Emitted when the admin claws back the unclaimed tokens.
        event Clawback(address indexed admin, address indexed to, uint128 amount);
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice The streamed ERC-20 asset.
        /// @dev This is an immutable state variable.
        function ASSET() external returns (IERC20);
        /// @notice A flag indicating whether the streams can be canceled.
        /// @dev This is an immutable state variable.
        function CANCELABLE() external returns (bool);
        /// @notice The cut-off point for the Merkle streamer, as a Unix timestamp. A value of zero means there
        /// is no expiration.
        /// @dev This is an immutable state variable.
        function EXPIRATION() external returns (uint40);
        /// @notice Returns a flag indicating whether a claim has been made for a given index.
        /// @dev Uses a bitmap to save gas.
        /// @param index The index of the recipient to check.
        function hasClaimed(uint256 index) external returns (bool);
        /// @notice Returns a flag indicating whether the Merkle streamer has expired.
        function hasExpired() external view returns (bool);
        /// @notice The address of the {SablierV2Lockup} contract.
        function LOCKUP() external returns (ISablierV2Lockup);
        /// @notice The root of the Merkle tree used to validate the claims.
        /// @dev This is an immutable state variable.
        function MERKLE_ROOT() external returns (bytes32);
        /// @notice A flag indicating whether the stream NFTs are transferable.
        /// @dev This is an immutable state variable.
        function TRANSFERABLE() external returns (bool);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Claws back the unclaimed tokens from the Merkle streamer.
        ///
        /// @dev Emits a {Clawback} event.
        ///
        /// Notes:
        /// - If the protocol is not zero, the expiration check is not made.
        ///
        /// Requirements:
        /// - The caller must be the admin.
        /// - The campaign must either be expired or not have an expiration.
        ///
        /// @param to The address to receive the tokens.
        /// @param amount The amount of tokens to claw back.
        function clawback(address to, uint128 amount) external;
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
    import { LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol";
    import { ISablierV2MerkleStreamerLL } from "./ISablierV2MerkleStreamerLL.sol";
    /// @title ISablierV2MerkleStreamerFactory
    /// @notice Deploys new Lockup Linear Merkle streamers via CREATE2.
    interface ISablierV2MerkleStreamerFactory {
        /*//////////////////////////////////////////////////////////////////////////
                                           EVENTS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Emitted when a Sablier V2 Lockup Linear Merkle streamer is created.
        event CreateMerkleStreamerLL(
            ISablierV2MerkleStreamerLL merkleStreamer,
            address indexed admin,
            ISablierV2LockupLinear indexed lockupLinear,
            IERC20 indexed asset,
            bytes32 merkleRoot,
            uint40 expiration,
            LockupLinear.Durations streamDurations,
            bool cancelable,
            bool transferable,
            string ipfsCID,
            uint256 aggregateAmount,
            uint256 recipientsCount
        );
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Creates a new Merkle streamer that uses Lockup Linear.
        /// @dev Emits a {CreateMerkleStreamerLL} event.
        /// @param initialAdmin The initial admin of the Merkle streamer contract.
        /// @param lockupLinear The address of the {SablierV2LockupLinear} contract.
        /// @param asset The address of the streamed ERC-20 asset.
        /// @param merkleRoot The Merkle root of the claim data.
        /// @param expiration The expiration of the streaming campaign, as a Unix timestamp.
        /// @param streamDurations The durations for each stream due to the recipient.
        /// @param cancelable Indicates if each stream will be cancelable.
        /// @param transferable Indicates if each stream NFT will be transferable.
        /// @param ipfsCID Metadata parameter emitted for indexing purposes.
        /// @param aggregateAmount Total amount of ERC-20 assets to be streamed to all recipients.
        /// @param recipientsCount Total number of recipients eligible to claim.
        /// @return merkleStreamerLL The address of the newly created Merkle streamer contract.
        function createMerkleStreamerLL(
            address initialAdmin,
            ISablierV2LockupLinear lockupLinear,
            IERC20 asset,
            bytes32 merkleRoot,
            uint40 expiration,
            LockupLinear.Durations memory streamDurations,
            bool cancelable,
            bool transferable,
            string memory ipfsCID,
            uint256 aggregateAmount,
            uint256 recipientsCount
        )
            external
            returns (ISablierV2MerkleStreamerLL merkleStreamerLL);
    }
    // SPDX-License-Identifier: GPL-3.0-or-later
    pragma solidity >=0.8.19;
    import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
    import { ISablierV2MerkleStreamer } from "./ISablierV2MerkleStreamer.sol";
    /// @title ISablierV2MerkleStreamerLL
    /// @notice Merkle streamer that creates Lockup Linear streams.
    interface ISablierV2MerkleStreamerLL is ISablierV2MerkleStreamer {
        /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice The address of the {SablierV2LockupLinear} contract.
        function LOCKUP_LINEAR() external view returns (ISablierV2LockupLinear);
        /// @notice The total streaming duration of each stream.
        function streamDurations() external view returns (uint40 cliff, uint40 duration);
        /*//////////////////////////////////////////////////////////////////////////
                                   NON-CONSTANT FUNCTIONS
        //////////////////////////////////////////////////////////////////////////*/
        /// @notice Makes the claim by creating a Lockup Linear stream to the recipient.
        ///
        /// @dev Emits a {Claim} event.
        ///
        /// Requirements:
        /// - The campaign must not have expired.
        /// - The stream must not have been claimed already.
        /// - The protocol fee must be zero.
        /// - The Merkle proof must be valid.
        ///
        /// @param index The index of the recipient in the Merkle tree.
        /// @param recipient The address of the stream holder.
        /// @param amount The amount of tokens to be streamed.
        /// @param merkleProof The Merkle proof of inclusion in the stream.
        /// @return streamId The id of the newly created stream.
        function claim(
            uint256 index,
            address recipient,
            uint128 amount,
            bytes32[] calldata merkleProof
        )
            external
            returns (uint256 streamId);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    contract ExecutorManager {
        error NotExecutor(address attempted);
        error CannotRemoveSelf();
        mapping(address => bool) public executors;
        constructor() {
            _addExecutor(msg.sender);
        }
        modifier onlyExecutor() {
            if (isExecutor(msg.sender) != true) revert NotExecutor(msg.sender);
            _;
        }
        function isExecutor(address _executor) public view returns(bool) {
            return(executors[_executor] == true);
        }
        function _addExecutor(address _toAdd) internal {
            executors[_toAdd] = true;
        }
        function addExecutor(address _toAdd) onlyExecutor external virtual {
            _addExecutor(_toAdd);
        }
        function _removeExecutor(address _toRemove) internal {
            if (_toRemove == msg.sender) revert CannotRemoveSelf();
            executors[_toRemove] = false;
        }
        function removeExecutor(address _toRemove) onlyExecutor external virtual {
            _removeExecutor(_toRemove);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    contract MathHelpers {
        uint256 public constant divisionDenominator = 10**18;
        function _multiplyWithNumerator(uint256 _amount, uint256 _numerator) internal pure returns(uint256) {
            return((_amount * _numerator) / divisionDenominator);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
    import { ISablierV2MerkleStreamerFactory } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerFactory.sol";
    import { ISablierV2MerkleStreamerLL } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerLL.sol";
    import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
    import { IAdminable as ISabilerAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
    import { IMiningPerCycle } from '../SpawningV2/IMiningPerCycle.sol';
    interface IPondWaterBase {
        /// @notice Emitted when a lock is created
        /// @param locker The address that created the lock
        /// @param id The lock id
        /// @param locked The amount locked
        /// @param startsAt The start interval of the lock
        /// @param lockedFor The duration of the lock, in intervals
        event Lock(address indexed locker, uint256 indexed id, uint256 locked, uint40 startsAt, uint40 lockedFor);
        /// @notice Emitted when a lock is unlocked
        /// @param locker The address that unlocked/owns the lock
        /// @param id The lock id
        event Unlock(address indexed locker, uint256 indexed id);
        /// @notice Emitted when a new stream is created
        /// @param forInterval The interval the stream was created for / starts at
        /// @param streamer The streamer contract
        event NewStream(uint40 indexed forInterval, ISablierV2MerkleStreamerLL indexed streamer);
        /// @notice Emitted when leapfrog is called and new ounces are calculated
        /// @param observedInterval The interval the leapfrog was called at
        /// @param realized The realized amount at observedInterval
        /// @param credits The total credits at observedInterval
        /// @param debits The total debits at observedInterval
        event OuncesObserved(uint40 indexed observedInterval, uint256 realized, uint256 credits, uint256 debits);
        /// @notice Thrown when the locking period is not open
        error NotOpen();
        /// @notice Thrown when the lock period is invalid
        error InvalidLockPeriod();
        /// @notice Thrown when the lock amount is invalid
        error InvalidLockAmount();
        /// @notice Thrown when the lock does not exist
        /// @param id The lock id that does not exist
        error LockDoesNotExist(uint256 id);
        /// @notice Thrown when the lock cannot be unlocked yet
        error CannotUnlockYet();
        /// @notice Thrown when the lock is not owned by the caller
        error NotOwnerOfLock();
        /// @notice Thrown when the contract cannot be closed
        error CannotClose();
        /// @notice Thrown when the user cannot lock more
        /// @param canLock The maximum lock amount
        /// @param hasLocked The amount already locked
        error OverUserMaximumLock(uint256 canLock, uint256 hasLocked);
        /// @notice Thrown when the contract cannot be opened
        error CannotOpen();
        /// @notice Data for a specific lock
        /// @param owner The owner of the lock
        /// @param amount The amount locked
        /// @param startInterval The start interval of the lock
        /// @param lastsFor The duration of the lock, in intervals
        struct LockData {
            address owner;
            uint256 amount;
            uint40 startInterval;
            uint40 lastsFor;
        }
        /// @notice The mining checker contract, this is a constant
        /// @return checker The mining checker contract
        function miningChecker() external view returns(IMiningPerCycle checker);
        /// @notice How many deltas to lookback for the mining checker
        /// @return checkCycleDeltas The number of deltas to lookback for the mining checker
        function checkCycleDeltas() external view returns(uint256 checkCycleDeltas);
        /// @notice Read the cycle delta numerator
        /// @return cycleDeltaNumerator The cycle delta numerator
        function cycleDeltaNumerator() external view returns(uint256 cycleDeltaNumerator);
        /// @notice Get the amount a user locked in a given cycle
        /// @param locker The locker to get the amount for
        /// @param cycle The cycle to get the amount for
        /// @return lockedPerCycle The amount locked
        function getUserLockedPerCycle(address locker, uint256 cycle) external view returns(uint256 lockedPerCycle);
        /// @notice Whether the contract is open
        /// @return isOpen Whether the contract is open
        function isOpen() external view returns(bool);
        /// @notice Get the faucet interval period in seconds
        function intervalPeriod() external view returns(uint40);
        /// @notice Get the interval offset
        function intervalOffset() external view returns(uint40);
        /// @notice Get the token that is locked in this contract
        /// @return coinToLock The token that is locked in this contract
        function coinToLock() external view returns(IERC20);
        /// @notice Get the lock data for a given lock id
        /// @param id The lock id
        /// @return lockData The lock data
        function getLock(uint256 id) view external returns (LockData memory lockData);
        /// @notice Get the current index
        /// @return atInterval The current index
        function atInterval() external view returns(uint40);
        /// @notice Get the realized amount at the current interval
        /// @return realized The realized amount at the current interval
        function realizedOuncesAtInterval() external view returns(uint256 realized);
        /// @notice Get the current lock index
        /// @return lockIDIndex The current lock index
        function lockIDIndex() external view returns(uint256);
        /// @notice Get the sablier factory
        /// @return sabilerFactory The sablier factory
        function sabilerFactory() external view returns(ISablierV2MerkleStreamerFactory sabilerFactory);
        /// @notice Get the sablier lockup linear contract
        /// @return sabilerLockupLinear The sablier lockup linear contract
        function sabilerLockupLinear() external view returns(ISablierV2LockupLinear sabilerLockupLinear);
        /// @notice Compute the interval from the chain timestamp
        /// @return getIntervalFromChain The interval computed from the chain timestamp
        function getIntervalFromChain() external view returns(uint40);
        /// @notice Get the start time for a given interval
        /// @param interval The interval to compute
        /// @return startTime The start time for the given interval
        function getIntervalStartTime(uint40 interval) external view returns(uint40 startTime);
        /// @notice Get the lock amounts for a given user
        /// @param locker The locker to get the lock amounts for
        /// @return canLock The weighted amount the locker can lock
        /// @return hasLocked The weighted amount the locker has locked
        function readUserLockAmounts(address locker) external view returns(uint256 canLock, uint256 hasLocked);
        /// @notice Compute the lock factor/interval count for a given lock period index
        /// @param lockPeriodIndex The lock period index
        /// @return intervalCount The intervals for the lock period index
        /// @return factor The factor for the lock period index
        function computeLockFactor(uint8 lockPeriodIndex) external pure returns (uint40 intervalCount, uint256 factor);
        /// @notice Compute the lock factor/interval count/computed value for a given lock period index and amount
        /// @param amount The amount to compute the lock factor for
        /// @param lockPeriodIndex The lock period index
        /// @return intervalCount The interval count to lock for
        /// @return factor The factor for the interval count
        /// @return value The value for the lock period index with the factor computed
        function computeLockFactorWithAmount(uint256 amount, uint8 lockPeriodIndex) external pure returns (uint40 intervalCount, uint256 factor, uint256 value);
        /// @notice Lock an amount for a given lock period index
        /// @param amount The amount to lock
        /// @param lockPeriodIndex The lock period index
        /// @return lockId The lock id
        function lock(uint256 amount, uint8 lockPeriodIndex) external returns(uint256 lockId);
        /// @notice Unlock a given lock id
        /// @param id The lock id to unlock
        function unlock(uint256 id) external;
        function leapfrog() external;
        /// @notice Get the status of the contract
        /// @return forInterval The interval for the current status
        /// @return realized The realized amount at forInterval
        /// @return unrealized The unrealized amount (includes the realized amount)
        function ounceStatus() external view returns(uint40 forInterval, uint256 realized, uint256 unrealized);
        /// @notice Close the contract if possible
        function close() external;
    }
    interface IPondWaterAdmin is IPondWaterBase {
        struct CreateStreamParameters {
            IERC20 asset;
            uint256 assetAmount;
            string ipfsCID;
            bytes32 merkleRoot;
            uint256 recipientsCount;
            bool skipCliff;
        }
        function streamWater(CreateStreamParameters calldata parameters) external returns (ISablierV2MerkleStreamerLL streamer);
        function adminUnlock(uint256 id) external;
        function adminUnlock(uint256 id, address unlockFor) external;
        function xferSabiler(ISabilerAdminable toTrans) external;
        function deposit(IERC20 token, uint256 amount) external;
        function withdraw(IERC20 token, uint256 amount) external;
        function executorClose() external;
        function updateCheckCycleDeltas(uint256 checkCycleDeltas) external;
        function updateCycleDeltaNumerator(uint256 cycleDeltaNumerator) external;
        function updateIntervalOffset(uint40 intervalOffset) external;
        function executorOpen() external;
        function updateMinedToLockedNumerator(uint256 minedToLockedNumerator) external;
        function updateMiningChecker(IMiningPerCycle miningChecker) external;
    }
    interface IPondWater is IPondWaterBase, IPondWaterAdmin {}// SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import { ExecutorManager } from '../Helpers/ExecutorManager.sol';
    import { MathHelpers } from '../Helpers/MathHelpers.sol';
    import { ISablierV2MerkleStreamerFactory } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerFactory.sol";
    import { ISablierV2MerkleStreamerLL } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerLL.sol";
    import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
    import { LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol";
    import { IAdminable as ISabilerAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
    import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
    import { IPondWater } from './IPondWater.sol';
    import { IMiningPerCycle } from '../SpawningV2/IMiningPerCycle.sol';
    contract PondWater is ExecutorManager, MathHelpers, IPondWater, ReentrancyGuard {
        uint40 public constant intervalPeriod = 1 weeks; // 604800 or 7*24*60*60
        uint40 public atInterval;
        uint256 public realizedOuncesAtInterval = 0;
        mapping(uint40 => uint256) public toDebitAtInterval;
        mapping(uint40 => uint256) public toCreditAtInterval;
        bool public bypassMiningMax = false;
        bool public isOpen = false;
        uint40 public constant lockSlipBeforeClose = 5;
        uint40 public lastStreamAtInterval = 0;
        uint256 public lockIDIndex = 1;
        mapping(uint256 => LockData) public locks;
        uint40 public intervalOffset;
        IERC20 public coinToLock;
        ISablierV2MerkleStreamerFactory public sabilerFactory;
        ISablierV2LockupLinear public sabilerLockupLinear;
        IMiningPerCycle public miningChecker;
        uint256 public checkCycleDeltas = 5;
        uint256 public cycleDeltaNumerator = (10 ** 18) * 2;
        uint256 public minedToLockedNumerator = 10 ** 18;
        mapping(address => mapping(uint256 => uint256)) public userLockedPerCycle;
        constructor(
            uint40 _intervalOffset,
            IERC20 _coinToLock,
            ISablierV2MerkleStreamerFactory _sabilerFactory,
            ISablierV2LockupLinear _sabilerLockupLinear,
            IMiningPerCycle _miningChecker
        ) {
            _addExecutor(msg.sender);
            coinToLock = _coinToLock;
            atInterval = getIntervalFromChain() - 2;
            intervalOffset = _intervalOffset;
            sabilerFactory = _sabilerFactory;
            sabilerLockupLinear = _sabilerLockupLinear;
            miningChecker = _miningChecker;
        }
        modifier validLockId(uint256 lockId) {
            if (locks[lockId].amount == 0) revert LockDoesNotExist(lockId);
            _;   
        }
        modifier onlyOpen() {
            if (!isOpen) revert NotOpen();
            _;   
        }
        function updateBypassMiningMax(bool _bypassMiningMax) external onlyExecutor() {
            bypassMiningMax = _bypassMiningMax;
        }
        function updateMiningChecker(IMiningPerCycle _miningChecker) external onlyExecutor() {
            miningChecker = _miningChecker;
        }
        function updateIntervalOffset(uint40 _intervalOffset) external onlyExecutor() {
            intervalOffset = _intervalOffset;
        }
        function updateMinedToLockedNumerator(uint256 _minedToLockedNumerator) external onlyExecutor() {
            minedToLockedNumerator = _minedToLockedNumerator;
        }
        function updateCheckCycleDeltas(uint256 _checkCycleDeltas) external onlyExecutor() {
            checkCycleDeltas = _checkCycleDeltas;
        }
        function updateCycleDeltaNumerator(uint256 _cycleDeltaNumerator) external onlyExecutor() {
            cycleDeltaNumerator = _cycleDeltaNumerator;
        }
        function getLock(uint256 id) validLockId(id) public view returns (LockData memory) {
            return locks[id];
        }
        function getUserLockedPerCycle(address _locker, uint256 _cycle) external view returns(uint256) {
            return userLockedPerCycle[_locker][_cycle];
        }
        function getIntervalFromChain() public view returns(uint40 intervalFromChain) {
            intervalFromChain = (uint40(block.timestamp) - intervalOffset) / intervalPeriod;
        }
        function getIntervalStartTime(uint40 interval) public view returns(uint40 startTime) {
            startTime = (interval * intervalPeriod) + intervalOffset;
        }
        function _leapfrog() internal {
            uint256 maxInterval = getIntervalFromChain();
            while (atInterval < maxInterval) {
                atInterval++;
                uint256 credits = toCreditAtInterval[atInterval];
                uint256 debits = toDebitAtInterval[atInterval];
                delete toCreditAtInterval[atInterval];
                delete toDebitAtInterval[atInterval];
                realizedOuncesAtInterval += credits - debits;
                emit OuncesObserved(atInterval, realizedOuncesAtInterval, credits, debits);
            }
        }
        function computeLockFactor(uint8 _lockPeriodIndex) public pure returns (uint40 intervals, uint256 factor) {
            if (_lockPeriodIndex > 7) revert InvalidLockPeriod();
            intervals = (uint40(2) ** _lockPeriodIndex);
            factor = (_lockPeriodIndex * divisionDenominator) ** 2;
        }
        function computeLockFactorWithAmount(uint256 _amount, uint8 _lockPeriodIndex) public pure returns (uint40 intervals, uint256 factor, uint256 value) {
            (intervals, factor) = computeLockFactor(_lockPeriodIndex);
            value = _multiplyWithNumerator(_amount, factor);
        }
        function computeDeltaMultiplierWithAmount(uint256 _delta, uint256 _amount) internal view returns(uint256 computed) {
            computed = _multiplyWithNumerator(_amount, minedToLockedNumerator);
            if (_delta != 0) {
                computed = _multiplyWithNumerator(
                    computed,
                    // 1 / ((delta * numerator) + 1)
                    (divisionDenominator ** 2) / ((_delta * cycleDeltaNumerator) + divisionDenominator)
                );
            }
        }
        function readUserLockAmounts(address _locker) public view returns(uint256 canLock, uint256 hasLocked) {
            uint256 delta = 0;
            uint256 currentCycle = miningChecker.cycleIndex();
            while (delta <= checkCycleDeltas) {
                canLock += computeDeltaMultiplierWithAmount(delta, miningChecker.minedPerCycle(_locker, currentCycle));
                hasLocked += computeDeltaMultiplierWithAmount(delta, userLockedPerCycle[_locker][currentCycle]);
                if (currentCycle == 0) {
                    break;
                }
                unchecked {
                    delta++;
                    currentCycle--;
                }
            }
        }
        function _lock(
            address _locker,
            uint256 _amount,
            uint8 _lockPeriodIndex
        ) private onlyOpen() returns(uint256 lockId) {
            if (bypassMiningMax != true) {
                (uint256 canLock, uint256 hasLocked) = readUserLockAmounts(_locker);
                if ((hasLocked + _amount) > canLock) revert OverUserMaximumLock(canLock, hasLocked);
            }
            userLockedPerCycle[_locker][miningChecker.cycleIndex()] += _amount;
            (uint40 lockForIntervals,,uint256 value) = computeLockFactorWithAmount(_amount, _lockPeriodIndex);
            
            uint40 nextInterval = getIntervalFromChain() + 1;
            toCreditAtInterval[nextInterval] += value;
            toDebitAtInterval[nextInterval + lockForIntervals] += value;
            lockId = ++lockIDIndex;
            locks[lockId] = LockData({
                owner: _locker,
                amount: _amount,
                startInterval: nextInterval,
                lastsFor: lockForIntervals
            });
            emit Lock(_locker, lockId, _amount, nextInterval, lockForIntervals);
        }
        function lock(uint256 _amount, uint8 _lockPeriodIndex) external nonReentrant returns(uint256 lockId) {
            if (_amount == 0) revert InvalidLockAmount();
            SafeERC20.safeTransferFrom(coinToLock, msg.sender, address(this), _amount);
            return(_lock(msg.sender, _amount, _lockPeriodIndex));
        }
        function _unlock(uint256 id, address unlockFor) private validLockId(id) {
            LockData storage lockData = locks[id];
            if (unlockFor != lockData.owner) revert NotOwnerOfLock();
            if (!isOpen || ((lockData.startInterval + lockData.lastsFor) >= getIntervalFromChain())) revert CannotUnlockYet();
            uint256 amount = lockData.amount;
            delete locks[id];
            SafeERC20.safeTransfer(coinToLock, unlockFor, amount);
            emit Unlock(unlockFor, id);
        }
        function unlock(uint256 id) external nonReentrant {
            _unlock(id, msg.sender);
        }
        function adminUnlock(uint256 id) external onlyExecutor()  {
            _unlock(id, locks[id].owner);
        }
        function adminUnlock(uint256 id, address unlockFor) external onlyExecutor() {
            _unlock(id, unlockFor);
        }
        function leapfrog() external onlyExecutor() {
            _leapfrog();
        }
        function _getCliff(bool skip, uint40 forInterval) private view returns(uint40 cliff) {
            if (skip) {
                cliff = 0;
            } else {
                cliff = uint40(getIntervalStartTime(forInterval) - block.timestamp);
            }
        }
        function streamWater(CreateStreamParameters calldata parameters) external onlyExecutor() onlyOpen() returns (ISablierV2MerkleStreamerLL streamer) {
            uint40 forInterval = getIntervalFromChain() + 1;
            streamer = sabilerFactory.createMerkleStreamerLL(
                address(this), // initialAdmin
                sabilerLockupLinear, // lockupLinear
                parameters.asset, // asset
                parameters.merkleRoot, // merkleRoot
                getIntervalStartTime(forInterval + 2), // endTime of interval + 1
                // durations
                LockupLinear.Durations({
                    // get the difference between the next interval start and now.
                    cliff: _getCliff(parameters.skipCliff, forInterval),
                    total: 1 weeks
                }),
                false, // cancelable
                true, // transferable
                parameters.ipfsCID, // ipfsCID
                parameters.assetAmount, // aggregateAmount
                parameters.recipientsCount // recipientsCount
            );
            require(parameters.asset.transferFrom(msg.sender, address(streamer), parameters.assetAmount));
            emit NewStream(forInterval, streamer);
        }
        function xferSabiler(ISabilerAdminable toTrans) external onlyExecutor() {
            toTrans.transferAdmin(msg.sender);
        }
        function deposit(IERC20 token, uint256 amount) external onlyExecutor() {
            token.transferFrom(msg.sender, address(this), amount);
        }
        function withdraw(IERC20 token, uint256 amount) external onlyExecutor() {
            token.transfer(msg.sender, amount);
        }
        function ounceStatus() external view returns(uint40 forInterval, uint256 realized, uint256 unrealized) {
            forInterval = atInterval;
            realized = realizedOuncesAtInterval;
            unrealized = realized;
            for (uint40 i = forInterval; i <= (getIntervalFromChain() + 1); i++) {
                unrealized += toCreditAtInterval[i];
                unrealized -= toDebitAtInterval[i];
            }
        }
        function _close() onlyOpen() private {
            isOpen = false;
        }
        function executorClose() external onlyExecutor() {
            _close();
        }
        function close() external {
            if (lastStreamAtInterval == 0 || getIntervalFromChain() <= (atInterval + lastStreamAtInterval)) revert CannotClose();
            _close();
        }
        function executorOpen() external onlyExecutor() {
            if(lockIDIndex != 1 || isOpen) revert CannotOpen();
            isOpen = true;
        }
    }// SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IMiningPerCycle {
        function cycleIndex() external view returns (uint256 index);
        function minedPerCycle(address checkAddress, uint256 cycleIndex) external view returns (uint256 mined);
    }
    

    File 2 of 3: PondCoin
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor() {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be _NOT_ENTERED
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
        }
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == _ENTERED;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(address from, address to, uint256 amount) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         *
         * _Available since v4.7._
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         *
         * _Available since v4.7._
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * _Available since v4.7._
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
    import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import {IERC20, ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    interface IPondCoin is IERC20 {
        function mint(address to, uint256 amount) external;
        function endMinting() external;
    }
    interface IPondCoinSpawner {
        function spawn(address invoker, uint256 amount) external returns (bool);
    }
    contract PondCoin is IERC20, ERC20, IPondCoin {
        address public minter;
        address public constant distilleryAddress = 0x17CC6042605381c158D2adab487434Bde79Aa61C;
        uint256 public constant initialLPAmount = 1000000000000000000000000000;
        uint256 public constant maxSupply = 420690000000000000000000000000000 - initialLPAmount;
        constructor(address initialLPAddress) ERC20("Pond Coin", "PNDC") {
            minter = msg.sender;
            _mint(initialLPAddress, initialLPAmount);
        }
        function _safeMint(address to, uint256 amount) internal {
            _mint(to, amount);
            require(totalSupply() <= maxSupply, "Too Much Supply");
        }
        function mint(address to, uint256 amount) public {
            require(msg.sender == minter, "Not Minter");
            _safeMint(to, amount);
        }
        function endMinting() public {
            require(msg.sender == minter, "Not Minter");
            minter = address(0);
            if (totalSupply() < maxSupply) {
                _safeMint(distilleryAddress, maxSupply - totalSupply());
            }
        }
        // Coming soon ;)
        function useSpawner(uint256 amount, IPondCoinSpawner spawner) external {
            require(transferFrom(msg.sender, distilleryAddress, amount), "Could Not Send");
            require(spawner.spawn(msg.sender, amount), "Could Not Spawn");
        }
    }
    pragma solidity ^0.8.0;
    contract PondClaims is ReentrancyGuard, Ownable {
        /**
         * Declare immutable/Constant variables
         */
        // How long after contract cretion the end method can be called
        uint256 public constant canEndAfterTime = 48 hours + 30 minutes;
        uint256 public constant beforeStartBuffer = 30 minutes;
        // The root of the claims merkle tree
        bytes32 public immutable merkleRoot;
        // The address of $PNDC
        IPondCoin public immutable pondCoin;
        // The timestamp in which the contract was deployed
        uint256 public immutable openedAtTimestamp;
        // The block number in which the contract was deployed
        uint256 public immutable openedAtBlock;
        // The address that deployed this contract
        address public immutable opener;
        /**
         * Declare runtime/mutable variables
         */
        
        // Mapping of address -> claim offset -> claimed
        mapping(address => mapping(uint32 => bool)) public alreadyClaimedByAddress;
        // If the contract is "ended"
        bool public ended;
        constructor(bytes32 _merkleRoot) {
            merkleRoot = _merkleRoot;
            opener = msg.sender;
            pondCoin = new PondCoin(msg.sender);
            openedAtTimestamp = block.timestamp;
            openedAtBlock = block.number;
        }
        // Modifier that makes sure only the opener can call specific function
        modifier onlyOpener() {
            require(msg.sender == opener, "Not Opener");
            _;
        }
        // Modifier that ensures the contract is not ended, and the before start buffer is completed
        modifier notEnded() {
            require(ended == false && (openedAtTimestamp + beforeStartBuffer) <= block.timestamp, "Already Ended");
            _;
        }
        function close() external notEnded onlyOpener {
            require(block.timestamp >= (openedAtTimestamp + canEndAfterTime), "Too Early");
            ended = true;
            pondCoin.endMinting();
        }
        /**
         * Claim PNDC against merkle tree
         */
        function claim(
            address[] calldata addresses,
            uint256[] calldata amounts,
            uint32[] calldata offsets,
            bytes32[][] calldata merkleProofs
        ) external notEnded nonReentrant {
            // Verify that all lengths match
            uint length = addresses.length;
            require(amounts.length == length && offsets.length == length && merkleProofs.length == length, "Invalid Lengths");
            for (uint256 i = 0; i < length; i++) {
                // Require that the user can claim with the information provided
                require(_canClaim(addresses[i], amounts[i], offsets[i], merkleProofs[i]), "Invalid");
                // Mark that the user has claimed
                alreadyClaimedByAddress[addresses[i]][offsets[i]] = true;
                // Mint to the user the specified amount
                pondCoin.mint(addresses[i], amounts[i]);
            }
        }
        function canClaim(
            address[] calldata addresses,
            uint256[] calldata amounts,
            uint32[] calldata offsets,
            bytes32[][] calldata merkleProofs
        ) external view returns (bool[] memory) {
            // Verify that all lengths match
            uint length = addresses.length;
            require(amounts.length == length && offsets.length == length && merkleProofs.length == length, "Invalid Lengths");
            bool[] memory statuses = new bool[](length);
            for (uint256 i = 0; i < length; i++) {
                statuses[i] = _canClaim(addresses[i], amounts[i], offsets[i], merkleProofs[i]);
            }
            return (statuses);
        }
        function currentOffset() public view returns (uint256) {
            return block.number - openedAtBlock;
        }
        function _canClaim(
            address user,
            uint256 amount,
            uint32 offset,
            bytes32[] calldata merkleProof
        ) notEnded internal view returns (bool) {
            // If the user has already claimed, or the currentOffset has not yet reached the desired offset, the user cannot claim.
            if (alreadyClaimedByAddress[user][offset] == true || currentOffset() < offset) {
                return false;
            } else {
                // Verify that the inputs provided are valid against the merkle tree
                bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(user, amount, offset))));
                bool canUserClaim = MerkleProof.verify(merkleProof, merkleRoot, leaf);
                return canUserClaim;
            }
        }
    }

    File 3 of 3: MiningRigV3
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor() {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be _NOT_ENTERED
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
        }
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == _ENTERED;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
         * Revert on invalid signature.
         */
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return
                success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         *
         * _Available since v4.7._
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         *
         * _Available since v4.7._
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * _Available since v4.7._
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title The interface for the Uniswap V3 Factory
    /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
    interface IUniswapV3Factory {
        /// @notice Emitted when the owner of the factory is changed
        /// @param oldOwner The owner before the owner was changed
        /// @param newOwner The owner after the owner was changed
        event OwnerChanged(address indexed oldOwner, address indexed newOwner);
        /// @notice Emitted when a pool is created
        /// @param token0 The first token of the pool by address sort order
        /// @param token1 The second token of the pool by address sort order
        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
        /// @param tickSpacing The minimum number of ticks between initialized ticks
        /// @param pool The address of the created pool
        event PoolCreated(
            address indexed token0,
            address indexed token1,
            uint24 indexed fee,
            int24 tickSpacing,
            address pool
        );
        /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
        /// @param fee The enabled fee, denominated in hundredths of a bip
        /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
        event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
        /// @notice Returns the current owner of the factory
        /// @dev Can be changed by the current owner via setOwner
        /// @return The address of the factory owner
        function owner() external view returns (address);
        /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
        /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
        /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
        /// @return The tick spacing
        function feeAmountTickSpacing(uint24 fee) external view returns (int24);
        /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
        /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
        /// @param tokenA The contract address of either token0 or token1
        /// @param tokenB The contract address of the other token
        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
        /// @return pool The pool address
        function getPool(
            address tokenA,
            address tokenB,
            uint24 fee
        ) external view returns (address pool);
        /// @notice Creates a pool for the given two tokens and fee
        /// @param tokenA One of the two tokens in the desired pool
        /// @param tokenB The other of the two tokens in the desired pool
        /// @param fee The desired fee for the pool
        /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
        /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
        /// are invalid.
        /// @return pool The address of the newly created pool
        function createPool(
            address tokenA,
            address tokenB,
            uint24 fee
        ) external returns (address pool);
        /// @notice Updates the owner of the factory
        /// @dev Must be called by the current owner
        /// @param _owner The new owner of the factory
        function setOwner(address _owner) external;
        /// @notice Enables a fee amount with the given tickSpacing
        /// @dev Fee amounts may never be removed once enabled
        /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
        /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
        function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    import './pool/IUniswapV3PoolImmutables.sol';
    import './pool/IUniswapV3PoolState.sol';
    import './pool/IUniswapV3PoolDerivedState.sol';
    import './pool/IUniswapV3PoolActions.sol';
    import './pool/IUniswapV3PoolOwnerActions.sol';
    import './pool/IUniswapV3PoolEvents.sol';
    /// @title The interface for a Uniswap V3 Pool
    /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
    /// to the ERC20 specification
    /// @dev The pool interface is broken up into many smaller pieces
    interface IUniswapV3Pool is
        IUniswapV3PoolImmutables,
        IUniswapV3PoolState,
        IUniswapV3PoolDerivedState,
        IUniswapV3PoolActions,
        IUniswapV3PoolOwnerActions,
        IUniswapV3PoolEvents
    {
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Permissionless pool actions
    /// @notice Contains pool methods that can be called by anyone
    interface IUniswapV3PoolActions {
        /// @notice Sets the initial price for the pool
        /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
        /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
        function initialize(uint160 sqrtPriceX96) external;
        /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
        /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
        /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
        /// on tickLower, tickUpper, the amount of liquidity, and the current price.
        /// @param recipient The address for which the liquidity will be created
        /// @param tickLower The lower tick of the position in which to add liquidity
        /// @param tickUpper The upper tick of the position in which to add liquidity
        /// @param amount The amount of liquidity to mint
        /// @param data Any data that should be passed through to the callback
        /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
        /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
        function mint(
            address recipient,
            int24 tickLower,
            int24 tickUpper,
            uint128 amount,
            bytes calldata data
        ) external returns (uint256 amount0, uint256 amount1);
        /// @notice Collects tokens owed to a position
        /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
        /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
        /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
        /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
        /// @param recipient The address which should receive the fees collected
        /// @param tickLower The lower tick of the position for which to collect fees
        /// @param tickUpper The upper tick of the position for which to collect fees
        /// @param amount0Requested How much token0 should be withdrawn from the fees owed
        /// @param amount1Requested How much token1 should be withdrawn from the fees owed
        /// @return amount0 The amount of fees collected in token0
        /// @return amount1 The amount of fees collected in token1
        function collect(
            address recipient,
            int24 tickLower,
            int24 tickUpper,
            uint128 amount0Requested,
            uint128 amount1Requested
        ) external returns (uint128 amount0, uint128 amount1);
        /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
        /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
        /// @dev Fees must be collected separately via a call to #collect
        /// @param tickLower The lower tick of the position for which to burn liquidity
        /// @param tickUpper The upper tick of the position for which to burn liquidity
        /// @param amount How much liquidity to burn
        /// @return amount0 The amount of token0 sent to the recipient
        /// @return amount1 The amount of token1 sent to the recipient
        function burn(
            int24 tickLower,
            int24 tickUpper,
            uint128 amount
        ) external returns (uint256 amount0, uint256 amount1);
        /// @notice Swap token0 for token1, or token1 for token0
        /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
        /// @param recipient The address to receive the output of the swap
        /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
        /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
        /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
        /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
        /// @param data Any data to be passed through to the callback
        /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
        /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
        function swap(
            address recipient,
            bool zeroForOne,
            int256 amountSpecified,
            uint160 sqrtPriceLimitX96,
            bytes calldata data
        ) external returns (int256 amount0, int256 amount1);
        /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
        /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
        /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
        /// with 0 amount{0,1} and sending the donation amount(s) from the callback
        /// @param recipient The address which will receive the token0 and token1 amounts
        /// @param amount0 The amount of token0 to send
        /// @param amount1 The amount of token1 to send
        /// @param data Any data to be passed through to the callback
        function flash(
            address recipient,
            uint256 amount0,
            uint256 amount1,
            bytes calldata data
        ) external;
        /// @notice Increase the maximum number of price and liquidity observations that this pool will store
        /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
        /// the input observationCardinalityNext.
        /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
        function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Pool state that is not stored
    /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
    /// blockchain. The functions here may have variable gas costs.
    interface IUniswapV3PoolDerivedState {
        /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
        /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
        /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
        /// you must call it with secondsAgos = [3600, 0].
        /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
        /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
        /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
        /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
        /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
        /// timestamp
        function observe(uint32[] calldata secondsAgos)
            external
            view
            returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
        /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
        /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
        /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
        /// snapshot is taken and the second snapshot is taken.
        /// @param tickLower The lower tick of the range
        /// @param tickUpper The upper tick of the range
        /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
        /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
        /// @return secondsInside The snapshot of seconds per liquidity for the range
        function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
            external
            view
            returns (
                int56 tickCumulativeInside,
                uint160 secondsPerLiquidityInsideX128,
                uint32 secondsInside
            );
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Events emitted by a pool
    /// @notice Contains all events emitted by the pool
    interface IUniswapV3PoolEvents {
        /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
        /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
        /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
        /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
        event Initialize(uint160 sqrtPriceX96, int24 tick);
        /// @notice Emitted when liquidity is minted for a given position
        /// @param sender The address that minted the liquidity
        /// @param owner The owner of the position and recipient of any minted liquidity
        /// @param tickLower The lower tick of the position
        /// @param tickUpper The upper tick of the position
        /// @param amount The amount of liquidity minted to the position range
        /// @param amount0 How much token0 was required for the minted liquidity
        /// @param amount1 How much token1 was required for the minted liquidity
        event Mint(
            address sender,
            address indexed owner,
            int24 indexed tickLower,
            int24 indexed tickUpper,
            uint128 amount,
            uint256 amount0,
            uint256 amount1
        );
        /// @notice Emitted when fees are collected by the owner of a position
        /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
        /// @param owner The owner of the position for which fees are collected
        /// @param tickLower The lower tick of the position
        /// @param tickUpper The upper tick of the position
        /// @param amount0 The amount of token0 fees collected
        /// @param amount1 The amount of token1 fees collected
        event Collect(
            address indexed owner,
            address recipient,
            int24 indexed tickLower,
            int24 indexed tickUpper,
            uint128 amount0,
            uint128 amount1
        );
        /// @notice Emitted when a position's liquidity is removed
        /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
        /// @param owner The owner of the position for which liquidity is removed
        /// @param tickLower The lower tick of the position
        /// @param tickUpper The upper tick of the position
        /// @param amount The amount of liquidity to remove
        /// @param amount0 The amount of token0 withdrawn
        /// @param amount1 The amount of token1 withdrawn
        event Burn(
            address indexed owner,
            int24 indexed tickLower,
            int24 indexed tickUpper,
            uint128 amount,
            uint256 amount0,
            uint256 amount1
        );
        /// @notice Emitted by the pool for any swaps between token0 and token1
        /// @param sender The address that initiated the swap call, and that received the callback
        /// @param recipient The address that received the output of the swap
        /// @param amount0 The delta of the token0 balance of the pool
        /// @param amount1 The delta of the token1 balance of the pool
        /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
        /// @param liquidity The liquidity of the pool after the swap
        /// @param tick The log base 1.0001 of price of the pool after the swap
        event Swap(
            address indexed sender,
            address indexed recipient,
            int256 amount0,
            int256 amount1,
            uint160 sqrtPriceX96,
            uint128 liquidity,
            int24 tick
        );
        /// @notice Emitted by the pool for any flashes of token0/token1
        /// @param sender The address that initiated the swap call, and that received the callback
        /// @param recipient The address that received the tokens from flash
        /// @param amount0 The amount of token0 that was flashed
        /// @param amount1 The amount of token1 that was flashed
        /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
        /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
        event Flash(
            address indexed sender,
            address indexed recipient,
            uint256 amount0,
            uint256 amount1,
            uint256 paid0,
            uint256 paid1
        );
        /// @notice Emitted by the pool for increases to the number of observations that can be stored
        /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
        /// just before a mint/swap/burn.
        /// @param observationCardinalityNextOld The previous value of the next observation cardinality
        /// @param observationCardinalityNextNew The updated value of the next observation cardinality
        event IncreaseObservationCardinalityNext(
            uint16 observationCardinalityNextOld,
            uint16 observationCardinalityNextNew
        );
        /// @notice Emitted when the protocol fee is changed by the pool
        /// @param feeProtocol0Old The previous value of the token0 protocol fee
        /// @param feeProtocol1Old The previous value of the token1 protocol fee
        /// @param feeProtocol0New The updated value of the token0 protocol fee
        /// @param feeProtocol1New The updated value of the token1 protocol fee
        event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
        /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
        /// @param sender The address that collects the protocol fees
        /// @param recipient The address that receives the collected protocol fees
        /// @param amount0 The amount of token0 protocol fees that is withdrawn
        /// @param amount0 The amount of token1 protocol fees that is withdrawn
        event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Pool state that never changes
    /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
    interface IUniswapV3PoolImmutables {
        /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
        /// @return The contract address
        function factory() external view returns (address);
        /// @notice The first of the two tokens of the pool, sorted by address
        /// @return The token contract address
        function token0() external view returns (address);
        /// @notice The second of the two tokens of the pool, sorted by address
        /// @return The token contract address
        function token1() external view returns (address);
        /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
        /// @return The fee
        function fee() external view returns (uint24);
        /// @notice The pool tick spacing
        /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
        /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
        /// This value is an int24 to avoid casting even though it is always positive.
        /// @return The tick spacing
        function tickSpacing() external view returns (int24);
        /// @notice The maximum amount of position liquidity that can use any tick in the range
        /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
        /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
        /// @return The max amount of liquidity per tick
        function maxLiquidityPerTick() external view returns (uint128);
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Permissioned pool actions
    /// @notice Contains pool methods that may only be called by the factory owner
    interface IUniswapV3PoolOwnerActions {
        /// @notice Set the denominator of the protocol's % share of the fees
        /// @param feeProtocol0 new protocol fee for token0 of the pool
        /// @param feeProtocol1 new protocol fee for token1 of the pool
        function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
        /// @notice Collect the protocol fee accrued to the pool
        /// @param recipient The address to which collected protocol fees should be sent
        /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
        /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
        /// @return amount0 The protocol fee collected in token0
        /// @return amount1 The protocol fee collected in token1
        function collectProtocol(
            address recipient,
            uint128 amount0Requested,
            uint128 amount1Requested
        ) external returns (uint128 amount0, uint128 amount1);
    }
    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    /// @title Pool state that can change
    /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
    /// per transaction
    interface IUniswapV3PoolState {
        /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
        /// when accessed externally.
        /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
        /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
        /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
        /// boundary.
        /// observationIndex The index of the last oracle observation that was written,
        /// observationCardinality The current maximum number of observations stored in the pool,
        /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
        /// feeProtocol The protocol fee for both tokens of the pool.
        /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
        /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
        /// unlocked Whether the pool is currently locked to reentrancy
        function slot0()
            external
            view
            returns (
                uint160 sqrtPriceX96,
                int24 tick,
                uint16 observationIndex,
                uint16 observationCardinality,
                uint16 observationCardinalityNext,
                uint8 feeProtocol,
                bool unlocked
            );
        /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
        /// @dev This value can overflow the uint256
        function feeGrowthGlobal0X128() external view returns (uint256);
        /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
        /// @dev This value can overflow the uint256
        function feeGrowthGlobal1X128() external view returns (uint256);
        /// @notice The amounts of token0 and token1 that are owed to the protocol
        /// @dev Protocol fees will never exceed uint128 max in either token
        function protocolFees() external view returns (uint128 token0, uint128 token1);
        /// @notice The currently in range liquidity available to the pool
        /// @dev This value has no relationship to the total liquidity across all ticks
        function liquidity() external view returns (uint128);
        /// @notice Look up information about a specific tick in the pool
        /// @param tick The tick to look up
        /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
        /// tick upper,
        /// liquidityNet how much liquidity changes when the pool price crosses the tick,
        /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
        /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
        /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
        /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
        /// secondsOutside the seconds spent on the other side of the tick from the current tick,
        /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
        /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
        /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
        /// a specific position.
        function ticks(int24 tick)
            external
            view
            returns (
                uint128 liquidityGross,
                int128 liquidityNet,
                uint256 feeGrowthOutside0X128,
                uint256 feeGrowthOutside1X128,
                int56 tickCumulativeOutside,
                uint160 secondsPerLiquidityOutsideX128,
                uint32 secondsOutside,
                bool initialized
            );
        /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
        function tickBitmap(int16 wordPosition) external view returns (uint256);
        /// @notice Returns the information about a position by the position's key
        /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
        /// @return _liquidity The amount of liquidity in the position,
        /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
        /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
        /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
        /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
        function positions(bytes32 key)
            external
            view
            returns (
                uint128 _liquidity,
                uint256 feeGrowthInside0LastX128,
                uint256 feeGrowthInside1LastX128,
                uint128 tokensOwed0,
                uint128 tokensOwed1
            );
        /// @notice Returns data about a specific observation index
        /// @param index The element of the observations array to fetch
        /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
        /// ago, rather than at a specific index in the array.
        /// @return blockTimestamp The timestamp of the observation,
        /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
        /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
        /// Returns initialized whether the observation has been initialized and the values are safe to use
        function observations(uint256 index)
            external
            view
            returns (
                uint32 blockTimestamp,
                int56 tickCumulative,
                uint160 secondsPerLiquidityCumulativeX128,
                bool initialized
            );
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    contract ExecutorManager {
        error NotExecutor(address attempted);
        error CannotRemoveSelf();
        mapping(address => bool) public executors;
        constructor() {
            _addExecutor(msg.sender);
        }
        modifier onlyExecutor() {
            if (isExecutor(msg.sender) != true) revert NotExecutor(msg.sender);
            _;
        }
        function isExecutor(address _executor) public view returns(bool) {
            return(executors[_executor] == true);
        }
        function _addExecutor(address _toAdd) internal {
            executors[_toAdd] = true;
        }
        function addExecutor(address _toAdd) onlyExecutor external virtual {
            _addExecutor(_toAdd);
        }
        function _removeExecutor(address _toRemove) internal {
            if (_toRemove == msg.sender) revert CannotRemoveSelf();
            executors[_toRemove] = false;
        }
        function removeExecutor(address _toRemove) onlyExecutor external virtual {
            _removeExecutor(_toRemove);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    contract MathHelpers {
        uint256 public constant divisionDenominator = 10**18;
        function _multiplyWithNumerator(uint256 _amount, uint256 _numerator) internal pure returns(uint256) {
            return((_amount * _numerator) / divisionDenominator);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface INonfungiblePositionManager {
        struct MintParams {
            address token0;
            address token1;
            uint24 fee;
            int24 tickLower;
            int24 tickUpper;
            uint amount0Desired;
            uint amount1Desired;
            uint amount0Min;
            uint amount1Min;
            address recipient;
            uint deadline;
        }
        function mint(
            MintParams calldata params
        )
            external
            payable
            returns (uint tokenId, uint128 liquidity, uint amount0, uint amount1);
        struct IncreaseLiquidityParams {
            uint tokenId;
            uint amount0Desired;
            uint amount1Desired;
            uint amount0Min;
            uint amount1Min;
            uint deadline;
        }
        function increaseLiquidity(
            IncreaseLiquidityParams calldata params
        ) external payable returns (uint128 liquidity, uint amount0, uint amount1);
        struct DecreaseLiquidityParams {
            uint tokenId;
            uint128 liquidity;
            uint amount0Min;
            uint amount1Min;
            uint deadline;
        }
        function decreaseLiquidity(
            DecreaseLiquidityParams calldata params
        ) external payable returns (uint amount0, uint amount1);
        struct CollectParams {
            uint tokenId;
            address recipient;
            uint128 amount0Max;
            uint128 amount1Max;
        }
        function positions(uint256 tokenId)
            external
            view
            returns (
                uint96 nonce,
                address operator,
                address token0,
                address token1,
                uint24 fee,
                int24 tickLower,
                int24 tickUpper,
                uint128 liquidity,
                uint256 feeGrowthInside0LastX128,
                uint256 feeGrowthInside1LastX128,
                uint128 tokensOwed0,
                uint128 tokensOwed1
        );
        function collect(
            CollectParams calldata params
        ) external payable returns (uint amount0, uint amount1);
        function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
    }
    interface ISwapRouter {
        struct ExactInputSingleParams {
            address tokenIn;
            address tokenOut;
            uint24 fee;
            address recipient;
            uint deadline;
            uint amountIn;
            uint amountOutMinimum;
            uint160 sqrtPriceLimitX96;
        }
        function exactInputSingle(
            ExactInputSingleParams calldata params
        ) external payable returns (uint amountOut);
        struct ExactInputParams {
            bytes path;
            address recipient;
            uint deadline;
            uint amountIn;
            uint amountOutMinimum;
        }
        function exactInput(
            ExactInputParams calldata params
        ) external payable returns (uint amountOut);
    }
    interface IPondCoinSpawner {
        function spawn(address invoker, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
    import { SafeERC20 } from '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
    import { INonfungiblePositionManager, ISwapRouter } from './Helpers/UpInterfaces.sol';
    import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
    import { ISpawnManager } from './Spawning/ISpawnManager.sol';
    import { IActiveChecker } from './Spawning/IActiveChecker.sol';
    import { IUniswapV3Pool } from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
    import { IUniswapV3Factory } from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Factory.sol';
    import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import { MathHelpers } from './Helpers/MathHelpers.sol';
    import { ExecutorManager } from './Helpers/ExecutorManager.sol';
    interface IWETH is IERC20 {
        function deposit() external payable;
        function withdraw(uint amount) external;
    }
    contract MiningClaims {
        event ClaimBooster(address indexed claimer, uint256 boosterId);
        error CannotClaimUserBooster();
        error InvalidUserBooster();
        error BoosterInactive();
        struct UserAddedBooster {
            bytes32 merkleRoot;
            string treeDataURI;
            uint256 boosterRate;
            uint256 boostType;
            bool active;
        }
        mapping(uint256 => mapping(address => bool)) private _claimedByAddress;
        uint256 internal _currentUserBoostID = 0;
        mapping(uint256 => UserAddedBooster) private _userBoosters;
        modifier _validUserBoosterId(uint256 id) {
            if (_currentUserBoostID == 0 || id > _currentUserBoostID) revert InvalidUserBooster();
            if (_userBoosters[id].active != true) revert BoosterInactive();
            _;
        }
        function _addUserBoostTree(bytes32 _merkleRoot, string calldata _treeDataURI, uint256 _boosterRate, uint256 _boostType) internal {
            _userBoosters[++_currentUserBoostID] = UserAddedBooster({
                merkleRoot: _merkleRoot,
                active: true,
                treeDataURI: _treeDataURI,
                boosterRate: _boosterRate,
                boostType: _boostType
            });
        }
        function _inactivateBooster(uint256 _id) _validUserBoosterId(_id) internal {
            _userBoosters[_id].active = false;
        }
        function _readUserBoosterTree(uint256 _id) internal view _validUserBoosterId(_id) returns (UserAddedBooster memory) {
            return _userBoosters[_id];
        }
        function _canClaimUserBoost(
            address _address,
            uint256 _userBoostId,
            bytes32[] calldata merkleProof
        ) _validUserBoosterId(_userBoostId) internal view returns (bool) {
            if (_claimedByAddress[_userBoostId][_address]) {
                return(false);
            }
            return(MerkleProof.verify(
                merkleProof,
                _userBoosters[_userBoostId].merkleRoot,
                keccak256(bytes.concat(keccak256(abi.encode(_address))))
            ));
        }
        function _claimUserBoost(
            address _address,
            uint256 _boosterId,
            bytes32[] calldata _merkleProof
        ) _validUserBoosterId(_boosterId) internal returns(uint256) {
            if (_canClaimUserBoost(_address, _boosterId, _merkleProof) != true) revert CannotClaimUserBooster();
            _claimedByAddress[_boosterId][_address] = true;
            return(_userBoosters[_boosterId].boosterRate);
        }
        function _claimMultipleUserBoosts(
            address _address,
            uint256[] calldata _boosterIDs,
            bytes32[][] calldata _merkleProofs
        ) internal returns(uint256 sum) {
            require(_boosterIDs.length == _merkleProofs.length, 'Length Mismatch');
            for (uint256 i = 0; i < _boosterIDs.length; i++) {
                sum += _claimUserBoost(_address, _boosterIDs[i], _merkleProofs[i]);
            }
            return(sum);
        }
    }
    contract RigTokenBoosterManager is MathHelpers {
        error BoosterOverMaxCycle();
        error BoosterDepositLimitReached();
        error BoosterEnded();
        error BoosterDoesNotExist(uint256 boosterId);
        struct TokenBoosterParams {
            IERC20 token;
            uint256 multiplier;
            uint256 boosterLastsFor; // Zero is infinite
            uint256 maxDepositAmount;
            uint256 maxCycles;
            uint256 usesPerCycle;
        }
        struct TokenBooster {
            IERC20 token;
            uint256 multiplier;
            uint256 boosterStartTime;
            uint256 boosterEndTime; // Zero is infinite
            bool ended;
            uint256 useCount;
            uint256 totalDeposited;
            uint256 maxDepositAmount;
            uint256 maxCycles;
            uint256 usesPerCycle;
        }
        mapping(uint256 => TokenBooster) internal _tokenBoosters;
        uint256 private _nextTokenBoosterId;
        modifier validTokenBoosterId(uint256 boosterId) {
            if (boosterId == 0 || _nextTokenBoosterId < boosterId) revert BoosterDoesNotExist(boosterId);
            if (_tokenBoosters[boosterId].ended) revert BoosterEnded();
            _;
        }
        function _addTokenBooster(TokenBoosterParams calldata params) internal {
            uint256 boosterEndTime;
            if (params.boosterLastsFor != 0) {
                boosterEndTime = block.timestamp + params.boosterLastsFor;
            }
            _tokenBoosters[++_nextTokenBoosterId] = TokenBooster({
                token: params.token,
                multiplier: params.multiplier,
                boosterStartTime: block.timestamp,
                useCount: 0,
                ended: false,
                boosterEndTime: boosterEndTime,
                totalDeposited: 0,
                maxDepositAmount: params.maxDepositAmount,
                usesPerCycle: params.usesPerCycle,
                maxCycles: params.maxCycles
            });
        }
        function _getCurrentTokenBoosterId() internal view returns (uint256) {
            return(_nextTokenBoosterId);
        }
        function _getTokenBooster(uint256 boosterId) validTokenBoosterId(boosterId) internal view returns (TokenBooster memory) {
            return(_tokenBoosters[boosterId]);
        }
        function _endBooster(uint256 boosterId) internal {
            require(_tokenBoosters[boosterId].boosterEndTime < block.timestamp, 'Not Ended');
            _tokenBoosters[boosterId].ended = true;
        }
        function _computeTokenBoosterCycleState(uint256 uses, uint256 usesPerCycle, uint256 multiplier) internal pure returns (uint256 currentCycle, uint256 newMultiplier) {
            currentCycle = uses / usesPerCycle;
            newMultiplier = multiplier - ((multiplier * (uses - (currentCycle * usesPerCycle))) / usesPerCycle) + divisionDenominator;
            return(currentCycle, newMultiplier);
        }
        function _incrementBoosterCycleAndGetMultiplier(uint256 _tokenBoosterId) internal returns(uint256) {
            (uint256 boosterCycle, uint256 newMultiplier) = _computeTokenBoosterCycleState(++_tokenBoosters[_tokenBoosterId].useCount, _tokenBoosters[_tokenBoosterId].usesPerCycle, _tokenBoosters[_tokenBoosterId].multiplier);
            if (boosterCycle > _tokenBoosters[_tokenBoosterId].maxCycles) revert BoosterOverMaxCycle();
            return(newMultiplier);
        }
        function _updateBoosterTotalDeposited(uint256 _tokenBoosterId, uint256 _amount) internal {
            // Add the new amount to totalDeposited and check if it is over the max amount
            if ((_tokenBoosters[_tokenBoosterId].totalDeposited += _amount) > _tokenBoosters[_tokenBoosterId].maxDepositAmount) {
                revert BoosterDepositLimitReached();
            }
        }
    }
    contract MiningRigV3 is ReentrancyGuard, IActiveChecker, MiningClaims, MathHelpers, RigTokenBoosterManager, ExecutorManager {
        event Mine(address indexed miner, uint256 inputAmount, uint256 boosterId, uint256 outputAmount);
        error LPNotInitalized();
        error MiningInvalidValue();
        error BoosterNotWETH();
        error ExceedsMax();
        error UpdateUsedToInvalid();
        error InvalidUseCount();
        error InitialLPAlreadyCreated();
        enum VirtualWeight { LOW, MEDIUM, HIGH }
        IWETH public wethContract;
        IERC20 public pepeContract;
        IERC20 public pondContract;
        uint256 public divisionLP = 20;
        uint24 public poolFee = 3000;
        int24 public delta = 1111;
        IUniswapV3Factory public uniswapFactory;
        ISwapRouter public uniswapRouter;
        INonfungiblePositionManager public nonfungiblePositionManager;
        address public distilleryAddress;
        uint256[] lpTokenIDs;
        uint256 additionalSwapDeadline = 0 seconds;
        uint256 public cycleIndex = 0;
        mapping(address => mapping(uint256 => uint256)) public minedPerCycle;
        uint256 public activeMinedThreshold = 1 ** 18;
        uint256 public usesToOpenSpawn = 5000;
        uint256 public usesLeftForSpawn = 5000;
        uint256 public rateNumerator = 0;
        ISpawnManager public spawnManager;
        
        constructor(
            IWETH _wethContract,
            IERC20 _pepeContract,
            IERC20 _pondContract,
            ISwapRouter _uniswapRouter,
            INonfungiblePositionManager _nonfungiblePositionManager,
            address _distilleryAddress,
            ISpawnManager _spawnManager,
            IUniswapV3Factory _uniswapFactory
        ) {
            _addExecutor(msg.sender);
            _addExecutor(_distilleryAddress);
            wethContract = _wethContract;
            pepeContract = _pepeContract;
            pondContract = _pondContract;
            uniswapRouter = _uniswapRouter;
            distilleryAddress = _distilleryAddress;
            nonfungiblePositionManager = _nonfungiblePositionManager;
            spawnManager = _spawnManager;
            uniswapFactory = _uniswapFactory;
            wethContract.approve(address(uniswapRouter), type(uint256).max);
            wethContract.approve(address(nonfungiblePositionManager), type(uint256).max);
            pepeContract.approve(address(nonfungiblePositionManager), type(uint256).max);
            pepeContract.approve(address(uniswapRouter), type(uint256).max);
            pepeContract.approve(address(spawnManager), type(uint256).max);
        }
        function updateSpawnManager(ISpawnManager _spawnManager) onlyExecutor() external {
            spawnManager = _spawnManager;
        }
        function updateDelta(int24 _delta) onlyExecutor() external {
            delta = _delta;
        }
        function updatePoolFee(uint24 _poolFee) onlyExecutor() external {
            poolFee = _poolFee;
        }
        function updateUniswapFactory(IUniswapV3Factory _uniswapFactory) onlyExecutor() external {
            uniswapFactory = _uniswapFactory;
        }
        function updateSpawnValue(uint256 _usesToOpenSpawn, bool updateUsed, uint256 updateUsedTo) onlyExecutor() external {
            usesToOpenSpawn = _usesToOpenSpawn;
            if ((updateUsedTo == 0) == updateUsed) revert UpdateUsedToInvalid(); 
            if (updateUsed) {
                usesLeftForSpawn = updateUsedTo;
            }
        }
        
        function addTokenBooster(TokenBoosterParams calldata params) onlyExecutor() external {
            params.token.approve(address(uniswapRouter), type(uint256).max);
            _addTokenBooster(params);
        }
        function getTokenBooster(uint256 tokenBoosterId) external view returns (TokenBooster memory) {
            return(_getTokenBooster(tokenBoosterId));
        }
        function _updateMinedForCurrentCycle(address _address, uint256 additionalAmount) private {
            minedPerCycle[_address][cycleIndex] += additionalAmount;
        }
        function isActive(address toCheck) external view returns (bool) {
            return(minedPerCycle[toCheck][cycleIndex] > activeMinedThreshold);
        }
        function latestLPToken() public view returns (uint256) {
            if (lpTokenIDs.length == 0) revert LPNotInitalized();
            return lpTokenIDs[lpTokenIDs.length - 1];
        }
        function readLPTokens() external view returns (uint256[] memory) {
            return(lpTokenIDs);
        }
        function _mintLiquidityPosition(uint desiredPepeAmount, uint desiredWethAmount) internal returns (uint256 tokenId, uint128 liquidity, uint256 pepeAmount, uint256 wethAmount) {
            int24 tickSpacing = 60;
            // (, int24 tick) = sqrt96Tick(pepeContract);
            int24 tick = _getTick(pepeContract);
            (tokenId, liquidity, pepeAmount, wethAmount) = nonfungiblePositionManager.mint(INonfungiblePositionManager.MintParams({
                token0: address(pepeContract),
                token1: address(wethContract),
                fee: poolFee,
                tickLower: ((tick - delta) / tickSpacing) * tickSpacing,
                tickUpper: ((tick + delta) / tickSpacing) * tickSpacing,
                amount0Desired: desiredPepeAmount,
                amount1Desired: desiredWethAmount,
                amount0Min: 0,
                amount1Min: 0,
                recipient: address(this),
                deadline: block.timestamp
            }));
            lpTokenIDs.push(tokenId);
            return (tokenId, liquidity, pepeAmount, wethAmount);
        }
        function virtualWeightCast(VirtualWeight _weight) internal pure returns (uint256){
            return 16 * (16 + uint(_weight));
        }
        function _decreaseAndDistill(uint256 tokenId) internal returns(uint256 pepeAmount, uint256 wethAmount) {
            (,,,,,,,uint128 liquidity,,,,) = nonfungiblePositionManager.positions(tokenId);
            (pepeAmount, wethAmount) = nonfungiblePositionManager.decreaseLiquidity(INonfungiblePositionManager.DecreaseLiquidityParams({
                tokenId: tokenId,
                liquidity: liquidity,
                amount0Min: 0,
                amount1Min: 0,
                deadline: block.timestamp
            }));
        }
        function createInitialLP(uint256 pepeAmount, uint256 wethAmount) external onlyExecutor() {
            if(lpTokenIDs.length != 0) revert InitialLPAlreadyCreated();
            require(wethContract.transferFrom(msg.sender, address(this), wethAmount), "Could not transfer WETH");
            require(pepeContract.transferFrom(msg.sender, address(this), pepeAmount), "Could not transfer pepe");
            (,,uint256 addedPepe, uint256 addedWeth) = _mintLiquidityPosition(pepeAmount, wethAmount);
            if (addedPepe < pepeAmount) {
                require(pepeContract.transfer(msg.sender, pepeAmount - addedPepe), "Could not return pepe");
            }
            if (addedWeth < wethAmount) {
                require(wethContract.transfer(msg.sender, wethAmount - addedWeth), "Could not return weth");
            }
        }
        function _addLiquidity(uint256 pepeAmount, uint256 wethAmount) internal returns (uint128 liquidity, uint256 pepeValue, uint256 weight) {
            return nonfungiblePositionManager.increaseLiquidity(INonfungiblePositionManager.IncreaseLiquidityParams({
                tokenId: latestLPToken(),
                // virtualWeightCast move to earlier
                amount0Desired: pepeAmount,
                amount1Desired: wethAmount,
                amount0Min: 0,
                amount1Min: 0,
                deadline: block.timestamp + additionalSwapDeadline
            }));
        }
        function _collectLPFees(uint256 _lpTokenId, address recipient) internal returns (uint256, uint256) {
            return nonfungiblePositionManager.collect(INonfungiblePositionManager.CollectParams({
                tokenId: _lpTokenId,
                recipient: recipient,
                amount0Max: type(uint128).max,
                amount1Max: type(uint128).max
            }));
        }
        function collectLPFees(uint256 _lpTokenId) external {
            _collectLPFees(_lpTokenId, distilleryAddress);
        }
        function _swapTokens(IERC20 from, IERC20 to, uint256 amountIn) internal returns (uint256) {
            return uniswapRouter.exactInputSingle(ISwapRouter.ExactInputSingleParams({
                tokenIn: address(from),
                tokenOut: address(to),
                fee: poolFee,
                recipient: address(this),
                deadline: block.timestamp + additionalSwapDeadline,
                amountIn: amountIn,
                amountOutMinimum: 2,
                sqrtPriceLimitX96: 0
            }));
        }
        function _weightLPDown(uint256 amount) internal pure returns (uint256) {
            return amount / virtualWeightCast(VirtualWeight.LOW);
        }
        function updateRateNumerator(uint256 _rateNumerator) onlyExecutor() external {
            rateNumerator = _rateNumerator;
        }
        function updateDivisionLP(uint256 _divisionLP) onlyExecutor() external {
            divisionLP = _divisionLP;
        }
        function updateActiveMinedThreshold(uint256 _activeMinedThreshold) onlyExecutor() external {
            activeMinedThreshold = _activeMinedThreshold;
        }
        function computeBoosterCycleState(uint256 uses, uint256 usesPerCycle, uint256 multiplier) external pure returns (uint256 currentCycle, uint256 newMultiplier) {
            return(_computeTokenBoosterCycleState(uses, usesPerCycle, multiplier));
        }
        function _getTick(IERC20 _token) internal view returns (int24) {
            IUniswapV3Pool _pool = IUniswapV3Pool(uniswapFactory.getPool(address(_token), address(wethContract), poolFee));
            (,int24 tick,,,,,) = _pool.slot0();
            return (tick);
        }
        function _remint() internal {
            (uint256 distilledPepe, uint256 distilledWETH) = _decreaseAndDistill(latestLPToken());
            _mintLiquidityPosition(distilledPepe / divisionLP, distilledWETH / divisionLP);
            uint256 spawnAmount = pepeContract.balanceOf(address(this));
            spawnManager.createSpawn(spawnAmount);
            pepeContract.transfer(address(spawnManager), spawnAmount);
        }
        function _swapToWETHIfNeeded(IERC20 _inToken, uint256 _inAmount) private returns (uint256 wethOut) {
            if (address(_inToken) == address(wethContract)) {
                return(_inAmount);
            } else {
                return(_swapTokens(_inToken, wethContract, _inAmount));
            }
        }
        function _mine(
            address _miner,
            uint256 _tokenBoosterId,
            uint256 _amount,
            uint256[] calldata _userBoostIDs,
            bytes32[][] calldata _userBoostMerkleProofs
        ) private returns(uint256 pndcAmount, uint256 boosterMultiplier) {
            _updateBoosterTotalDeposited(_tokenBoosterId, _amount);
            uint256 wethValue = _amount;
            if (address(_tokenBoosters[_tokenBoosterId].token) != address(wethContract)) {
                wethValue = _swapTokens(_tokenBoosters[_tokenBoosterId].token, wethContract, _amount);
            }
            _updateMinedForCurrentCycle(_miner, wethValue);
            uint256 toConvertWeth = wethValue >> 1;
            uint256 recievedPepe = _swapTokens(wethContract, pepeContract, toConvertWeth);
            (,,uint256 liquidity) = _addLiquidity(_weightLPDown(recievedPepe), _weightLPDown(wethValue - toConvertWeth));
            uint256 additionalBoosterWeight = 0;
            if ((_userBoostIDs.length + _userBoostMerkleProofs.length) > 0) {
                additionalBoosterWeight = _claimMultipleUserBoosts(_miner, _userBoostIDs, _userBoostMerkleProofs);
            }
            boosterMultiplier = _incrementBoosterCycleAndGetMultiplier(_tokenBoosterId);
            // Perform rewards calc here
            pndcAmount = _multiplyWithNumerator(_multiplyWithNumerator(liquidity, rateNumerator), boosterMultiplier + additionalBoosterWeight);
            if (pndcAmount == 0) revert MiningInvalidValue();
            require(pondContract.transfer(_miner, pndcAmount));
            if (--usesLeftForSpawn == 0) {
                _remint();
                if (++cycleIndex < 5) {
                    usesToOpenSpawn = 5000 - (cycleIndex * 1000);
                }
                usesLeftForSpawn = usesToOpenSpawn;
            }
            emit Mine(_miner, _amount, _tokenBoosterId, pndcAmount);
            return(pndcAmount, boosterMultiplier);
        }
        function mine(
            uint256 _tokenBoosterId,
            uint256 _amount,
            uint256[] calldata _userBoostIDs,
            bytes32[][] calldata _userBoostMerkleProofs
        ) nonReentrant validTokenBoosterId(_tokenBoosterId) external payable returns(uint256 pndcAmount, uint256 boosterMultiplier) {
            if (_amount == 0) revert MiningInvalidValue();
            if (msg.value != 0) {
                if (msg.value != _amount) revert MiningInvalidValue();
                if (address(_tokenBoosters[_tokenBoosterId].token) != address(wethContract)) revert BoosterNotWETH();
                wethContract.deposit{ value: msg.value }();
            } else {
                SafeERC20.safeTransferFrom(_tokenBoosters[_tokenBoosterId].token, msg.sender, address(this), _amount);
            }
            return(_mine(msg.sender, _tokenBoosterId, _amount, _userBoostIDs, _userBoostMerkleProofs));
        }
        function depositWeth() external payable {
            wethContract.deposit{ value: address(this).balance }();
        }
        function deposit(IERC20 token, uint256 amount) external onlyExecutor() {
            token.transferFrom(msg.sender, address(this), amount);
        }
        function withdraw(IERC20 token, uint256 amount) external onlyExecutor() {
            token.transfer(msg.sender, amount);
        }
        function addUserBoostTree(bytes32 _merkleRoot, string calldata _treeDataURI, uint256 _boosterRate, uint256 _boosterType) external onlyExecutor() {
            _addUserBoostTree(_merkleRoot, _treeDataURI, _boosterRate, _boosterType);
        }
        function readUserBoosterTree(uint256 id) external view returns (UserAddedBooster memory) {
            return(_readUserBoosterTree(id));
        }
        function canClaimUserBoost(
            address _address,
            uint256 _event,
            bytes32[] calldata merkleProof
        ) external view returns (bool) {
            return(_canClaimUserBoost(_address, _event, merkleProof));
        }
        function currentUserBoostID() external view returns(uint256) {
            return(_currentUserBoostID);
        }
        function getCurrentTokenBoosterId() external view returns (uint256 currentTokenBoosterId){
            return(_getCurrentTokenBoosterId());
        }
        function addExecutor(address _toAdd) onlyExecutor external override {
            pepeContract.approve(_toAdd, type(uint256).max);
            wethContract.approve(_toAdd, type(uint256).max);
            pondContract.approve(_toAdd, type(uint256).max);
            _addExecutor(_toAdd);
        }
        function removeExecutor(address _toRemove) onlyExecutor external override {
            pepeContract.approve(_toRemove, 0);
            wethContract.approve(_toRemove, 0);
            pondContract.approve(_toRemove, 0);
            _removeExecutor(_toRemove);
        }
        function endTokenBooster(uint256 tokenBoosterId) onlyExecutor() external {
            _endBooster(tokenBoosterId);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IActiveChecker {
        function isActive(address toCheck) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface ISpawnManager {
        function createSpawn(uint256 maxAmount) external;
    }