Transaction Hash:
Block:
22919203 at Jul-14-2025 06:28:23 PM +UTC
Transaction Fee:
0.001434873366234854 ETH
$4.42
Gas Used:
167,998 Gas / 8.541014573 Gwei
Emitted Events:
146 |
SetToken.Transfer( from=[Sender] 0xc311945e5cc69f2545ca07a858abb22f99d4ffbb, to=UniswapV2Pair, value=3000000000000000000 )
|
147 |
SetToken.Approval( owner=[Sender] 0xc311945e5cc69f2545ca07a858abb22f99d4ffbb, spender=[Receiver] RedSnwapper, value=0 )
|
148 |
WETH9.Transfer( src=UniswapV2Pair, dst=0x2905d7e4D048d29954F81b02171DD313F457a4a4, wad=105527054799261266 )
|
149 |
UniswapV2Pair.Sync( reserve0=6276667782791337890615, reserve1=221344595087589916337 )
|
150 |
UniswapV2Pair.Swap( sender=0x2905d7e4D048d29954F81b02171DD313F457a4a4, amount0In=3000000000000000000, amount1In=0, amount0Out=0, amount1Out=105527054799261266, to=0x2905d7e4D048d29954F81b02171DD313F457a4a4 )
|
151 |
WETH9.Withdrawal( src=0x2905d7e4D048d29954F81b02171DD313F457a4a4, wad=105527054799261266 )
|
152 |
0x2905d7e4d048d29954f81b02171dd313f457a4a4.0xbbb02a24579dc2e59c1609253b6ddab5457ba00895b3eda80dd41e03e2cd7e55( 0xbbb02a24579dc2e59c1609253b6ddab5457ba00895b3eda80dd41e03e2cd7e55, 0x000000000000000000000000ad27827c312cd5e71311d68e180a9872d42de23d, 0x0000000000000000000000001494ca1f11d487c2bbe4543e90080aeba4ba3c2b, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000002905d7e4d048d29954f81b02171dd313f457a4a4, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 00000000000000000000000000000000000000000000000029a2241af62c0000, 0000000000000000000000000000000000000000000000000176e84c1780ce52, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff2 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1494CA1F...Ba4BA3C2b | |||||
0x4d5ef58a...292059991 | |||||
0xC02aaA39...83C756Cc2 | 2,442,052.919572814147158299 Eth | 2,442,052.814045759347897033 Eth | 0.105527054799261266 | ||
0xC311945e...F99D4fFBb |
0.018809514246184863 Eth
Nonce: 35
|
0.122639197130398113 Eth
Nonce: 36
| 0.10382968288421325 | ||
0xdadB0d80...24f783711
Miner
| (BuilderNet) | 96.067450969272281055 Eth | 96.067786965272281055 Eth | 0.000335996 | |
0xde725989...D581d5667 | 0.199412757656047449 Eth | 0.199675256204860611 Eth | 0.000262498548813162 |
Execution Trace
RedSnwapper.snwapMultiple( inputTokens=, outputTokens=, executors= ) => ( amountOut=[105264556250448104] )
-
SetToken.transferFrom( sender=0xC311945e5cC69f2545ca07a858ABB22F99D4fFBb, recipient=0x4d5ef58aAc27d99935E5b6B4A6778ff292059991, amount=3000000000000000000 ) => ( True )
0xad27827c312cd5e71311d68e180a9872d42de23d.e8ff45ca( )
0x2905d7e4d048d29954f81b02171dd313f457a4a4.ba3f2165( )
-
SetToken.balanceOf( account=0x2905d7e4D048d29954F81b02171DD313F457a4a4 ) => ( 0 )
-
UniswapV2Pair.STATICCALL( )
-
SetToken.balanceOf( account=0x4d5ef58aAc27d99935E5b6B4A6778ff292059991 ) => ( 6276667782791337890615 )
UniswapV2Pair.swap( amount0Out=0, amount1Out=105527054799261266, to=0x2905d7e4D048d29954F81b02171DD313F457a4a4, data=0x )
-
WETH9.balanceOf( 0x2905d7e4D048d29954F81b02171DD313F457a4a4 ) => ( 105527054799261267 )
WETH9.withdraw( wad=105527054799261266 )
- ETH 0.105527054799261266
0x2905d7e4d048d29954f81b02171dd313f457a4a4.CALL( )
- ETH 0.105527054799261266
- ETH 0.105527054799261266
0x2905d7e4d048d29954f81b02171dd313f457a4a4.CALL( )
- ETH 0.000052499709762632
TokenChwomper.CALL( )
- ETH 0.00020999883905053
TokenChwomper.CALL( )
- ETH 0.105264556250448104
0xc311945e5cc69f2545ca07a858abb22f99d4ffbb.CALL( )
-
snwapMultiple[RedSnwapper (ln:500)]
universalBalanceOf[RedSnwapper (ln:507)]
safeTransferFrom[RedSnwapper (ln:513)]
safeTransfer[RedSnwapper (ln:514)]
balanceOf[RedSnwapper (ln:514)]
executeMultiple[RedSnwapper (ln:517)]
universalBalanceOf[RedSnwapper (ln:520)]
MinimalOutputBalanceViolation[RedSnwapper (ln:522)]
File 1 of 5: RedSnwapper
File 2 of 5: UniswapV2Pair
File 3 of 5: SetToken
File 4 of 5: WETH9
File 5 of 5: TokenChwomper
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; contract RedSnwapper { using SafeERC20 for IERC20; using Utils for IERC20; SafeExecutor public immutable safeExecutor; constructor() { safeExecutor = new SafeExecutor(); } // @notice Swaps tokens // @notice 1. Transfers amountIn of tokens tokenIn to executor // @notice 2. launches executor with executorData and value = msg.value // @notice 3. Checks that recipient's tokenOut balance was increased at least amountOutMin function snwap( IERC20 tokenIn, uint amountIn, // if amountIn == 0 then amountIn = tokenIn.balance(this) - 1 address recipient, IERC20 tokenOut, uint amountOutMin, address executor, bytes calldata executorData ) external payable returns (uint amountOut) { uint initialOutputBalance = tokenOut.universalBalanceOf(recipient); if (address(tokenIn) != NATIVE_ADDRESS) { if (amountIn > 0) tokenIn.safeTransferFrom(msg.sender, executor, amountIn); else tokenIn.safeTransfer(executor, tokenIn.balanceOf(address(this)) - 1); // -1 is slot undrain protection } safeExecutor.execute{value: msg.value}(executor, executorData); amountOut = tokenOut.universalBalanceOf(recipient) - initialOutputBalance; if (amountOut < amountOutMin) revert MinimalOutputBalanceViolation(address(tokenOut), amountOut); } // @notice Swaps multiple tokens // @notice 1. Transfers inputTokens to inputTokens[i].transferTo // @notice 2. launches executors // @notice 3. Checks that recipient's tokenOut balance was increased at least amountOutMin function snwapMultiple( InputToken[] calldata inputTokens, OutputToken[] calldata outputTokens, Executor[] calldata executors ) external payable returns (uint[] memory amountOut) { uint[] memory initialOutputBalance = new uint[](outputTokens.length); for (uint i = 0; i < outputTokens.length; i++) { initialOutputBalance[i] = outputTokens[i].token.universalBalanceOf(outputTokens[i].recipient); } for (uint i = 0; i < inputTokens.length; i++) { IERC20 tokenIn = inputTokens[i].token; if (address(tokenIn) != NATIVE_ADDRESS) { if (inputTokens[i].amountIn > 0) tokenIn.safeTransferFrom(msg.sender, inputTokens[i].transferTo, inputTokens[i].amountIn); else tokenIn.safeTransfer(inputTokens[i].transferTo, tokenIn.balanceOf(address(this)) - 1); // -1 is slot undrain protection } } safeExecutor.executeMultiple{value: msg.value}(executors); amountOut = new uint[](outputTokens.length); for (uint i = 0; i < outputTokens.length; i++) { amountOut[i] = outputTokens[i].token.universalBalanceOf(outputTokens[i].recipient) - initialOutputBalance[i]; if (amountOut[i] < outputTokens[i].amountOutMin) revert MinimalOutputBalanceViolation(address(outputTokens[i].token), amountOut[i]); } } } // This contract doesn't have token approves, so can safely call other contracts contract SafeExecutor { using Utils for address; function execute(address executor, bytes calldata executorData) external payable { executor.callRevertBubbleUp(msg.value, executorData); } function executeMultiple(Executor[] calldata executors) external payable { for (uint i = 0; i < executors.length; i++) { executors[i].executor.callRevertBubbleUp(executors[i].value, executors[i].data); } } } error MinimalOutputBalanceViolation(address tokenOut, uint256 amountOut); address constant NATIVE_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; struct InputToken { IERC20 token; uint amountIn; address transferTo; } struct OutputToken { IERC20 token; address recipient; uint amountOutMin; } struct Executor { address executor; uint value; bytes data; } library Utils { using SafeERC20 for IERC20; function universalBalanceOf(IERC20 token, address user) internal view returns (uint256) { if (address(token) == NATIVE_ADDRESS) return address(user).balance; else return token.balanceOf(user); } function callRevertBubbleUp(address contr, uint256 value, bytes memory data) internal { (bool success, bytes memory returnBytes) = contr.call{value: value}(data); if (!success) { assembly { revert(add(32, returnBytes), mload(returnBytes)) } } } }
File 2 of 5: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }
File 3 of 5: SetToken
// Dependency file: @openzeppelin/contracts/utils/SafeCast.sol // pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { require(value < 2**128, "SafeCast: value doesn\'t fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { require(value < 2**64, "SafeCast: value doesn\'t fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { require(value < 2**32, "SafeCast: value doesn\'t fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { require(value < 2**16, "SafeCast: value doesn\'t fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits. */ function toUint8(uint256 value) internal pure returns (uint8) { require(value < 2**8, "SafeCast: value doesn\'t fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128) { require(value >= -2**127 && value < 2**127, "SafeCast: value doesn\'t fit in 128 bits"); return int128(value); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64) { require(value >= -2**63 && value < 2**63, "SafeCast: value doesn\'t fit in 64 bits"); return int64(value); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32) { require(value >= -2**31 && value < 2**31, "SafeCast: value doesn\'t fit in 32 bits"); return int32(value); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16) { require(value >= -2**15 && value < 2**15, "SafeCast: value doesn\'t fit in 16 bits"); return int16(value); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits. * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8) { require(value >= -2**7 && value < 2**7, "SafeCast: value doesn\'t fit in 8 bits"); return int8(value); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { require(value < 2**255, "SafeCast: value doesn't fit in an int256"); return int256(value); } } // Dependency file: @openzeppelin/contracts/token/ERC20/IERC20.sol // pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * // importANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // Dependency file: @openzeppelin/contracts/GSN/Context.sol // pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // Dependency file: contracts/lib/AddressArrayUtils.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; /** * @title AddressArrayUtils * @author Set Protocol * * Utility functions to handle Address Arrays */ library AddressArrayUtils { /** * Finds the index of the first occurrence of the given element. * @param A The input array to search * @param a The value to find * @return Returns (index and isIn) for the first occurrence starting from index 0 */ function indexOf(address[] memory A, address a) internal pure returns (uint256, bool) { uint256 length = A.length; for (uint256 i = 0; i < length; i++) { if (A[i] == a) { return (i, true); } } return (uint256(-1), false); } /** * Returns true if the value is present in the list. Uses indexOf internally. * @param A The input array to search * @param a The value to find * @return Returns isIn for the first occurrence starting from index 0 */ function contains(address[] memory A, address a) internal pure returns (bool) { (, bool isIn) = indexOf(A, a); return isIn; } /** * Returns true if there are 2 elements that are the same in an array * @param A The input array to search * @return Returns boolean for the first occurrence of a duplicate */ function hasDuplicate(address[] memory A) internal pure returns(bool) { require(A.length > 0, "A is empty"); for (uint256 i = 0; i < A.length - 1; i++) { address current = A[i]; for (uint256 j = i + 1; j < A.length; j++) { if (current == A[j]) { return true; } } } return false; } /** * @param A The input array to search * @param a The address to remove * @return Returns the array with the object removed. */ function remove(address[] memory A, address a) internal pure returns (address[] memory) { (uint256 index, bool isIn) = indexOf(A, a); if (!isIn) { revert("Address not in array."); } else { (address[] memory _A,) = pop(A, index); return _A; } } /** * Removes specified index from array * @param A The input array to search * @param index The index to remove * @return Returns the new array and the removed entry */ function pop(address[] memory A, uint256 index) internal pure returns (address[] memory, address) { uint256 length = A.length; require(index < A.length, "Index must be < A length"); address[] memory newAddresses = new address[](length - 1); for (uint256 i = 0; i < index; i++) { newAddresses[i] = A[i]; } for (uint256 j = index + 1; j < length; j++) { newAddresses[j - 1] = A[j]; } return (newAddresses, A[index]); } } // Dependency file: contracts/lib/PreciseUnitMath.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; // pragma experimental ABIEncoderV2; // import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol"; // import { SignedSafeMath } from "@openzeppelin/contracts/math/SignedSafeMath.sol"; /** * @title PreciseUnitMath * @author Set Protocol * * Arithmetic for fixed-point numbers with 18 decimals of precision. Some functions taken from * dYdX's BaseMath library. */ library PreciseUnitMath { using SafeMath for uint256; using SignedSafeMath for int256; // The number One in precise units. uint256 constant internal PRECISE_UNIT = 10 ** 18; int256 constant internal PRECISE_UNIT_INT = 10 ** 18; // Max unsigned integer value uint256 constant internal MAX_UINT_256 = type(uint256).max; // Max and min signed integer value int256 constant internal MAX_INT_256 = type(int256).max; int256 constant internal MIN_INT_256 = type(int256).min; /** * @dev Getter function since constants can't be read directly from libraries. */ function preciseUnit() internal pure returns (uint256) { return PRECISE_UNIT; } /** * @dev Getter function since constants can't be read directly from libraries. */ function preciseUnitInt() internal pure returns (int256) { return PRECISE_UNIT_INT; } /** * @dev Getter function since constants can't be read directly from libraries. */ function maxUint256() internal pure returns (uint256) { return MAX_UINT_256; } /** * @dev Getter function since constants can't be read directly from libraries. */ function maxInt256() internal pure returns (int256) { return MAX_INT_256; } /** * @dev Getter function since constants can't be read directly from libraries. */ function minInt256() internal pure returns (int256) { return MIN_INT_256; } /** * @dev Multiplies value a by value b (result is rounded down). It's assumed that the value b is the significand * of a number with 18 decimals precision. */ function preciseMul(uint256 a, uint256 b) internal pure returns (uint256) { return a.mul(b).div(PRECISE_UNIT); } /** * @dev Multiplies value a by value b (result is rounded towards zero). It's assumed that the value b is the * significand of a number with 18 decimals precision. */ function preciseMul(int256 a, int256 b) internal pure returns (int256) { return a.mul(b).div(PRECISE_UNIT_INT); } /** * @dev Multiplies value a by value b (result is rounded up). It's assumed that the value b is the significand * of a number with 18 decimals precision. */ function preciseMulCeil(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0 || b == 0) { return 0; } return a.mul(b).sub(1).div(PRECISE_UNIT).add(1); } /** * @dev Divides value a by value b (result is rounded down). */ function preciseDiv(uint256 a, uint256 b) internal pure returns (uint256) { return a.mul(PRECISE_UNIT).div(b); } /** * @dev Divides value a by value b (result is rounded towards 0). */ function preciseDiv(int256 a, int256 b) internal pure returns (int256) { return a.mul(PRECISE_UNIT_INT).div(b); } /** * @dev Divides value a by value b (result is rounded up or away from 0). */ function preciseDivCeil(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, "Cant divide by 0"); return a > 0 ? a.mul(PRECISE_UNIT).sub(1).div(b).add(1) : 0; } /** * @dev Divides value a by value b (result is rounded down - positive numbers toward 0 and negative away from 0). */ function divDown(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "Cant divide by 0"); require(a != MIN_INT_256 || b != -1, "Invalid input"); int256 result = a.div(b); if (a ^ b < 0 && a % b != 0) { result = result.sub(1); } return result; } /** * @dev Multiplies value a by value b where rounding is towards the lesser number. * (positive values are rounded towards zero and negative values are rounded away from 0). */ function conservativePreciseMul(int256 a, int256 b) internal pure returns (int256) { return divDown(a.mul(b), PRECISE_UNIT_INT); } /** * @dev Divides value a by value b where rounding is towards the lesser number. * (positive values are rounded towards zero and negative values are rounded away from 0). */ function conservativePreciseDiv(int256 a, int256 b) internal pure returns (int256) { return divDown(a.mul(PRECISE_UNIT_INT), b); } } // Dependency file: contracts/protocol/lib/Position.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; // pragma experimental "ABIEncoderV2"; // import { SafeCast } from "@openzeppelin/contracts/utils/SafeCast.sol"; // import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol"; // import { SignedSafeMath } from "@openzeppelin/contracts/math/SignedSafeMath.sol"; // import { ISetToken } from "../../interfaces/ISetToken.sol"; // import { PreciseUnitMath } from "../../lib/PreciseUnitMath.sol"; /** * @title Position * @author Set Protocol * * Collection of helper functions for handling and updating SetToken Positions */ library Position { using SafeCast for uint256; using SafeMath for uint256; using SafeCast for int256; using SignedSafeMath for int256; using PreciseUnitMath for uint256; /* ============ Helper ============ */ /** * Returns whether the SetToken has a default position for a given component (if the real unit is > 0) */ function hasDefaultPosition(ISetToken _setToken, address _component) internal view returns(bool) { return _setToken.getDefaultPositionRealUnit(_component) > 0; } /** * Returns whether the SetToken has an external position for a given component (if # of position modules is > 0) */ function hasExternalPosition(ISetToken _setToken, address _component) internal view returns(bool) { return _setToken.getExternalPositionModules(_component).length > 0; } /** * Returns whether the SetToken component default position real unit is greater than or equal to units passed in. */ function hasSufficientDefaultUnits(ISetToken _setToken, address _component, uint256 _unit) internal view returns(bool) { return _setToken.getDefaultPositionRealUnit(_component) >= _unit.toInt256(); } /** * Returns whether the SetToken component external position is greater than or equal to the real units passed in. */ function hasSufficientExternalUnits( ISetToken _setToken, address _component, address _positionModule, uint256 _unit ) internal view returns(bool) { return _setToken.getExternalPositionRealUnit(_component, _positionModule) >= _unit.toInt256(); } /** * If the position does not exist, create a new Position and add to the SetToken. If it already exists, * then set the position units. If the new units is 0, remove the position. Handles adding/removing of * components where needed (in light of potential external positions). * * @param _setToken Address of SetToken being modified * @param _component Address of the component * @param _newUnit Quantity of Position units - must be >= 0 */ function editDefaultPosition(ISetToken _setToken, address _component, uint256 _newUnit) internal { bool isPositionFound = hasDefaultPosition(_setToken, _component); if (!isPositionFound && _newUnit > 0) { // If there is no Default Position and no External Modules, then component does not exist if (!hasExternalPosition(_setToken, _component)) { _setToken.addComponent(_component); } } else if (isPositionFound && _newUnit == 0) { // If there is a Default Position and no external positions, remove the component if (!hasExternalPosition(_setToken, _component)) { _setToken.removeComponent(_component); } } _setToken.editDefaultPositionUnit(_component, _newUnit.toInt256()); } /** * Update an external position and remove and external positions or components if necessary. The logic flows as follows: * 1) If component is not already added then add component and external position. * 2) If component is added but no existing external position using the passed module exists then add the external position. * 3) If the existing position is being added to then just update the unit * 4) If the position is being closed and no other external positions or default positions are associated with the component * then untrack the component and remove external position. * 5) If the position is being closed and other existing positions still exist for the component then just remove the * external position. * * @param _setToken SetToken being updated * @param _component Component position being updated * @param _module Module external position is associated with * @param _newUnit Position units of new external position * @param _data Arbitrary data associated with the position */ function editExternalPosition( ISetToken _setToken, address _component, address _module, int256 _newUnit, bytes memory _data ) internal { if (!_setToken.isComponent(_component)) { _setToken.addComponent(_component); addExternalPosition(_setToken, _component, _module, _newUnit, _data); } else if (!_setToken.isExternalPositionModule(_component, _module)) { addExternalPosition(_setToken, _component, _module, _newUnit, _data); } else if (_newUnit != 0) { _setToken.editExternalPositionUnit(_component, _module, _newUnit); } else { // If no default or external position remaining then remove component from components array if (_setToken.getDefaultPositionRealUnit(_component) == 0 && _setToken.getExternalPositionModules(_component).length == 1) { _setToken.removeComponent(_component); } _setToken.removeExternalPositionModule(_component, _module); } } /** * Add a new external position from a previously untracked module. * * @param _setToken SetToken being updated * @param _component Component position being updated * @param _module Module external position is associated with * @param _newUnit Position units of new external position * @param _data Arbitrary data associated with the position */ function addExternalPosition( ISetToken _setToken, address _component, address _module, int256 _newUnit, bytes memory _data ) internal { _setToken.addExternalPositionModule(_component, _module); _setToken.editExternalPositionUnit(_component, _module, _newUnit); _setToken.editExternalPositionData(_component, _module, _data); } /** * Get total notional amount of Default position * * @param _setTokenSupply Supply of SetToken in precise units (10^18) * @param _positionUnit Quantity of Position units * * @return Total notional amount of units */ function getDefaultTotalNotional(uint256 _setTokenSupply, uint256 _positionUnit) internal pure returns (uint256) { return _setTokenSupply.preciseMul(_positionUnit); } /** * Get position unit from total notional amount * * @param _setTokenSupply Supply of SetToken in precise units (10^18) * @param _totalNotional Total notional amount of component prior to * @return Default position unit */ function getDefaultPositionUnit(uint256 _setTokenSupply, uint256 _totalNotional) internal pure returns (uint256) { return _totalNotional.preciseDiv(_setTokenSupply); } /** * Calculate the new position unit given total notional values pre and post executing an action that changes SetToken state * The intention is to make updates to the units without accidentally picking up airdropped assets as well. * * @param _setTokenSupply Supply of SetToken in precise units (10^18) * @param _preTotalNotional Total notional amount of component prior to executing action * @param _postTotalNotional Total notional amount of component after the executing action * @param _prePositionUnit Position unit of SetToken prior to executing action * @return New position unit */ function calculateDefaultEditPositionUnit( uint256 _setTokenSupply, uint256 _preTotalNotional, uint256 _postTotalNotional, uint256 _prePositionUnit ) internal pure returns (uint256) { // If pre action total notional amount is greater then subtract post action total notional and calculate new position units if (_preTotalNotional >= _postTotalNotional) { uint256 unitsToSub = _preTotalNotional.sub(_postTotalNotional).preciseDivCeil(_setTokenSupply); return _prePositionUnit.sub(unitsToSub); } else { // Else subtract post action total notional from pre action total notional and calculate new position units uint256 unitsToAdd = _postTotalNotional.sub(_preTotalNotional).preciseDiv(_setTokenSupply); return _prePositionUnit.add(unitsToAdd); } } } // Dependency file: contracts/interfaces/ISetToken.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; // pragma experimental "ABIEncoderV2"; // import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title ISetToken * @author Set Protocol * * Interface for operating with SetTokens. */ interface ISetToken is IERC20 { /* ============ Enums ============ */ enum ModuleState { NONE, PENDING, INITIALIZED } /* ============ Structs ============ */ /** * The base definition of a SetToken Position * * @param component Address of token in the Position * @param module If not in default state, the address of associated module * @param unit Each unit is the # of components per 10^18 of a SetToken * @param positionState Position ENUM. Default is 0; External is 1 * @param data Arbitrary data */ struct Position { address component; address module; int256 unit; uint8 positionState; bytes data; } /** * A struct that stores a component's cash position details and external positions * This data structure allows O(1) access to a component's cash position units and * virtual units. * * @param virtualUnit Virtual value of a component's DEFAULT position. Stored as virtual for efficiency * updating all units at once via the position multiplier. Virtual units are achieved * by dividing a "real" value by the "positionMultiplier" * @param componentIndex * @param externalPositionModules List of external modules attached to each external position. Each module * maps to an external position * @param externalPositions Mapping of module => ExternalPosition struct for a given component */ struct ComponentPosition { int256 virtualUnit; address[] externalPositionModules; mapping(address => ExternalPosition) externalPositions; } /** * A struct that stores a component's external position details including virtual unit and any * auxiliary data. * * @param virtualUnit Virtual value of a component's EXTERNAL position. * @param data Arbitrary data */ struct ExternalPosition { int256 virtualUnit; bytes data; } /* ============ Functions ============ */ function addComponent(address _component) external; function removeComponent(address _component) external; function editDefaultPositionUnit(address _component, int256 _realUnit) external; function addExternalPositionModule(address _component, address _positionModule) external; function removeExternalPositionModule(address _component, address _positionModule) external; function editExternalPositionUnit(address _component, address _positionModule, int256 _realUnit) external; function editExternalPositionData(address _component, address _positionModule, bytes calldata _data) external; function invoke(address _target, uint256 _value, bytes calldata _data) external returns(bytes memory); function editPositionMultiplier(int256 _newMultiplier) external; function mint(address _account, uint256 _quantity) external; function burn(address _account, uint256 _quantity) external; function lock() external; function unlock() external; function addModule(address _module) external; function removeModule(address _module) external; function initializeModule() external; function setManager(address _manager) external; function manager() external view returns (address); function moduleStates(address _module) external view returns (ModuleState); function getModules() external view returns (address[] memory); function getDefaultPositionRealUnit(address _component) external view returns(int256); function getExternalPositionRealUnit(address _component, address _positionModule) external view returns(int256); function getComponents() external view returns(address[] memory); function getExternalPositionModules(address _component) external view returns(address[] memory); function getExternalPositionData(address _component, address _positionModule) external view returns(bytes memory); function isExternalPositionModule(address _component, address _module) external view returns(bool); function isComponent(address _component) external view returns(bool); function positionMultiplier() external view returns (int256); function getPositions() external view returns (Position[] memory); function getTotalComponentRealUnits(address _component) external view returns(int256); function isInitializedModule(address _module) external view returns(bool); function isPendingModule(address _module) external view returns(bool); function isLocked() external view returns (bool); } // Dependency file: contracts/interfaces/IModule.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; /** * @title IModule * @author Set Protocol * * Interface for interacting with Modules. */ interface IModule { /** * Called by a SetToken to notify that this module was removed from the Set token. Any logic can be included * in case checks need to be made or state needs to be cleared. */ function removeModule() external; } // Dependency file: contracts/interfaces/IController.sol /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // pragma solidity 0.6.10; interface IController { function addSet(address _setToken) external; function getModuleFee(address _module, uint256 _feeType) external view returns(uint256); function resourceId(uint256 _id) external view returns(address); function feeRecipient() external view returns(address); function isModule(address _module) external view returns(bool); function isSet(address _setToken) external view returns(bool); function isSystemContract(address _contractAddress) external view returns (bool); } // Dependency file: @openzeppelin/contracts/math/SignedSafeMath.sol // pragma solidity ^0.6.0; /** * @title SignedSafeMath * @dev Signed math operations with safety checks that revert on error. */ library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } } // Dependency file: @openzeppelin/contracts/math/SafeMath.sol // pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // Dependency file: @openzeppelin/contracts/token/ERC20/ERC20.sol // pragma solidity ^0.6.0; // import "../../GSN/Context.sol"; // import "./IERC20.sol"; // import "../../math/SafeMath.sol"; // import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // Dependency file: @openzeppelin/contracts/utils/Address.sol // pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [// importANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * // importANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } /* Copyright 2020 Set Labs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity 0.6.10; pragma experimental "ABIEncoderV2"; // import { Address } from "@openzeppelin/contracts/utils/Address.sol"; // import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; // import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol"; // import { SignedSafeMath } from "@openzeppelin/contracts/math/SignedSafeMath.sol"; // import { IController } from "../interfaces/IController.sol"; // import { IModule } from "../interfaces/IModule.sol"; // import { ISetToken } from "../interfaces/ISetToken.sol"; // import { Position } from "./lib/Position.sol"; // import { PreciseUnitMath } from "../lib/PreciseUnitMath.sol"; // import { AddressArrayUtils } from "../lib/AddressArrayUtils.sol"; /** * @title SetToken * @author Set Protocol * * ERC20 Token contract that allows privileged modules to make modifications to its positions and invoke function calls * from the SetToken. */ contract SetToken is ERC20 { using SafeMath for uint256; using SignedSafeMath for int256; using PreciseUnitMath for int256; using Address for address; using AddressArrayUtils for address[]; /* ============ Constants ============ */ /* The PositionState is the status of the Position, whether it is Default (held on the SetToken) or otherwise held on a separate smart contract (whether a module or external source). There are issues with cross-usage of enums, so we are defining position states as a uint8. */ uint8 internal constant DEFAULT = 0; uint8 internal constant EXTERNAL = 1; /* ============ Events ============ */ event Invoked(address indexed _target, uint indexed _value, bytes _data, bytes _returnValue); event ModuleAdded(address indexed _module); event ModuleRemoved(address indexed _module); event ModuleInitialized(address indexed _module); event ManagerEdited(address _newManager, address _oldManager); event PendingModuleRemoved(address indexed _module); event PositionMultiplierEdited(int256 _newMultiplier); event ComponentAdded(address indexed _component); event ComponentRemoved(address indexed _component); event DefaultPositionUnitEdited(address indexed _component, int256 _realUnit); event ExternalPositionUnitEdited(address indexed _component, address indexed _positionModule, int256 _realUnit); event ExternalPositionDataEdited(address indexed _component, address indexed _positionModule, bytes _data); event PositionModuleAdded(address indexed _component, address indexed _positionModule); event PositionModuleRemoved(address indexed _component, address indexed _positionModule); /* ============ Modifiers ============ */ /** * Throws if the sender is not a SetToken's module or module not enabled */ modifier onlyModule() { // Internal function used to reduce bytecode size _validateOnlyModule(); _; } /** * Throws if the sender is not the SetToken's manager */ modifier onlyManager() { _validateOnlyManager(); _; } /** * Throws if SetToken is locked and called by any account other than the locker. */ modifier whenLockedOnlyLocker() { _validateWhenLockedOnlyLocker(); _; } /* ============ State Variables ============ */ // Address of the controller IController public controller; // The manager has the privelege to add modules, remove, and set a new manager address public manager; // A module that has locked other modules from privileged functionality, typically required // for multi-block module actions such as auctions address public locker; // List of initialized Modules; Modules extend the functionality of SetTokens address[] public modules; // Modules are initialized from NONE -> PENDING -> INITIALIZED through the // addModule (called by manager) and initialize (called by module) functions mapping(address => ISetToken.ModuleState) public moduleStates; // When locked, only the locker (a module) can call privileged functionality // Typically utilized if a module (e.g. Auction) needs multiple transactions to complete an action // without interruption bool public isLocked; // List of components address[] public components; // Mapping that stores all Default and External position information for a given component. // Position quantities are represented as virtual units; Default positions are on the top-level, // while external positions are stored in a module array and accessed through its externalPositions mapping mapping(address => ISetToken.ComponentPosition) private componentPositions; // The multiplier applied to the virtual position unit to achieve the real/actual unit. // This multiplier is used for efficiently modifying the entire position units (e.g. streaming fee) int256 public positionMultiplier; /* ============ Constructor ============ */ /** * When a new SetToken is created, initializes Positions in default state and adds modules into pending state. * All parameter validations are on the SetTokenCreator contract. Validations are performed already on the * SetTokenCreator. Initiates the positionMultiplier as 1e18 (no adjustments). * * @param _components List of addresses of components for initial Positions * @param _units List of units. Each unit is the # of components per 10^18 of a SetToken * @param _modules List of modules to enable. All modules must be approved by the Controller * @param _controller Address of the controller * @param _manager Address of the manager * @param _name Name of the SetToken * @param _symbol Symbol of the SetToken */ constructor( address[] memory _components, int256[] memory _units, address[] memory _modules, IController _controller, address _manager, string memory _name, string memory _symbol ) public ERC20(_name, _symbol) { controller = _controller; manager = _manager; positionMultiplier = PreciseUnitMath.preciseUnitInt(); components = _components; // Modules are put in PENDING state, as they need to be individually initialized by the Module for (uint256 i = 0; i < _modules.length; i++) { moduleStates[_modules[i]] = ISetToken.ModuleState.PENDING; } // Positions are put in default state initially for (uint256 j = 0; j < _components.length; j++) { componentPositions[_components[j]].virtualUnit = _units[j]; } } /* ============ External Functions ============ */ /** * PRIVELEGED MODULE FUNCTION. Low level function that allows a module to make an arbitrary function * call to any contract. * * @param _target Address of the smart contract to call * @param _value Quantity of Ether to provide the call (typically 0) * @param _data Encoded function selector and arguments * @return _returnValue Bytes encoded return value */ function invoke( address _target, uint256 _value, bytes calldata _data ) external onlyModule whenLockedOnlyLocker returns (bytes memory _returnValue) { _returnValue = _target.functionCallWithValue(_data, _value); emit Invoked(_target, _value, _data, _returnValue); return _returnValue; } /** * PRIVELEGED MODULE FUNCTION. Low level function that adds a component to the components array. */ function addComponent(address _component) external onlyModule whenLockedOnlyLocker { components.push(_component); emit ComponentAdded(_component); } /** * PRIVELEGED MODULE FUNCTION. Low level function that removes a component from the components array. */ function removeComponent(address _component) external onlyModule whenLockedOnlyLocker { components = components.remove(_component); emit ComponentRemoved(_component); } /** * PRIVELEGED MODULE FUNCTION. Low level function that edits a component's virtual unit. Takes a real unit * and converts it to virtual before committing. */ function editDefaultPositionUnit(address _component, int256 _realUnit) external onlyModule whenLockedOnlyLocker { int256 virtualUnit = _convertRealToVirtualUnit(_realUnit); // These checks ensure that the virtual unit does not return a result that has rounded down to 0 if (_realUnit > 0 && virtualUnit == 0) { revert("Virtual unit conversion invalid"); } componentPositions[_component].virtualUnit = virtualUnit; emit DefaultPositionUnitEdited(_component, _realUnit); } /** * PRIVELEGED MODULE FUNCTION. Low level function that adds a module to a component's externalPositionModules array */ function addExternalPositionModule(address _component, address _positionModule) external onlyModule whenLockedOnlyLocker { componentPositions[_component].externalPositionModules.push(_positionModule); emit PositionModuleAdded(_component, _positionModule); } /** * PRIVELEGED MODULE FUNCTION. Low level function that removes a module from a component's * externalPositionModules array and deletes the associated externalPosition. */ function removeExternalPositionModule( address _component, address _positionModule ) external onlyModule whenLockedOnlyLocker { componentPositions[_component].externalPositionModules = _externalPositionModules(_component).remove(_positionModule); delete componentPositions[_component].externalPositions[_positionModule]; emit PositionModuleRemoved(_component, _positionModule); } /** * PRIVELEGED MODULE FUNCTION. Low level function that edits a component's external position virtual unit. * Takes a real unit and converts it to virtual before committing. */ function editExternalPositionUnit( address _component, address _positionModule, int256 _realUnit ) external onlyModule whenLockedOnlyLocker { int256 virtualUnit = _convertRealToVirtualUnit(_realUnit); // These checks ensure that the virtual unit does not return a result that has rounded to 0 if ((_realUnit > 0 && virtualUnit == 0)) { revert("Virtual unit conversion invalid"); } componentPositions[_component].externalPositions[_positionModule].virtualUnit = virtualUnit; emit ExternalPositionUnitEdited(_component, _positionModule, _realUnit); } /** * PRIVELEGED MODULE FUNCTION. Low level function that edits a component's external position data */ function editExternalPositionData( address _component, address _positionModule, bytes calldata _data ) external onlyModule whenLockedOnlyLocker { componentPositions[_component].externalPositions[_positionModule].data = _data; emit ExternalPositionDataEdited(_component, _positionModule, _data); } /** * PRIVELEGED MODULE FUNCTION. Modifies the position multiplier. This is typically used to efficiently * update all the Positions' units at once in applications where inflation is awarded (e.g. subscription fees). */ function editPositionMultiplier(int256 _newMultiplier) external onlyModule whenLockedOnlyLocker { require(_newMultiplier > 0, "Must be greater than 0"); positionMultiplier = _newMultiplier; emit PositionMultiplierEdited(_newMultiplier); } /** * PRIVELEGED MODULE FUNCTION. Increases the "account" balance by the "quantity". */ function mint(address _account, uint256 _quantity) external onlyModule whenLockedOnlyLocker { _mint(_account, _quantity); } /** * PRIVELEGED MODULE FUNCTION. Decreases the "account" balance by the "quantity". * _burn checks that the "account" already has the required "quantity". */ function burn(address _account, uint256 _quantity) external onlyModule whenLockedOnlyLocker { _burn(_account, _quantity); } /** * PRIVELEGED MODULE FUNCTION. When a SetToken is locked, only the locker can call privileged functions. */ function lock() external onlyModule { require(!isLocked, "Must not be locked"); locker = msg.sender; isLocked = true; } /** * PRIVELEGED MODULE FUNCTION. Unlocks the SetToken and clears the locker */ function unlock() external onlyModule { require(isLocked, "Must be locked"); require(locker == msg.sender, "Must be locker"); delete locker; isLocked = false; } /** * MANAGER ONLY. Adds a module into a PENDING state; Module must later be initialized via * module's initialize function */ function addModule(address _module) external onlyManager { require(moduleStates[_module] == ISetToken.ModuleState.NONE, "Module must not be added"); require(controller.isModule(_module), "Must be enabled on Controller"); moduleStates[_module] = ISetToken.ModuleState.PENDING; emit ModuleAdded(_module); } /** * MANAGER ONLY. Removes a module from the SetToken. SetToken calls removeModule on module itself to confirm * it is not needed to manage any remaining positions and to remove state. */ function removeModule(address _module) external onlyManager { require(!isLocked, "Only when unlocked"); require(moduleStates[_module] == ISetToken.ModuleState.INITIALIZED, "Module must be added"); IModule(_module).removeModule(); moduleStates[_module] = ISetToken.ModuleState.NONE; modules = modules.remove(_module); emit ModuleRemoved(_module); } /** * MANAGER ONLY. Removes a pending module from the SetToken. */ function removePendingModule(address _module) external onlyManager { require(!isLocked, "Only when unlocked"); require(moduleStates[_module] == ISetToken.ModuleState.PENDING, "Module must be pending"); moduleStates[_module] = ISetToken.ModuleState.NONE; emit PendingModuleRemoved(_module); } /** * Initializes an added module from PENDING to INITIALIZED state. Can only call when unlocked. * An address can only enter a PENDING state if it is an enabled module added by the manager. * Only callable by the module itself, hence msg.sender is the subject of update. */ function initializeModule() external { require(!isLocked, "Only when unlocked"); require(moduleStates[msg.sender] == ISetToken.ModuleState.PENDING, "Module must be pending"); moduleStates[msg.sender] = ISetToken.ModuleState.INITIALIZED; modules.push(msg.sender); emit ModuleInitialized(msg.sender); } /** * MANAGER ONLY. Changes manager; We allow null addresses in case the manager wishes to wind down the SetToken. * Modules may rely on the manager state, so only changable when unlocked */ function setManager(address _manager) external onlyManager { require(!isLocked, "Only when unlocked"); address oldManager = manager; manager = _manager; emit ManagerEdited(_manager, oldManager); } /* ============ External Getter Functions ============ */ function getComponents() external view returns(address[] memory) { return components; } function getDefaultPositionRealUnit(address _component) public view returns(int256) { return _convertVirtualToRealUnit(_defaultPositionVirtualUnit(_component)); } function getExternalPositionRealUnit(address _component, address _positionModule) public view returns(int256) { return _convertVirtualToRealUnit(_externalPositionVirtualUnit(_component, _positionModule)); } function getExternalPositionModules(address _component) external view returns(address[] memory) { return _externalPositionModules(_component); } function getExternalPositionData(address _component,address _positionModule) external view returns(bytes memory) { return _externalPositionData(_component, _positionModule); } function getModules() external view returns (address[] memory) { return modules; } function isComponent(address _component) external view returns(bool) { return components.contains(_component); } function isExternalPositionModule(address _component, address _module) external view returns(bool) { return _externalPositionModules(_component).contains(_module); } /** * Only ModuleStates of INITIALIZED modules are considered enabled */ function isInitializedModule(address _module) external view returns (bool) { return moduleStates[_module] == ISetToken.ModuleState.INITIALIZED; } /** * Returns whether the module is in a pending state */ function isPendingModule(address _module) external view returns (bool) { return moduleStates[_module] == ISetToken.ModuleState.PENDING; } /** * Returns a list of Positions, through traversing the components. Each component with a non-zero virtual unit * is considered a Default Position, and each externalPositionModule will generate a unique position. * Virtual units are converted to real units. This function is typically used off-chain for data presentation purposes. */ function getPositions() external view returns (ISetToken.Position[] memory) { ISetToken.Position[] memory positions = new ISetToken.Position[](_getPositionCount()); uint256 positionCount = 0; for (uint256 i = 0; i < components.length; i++) { address component = components[i]; // A default position exists if the default virtual unit is > 0 if (_defaultPositionVirtualUnit(component) > 0) { positions[positionCount] = ISetToken.Position({ component: component, module: address(0), unit: getDefaultPositionRealUnit(component), positionState: DEFAULT, data: "" }); positionCount++; } address[] memory externalModules = _externalPositionModules(component); for (uint256 j = 0; j < externalModules.length; j++) { address currentModule = externalModules[j]; positions[positionCount] = ISetToken.Position({ component: component, module: currentModule, unit: getExternalPositionRealUnit(component, currentModule), positionState: EXTERNAL, data: _externalPositionData(component, currentModule) }); positionCount++; } } return positions; } /** * Returns the total Real Units for a given component, summing the default and external position units. */ function getTotalComponentRealUnits(address _component) external view returns(int256) { int256 totalUnits = getDefaultPositionRealUnit(_component); address[] memory externalModules = _externalPositionModules(_component); for (uint256 i = 0; i < externalModules.length; i++) { // We will perform the summation no matter what, as an external position virtual unit can be negative totalUnits = totalUnits.add(getExternalPositionRealUnit(_component, externalModules[i])); } return totalUnits; } receive() external payable {} // solium-disable-line quotes /* ============ Internal Functions ============ */ function _defaultPositionVirtualUnit(address _component) internal view returns(int256) { return componentPositions[_component].virtualUnit; } function _externalPositionModules(address _component) internal view returns(address[] memory) { return componentPositions[_component].externalPositionModules; } function _externalPositionVirtualUnit(address _component, address _module) internal view returns(int256) { return componentPositions[_component].externalPositions[_module].virtualUnit; } function _externalPositionData(address _component, address _module) internal view returns(bytes memory) { return componentPositions[_component].externalPositions[_module].data; } /** * Takes a real unit and divides by the position multiplier to return the virtual unit */ function _convertRealToVirtualUnit(int256 _realUnit) internal view returns(int256) { return _realUnit.conservativePreciseDiv(positionMultiplier); } /** * Takes a virtual unit and multiplies by the position multiplier to return the real unit */ function _convertVirtualToRealUnit(int256 _virtualUnit) internal view returns(int256) { return _virtualUnit.conservativePreciseMul(positionMultiplier); } /** * Gets the total number of positions, defined as the following: * - Each component has a default position if its virtual unit is > 0 * - Each component's external positions module is counted as a position */ function _getPositionCount() internal view returns (uint256) { uint256 positionCount; for (uint256 i = 0; i < components.length; i++) { address component = components[i]; // Increment the position count if the default position is > 0 if (_defaultPositionVirtualUnit(component) > 0) { positionCount++; } // Increment the position count by each external position module address[] memory externalModules = _externalPositionModules(component); if (externalModules.length > 0) { positionCount = positionCount.add(externalModules.length); } } return positionCount; } /** * Due to reason error bloat, internal functions are used to reduce bytecode size * * Module must be initialized on the SetToken and enabled by the controller */ function _validateOnlyModule() internal view { require( moduleStates[msg.sender] == ISetToken.ModuleState.INITIALIZED, "Only the module can call" ); require( controller.isModule(msg.sender), "Module must be enabled on controller" ); } function _validateOnlyManager() internal view { require(msg.sender == manager, "Only manager can call"); } function _validateWhenLockedOnlyLocker() internal view { if (isLocked) { require(msg.sender == locker, "When locked, only the locker can call"); } } }
File 4 of 5: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 5 of 5: TokenChwomper
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity >= 0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }// SPDX-License-Identifier: UNLICENSED pragma solidity >= 0.8.0; interface IRedSnwapper { struct InputToken { address token; uint256 amountIn; address transferTo; } struct OutputToken { address token; address recipient; uint256 amountOutMin; } struct Executor { address executor; uint256 value; bytes data; } function snwap( address tokenIn, uint256 amountIn, address recipient, address tokenOut, uint256 amountOutMin, address executor, bytes calldata executorData ) external returns (uint256 amountOut); function snwapMultiple( InputToken[] calldata inputTokens, OutputToken[] calldata outputTokens, Executor[] calldata executors ) external returns (uint256[] memory amountOut); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol) pragma solidity ^0.8.0; import "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() external { address sender = _msgSender(); require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner"); _transferOwnership(sender); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.0; import "openzeppelin/access/Ownable2Step.sol"; abstract contract Auth is Ownable2Step { event SetTrusted(address indexed user, bool isTrusted); mapping(address => bool) public trusted; error OnlyTrusted(); modifier onlyTrusted() { if (!trusted[msg.sender]) revert OnlyTrusted(); _; } constructor(address trustedUser) { trusted[trustedUser] = true; emit SetTrusted(trustedUser, true); } function setTrusted(address user, bool isTrusted) external onlyOwner { trusted[user] = isTrusted; emit SetTrusted(user, isTrusted); } }// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.0; import "interfaces/IRedSnwapper.sol"; import "interfaces/IERC20.sol"; import "./Auth.sol"; /// @title TokenChwomper for selling accumulated tokens for weth or other base assets /// @notice This contract will be used for fee collection and breakdown /// @dev Uses Auth contract for 2-step owner process and trust operators to guard functions contract TokenChwomper is Auth { address public immutable weth; IRedSnwapper public redSnwapper; bytes4 private constant TRANSFER_SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); error TransferFailed(); constructor( address _operator, address _redSnwapper, address _weth ) Auth(_operator) { // initial owner is msg.sender redSnwapper = IRedSnwapper(_redSnwapper); weth = _weth; } /// @notice Updates the RedSnwapper to be used for swapping tokens /// @dev make sure new RedSnwapper is backwards compatiable (should be) /// @param _redSnwapper The address of the new route processor function updateRedSnwapper(address _redSnwapper) external onlyOwner { redSnwapper = IRedSnwapper(_redSnwapper); } /// @notice Swaps tokens via the configured RedSnwapper /// @dev Must be called by a trusted operator /// @param tokenIn Address of the input token /// @param amountIn Amount of the input token to swap /// @param recipient Address to receive the output tokens /// @param tokenOut Address of the output token /// @param amountOutMin Minimum acceptable amount of output tokens (slippage protection) /// @param executor Address of the executor contract to perform the swap logic /// @param executorData Encoded data for the executor call /// @return amountOut The actual amount of output tokens received function snwap( address tokenIn, uint256 amountIn, address recipient, address tokenOut, uint256 amountOutMin, address executor, bytes calldata executorData ) external onlyTrusted returns (uint256 amountOut) { // Pre-fund RedSnwapper with input tokens _safeTransfer(tokenIn, address(redSnwapper), amountIn); // Execute snwap with zero amountIn amountOut = redSnwapper.snwap( tokenIn, 0, recipient, tokenOut, amountOutMin, executor, executorData ); } /// @notice Performs multiple swaps via the configured RedSnwapper /// @dev Must be called by a trusted operator /// @param inputTokens Array of input token parameters /// @param outputTokens Array of output token requirements /// @param executors Array of executor calls to perform /// @return amountOut Array of actual amounts of output tokens received function snwapMultiple( IRedSnwapper.InputToken[] calldata inputTokens, IRedSnwapper.OutputToken[] calldata outputTokens, IRedSnwapper.Executor[] calldata executors ) external onlyTrusted returns (uint256[] memory amountOut) { uint256 length = inputTokens.length; IRedSnwapper.InputToken[] memory _inputTokens = new IRedSnwapper.InputToken[](length); for (uint256 i = 0; i < length; ++i) { // Pre-fund RedSnwapper with input tokens _safeTransfer( inputTokens[i].token, address(redSnwapper), inputTokens[i].amountIn ); // Build _inputTokens with zero amountIn _inputTokens[i] = IRedSnwapper.InputToken({ token: inputTokens[i].token, amountIn: 0, transferTo: inputTokens[i].transferTo }); } // Execute snwapMultiple amountOut = redSnwapper.snwapMultiple( _inputTokens, outputTokens, executors ); } /// @notice Withdraw any token or eth from the contract /// @dev can only be called by owner /// @param token The address of the token to be withdrawn, 0x0 for eth /// @param to The address to send the token to /// @param _value The amount of the token to be withdrawn function withdraw(address token, address to, uint256 _value) onlyOwner external { if (token != address(0)) { _safeTransfer(token, to, _value); } else { (bool success, ) = to.call{value: _value}(""); require(success); } } function _safeTransfer(address token, address to, uint value) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(TRANSFER_SELECTOR, to, value)); if (!success || (data.length != 0 && !abi.decode(data, (bool)))) revert TransferFailed(); } /// @notice In case we receive any unwrapped eth (native token) we can call this /// @dev operators can call this function wrapEth() onlyTrusted external { weth.call{value: address(this).balance}(""); } /// @notice Available function in case we need to do any calls that aren't supported by the contract (unwinding lp positions, etc.) /// @dev can only be called by owner /// @param to The address to send the call to /// @param _value The amount of eth to send with the call /// @param data The data to be sent with the call function doAction(address to, uint256 _value, bytes memory data) onlyOwner external { (bool success, ) = to.call{value: _value}(data); require(success); } receive() external payable {} }