ETH Price: $2,959.43 (-0.18%)

Transaction Decoder

Block:
22891802 at Jul-10-2025 10:35:47 PM +UTC
Transaction Fee:
0.00045142039108845 ETH $1.34
Gas Used:
49,779 Gas / 9.06849055 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
34.923376251777483314 Eth34.923377680180462403 Eth0.000001428402979089
0xe137ADbC...839B06744
0.00894350717320309 Eth
Nonce: 5
0.00849208678211464 Eth
Nonce: 6
0.00045142039108845

Execution Trace

ETH 0.002 L1ChugSplashProxy.CALL( )
  • ProxyAdmin.STATICCALL( )
  • ETH 0.002 L1BlastBridge.DELEGATECALL( )
    File 1 of 3: L1ChugSplashProxy
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Constants } from "src/libraries/Constants.sol";
    /// @title IL1ChugSplashDeployer
    interface IL1ChugSplashDeployer {
        function isUpgrading() external view returns (bool);
    }
    /// @custom:legacy
    /// @title L1ChugSplashProxy
    /// @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
    ///         functions `setCode` and `setStorage` for changing the code or storage of the contract.
    ///         Note for future developers: do NOT make anything in this contract 'public' unless you
    ///         know what you're doing. Anything public can potentially have a function signature that
    ///         conflicts with a signature attached to the implementation contract. Public functions
    ///         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
    ///         reason not to have that modifier. And there almost certainly is not a good reason to not
    ///         have that modifier. Beware!
    contract L1ChugSplashProxy {
        /// @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
        ///         contract, the appended bytecode will be deployed as given.
        bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
        /// @notice Blocks a function from being called when the parent signals that the system should
        ///         be paused via an isUpgrading function.
        modifier onlyWhenNotPaused() {
            address owner = _getOwner();
            // We do a low-level call because there's no guarantee that the owner actually *is* an
            // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
            // it turns out that it isn't the right type of contract.
            (bool success, bytes memory returndata) =
                owner.staticcall(abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector));
            // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
            // can just continue as normal. We also expect that the return value is exactly 32 bytes
            // long. If this isn't the case then we can safely ignore the result.
            if (success && returndata.length == 32) {
                // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                // case that the isUpgrading function returned something other than 0 or 1. But we only
                // really care about the case where this value is 0 (= false).
                uint256 ret = abi.decode(returndata, (uint256));
                require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
            }
            _;
        }
        /// @notice Makes a proxy call instead of triggering the given function when the caller is
        ///         either the owner or the zero address. Caller can only ever be the zero address if
        ///         this function is being called off-chain via eth_call, which is totally fine and can
        ///         be convenient for client-side tooling. Avoids situations where the proxy and
        ///         implementation share a sighash and the proxy function ends up being called instead
        ///         of the implementation one.
        ///         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
        ///         there's a way for someone to send a transaction with msg.sender == address(0) in any
        ///         real context then we have much bigger problems. Primary reason to include this
        ///         additional allowed sender is because the owner address can be changed dynamically
        ///         and we do not want clients to have to keep track of the current owner in order to
        ///         make an eth_call that doesn't trigger the proxied contract.
        // slither-disable-next-line incorrect-modifier
        modifier proxyCallIfNotOwner() {
            if (msg.sender == _getOwner() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /// @param _owner Address of the initial contract owner.
        constructor(address _owner) {
            _setOwner(_owner);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /// @notice Sets the code that should be running behind this proxy.
        ///         Note: This scheme is a bit different from the standard proxy scheme where one would
        ///         typically deploy the code separately and then set the implementation address. We're
        ///         doing it this way because it gives us a lot more freedom on the client side. Can
        ///         only be triggered by the contract owner.
        /// @param _code New contract code to run inside this contract.
        function setCode(bytes memory _code) external proxyCallIfNotOwner {
            // Get the code hash of the current implementation.
            address implementation = _getImplementation();
            // If the code hash matches the new implementation then we return early.
            if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                return;
            }
            // Create the deploycode by appending the magic prefix.
            bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
            // Deploy the code and set the new implementation address.
            address newImplementation;
            assembly {
                newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
            }
            // Check that the code was actually deployed correctly. I'm not sure if you can ever
            // actually fail this check. Should only happen if the contract creation from above runs
            // out of gas but this parent execution thread does NOT run out of gas. Seems like we
            // should be doing this check anyway though.
            require(
                _getAccountCodeHash(newImplementation) == keccak256(_code),
                "L1ChugSplashProxy: code was not correctly deployed"
            );
            _setImplementation(newImplementation);
        }
        /// @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
        ///         perform upgrades in a more transparent way. Only callable by the owner.
        /// @param _key   Storage key to modify.
        /// @param _value New value for the storage key.
        function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
            assembly {
                sstore(_key, _value)
            }
        }
        /// @notice Changes the owner of the proxy contract. Only callable by the owner.
        /// @param _owner New owner of the proxy contract.
        function setOwner(address _owner) external proxyCallIfNotOwner {
            _setOwner(_owner);
        }
        /// @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
        ///         making an eth_call and setting the "from" address to address(0).
        /// @return Owner address.
        function getOwner() external proxyCallIfNotOwner returns (address) {
            return _getOwner();
        }
        /// @notice Queries the implementation address. Can only be called by the owner OR by making an
        ///         eth_call and setting the "from" address to address(0).
        /// @return Implementation address.
        function getImplementation() external proxyCallIfNotOwner returns (address) {
            return _getImplementation();
        }
        /// @notice Sets the implementation address.
        /// @param _implementation New implementation address.
        function _setImplementation(address _implementation) internal {
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                sstore(proxyImplementation, _implementation)
            }
        }
        /// @notice Changes the owner of the proxy contract.
        /// @param _owner New owner of the proxy contract.
        function _setOwner(address _owner) internal {
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                sstore(proxyOwner, _owner)
            }
        }
        /// @notice Performs the proxy call via a delegatecall.
        function _doProxyCall() internal onlyWhenNotPaused {
            address implementation = _getImplementation();
            require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) { revert(0x0, returndatasize()) }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /// @notice Queries the implementation address.
        /// @return Implementation address.
        function _getImplementation() internal view returns (address) {
            address implementation;
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                implementation := sload(proxyImplementation)
            }
            return implementation;
        }
        /// @notice Queries the owner of the proxy contract.
        /// @return Owner address.
        function _getOwner() internal view returns (address) {
            address owner;
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                owner := sload(proxyOwner)
            }
            return owner;
        }
        /// @notice Gets the code hash for a given account.
        /// @param _account Address of the account to get a code hash for.
        /// @return Code hash for the account.
        function _getAccountCodeHash(address _account) internal view returns (bytes32) {
            bytes32 codeHash;
            assembly {
                codeHash := extcodehash(_account)
            }
            return codeHash;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { ResourceMetering } from "../L1/ResourceMetering.sol";
    /// @title Constants
    /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
    ///         the stuff used in multiple contracts. Constants that only apply to a single contract
    ///         should be defined in that contract instead.
    library Constants {
        /// @notice Special address to be used as the tx origin for gas estimation calls in the
        ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
        ///         the minimum gas limit specified by the user is not actually enough to execute the
        ///         given message and you're attempting to estimate the actual necessary gas limit. We
        ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
        ///         never have any code on any EVM chain.
        address internal constant ESTIMATION_ADDRESS = address(1);
        /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
        ///         CrossDomainMessenger contracts before an actual sender is set. This value is
        ///         non-zero to reduce the gas cost of message passing transactions.
        address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
        /// @notice The storage slot that holds the address of a proxy implementation.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
        bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /// @notice The storage slot that holds the address of the owner.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
        bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /// @notice Returns the default values for the ResourceConfig. These are the recommended values
        ///         for a production network.
        function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
            ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                maxResourceLimit: 20_000_000,
                elasticityMultiplier: 10,
                baseFeeMaxChangeDenominator: 8,
                minimumBaseFee: 1 gwei,
                systemTxMaxGas: 1_000_000,
                maximumBaseFee: type(uint128).max
            });
            return config;
        }
        /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
        ///         each time that the contracts are deployed.
        uint8 internal constant INITIALIZER = 1;
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Burn } from "src/libraries/Burn.sol";
    import { Arithmetic } from "src/libraries/Arithmetic.sol";
    /// @custom:upgradeable
    /// @title ResourceMetering
    /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
    ///         updates automatically based on current demand.
    abstract contract ResourceMetering is Initializable {
        /// @notice Represents the various parameters that control the way in which resources are
        ///         metered. Corresponds to the EIP-1559 resource metering system.
        /// @custom:field prevBaseFee   Base fee from the previous block(s).
        /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
        /// @custom:field prevBlockNum  Last block number that the base fee was updated.
        struct ResourceParams {
            uint128 prevBaseFee;
            uint64 prevBoughtGas;
            uint64 prevBlockNum;
        }
        /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
        ///         market. These values should be set with care as it is possible to set them in
        ///         a way that breaks the deposit gas market. The target resource limit is defined as
        ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
        ///         single word. There is additional space for additions in the future.
        /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
        ///                                            can be purchased per block.
        /// @custom:field elasticityMultiplier         Determines the target resource limit along with
        ///                                            the resource limit.
        /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
        /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
        ///                                            value.
        /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
        ///                                            transaction. This should be set to the same
        ///                                            number that the op-node sets as the gas limit
        ///                                            for the system transaction.
        /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
        ///                                            value.
        struct ResourceConfig {
            uint32 maxResourceLimit;
            uint8 elasticityMultiplier;
            uint8 baseFeeMaxChangeDenominator;
            uint32 minimumBaseFee;
            uint32 systemTxMaxGas;
            uint128 maximumBaseFee;
        }
        /// @notice EIP-1559 style gas parameters.
        ResourceParams public params;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        uint256[48] private __gap;
        /// @notice Meters access to a function based an amount of a requested resource.
        /// @param _amount Amount of the resource requested.
        modifier metered(uint64 _amount) {
            // Record initial gas amount so we can refund for it later.
            uint256 initialGas = gasleft();
            // Run the underlying function.
            _;
            // Run the metering function.
            _metered(_amount, initialGas);
        }
        /// @notice An internal function that holds all of the logic for metering a resource.
        /// @param _amount     Amount of the resource requested.
        /// @param _initialGas The amount of gas before any modifier execution.
        function _metered(uint64 _amount, uint256 _initialGas) internal {
            // Update block number and base fee if necessary.
            uint256 blockDiff = block.number - params.prevBlockNum;
            ResourceConfig memory config = _resourceConfig();
            int256 targetResourceLimit =
                int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
            if (blockDiff > 0) {
                // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                // at which deposits can be created and therefore limit the potential for deposits to
                // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                    / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                // Update base fee by adding the base fee delta and clamp the resulting value between
                // min and max.
                int256 newBaseFee = Arithmetic.clamp({
                    _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
                // If we skipped more than one block, we also need to account for every empty block.
                // Empty block means there was no demand for deposits in that block, so we should
                // reflect this lack of demand in the fee.
                if (blockDiff > 1) {
                    // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                    // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                    // between min and max.
                    newBaseFee = Arithmetic.clamp({
                        _value: Arithmetic.cdexp({
                            _coefficient: newBaseFee,
                            _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                            _exponent: int256(blockDiff - 1)
                        }),
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                }
                // Update new base fee, reset bought gas, and update block number.
                params.prevBaseFee = uint128(uint256(newBaseFee));
                params.prevBoughtGas = 0;
                params.prevBlockNum = uint64(block.number);
            }
            // Make sure we can actually buy the resource amount requested by the user.
            params.prevBoughtGas += _amount;
            require(
                int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                "ResourceMetering: cannot buy more gas than available gas limit"
            );
            // Determine the amount of ETH to be paid.
            uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
            // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
            // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
            // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
            // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
            // during any 1 day period in the last 5 years, so should be fine.
            uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
            // Give the user a refund based on the amount of gas they used to do all of the work up to
            // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
            // effectively like a dynamic stipend (with a minimum value).
            uint256 usedGas = _initialGas - gasleft();
            if (gasCost > usedGas) {
                Burn.gas(gasCost - usedGas);
            }
        }
        /// @notice Virtual function that returns the resource config.
        ///         Contracts that inherit this contract must implement this function.
        /// @return ResourceConfig
        function _resourceConfig() internal virtual returns (ResourceConfig memory);
        /// @notice Sets initial resource parameter values.
        ///         This function must either be called by the initializer function of an upgradeable
        ///         child contract.
        // solhint-disable-next-line func-name-mixedcase
        function __ResourceMetering_init() internal onlyInitializing {
            if (params.prevBlockNum == 0) {
                params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/Address.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`.
            // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
            // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
            // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
            // good first aproximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1;
            uint256 x = a;
            if (x >> 128 > 0) {
                x >>= 128;
                result <<= 64;
            }
            if (x >> 64 > 0) {
                x >>= 64;
                result <<= 32;
            }
            if (x >> 32 > 0) {
                x >>= 32;
                result <<= 16;
            }
            if (x >> 16 > 0) {
                x >>= 16;
                result <<= 8;
            }
            if (x >> 8 > 0) {
                x >>= 8;
                result <<= 4;
            }
            if (x >> 4 > 0) {
                x >>= 4;
                result <<= 2;
            }
            if (x >> 2 > 0) {
                result <<= 1;
            }
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            uint256 result = sqrt(a);
            if (rounding == Rounding.Up && result * result < a) {
                result += 1;
            }
            return result;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    /// @title Burn
    /// @notice Utilities for burning stuff.
    library Burn {
        /// @notice Burns a given amount of ETH.
        /// @param _amount Amount of ETH to burn.
        function eth(uint256 _amount) internal {
            new Burner{ value: _amount }();
        }
        /// @notice Burns a given amount of gas.
        /// @param _amount Amount of gas to burn.
        function gas(uint256 _amount) internal view {
            uint256 i = 0;
            uint256 initialGas = gasleft();
            while (initialGas - gasleft() < _amount) {
                ++i;
            }
        }
    }
    /// @title Burner
    /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
    ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
    ///         from the circulating supply.
    contract Burner {
        constructor() payable {
            selfdestruct(payable(address(this)));
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
    /// @title Arithmetic
    /// @notice Even more math than before.
    library Arithmetic {
        /// @notice Clamps a value between a minimum and maximum.
        /// @param _value The value to clamp.
        /// @param _min   The minimum value.
        /// @param _max   The maximum value.
        /// @return The clamped value.
        function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
            return SignedMath.min(SignedMath.max(_value, _min), _max);
        }
        /// @notice (c)oefficient (d)enominator (exp)onentiation function.
        ///         Returns the result of: c * (1 - 1/d)^exp.
        /// @param _coefficient Coefficient of the function.
        /// @param _denominator Fractional denominator.
        /// @param _exponent    Power function exponent.
        /// @return Result of c * (1 - 1/d)^exp.
        function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
            return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Arithmetic library with operations for fixed-point numbers.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
    library FixedPointMathLib {
        /*//////////////////////////////////////////////////////////////
                        SIMPLIFIED FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
        function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
        }
        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
        }
        function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
        }
        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
        }
        function powWad(int256 x, int256 y) internal pure returns (int256) {
            // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
            return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
        }
        function expWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                // When the result is < 0.5 we return zero. This happens when
                // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                if (x <= -42139678854452767551) return 0;
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                // for more intermediate precision and a binary basis. This base conversion
                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                x = (x << 78) / 5**18;
                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                x = x - k * 54916777467707473351141471128;
                // k is in the range [-61, 195].
                // Evaluate using a (6, 7)-term rational approximation.
                // p is made monic, we'll multiply by a scale factor later.
                int256 y = x + 1346386616545796478920950773328;
                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                int256 p = y + x - 94201549194550492254356042504812;
                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                p = p * x + (4385272521454847904659076985693276 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                int256 q = x - 2855989394907223263936484059900;
                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                    // No scaling is necessary because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r should be in the range (0.09, 0.25) * 2**96.
                // We now need to multiply r by:
                // * the scale factor s = ~6.031367120.
                // * the 2**k factor from the range reduction.
                // * the 1e18 / 2**96 factor for base conversion.
                // We do this all at once, with an intermediate result in 2**213
                // basis, so the final right shift is always by a positive amount.
                r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
            }
        }
        function lnWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                require(x > 0, "UNDEFINED");
                // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                // We do this by multiplying by 2**96 / 10**18. But since
                // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                // and add ln(2**96 / 10**18) at the end.
                // Reduce range of x to (1, 2) * 2**96
                // ln(2^k * x) = k * ln(2) + ln(x)
                int256 k = int256(log2(uint256(x))) - 96;
                x <<= uint256(159 - k);
                x = int256(uint256(x) >> 159);
                // Evaluate using a (8, 8)-term rational approximation.
                // p is made monic, we will multiply by a scale factor later.
                int256 p = x + 3273285459638523848632254066296;
                p = ((p * x) >> 96) + 24828157081833163892658089445524;
                p = ((p * x) >> 96) + 43456485725739037958740375743393;
                p = ((p * x) >> 96) - 11111509109440967052023855526967;
                p = ((p * x) >> 96) - 45023709667254063763336534515857;
                p = ((p * x) >> 96) - 14706773417378608786704636184526;
                p = p * x - (795164235651350426258249787498 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                // q is monic by convention.
                int256 q = x + 5573035233440673466300451813936;
                q = ((q * x) >> 96) + 71694874799317883764090561454958;
                q = ((q * x) >> 96) + 283447036172924575727196451306956;
                q = ((q * x) >> 96) + 401686690394027663651624208769553;
                q = ((q * x) >> 96) + 204048457590392012362485061816622;
                q = ((q * x) >> 96) + 31853899698501571402653359427138;
                q = ((q * x) >> 96) + 909429971244387300277376558375;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r is in the range (0, 0.125) * 2**96
                // Finalization, we need to:
                // * multiply by the scale factor s = 5.549…
                // * add ln(2**96 / 10**18)
                // * add k * ln(2)
                // * multiply by 10**18 / 2**96 = 5**18 >> 78
                // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                r *= 1677202110996718588342820967067443963516166;
                // add ln(2) * k * 5e18 * 2**192
                r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                // add ln(2**96 / 10**18) * 5e18 * 2**192
                r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                // base conversion: mul 2**18 / 2**192
                r >>= 174;
            }
        }
        /*//////////////////////////////////////////////////////////////
                        LOW LEVEL FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function mulDivDown(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // Divide z by the denominator.
                z := div(z, denominator)
            }
        }
        function mulDivUp(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // First, divide z - 1 by the denominator and add 1.
                // We allow z - 1 to underflow if z is 0, because we multiply the
                // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
            }
        }
        function rpow(
            uint256 x,
            uint256 n,
            uint256 scalar
        ) internal pure returns (uint256 z) {
            assembly {
                switch x
                case 0 {
                    switch n
                    case 0 {
                        // 0 ** 0 = 1
                        z := scalar
                    }
                    default {
                        // 0 ** n = 0
                        z := 0
                    }
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        // If n is even, store scalar in z for now.
                        z := scalar
                    }
                    default {
                        // If n is odd, store x in z for now.
                        z := x
                    }
                    // Shifting right by 1 is like dividing by 2.
                    let half := shr(1, scalar)
                    for {
                        // Shift n right by 1 before looping to halve it.
                        n := shr(1, n)
                    } n {
                        // Shift n right by 1 each iteration to halve it.
                        n := shr(1, n)
                    } {
                        // Revert immediately if x ** 2 would overflow.
                        // Equivalent to iszero(eq(div(xx, x), x)) here.
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        // Store x squared.
                        let xx := mul(x, x)
                        // Round to the nearest number.
                        let xxRound := add(xx, half)
                        // Revert if xx + half overflowed.
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        // Set x to scaled xxRound.
                        x := div(xxRound, scalar)
                        // If n is even:
                        if mod(n, 2) {
                            // Compute z * x.
                            let zx := mul(z, x)
                            // If z * x overflowed:
                            if iszero(eq(div(zx, x), z)) {
                                // Revert if x is non-zero.
                                if iszero(iszero(x)) {
                                    revert(0, 0)
                                }
                            }
                            // Round to the nearest number.
                            let zxRound := add(zx, half)
                            // Revert if zx + half overflowed.
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            // Return properly scaled zxRound.
                            z := div(zxRound, scalar)
                        }
                    }
                }
            }
        }
        /*//////////////////////////////////////////////////////////////
                            GENERAL NUMBER UTILITIES
        //////////////////////////////////////////////////////////////*/
        function sqrt(uint256 x) internal pure returns (uint256 z) {
            assembly {
                let y := x // We start y at x, which will help us make our initial estimate.
                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                // We check y >= 2^(k + 8) but shift right by k bits
                // each branch to ensure that if x >= 256, then y >= 256.
                if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                    y := shr(128, y)
                    z := shl(64, z)
                }
                if iszero(lt(y, 0x1000000000000000000)) {
                    y := shr(64, y)
                    z := shl(32, z)
                }
                if iszero(lt(y, 0x10000000000)) {
                    y := shr(32, y)
                    z := shl(16, z)
                }
                if iszero(lt(y, 0x1000000)) {
                    y := shr(16, y)
                    z := shl(8, z)
                }
                // Goal was to get z*z*y within a small factor of x. More iterations could
                // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                // That's not possible if x < 256 but we can just verify those cases exhaustively.
                // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                // There is no overflow risk here since y < 2^136 after the first branch above.
                z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                // If x+1 is a perfect square, the Babylonian method cycles between
                // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                z := sub(z, lt(div(x, z), z))
            }
        }
        function log2(uint256 x) internal pure returns (uint256 r) {
            require(x > 0, "UNDEFINED");
            assembly {
                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                r := or(r, shl(3, lt(0xff, shr(r, x))))
                r := or(r, shl(2, lt(0xf, shr(r, x))))
                r := or(r, shl(1, lt(0x3, shr(r, x))))
                r := or(r, lt(0x1, shr(r, x)))
            }
        }
    }
    

    File 2 of 3: ProxyAdmin
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
    import { Proxy } from "src/universal/Proxy.sol";
    import { AddressManager } from "src/legacy/AddressManager.sol";
    import { L1ChugSplashProxy } from "src/legacy/L1ChugSplashProxy.sol";
    import { Constants } from "src/libraries/Constants.sol";
    /// @title IStaticERC1967Proxy
    /// @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
    interface IStaticERC1967Proxy {
        function implementation() external view returns (address);
        function admin() external view returns (address);
    }
    /// @title IStaticL1ChugSplashProxy
    /// @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
    interface IStaticL1ChugSplashProxy {
        function getImplementation() external view returns (address);
        function getOwner() external view returns (address);
    }
    /// @title ProxyAdmin
    /// @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
    ///         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
    ///         with the various types of proxies that have been deployed by Optimism in the past.
    contract ProxyAdmin is Ownable {
        /// @notice The proxy types that the ProxyAdmin can manage.
        /// @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
        /// @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
        /// @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
        enum ProxyType {
            ERC1967,
            CHUGSPLASH,
            RESOLVED
        }
        /// @notice A mapping of proxy types, used for backwards compatibility.
        mapping(address => ProxyType) public proxyType;
        /// @notice A reverse mapping of addresses to names held in the AddressManager. This must be
        ///         manually kept up to date with changes in the AddressManager for this contract
        ///         to be able to work as an admin for the ResolvedDelegateProxy type.
        mapping(address => string) public implementationName;
        /// @notice The address of the address manager, this is required to manage the
        ///         ResolvedDelegateProxy type.
        AddressManager public addressManager;
        /// @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
        bool internal upgrading;
        /// @param _owner Address of the initial owner of this contract.
        constructor(address _owner) Ownable() {
            _transferOwnership(_owner);
        }
        /// @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
        ///         proxy types.
        /// @param _address Address of the proxy.
        /// @param _type    Type of the proxy.
        function setProxyType(address _address, ProxyType _type) external onlyOwner {
            proxyType[_address] = _type;
        }
        /// @notice Sets the implementation name for a given address. Only required for
        ///         ResolvedDelegateProxy type proxies that have an implementation name.
        /// @param _address Address of the ResolvedDelegateProxy.
        /// @param _name    Name of the implementation for the proxy.
        function setImplementationName(address _address, string memory _name) external onlyOwner {
            implementationName[_address] = _name;
        }
        /// @notice Set the address of the AddressManager. This is required to manage legacy
        ///         ResolvedDelegateProxy type proxy contracts.
        /// @param _address Address of the AddressManager.
        function setAddressManager(AddressManager _address) external onlyOwner {
            addressManager = _address;
        }
        /// @custom:legacy
        /// @notice Set an address in the address manager. Since only the owner of the AddressManager
        ///         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
        ///         gives the owner of the ProxyAdmin the ability to modify addresses directly.
        /// @param _name    Name to set within the AddressManager.
        /// @param _address Address to attach to the given name.
        function setAddress(string memory _name, address _address) external onlyOwner {
            addressManager.setAddress(_name, _address);
        }
        /// @custom:legacy
        /// @notice Set the upgrading status for the Chugsplash proxy type.
        /// @param _upgrading Whether or not the system is upgrading.
        function setUpgrading(bool _upgrading) external onlyOwner {
            upgrading = _upgrading;
        }
        /// @custom:legacy
        /// @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
        /// @return Whether or not there is an upgrade going on. May not actually tell you whether an
        ///         upgrade is going on, since we don't currently plan to use this variable for anything
        ///         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
        function isUpgrading() external view returns (bool) {
            return upgrading;
        }
        /// @notice Returns the implementation of the given proxy address.
        /// @param _proxy Address of the proxy to get the implementation of.
        /// @return Address of the implementation of the proxy.
        function getProxyImplementation(address _proxy) external view returns (address) {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                return IStaticERC1967Proxy(_proxy).implementation();
            } else if (ptype == ProxyType.CHUGSPLASH) {
                return IStaticL1ChugSplashProxy(_proxy).getImplementation();
            } else if (ptype == ProxyType.RESOLVED) {
                return addressManager.getAddress(implementationName[_proxy]);
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /// @notice Returns the admin of the given proxy address.
        /// @param _proxy Address of the proxy to get the admin of.
        /// @return Address of the admin of the proxy.
        function getProxyAdmin(address payable _proxy) external view returns (address) {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                return IStaticERC1967Proxy(_proxy).admin();
            } else if (ptype == ProxyType.CHUGSPLASH) {
                return IStaticL1ChugSplashProxy(_proxy).getOwner();
            } else if (ptype == ProxyType.RESOLVED) {
                return addressManager.owner();
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /// @notice Updates the admin of the given proxy address.
        /// @param _proxy    Address of the proxy to update.
        /// @param _newAdmin Address of the new proxy admin.
        function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).changeAdmin(_newAdmin);
            } else if (ptype == ProxyType.CHUGSPLASH) {
                L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
            } else if (ptype == ProxyType.RESOLVED) {
                addressManager.transferOwnership(_newAdmin);
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /// @notice Changes a proxy's implementation contract.
        /// @param _proxy          Address of the proxy to upgrade.
        /// @param _implementation Address of the new implementation address.
        function upgrade(address payable _proxy, address _implementation) public onlyOwner {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).upgradeTo(_implementation);
            } else if (ptype == ProxyType.CHUGSPLASH) {
                L1ChugSplashProxy(_proxy).setStorage(
                    Constants.PROXY_IMPLEMENTATION_ADDRESS, bytes32(uint256(uint160(_implementation)))
                );
            } else if (ptype == ProxyType.RESOLVED) {
                string memory name = implementationName[_proxy];
                addressManager.setAddress(name, _implementation);
            } else {
                // It should not be possible to retrieve a ProxyType value which is not matched by
                // one of the previous conditions.
                assert(false);
            }
        }
        /// @notice Changes a proxy's implementation contract and delegatecalls the new implementation
        ///         with some given data. Useful for atomic upgrade-and-initialize calls.
        /// @param _proxy          Address of the proxy to upgrade.
        /// @param _implementation Address of the new implementation address.
        /// @param _data           Data to trigger the new implementation with.
        function upgradeAndCall(
            address payable _proxy,
            address _implementation,
            bytes memory _data
        )
            external
            payable
            onlyOwner
        {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
            } else {
                // reverts if proxy type is unknown
                upgrade(_proxy, _implementation);
                (bool success,) = _proxy.call{ value: msg.value }(_data);
                require(success, "ProxyAdmin: call to proxy after upgrade failed");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Constants } from "src/libraries/Constants.sol";
    /// @title Proxy
    /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
    ///         if the caller is address(0), meaning that the call originated from an off-chain
    ///         simulation.
    contract Proxy {
        /// @notice An event that is emitted each time the implementation is changed. This event is part
        ///         of the EIP-1967 specification.
        /// @param implementation The address of the implementation contract
        event Upgraded(address indexed implementation);
        /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
        ///         EIP-1967 specification.
        /// @param previousAdmin The previous owner of the contract
        /// @param newAdmin      The new owner of the contract
        event AdminChanged(address previousAdmin, address newAdmin);
        /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
        ///         eth_call to interact with this proxy without needing to use low-level storage
        ///         inspection. We assume that nobody is able to trigger calls from address(0) during
        ///         normal EVM execution.
        modifier proxyCallIfNotAdmin() {
            if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
        ///         EIP-1967 admin storage slot so that accidental storage collision with the
        ///         implementation is not possible.
        /// @param _admin Address of the initial contract admin. Admin as the ability to access the
        ///               transparent proxy interface.
        constructor(address _admin) {
            _changeAdmin(_admin);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /// @notice Set the implementation contract address. The code at the given address will execute
        ///         when this contract is called.
        /// @param _implementation Address of the implementation contract.
        function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
            _setImplementation(_implementation);
        }
        /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
        ///         atomic execution of initialization-based upgrades.
        /// @param _implementation Address of the implementation contract.
        /// @param _data           Calldata to delegatecall the new implementation with.
        function upgradeToAndCall(
            address _implementation,
            bytes calldata _data
        )
            public
            payable
            virtual
            proxyCallIfNotAdmin
            returns (bytes memory)
        {
            _setImplementation(_implementation);
            (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
            require(success, "Proxy: delegatecall to new implementation contract failed");
            return returndata;
        }
        /// @notice Changes the owner of the proxy contract. Only callable by the owner.
        /// @param _admin New owner of the proxy contract.
        function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
            _changeAdmin(_admin);
        }
        /// @notice Gets the owner of the proxy contract.
        /// @return Owner address.
        function admin() public virtual proxyCallIfNotAdmin returns (address) {
            return _getAdmin();
        }
        //// @notice Queries the implementation address.
        /// @return Implementation address.
        function implementation() public virtual proxyCallIfNotAdmin returns (address) {
            return _getImplementation();
        }
        /// @notice Sets the implementation address.
        /// @param _implementation New implementation address.
        function _setImplementation(address _implementation) internal {
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                sstore(proxyImplementation, _implementation)
            }
            emit Upgraded(_implementation);
        }
        /// @notice Changes the owner of the proxy contract.
        /// @param _admin New owner of the proxy contract.
        function _changeAdmin(address _admin) internal {
            address previous = _getAdmin();
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                sstore(proxyOwner, _admin)
            }
            emit AdminChanged(previous, _admin);
        }
        /// @notice Performs the proxy call via a delegatecall.
        function _doProxyCall() internal {
            address impl = _getImplementation();
            require(impl != address(0), "Proxy: implementation not initialized");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) { revert(0x0, returndatasize()) }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /// @notice Queries the implementation address.
        /// @return Implementation address.
        function _getImplementation() internal view returns (address) {
            address impl;
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                impl := sload(proxyImplementation)
            }
            return impl;
        }
        /// @notice Queries the owner of the proxy contract.
        /// @return Owner address.
        function _getAdmin() internal view returns (address) {
            address owner;
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                owner := sload(proxyOwner)
            }
            return owner;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
    /// @custom:legacy
    /// @title AddressManager
    /// @notice AddressManager is a legacy contract that was used in the old version of the Optimism
    ///         system to manage a registry of string names to addresses. We now use a more standard
    ///         proxy system instead, but this contract is still necessary for backwards compatibility
    ///         with several older contracts.
    contract AddressManager is Ownable {
        /// @notice Mapping of the hashes of string names to addresses.
        mapping(bytes32 => address) private addresses;
        /// @notice Emitted when an address is modified in the registry.
        /// @param name       String name being set in the registry.
        /// @param newAddress Address set for the given name.
        /// @param oldAddress Address that was previously set for the given name.
        event AddressSet(string indexed name, address newAddress, address oldAddress);
        /// @notice Changes the address associated with a particular name.
        /// @param _name    String name to associate an address with.
        /// @param _address Address to associate with the name.
        function setAddress(string memory _name, address _address) external onlyOwner {
            bytes32 nameHash = _getNameHash(_name);
            address oldAddress = addresses[nameHash];
            addresses[nameHash] = _address;
            emit AddressSet(_name, _address, oldAddress);
        }
        /// @notice Retrieves the address associated with a given name.
        /// @param _name Name to retrieve an address for.
        /// @return Address associated with the given name.
        function getAddress(string memory _name) external view returns (address) {
            return addresses[_getNameHash(_name)];
        }
        /// @notice Computes the hash of a name.
        /// @param _name Name to compute a hash for.
        /// @return Hash of the given name.
        function _getNameHash(string memory _name) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked(_name));
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Constants } from "src/libraries/Constants.sol";
    /// @title IL1ChugSplashDeployer
    interface IL1ChugSplashDeployer {
        function isUpgrading() external view returns (bool);
    }
    /// @custom:legacy
    /// @title L1ChugSplashProxy
    /// @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
    ///         functions `setCode` and `setStorage` for changing the code or storage of the contract.
    ///         Note for future developers: do NOT make anything in this contract 'public' unless you
    ///         know what you're doing. Anything public can potentially have a function signature that
    ///         conflicts with a signature attached to the implementation contract. Public functions
    ///         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
    ///         reason not to have that modifier. And there almost certainly is not a good reason to not
    ///         have that modifier. Beware!
    contract L1ChugSplashProxy {
        /// @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
        ///         contract, the appended bytecode will be deployed as given.
        bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
        /// @notice Blocks a function from being called when the parent signals that the system should
        ///         be paused via an isUpgrading function.
        modifier onlyWhenNotPaused() {
            address owner = _getOwner();
            // We do a low-level call because there's no guarantee that the owner actually *is* an
            // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
            // it turns out that it isn't the right type of contract.
            (bool success, bytes memory returndata) =
                owner.staticcall(abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector));
            // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
            // can just continue as normal. We also expect that the return value is exactly 32 bytes
            // long. If this isn't the case then we can safely ignore the result.
            if (success && returndata.length == 32) {
                // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                // case that the isUpgrading function returned something other than 0 or 1. But we only
                // really care about the case where this value is 0 (= false).
                uint256 ret = abi.decode(returndata, (uint256));
                require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
            }
            _;
        }
        /// @notice Makes a proxy call instead of triggering the given function when the caller is
        ///         either the owner or the zero address. Caller can only ever be the zero address if
        ///         this function is being called off-chain via eth_call, which is totally fine and can
        ///         be convenient for client-side tooling. Avoids situations where the proxy and
        ///         implementation share a sighash and the proxy function ends up being called instead
        ///         of the implementation one.
        ///         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
        ///         there's a way for someone to send a transaction with msg.sender == address(0) in any
        ///         real context then we have much bigger problems. Primary reason to include this
        ///         additional allowed sender is because the owner address can be changed dynamically
        ///         and we do not want clients to have to keep track of the current owner in order to
        ///         make an eth_call that doesn't trigger the proxied contract.
        // slither-disable-next-line incorrect-modifier
        modifier proxyCallIfNotOwner() {
            if (msg.sender == _getOwner() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /// @param _owner Address of the initial contract owner.
        constructor(address _owner) {
            _setOwner(_owner);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /// @notice Sets the code that should be running behind this proxy.
        ///         Note: This scheme is a bit different from the standard proxy scheme where one would
        ///         typically deploy the code separately and then set the implementation address. We're
        ///         doing it this way because it gives us a lot more freedom on the client side. Can
        ///         only be triggered by the contract owner.
        /// @param _code New contract code to run inside this contract.
        function setCode(bytes memory _code) external proxyCallIfNotOwner {
            // Get the code hash of the current implementation.
            address implementation = _getImplementation();
            // If the code hash matches the new implementation then we return early.
            if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                return;
            }
            // Create the deploycode by appending the magic prefix.
            bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
            // Deploy the code and set the new implementation address.
            address newImplementation;
            assembly {
                newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
            }
            // Check that the code was actually deployed correctly. I'm not sure if you can ever
            // actually fail this check. Should only happen if the contract creation from above runs
            // out of gas but this parent execution thread does NOT run out of gas. Seems like we
            // should be doing this check anyway though.
            require(
                _getAccountCodeHash(newImplementation) == keccak256(_code),
                "L1ChugSplashProxy: code was not correctly deployed"
            );
            _setImplementation(newImplementation);
        }
        /// @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
        ///         perform upgrades in a more transparent way. Only callable by the owner.
        /// @param _key   Storage key to modify.
        /// @param _value New value for the storage key.
        function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
            assembly {
                sstore(_key, _value)
            }
        }
        /// @notice Changes the owner of the proxy contract. Only callable by the owner.
        /// @param _owner New owner of the proxy contract.
        function setOwner(address _owner) external proxyCallIfNotOwner {
            _setOwner(_owner);
        }
        /// @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
        ///         making an eth_call and setting the "from" address to address(0).
        /// @return Owner address.
        function getOwner() external proxyCallIfNotOwner returns (address) {
            return _getOwner();
        }
        /// @notice Queries the implementation address. Can only be called by the owner OR by making an
        ///         eth_call and setting the "from" address to address(0).
        /// @return Implementation address.
        function getImplementation() external proxyCallIfNotOwner returns (address) {
            return _getImplementation();
        }
        /// @notice Sets the implementation address.
        /// @param _implementation New implementation address.
        function _setImplementation(address _implementation) internal {
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                sstore(proxyImplementation, _implementation)
            }
        }
        /// @notice Changes the owner of the proxy contract.
        /// @param _owner New owner of the proxy contract.
        function _setOwner(address _owner) internal {
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                sstore(proxyOwner, _owner)
            }
        }
        /// @notice Performs the proxy call via a delegatecall.
        function _doProxyCall() internal onlyWhenNotPaused {
            address implementation = _getImplementation();
            require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) { revert(0x0, returndatasize()) }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /// @notice Queries the implementation address.
        /// @return Implementation address.
        function _getImplementation() internal view returns (address) {
            address implementation;
            bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
            assembly {
                implementation := sload(proxyImplementation)
            }
            return implementation;
        }
        /// @notice Queries the owner of the proxy contract.
        /// @return Owner address.
        function _getOwner() internal view returns (address) {
            address owner;
            bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
            assembly {
                owner := sload(proxyOwner)
            }
            return owner;
        }
        /// @notice Gets the code hash for a given account.
        /// @param _account Address of the account to get a code hash for.
        /// @return Code hash for the account.
        function _getAccountCodeHash(address _account) internal view returns (bytes32) {
            bytes32 codeHash;
            assembly {
                codeHash := extcodehash(_account)
            }
            return codeHash;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { ResourceMetering } from "../L1/ResourceMetering.sol";
    /// @title Constants
    /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
    ///         the stuff used in multiple contracts. Constants that only apply to a single contract
    ///         should be defined in that contract instead.
    library Constants {
        /// @notice Special address to be used as the tx origin for gas estimation calls in the
        ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
        ///         the minimum gas limit specified by the user is not actually enough to execute the
        ///         given message and you're attempting to estimate the actual necessary gas limit. We
        ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
        ///         never have any code on any EVM chain.
        address internal constant ESTIMATION_ADDRESS = address(1);
        /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
        ///         CrossDomainMessenger contracts before an actual sender is set. This value is
        ///         non-zero to reduce the gas cost of message passing transactions.
        address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
        /// @notice The storage slot that holds the address of a proxy implementation.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
        bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /// @notice The storage slot that holds the address of the owner.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
        bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /// @notice Returns the default values for the ResourceConfig. These are the recommended values
        ///         for a production network.
        function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
            ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                maxResourceLimit: 20_000_000,
                elasticityMultiplier: 10,
                baseFeeMaxChangeDenominator: 8,
                minimumBaseFee: 1 gwei,
                systemTxMaxGas: 1_000_000,
                maximumBaseFee: type(uint128).max
            });
            return config;
        }
        /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
        ///         each time that the contracts are deployed.
        uint8 internal constant INITIALIZER = 1;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Burn } from "src/libraries/Burn.sol";
    import { Arithmetic } from "src/libraries/Arithmetic.sol";
    /// @custom:upgradeable
    /// @title ResourceMetering
    /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
    ///         updates automatically based on current demand.
    abstract contract ResourceMetering is Initializable {
        /// @notice Represents the various parameters that control the way in which resources are
        ///         metered. Corresponds to the EIP-1559 resource metering system.
        /// @custom:field prevBaseFee   Base fee from the previous block(s).
        /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
        /// @custom:field prevBlockNum  Last block number that the base fee was updated.
        struct ResourceParams {
            uint128 prevBaseFee;
            uint64 prevBoughtGas;
            uint64 prevBlockNum;
        }
        /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
        ///         market. These values should be set with care as it is possible to set them in
        ///         a way that breaks the deposit gas market. The target resource limit is defined as
        ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
        ///         single word. There is additional space for additions in the future.
        /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
        ///                                            can be purchased per block.
        /// @custom:field elasticityMultiplier         Determines the target resource limit along with
        ///                                            the resource limit.
        /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
        /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
        ///                                            value.
        /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
        ///                                            transaction. This should be set to the same
        ///                                            number that the op-node sets as the gas limit
        ///                                            for the system transaction.
        /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
        ///                                            value.
        struct ResourceConfig {
            uint32 maxResourceLimit;
            uint8 elasticityMultiplier;
            uint8 baseFeeMaxChangeDenominator;
            uint32 minimumBaseFee;
            uint32 systemTxMaxGas;
            uint128 maximumBaseFee;
        }
        /// @notice EIP-1559 style gas parameters.
        ResourceParams public params;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        uint256[48] private __gap;
        /// @notice Meters access to a function based an amount of a requested resource.
        /// @param _amount Amount of the resource requested.
        modifier metered(uint64 _amount) {
            // Record initial gas amount so we can refund for it later.
            uint256 initialGas = gasleft();
            // Run the underlying function.
            _;
            // Run the metering function.
            _metered(_amount, initialGas);
        }
        /// @notice An internal function that holds all of the logic for metering a resource.
        /// @param _amount     Amount of the resource requested.
        /// @param _initialGas The amount of gas before any modifier execution.
        function _metered(uint64 _amount, uint256 _initialGas) internal {
            // Update block number and base fee if necessary.
            uint256 blockDiff = block.number - params.prevBlockNum;
            ResourceConfig memory config = _resourceConfig();
            int256 targetResourceLimit =
                int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
            if (blockDiff > 0) {
                // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                // at which deposits can be created and therefore limit the potential for deposits to
                // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                    / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                // Update base fee by adding the base fee delta and clamp the resulting value between
                // min and max.
                int256 newBaseFee = Arithmetic.clamp({
                    _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
                // If we skipped more than one block, we also need to account for every empty block.
                // Empty block means there was no demand for deposits in that block, so we should
                // reflect this lack of demand in the fee.
                if (blockDiff > 1) {
                    // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                    // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                    // between min and max.
                    newBaseFee = Arithmetic.clamp({
                        _value: Arithmetic.cdexp({
                            _coefficient: newBaseFee,
                            _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                            _exponent: int256(blockDiff - 1)
                        }),
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                }
                // Update new base fee, reset bought gas, and update block number.
                params.prevBaseFee = uint128(uint256(newBaseFee));
                params.prevBoughtGas = 0;
                params.prevBlockNum = uint64(block.number);
            }
            // Make sure we can actually buy the resource amount requested by the user.
            params.prevBoughtGas += _amount;
            require(
                int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                "ResourceMetering: cannot buy more gas than available gas limit"
            );
            // Determine the amount of ETH to be paid.
            uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
            // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
            // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
            // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
            // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
            // during any 1 day period in the last 5 years, so should be fine.
            uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
            // Give the user a refund based on the amount of gas they used to do all of the work up to
            // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
            // effectively like a dynamic stipend (with a minimum value).
            uint256 usedGas = _initialGas - gasleft();
            if (gasCost > usedGas) {
                Burn.gas(gasCost - usedGas);
            }
        }
        /// @notice Virtual function that returns the resource config.
        ///         Contracts that inherit this contract must implement this function.
        /// @return ResourceConfig
        function _resourceConfig() internal virtual returns (ResourceConfig memory);
        /// @notice Sets initial resource parameter values.
        ///         This function must either be called by the initializer function of an upgradeable
        ///         child contract.
        // solhint-disable-next-line func-name-mixedcase
        function __ResourceMetering_init() internal onlyInitializing {
            if (params.prevBlockNum == 0) {
                params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/Address.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`.
            // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
            // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
            // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
            // good first aproximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1;
            uint256 x = a;
            if (x >> 128 > 0) {
                x >>= 128;
                result <<= 64;
            }
            if (x >> 64 > 0) {
                x >>= 64;
                result <<= 32;
            }
            if (x >> 32 > 0) {
                x >>= 32;
                result <<= 16;
            }
            if (x >> 16 > 0) {
                x >>= 16;
                result <<= 8;
            }
            if (x >> 8 > 0) {
                x >>= 8;
                result <<= 4;
            }
            if (x >> 4 > 0) {
                x >>= 4;
                result <<= 2;
            }
            if (x >> 2 > 0) {
                result <<= 1;
            }
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            uint256 result = sqrt(a);
            if (rounding == Rounding.Up && result * result < a) {
                result += 1;
            }
            return result;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    /// @title Burn
    /// @notice Utilities for burning stuff.
    library Burn {
        /// @notice Burns a given amount of ETH.
        /// @param _amount Amount of ETH to burn.
        function eth(uint256 _amount) internal {
            new Burner{ value: _amount }();
        }
        /// @notice Burns a given amount of gas.
        /// @param _amount Amount of gas to burn.
        function gas(uint256 _amount) internal view {
            uint256 i = 0;
            uint256 initialGas = gasleft();
            while (initialGas - gasleft() < _amount) {
                ++i;
            }
        }
    }
    /// @title Burner
    /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
    ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
    ///         from the circulating supply.
    contract Burner {
        constructor() payable {
            selfdestruct(payable(address(this)));
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
    /// @title Arithmetic
    /// @notice Even more math than before.
    library Arithmetic {
        /// @notice Clamps a value between a minimum and maximum.
        /// @param _value The value to clamp.
        /// @param _min   The minimum value.
        /// @param _max   The maximum value.
        /// @return The clamped value.
        function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
            return SignedMath.min(SignedMath.max(_value, _min), _max);
        }
        /// @notice (c)oefficient (d)enominator (exp)onentiation function.
        ///         Returns the result of: c * (1 - 1/d)^exp.
        /// @param _coefficient Coefficient of the function.
        /// @param _denominator Fractional denominator.
        /// @param _exponent    Power function exponent.
        /// @return Result of c * (1 - 1/d)^exp.
        function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
            return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Arithmetic library with operations for fixed-point numbers.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
    library FixedPointMathLib {
        /*//////////////////////////////////////////////////////////////
                        SIMPLIFIED FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
        function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
        }
        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
        }
        function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
        }
        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
        }
        function powWad(int256 x, int256 y) internal pure returns (int256) {
            // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
            return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
        }
        function expWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                // When the result is < 0.5 we return zero. This happens when
                // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                if (x <= -42139678854452767551) return 0;
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                // for more intermediate precision and a binary basis. This base conversion
                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                x = (x << 78) / 5**18;
                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                x = x - k * 54916777467707473351141471128;
                // k is in the range [-61, 195].
                // Evaluate using a (6, 7)-term rational approximation.
                // p is made monic, we'll multiply by a scale factor later.
                int256 y = x + 1346386616545796478920950773328;
                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                int256 p = y + x - 94201549194550492254356042504812;
                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                p = p * x + (4385272521454847904659076985693276 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                int256 q = x - 2855989394907223263936484059900;
                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                    // No scaling is necessary because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r should be in the range (0.09, 0.25) * 2**96.
                // We now need to multiply r by:
                // * the scale factor s = ~6.031367120.
                // * the 2**k factor from the range reduction.
                // * the 1e18 / 2**96 factor for base conversion.
                // We do this all at once, with an intermediate result in 2**213
                // basis, so the final right shift is always by a positive amount.
                r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
            }
        }
        function lnWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                require(x > 0, "UNDEFINED");
                // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                // We do this by multiplying by 2**96 / 10**18. But since
                // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                // and add ln(2**96 / 10**18) at the end.
                // Reduce range of x to (1, 2) * 2**96
                // ln(2^k * x) = k * ln(2) + ln(x)
                int256 k = int256(log2(uint256(x))) - 96;
                x <<= uint256(159 - k);
                x = int256(uint256(x) >> 159);
                // Evaluate using a (8, 8)-term rational approximation.
                // p is made monic, we will multiply by a scale factor later.
                int256 p = x + 3273285459638523848632254066296;
                p = ((p * x) >> 96) + 24828157081833163892658089445524;
                p = ((p * x) >> 96) + 43456485725739037958740375743393;
                p = ((p * x) >> 96) - 11111509109440967052023855526967;
                p = ((p * x) >> 96) - 45023709667254063763336534515857;
                p = ((p * x) >> 96) - 14706773417378608786704636184526;
                p = p * x - (795164235651350426258249787498 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                // q is monic by convention.
                int256 q = x + 5573035233440673466300451813936;
                q = ((q * x) >> 96) + 71694874799317883764090561454958;
                q = ((q * x) >> 96) + 283447036172924575727196451306956;
                q = ((q * x) >> 96) + 401686690394027663651624208769553;
                q = ((q * x) >> 96) + 204048457590392012362485061816622;
                q = ((q * x) >> 96) + 31853899698501571402653359427138;
                q = ((q * x) >> 96) + 909429971244387300277376558375;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r is in the range (0, 0.125) * 2**96
                // Finalization, we need to:
                // * multiply by the scale factor s = 5.549…
                // * add ln(2**96 / 10**18)
                // * add k * ln(2)
                // * multiply by 10**18 / 2**96 = 5**18 >> 78
                // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                r *= 1677202110996718588342820967067443963516166;
                // add ln(2) * k * 5e18 * 2**192
                r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                // add ln(2**96 / 10**18) * 5e18 * 2**192
                r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                // base conversion: mul 2**18 / 2**192
                r >>= 174;
            }
        }
        /*//////////////////////////////////////////////////////////////
                        LOW LEVEL FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function mulDivDown(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // Divide z by the denominator.
                z := div(z, denominator)
            }
        }
        function mulDivUp(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // First, divide z - 1 by the denominator and add 1.
                // We allow z - 1 to underflow if z is 0, because we multiply the
                // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
            }
        }
        function rpow(
            uint256 x,
            uint256 n,
            uint256 scalar
        ) internal pure returns (uint256 z) {
            assembly {
                switch x
                case 0 {
                    switch n
                    case 0 {
                        // 0 ** 0 = 1
                        z := scalar
                    }
                    default {
                        // 0 ** n = 0
                        z := 0
                    }
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        // If n is even, store scalar in z for now.
                        z := scalar
                    }
                    default {
                        // If n is odd, store x in z for now.
                        z := x
                    }
                    // Shifting right by 1 is like dividing by 2.
                    let half := shr(1, scalar)
                    for {
                        // Shift n right by 1 before looping to halve it.
                        n := shr(1, n)
                    } n {
                        // Shift n right by 1 each iteration to halve it.
                        n := shr(1, n)
                    } {
                        // Revert immediately if x ** 2 would overflow.
                        // Equivalent to iszero(eq(div(xx, x), x)) here.
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        // Store x squared.
                        let xx := mul(x, x)
                        // Round to the nearest number.
                        let xxRound := add(xx, half)
                        // Revert if xx + half overflowed.
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        // Set x to scaled xxRound.
                        x := div(xxRound, scalar)
                        // If n is even:
                        if mod(n, 2) {
                            // Compute z * x.
                            let zx := mul(z, x)
                            // If z * x overflowed:
                            if iszero(eq(div(zx, x), z)) {
                                // Revert if x is non-zero.
                                if iszero(iszero(x)) {
                                    revert(0, 0)
                                }
                            }
                            // Round to the nearest number.
                            let zxRound := add(zx, half)
                            // Revert if zx + half overflowed.
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            // Return properly scaled zxRound.
                            z := div(zxRound, scalar)
                        }
                    }
                }
            }
        }
        /*//////////////////////////////////////////////////////////////
                            GENERAL NUMBER UTILITIES
        //////////////////////////////////////////////////////////////*/
        function sqrt(uint256 x) internal pure returns (uint256 z) {
            assembly {
                let y := x // We start y at x, which will help us make our initial estimate.
                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                // We check y >= 2^(k + 8) but shift right by k bits
                // each branch to ensure that if x >= 256, then y >= 256.
                if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                    y := shr(128, y)
                    z := shl(64, z)
                }
                if iszero(lt(y, 0x1000000000000000000)) {
                    y := shr(64, y)
                    z := shl(32, z)
                }
                if iszero(lt(y, 0x10000000000)) {
                    y := shr(32, y)
                    z := shl(16, z)
                }
                if iszero(lt(y, 0x1000000)) {
                    y := shr(16, y)
                    z := shl(8, z)
                }
                // Goal was to get z*z*y within a small factor of x. More iterations could
                // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                // That's not possible if x < 256 but we can just verify those cases exhaustively.
                // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                // There is no overflow risk here since y < 2^136 after the first branch above.
                z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                // If x+1 is a perfect square, the Babylonian method cycles between
                // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                z := sub(z, lt(div(x, z), z))
            }
        }
        function log2(uint256 x) internal pure returns (uint256 r) {
            require(x > 0, "UNDEFINED");
            assembly {
                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                r := or(r, shl(3, lt(0xff, shr(r, x))))
                r := or(r, shl(2, lt(0xf, shr(r, x))))
                r := or(r, shl(1, lt(0x3, shr(r, x))))
                r := or(r, lt(0x1, shr(r, x)))
            }
        }
    }
    

    File 3 of 3: L1BlastBridge
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Address } from "@openzeppelin/contracts/utils/Address.sol";
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { StandardBridge } from "src/universal/StandardBridge.sol";
    import { L2BlastBridge } from "src/mainnet-bridge/L2BlastBridge.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
    import { OptimismPortal } from "src/L1/OptimismPortal.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    import { USDYieldManager } from "src/mainnet-bridge/USDYieldManager.sol";
    import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
    import { USDB } from "src/L2/USDB.sol";
    import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
    /// @custom:proxied
    /// @title L1BlastBridge
    /// @notice The L1BlastBridge is responsible for transferring ETH and yield-bearing ERC20 tokens between L1 and L2.
    ///
    ///         The current implementation converts all deposited USD tokens to DAI before bridging them to L2 to mint USDB.
    ///         Hence, the amount of USDB that is minted on L2 will be equal to the amount of DAI that is received on L1.
    ///         This is done to simplify the yield management, as DSR is the only yield provider that is currently supported.
    ///         When non-DAI USD tokens are deposited, the user is expected to provide the minimum amount of DAI that should
    ///         be received (i.e. the minimum amount of USDB that should be minted on L2). This amount must be specified
    ///         in the extraData field of the deposit transaction (uint256 minAmountInWad).
    contract L1BlastBridge is StandardBridge, ISemver {
        using SafeERC20 for IERC20;
        struct YieldToken {
            bool approved;
            uint8 decimals;
            address provider;
            bool reportStakedBalance;
        }
        /// @notice Numerator for dynamic overhead added to the base gas for a message.
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
        /// @notice Denominator for dynamic overhead added to the base gas for a message.
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
        /// @notice Mapping of potential deposit tokens to whether they're
        ///         approved as USD yield tokens and additional metadata.
        mapping(address => YieldToken) public usdYieldTokens;
        /// @notice Mapping of potential deposit tokens to whether they're
        ///         approved as ETH yield tokens and additional metadata.
        mapping(address => YieldToken) public ethYieldTokens;
        /// @notice Address of the USD Yield Manager.
        USDYieldManager public usdYieldManager;
        /// @notice Address of the ETH Yield Manager.
        ETHYieldManager public ethYieldManager;
        /// @notice Address of the OptimismPortal.
        OptimismPortal public portal;
        /// @notice Semantic version.
        /// @custom:semver 1.0.0
        string public constant version = "1.0.0";
        /// @custom:semver 1.0.0
        /// @notice Constructs the L1BlastBridge contract.
        constructor() StandardBridge(StandardBridge(payable(Predeploys.L2_BLAST_BRIDGE))) {
            initialize({
                _portal: OptimismPortal(payable(address(0))),
                _messenger: CrossDomainMessenger(address(0)),
                _usdYieldManager: USDYieldManager(payable(address(0))),
                _ethYieldManager: ETHYieldManager(payable(address(0)))
            });
        }
        /// @notice Initializer
        /// @param _portal          Address of the OptimismPortal.
        /// @param _messenger       Address of the L1CrossDomainMessenger.
        /// @param _usdYieldManager Address of the USDYieldManager.
        /// @param _ethYieldManager Address of the ETHYieldManager.
        function initialize(
            OptimismPortal _portal,
            CrossDomainMessenger _messenger,
            USDYieldManager _usdYieldManager,
            ETHYieldManager _ethYieldManager
        ) public initializer {
            portal = _portal;
            __StandardBridge_init(_messenger);
            usdYieldManager = _usdYieldManager;
            ethYieldManager = _ethYieldManager;
        }
        /// @notice Add/remove an approved USD yield token.
        /// @param token               Address of token.
        /// @param approved            Whether the token is an approved yield token.
        /// @param decimals            Number of token decimals.
        /// @param provider            Address of the yield provider for the token.
        /// @param reportStakedBalance Whether a deposit needs to be reported to the yield provider.
        function setUSDYieldToken(
            address token,
            bool approved,
            uint8 decimals,
            address provider,
            bool reportStakedBalance
        ) external {
            require(msg.sender == usdYieldManager.owner(), "L1BlastBridge: only USDYieldManager owner can call");
            usdYieldTokens[token] = YieldToken({
                approved: approved,
                decimals: decimals,
                provider: provider,
                reportStakedBalance: reportStakedBalance
            });
        }
        /// @notice Add/remove an approved ETH yield token.
        /// @param token               Address of token.
        /// @param approved            Whether the token is an approved yield token.
        /// @param decimals            Number of token decimals.
        /// @param provider            Address of the yield provider for the token.
        /// @param reportStakedBalance Whether a deposit needs to be reported to the yield provider.
        function setETHYieldToken(
            address token,
            bool approved,
            uint8 decimals,
            address provider,
            bool reportStakedBalance
        ) external {
            require(msg.sender == ethYieldManager.owner(), "L1BlastBridge: only ETHYieldManager owner can call");
            require(token != address(0));
            ethYieldTokens[token] = YieldToken({
                approved: approved,
                decimals: decimals,
                provider: provider,
                reportStakedBalance: reportStakedBalance
            });
        }
        /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
        receive() external payable override onlyEOA {
            _initiateBridgeETH(msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, hex"");
        }
        /// Blast: This function is modified from StandardBridge to enable
        /// discounted withdrawals on L1. The `msg.value` check is
        /// less strict and `msg.value` is used instead of `_amount`
        /// in the following steps.
        /// @inheritdoc StandardBridge
        function finalizeBridgeETH(
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        )
            public
            payable
            override
            onlyOtherBridge
        {
            // Blast: Accept discounted `msg.value`
            require(msg.value <= _amount, "L1BlastBridge: amount sent exceeds amount required");
            require(_to != address(this), "L1BlastBridge: cannot send to self");
            require(_to != address(messenger), "L1BlastBridge: cannot send to messenger");
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            // Blast: replace `_amount` with `msg.value`
            _emitETHBridgeFinalized(_from, _to, msg.value, _extraData);
            // Blast: replace `_amount` with `msg.value`
            bool success = SafeCall.call(_to, gasleft(), msg.value, hex"");
            require(success, "L2BlastBridge: ETH transfer failed");
        }
        /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
        ///         BlastBridge contract on the remote chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _from        Address of the sender.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of the ERC20 being bridged.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function finalizeBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        )
            public
            override
            onlyOtherBridge
        {
            require(_to != address(this), "StandardBridge: cannot send to self");
            require(_to != address(messenger), "StandardBridge: cannot send to messenger");
            require(_localToken == usdYieldManager.TOKEN(), "L1BlastBridge: unsupported local token");
            require(_remoteToken == Predeploys.USDB, "L1BlastBridge: only USDB can be withdrawn through this bridge");
            // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            usdYieldManager.requestWithdrawal(_to, _amount);
        }
        /// @notice Sends approved yield-bearing ERC20 tokens to a receiver's address on the other chain.
        ///         Only USDB or ETH are accepted as _remoteToken. ETH-based tokens are sent to the
        ///         Optimism Portal.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of local tokens to deposit.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction. For bridging yield-bearing USD tokens (except DAI),
        ///                     the extra data should contain the minimum amount of tokens in WAD to be minted.
        ///                     When the deposited USD tokens are converted to DAI, it ensures that the amount
        ///                     of DAI received (and hence the amount of USDB minted) is at least the minimum
        ///                     amount specified.
        function _initiateBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        )
            internal
            override
        {
            YieldToken memory usdYieldToken = usdYieldTokens[_localToken];
            YieldToken memory ethYieldToken = ethYieldTokens[_localToken];
            if (usdYieldToken.approved) {
                require(_remoteToken == Predeploys.USDB, "L1BlastBridge: this token can only be bridged to USDB");
                IERC20(_localToken).safeTransferFrom(_from, address(usdYieldManager), _amount);
                uint256 amountWad = USDConversions._convertDecimals(_amount, usdYieldToken.decimals, USDConversions.WAD_DECIMALS);
                uint256 amountToMintWad = usdYieldManager.convert(_localToken, amountWad, _extraData);
                // Update the yield provider with the staked deposit.
                if (usdYieldToken.reportStakedBalance) {
                    require(usdYieldToken.provider != address(0));
                    usdYieldManager.recordStakedDeposit(usdYieldToken.provider, amountToMintWad);
                }
                // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, amountToMintWad, _extraData);
                messenger.sendMessage(
                    Predeploys.L2_BLAST_BRIDGE,
                    abi.encodeWithSelector(
                        StandardBridge.finalizeBridgeERC20.selector,
                        Predeploys.USDB,
                        usdYieldManager.TOKEN(),
                        _from,
                        _to,
                        amountToMintWad,
                        _extraData
                    ),
                    _minGasLimit
                );
            } else if (ethYieldToken.approved) {
                require(_remoteToken == address(0), "L1BlastBridge: this token can only be bridged to ETH");
                IERC20(_localToken).safeTransferFrom(_from, address(ethYieldManager), _amount);
                // Update the yield provider with the staked deposit.
                if (ethYieldToken.reportStakedBalance) {
                    require(ethYieldToken.provider != address(0));
                    ethYieldManager.recordStakedDeposit(ethYieldToken.provider, _amount);
                }
                uint256 amountWad = USDConversions._convertDecimals(_amount, ethYieldToken.decimals, USDConversions.WAD_DECIMALS);
                // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, amountWad, _extraData);
                // Message has to be sent to the OptimismPortal directly because we have to
                // request the L2 message has value without sending ETH.
                portal.depositTransaction(
                    Predeploys.L2_BLAST_BRIDGE,
                    amountWad,
                    baseGas(_minGasLimit),
                    false,
                    abi.encodeWithSelector(
                        L2BlastBridge.finalizeBridgeETHDirect.selector,
                        _from,
                        _to,
                        amountWad,
                        _extraData
                    )
                );
            } else {
                revert("L1BlastBridge: bridge token is not supported");
            }
        }
        /// @notice Computes the amount of gas required to guarantee that a given deposit will be
        ///         received on the other chain without running out of gas.
        /// @param _minGasLimit Minimum desired gas limit when deposit goes to target.
        /// @return Amount of gas required to guarantee deposit receipt.
        function baseGas(uint32 _minGasLimit) public pure returns (uint64) {
            return
            // Constant overhead
            RECEIVE_DEFAULT_GAS_LIMIT
            // Dynamic overhead (EIP-150)
            + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
    pragma solidity ^0.8.0;
    import "../token/ERC20/IERC20.sol";
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/draft-IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @title Predeploys
    /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
    library Predeploys {
        /// @notice Address of the L2ToL1MessagePasser predeploy.
        address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
        /// @notice Address of the L2CrossDomainMessenger predeploy.
        address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
        /// @notice Address of the L2StandardBridge predeploy.
        address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
        /// @notice Address of the L2ERC721Bridge predeploy.
        address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
        //// @notice Address of the SequencerFeeWallet predeploy.
        address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
        /// @notice Address of the OptimismMintableERC20Factory predeploy.
        address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
        /// @notice Address of the OptimismMintableERC721Factory predeploy.
        address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
        /// @notice Address of the L1Block predeploy.
        address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
        /// @notice Address of the GasPriceOracle predeploy. Includes fee information
        ///         and helpers for computing the L1 portion of the transaction fee.
        address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
        /// @custom:legacy
        /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
        ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
        address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
        /// @custom:legacy
        /// @notice Address of the DeployerWhitelist predeploy. No longer active.
        address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
        /// @custom:legacy
        /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
        ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
        ///         can no longer be accessed.
        address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
        /// @custom:legacy
        /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
        ///         instead, which exposes more information about the L1 state.
        address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
        /// @custom:legacy
        /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
        ///         L2ToL1MessagePasser contract instead.
        address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
        /// @notice Address of the ProxyAdmin predeploy.
        address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
        /// @notice Address of the BaseFeeVault predeploy.
        address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
        /// @notice Address of the L1FeeVault predeploy.
        address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
        /// @notice Address of the GovernanceToken predeploy.
        address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
        /// @notice Address of the SchemaRegistry predeploy.
        address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
        /// @notice Address of the EAS predeploy.
        address internal constant EAS = 0x4200000000000000000000000000000000000021;
        /// @notice Address of the Shares predeploy.
        address internal constant SHARES = 0x4300000000000000000000000000000000000000;
        /// @notice Address of the Gas predeploy.
        address internal constant GAS = 0x4300000000000000000000000000000000000001;
        /// @notice Address of the Blast predeploy.
        address internal constant BLAST = 0x4300000000000000000000000000000000000002;
        /// @notice Address of the USDB predeploy.
        address internal constant USDB = 0x4300000000000000000000000000000000000003;
        /// @notice Address of the WETH predeploy.
        address internal constant WETH_REBASING = 0x4300000000000000000000000000000000000004;
        /// @notice Address of the L2BlastBridge predeploy.
        address internal constant L2_BLAST_BRIDGE = 0x4300000000000000000000000000000000000005;
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    /// @title SafeCall
    /// @notice Perform low level safe calls
    library SafeCall {
        /// @notice Performs a low level call without copying any returndata.
        /// @dev Passes no calldata to the call context.
        /// @param _target   Address to call
        /// @param _gas      Amount of gas to pass to the call
        /// @param _value    Amount of value to pass to the call
        function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
            bool _success;
            assembly {
                _success :=
                    call(
                        _gas, // gas
                        _target, // recipient
                        _value, // ether value
                        0, // inloc
                        0, // inlen
                        0, // outloc
                        0 // outlen
                    )
            }
            return _success;
        }
        /// @notice Perform a low level call without copying any returndata
        /// @param _target   Address to call
        /// @param _gas      Amount of gas to pass to the call
        /// @param _value    Amount of value to pass to the call
        /// @param _calldata Calldata to pass to the call
        function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
            bool _success;
            assembly {
                _success :=
                    call(
                        _gas, // gas
                        _target, // recipient
                        _value, // ether value
                        add(_calldata, 32), // inloc
                        mload(_calldata), // inlen
                        0, // outloc
                        0 // outlen
                    )
            }
            return _success;
        }
        /// @notice Helper function to determine if there is sufficient gas remaining within the context
        ///         to guarantee that the minimum gas requirement for a call will be met as well as
        ///         optionally reserving a specified amount of gas for after the call has concluded.
        /// @param _minGas      The minimum amount of gas that may be passed to the target context.
        /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
        ///                     of the target context.
        /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
        ///         context as well as reserve `_reservedGas` for the caller after the execution of
        ///         the target context.
        /// @dev !!!!! FOOTGUN ALERT !!!!!
        ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
        ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
        ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
        ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
        ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
        ///          factors of the dynamic cost of the `CALL` opcode.
        ///      2.) This function should *directly* precede the external call if possible. There is an
        ///          added buffer to account for gas consumed between this check and the call, but it
        ///          is only 5,700 gas.
        ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
        ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
        ///          truncated.
        ///      4.) Use wisely. This function is not a silver bullet.
        function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
            bool _hasMinGas;
            assembly {
                // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
            }
            return _hasMinGas;
        }
        /// @notice Perform a low level call without copying any returndata. This function
        ///         will revert if the call cannot be performed with the specified minimum
        ///         gas.
        /// @param _target   Address to call
        /// @param _minGas   The minimum amount of gas that may be passed to the call
        /// @param _value    Amount of value to pass to the call
        /// @param _calldata Calldata to pass to the call
        function callWithMinGas(
            address _target,
            uint256 _minGas,
            uint256 _value,
            bytes memory _calldata
        )
            internal
            returns (bool)
        {
            bool _success;
            bool _hasMinGas = hasMinGas(_minGas, 0);
            assembly {
                // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                if iszero(_hasMinGas) {
                    // Store the "Error(string)" selector in scratch space.
                    mstore(0, 0x08c379a0)
                    // Store the pointer to the string length in scratch space.
                    mstore(32, 32)
                    // Store the string.
                    //
                    // SAFETY:
                    // - We pad the beginning of the string with two zero bytes as well as the
                    // length (24) to ensure that we override the free memory pointer at offset
                    // 0x40. This is necessary because the free memory pointer is likely to
                    // be greater than 1 byte when this function is called, but it is incredibly
                    // unlikely that it will be greater than 3 bytes. As for the data within
                    // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                    // - It's fine to clobber the free memory pointer, we're reverting.
                    mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                    // Revert with 'Error("SafeCall: Not enough gas")'
                    revert(28, 100)
                }
                // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                // above assertion. This ensures that, in all circumstances (except for when the
                // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                // the minimum amount of gas specified.
                _success :=
                    call(
                        gas(), // gas
                        _target, // recipient
                        _value, // ether value
                        add(_calldata, 32), // inloc
                        mload(_calldata), // inlen
                        0x00, // outloc
                        0x00 // outlen
                    )
            }
            return _success;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
    import { Address } from "@openzeppelin/contracts/utils/Address.sol";
    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
    import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
    import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    /// @custom:upgradeable
    /// @title StandardBridge
    /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
    ///         the core bridging logic, including escrowing tokens that are native to the local chain
    ///         and minting/burning tokens that are native to the remote chain.
    abstract contract StandardBridge is Initializable {
        using SafeERC20 for IERC20;
        /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
        uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
        /// @notice Corresponding bridge on the other domain. This public getter is deprecated
        ///         and will be removed in the future. Please use `otherBridge` instead.
        ///         This can safely be an immutable because for the L1StandardBridge, it will
        ///         be set to the L2StandardBridge address, which is the same for all OP Stack
        ///         chains. For the L2StandardBridge, there are not multiple proxies using the
        ///         same implementation.
        /// @custom:legacy
        /// @custom:network-specific
        StandardBridge public immutable OTHER_BRIDGE;
        /// @custom:legacy
        /// @custom:spacer messenger
        /// @notice Spacer for backwards compatibility.
        address private spacer_0_2_20;
        /// @custom:legacy
        /// @custom:spacer l2TokenBridge
        /// @notice Spacer for backwards compatibility.
        address private spacer_1_0_20;
        /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
        mapping(address => mapping(address => uint256)) public deposits;
        /// @notice Messenger contract on this domain. This public getter is deprecated
        ///         and will be removed in the future. Please use `messenger` instead.
        /// @custom:network-specific
        CrossDomainMessenger public messenger;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        ///         A gap size of 46 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[46] private __gap;
        /// @notice Emitted when an ETH bridge is initiated to the other chain.
        /// @param from      Address of the sender.
        /// @param to        Address of the receiver.
        /// @param amount    Amount of ETH sent.
        /// @param extraData Extra data sent with the transaction.
        event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
        /// @notice Emitted when an ETH bridge is finalized on this chain.
        /// @param from      Address of the sender.
        /// @param to        Address of the receiver.
        /// @param amount    Amount of ETH sent.
        /// @param extraData Extra data sent with the transaction.
        event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
        /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
        /// @param localToken  Address of the ERC20 on this chain.
        /// @param remoteToken Address of the ERC20 on the remote chain.
        /// @param from        Address of the sender.
        /// @param to          Address of the receiver.
        /// @param amount      Amount of the ERC20 sent.
        /// @param extraData   Extra data sent with the transaction.
        event ERC20BridgeInitiated(
            address indexed localToken,
            address indexed remoteToken,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /// @notice Emitted when an ERC20 bridge is finalized on this chain.
        /// @param localToken  Address of the ERC20 on this chain.
        /// @param remoteToken Address of the ERC20 on the remote chain.
        /// @param from        Address of the sender.
        /// @param to          Address of the receiver.
        /// @param amount      Amount of the ERC20 sent.
        /// @param extraData   Extra data sent with the transaction.
        event ERC20BridgeFinalized(
            address indexed localToken,
            address indexed remoteToken,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
        ///         calling code within their constructors, but also doesn't really matter since we're
        ///         just trying to prevent users accidentally depositing with smart contract wallets.
        modifier onlyEOA() {
            require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
            _;
        }
        /// @notice Ensures that the caller is a cross-chain message from the other bridge.
        modifier onlyOtherBridge() {
            require(
                msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(OTHER_BRIDGE),
                "StandardBridge: function can only be called from the other bridge"
            );
            _;
        }
        /// @param _otherBridge Address of the other StandardBridge contract.
        constructor(StandardBridge _otherBridge) {
            OTHER_BRIDGE = _otherBridge;
        }
        /// @notice Initializer.
        /// @param _messenger   Address of CrossDomainMessenger on this network.
        // solhint-disable-next-line func-name-mixedcase
        function __StandardBridge_init(CrossDomainMessenger _messenger) internal onlyInitializing {
            messenger = _messenger;
        }
        /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
        ///         Must be implemented by contracts that inherit.
        receive() external payable virtual;
        /// @notice Getter for messenger contract.
        /// @custom:legacy
        /// @return Messenger contract on this domain.
        function MESSENGER() external view returns (CrossDomainMessenger) {
            return messenger;
        }
        /// @notice Getter for the remote domain bridge contract.
        function otherBridge() external view returns (StandardBridge) {
            return OTHER_BRIDGE;
        }
        /// @notice Sends ETH to the sender's address on the other chain.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
            _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
        }
        /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
        ///         smart contract and the call fails, the ETH will be temporarily locked in the
        ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
        ///         replayed with any amount of gas (call always reverts), then the ETH will be
        ///         permanently locked in the StandardBridge on the other chain. ETH will also
        ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
        ///         in that case.
        /// @param _to          Address of the receiver.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
            _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
        }
        /// @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the
        ///         ERC20 token on the other chain does not recognize the local token as the correct
        ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
        ///         this chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _amount      Amount of local tokens to deposit.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function bridgeERC20(
            address _localToken,
            address _remoteToken,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        )
            public
            virtual
            onlyEOA
        {
            _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
        }
        /// @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the
        ///         ERC20 token on the other chain does not recognize the local token as the correct
        ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
        ///         this chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of local tokens to deposit.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function bridgeERC20To(
            address _localToken,
            address _remoteToken,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        )
            public
            virtual
        {
            _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
        }
        /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
        ///         StandardBridge contract on the remote chain.
        /// @param _from      Address of the sender.
        /// @param _to        Address of the receiver.
        /// @param _amount    Amount of ETH being bridged.
        /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
        ///                   not be triggered with this data, but it will be emitted and can be used
        ///                   to identify the transaction.
        function finalizeBridgeETH(
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        )
            public
            payable
            virtual
            onlyOtherBridge
        {
            require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
            require(_to != address(this), "StandardBridge: cannot send to self");
            require(_to != address(messenger), "StandardBridge: cannot send to messenger");
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
            bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
            require(success, "StandardBridge: ETH transfer failed");
        }
        /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
        ///         StandardBridge contract on the remote chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _from        Address of the sender.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of the ERC20 being bridged.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function finalizeBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        )
            public
            virtual
            onlyOtherBridge
        {
            if (_isOptimismMintableERC20(_localToken)) {
                require(
                    _isCorrectTokenPair(_localToken, _remoteToken),
                    "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                );
                OptimismMintableERC20(_localToken).mint(_to, _amount);
            } else {
                deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                IERC20(_localToken).safeTransfer(_to, _amount);
            }
            // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
        /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
        /// @param _from        Address of the sender.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of ETH being bridged.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function _initiateBridgeETH(
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        )
            internal
        {
            require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
            messenger.sendMessage{ value: _amount }(
                address(OTHER_BRIDGE),
                abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                _minGasLimit
            );
        }
        /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the corresponding token on the remote chain.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of local tokens to deposit.
        /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
        /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
        ///                     not be triggered with this data, but it will be emitted and can be used
        ///                     to identify the transaction.
        function _initiateBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        )
            internal
            virtual
        {
            if (_isOptimismMintableERC20(_localToken)) {
                require(
                    _isCorrectTokenPair(_localToken, _remoteToken),
                    "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                );
                OptimismMintableERC20(_localToken).burn(_from, _amount);
            } else {
                IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
            }
            // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            messenger.sendMessage(
                address(OTHER_BRIDGE),
                abi.encodeWithSelector(
                    this.finalizeBridgeERC20.selector,
                    // Because this call will be executed on the remote chain, we reverse the order of
                    // the remote and local token addresses relative to their order in the
                    // finalizeBridgeERC20 function.
                    _remoteToken,
                    _localToken,
                    _from,
                    _to,
                    _amount,
                    _extraData
                ),
                _minGasLimit
            );
        }
        /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
        ///         Just the way we like it.
        /// @param _token Address of the token to check.
        /// @return True if the token is an OptimismMintableERC20.
        function _isOptimismMintableERC20(address _token) internal view returns (bool) {
            return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
        }
        /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
        ///         Calls can be saved in the future by combining this logic with
        ///         `_isOptimismMintableERC20`.
        /// @param _mintableToken OptimismMintableERC20 to check against.
        /// @param _otherToken    Pair token to check.
        /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
        function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
            if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
            } else {
                return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
            }
        }
        /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
        ///         when an ETH bridge is finalized on this chain.
        /// @param _from      Address of the sender.
        /// @param _to        Address of the receiver.
        /// @param _amount    Amount of ETH sent.
        /// @param _extraData Extra data sent with the transaction.
        function _emitETHBridgeInitiated(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        )
            internal
            virtual
        {
            emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
        }
        /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
        ///         ETH bridge is finalized on this chain.
        /// @param _from      Address of the sender.
        /// @param _to        Address of the receiver.
        /// @param _amount    Amount of ETH sent.
        /// @param _extraData Extra data sent with the transaction.
        function _emitETHBridgeFinalized(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        )
            internal
            virtual
        {
            emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
        }
        /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
        ///         event when an ERC20 bridge is initiated to the other chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the ERC20 on the remote chain.
        /// @param _from        Address of the sender.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of the ERC20 sent.
        /// @param _extraData   Extra data sent with the transaction.
        function _emitERC20BridgeInitiated(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        )
            internal
            virtual
        {
            emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
        /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
        ///         event when an ERC20 bridge is initiated to the other chain.
        /// @param _localToken  Address of the ERC20 on this chain.
        /// @param _remoteToken Address of the ERC20 on the remote chain.
        /// @param _from        Address of the sender.
        /// @param _to          Address of the receiver.
        /// @param _amount      Amount of the ERC20 sent.
        /// @param _extraData   Extra data sent with the transaction.
        function _emitERC20BridgeFinalized(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        )
            internal
            virtual
        {
            emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Predeploys } from "src/libraries/Predeploys.sol";
    import { StandardBridge } from "src/universal/StandardBridge.sol";
    import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
    import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
    /// @custom:proxied
    /// @custom:predeploy 0x4300000000000000000000000000000000000005
    /// @title L2BlastBridge
    /// @notice The L2BlastBridge is responsible for transfering ETH and USDB tokens between L1 and
    ///         L2. In the case that an ERC20 token is native to L2, it will be escrowed within this
    ///         contract.
    contract L2BlastBridge is StandardBridge, ISemver {
        /// @custom:semver 1.0.0
        string public constant version = "1.0.0";
        /// @notice Constructs the L2BlastBridge contract.
        /// @param _otherBridge Address of the L1BlastBridge.
        constructor(StandardBridge _otherBridge) StandardBridge(_otherBridge) {
            _disableInitializers();
        }
        /// @notice Initializer
        function initialize() public initializer {
            __StandardBridge_init({ _messenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
            Blast(Predeploys.BLAST).configureContract(
                address(this),
                YieldMode.VOID,
                GasMode.VOID,
                address(0xdead) /// don't set a governor
            );
        }
        /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
        receive() external payable override onlyEOA {
            _initiateBridgeETH(msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, hex"");
        }
        /// @notice Modified StandardBridge.finalizeBridgeETH function to allow calls directly from
        ///         the L1BlastBridge without going through a messenger.
        /// @notice See { StandardBridge-finalizeBridgeETH }
        function finalizeBridgeETHDirect(
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        )
            public
            payable
        {
            require(AddressAliasHelper.undoL1ToL2Alias(msg.sender) == address(OTHER_BRIDGE), "L2BlastBridge: function can only be called from the other bridge");
            require(msg.value == _amount, "L2BlastBridge: amount sent does not match amount required");
            require(_to != address(this), "L2BlastBridge: cannot send to self");
            require(_to != address(messenger), "L2BlastBridge: cannot send to messenger");
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
            bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
            require(success, "L2BlastBridge: ETH transfer failed");
        }
        /// @notice Wrapper to only accept USDB withdrawals.
        /// @notice See { StandardBridge-_initiateBridgeERC20 }
        function _initiateBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        )
            internal
            override
        {
            require(_localToken == Predeploys.USDB, "L2BlastBridge: only USDB can be withdrawn from this bridge.");
            require(_isCorrectTokenPair(Predeploys.USDB, _remoteToken), "L2BlastBridge: wrong remote token for USDB.");
            super._initiateBridgeERC20(_localToken, _remoteToken, _from, _to, _amount, _minGasLimit, _extraData);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @title ISemver
    /// @notice ISemver is a simple contract for ensuring that contracts are
    ///         versioned using semantic versioning.
    interface ISemver {
        /// @notice Getter for the semantic version of the contract. This is not
        ///         meant to be used onchain but instead meant to be used by offchain
        ///         tooling.
        /// @return Semver contract version as a string.
        function version() external view returns (string memory);
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { Hashing } from "src/libraries/Hashing.sol";
    import { Encoding } from "src/libraries/Encoding.sol";
    import { Constants } from "src/libraries/Constants.sol";
    /// @custom:legacy
    /// @title CrossDomainMessengerLegacySpacer0
    /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
    ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
    ///         tree of the CrossDomainMessenger.
    contract CrossDomainMessengerLegacySpacer0 {
        /// @custom:legacy
        /// @custom:spacer libAddressManager
        /// @notice Spacer for backwards compatibility.
        address private spacer_0_0_20;
    }
    /// @custom:legacy
    /// @title CrossDomainMessengerLegacySpacer1
    /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
    ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
    ///         the third contract in the inheritance tree of the CrossDomainMessenger.
    contract CrossDomainMessengerLegacySpacer1 {
        /// @custom:legacy
        /// @custom:spacer ContextUpgradable's __gap
        /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
        ///         ContextUpgradable.
        uint256[50] private spacer_1_0_1600;
        /// @custom:legacy
        /// @custom:spacer OwnableUpgradeable's _owner
        /// @notice Spacer for backwards compatibility.
        ///         Come from OpenZeppelin OwnableUpgradeable.
        address private spacer_51_0_20;
        /// @custom:legacy
        /// @custom:spacer OwnableUpgradeable's __gap
        /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
        ///         OwnableUpgradeable.
        uint256[49] private spacer_52_0_1568;
        /// @custom:legacy
        /// @custom:spacer PausableUpgradable's _paused
        /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
        ///         PausableUpgradable.
        bool private spacer_101_0_1;
        /// @custom:legacy
        /// @custom:spacer PausableUpgradable's __gap
        /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
        ///         PausableUpgradable.
        uint256[49] private spacer_102_0_1568;
        /// @custom:legacy
        /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
        /// @notice Spacer for backwards compatibility.
        uint256 private spacer_151_0_32;
        /// @custom:legacy
        /// @custom:spacer ReentrancyGuardUpgradeable's __gap
        /// @notice Spacer for backwards compatibility.
        uint256[49] private spacer_152_0_1568;
        /// @custom:legacy
        /// @custom:spacer blockedMessages
        /// @notice Spacer for backwards compatibility.
        mapping(bytes32 => bool) private spacer_201_0_32;
        /// @custom:legacy
        /// @custom:spacer relayedMessages
        /// @notice Spacer for backwards compatibility.
        mapping(bytes32 => bool) private spacer_202_0_32;
    }
    /// @custom:upgradeable
    /// @title CrossDomainMessenger
    /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
    ///         cross-chain messenger contracts. It's designed to be a universal interface that only
    ///         needs to be extended slightly to provide low-level message passing functionality on each
    ///         chain it's deployed on. Currently only designed for message passing between two paired
    ///         chains and does not support one-to-many interactions.
    ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
    abstract contract CrossDomainMessenger is
        CrossDomainMessengerLegacySpacer0,
        Initializable,
        CrossDomainMessengerLegacySpacer1
    {
        /// @notice Current message version identifier.
        uint16 public constant MESSAGE_VERSION = 1;
        /// @notice Constant overhead added to the base gas for a message.
        uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
        /// @notice Numerator for dynamic overhead added to the base gas for a message.
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
        /// @notice Denominator for dynamic overhead added to the base gas for a message.
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
        /// @notice Extra gas added to base gas for each byte of calldata in a message.
        uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
        /// @notice Gas reserved for performing the external call in `relayMessage`.
        uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
        /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
        uint64 public constant RELAY_RESERVED_GAS = 60_000;
        /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
        ///         call in `relayMessage`.
        uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
        /// @notice Address of the paired CrossDomainMessenger contract on the other chain.
        address public immutable OTHER_MESSENGER;
        /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
        ///         be present in this mapping if it has successfully been relayed on this chain, and
        ///         can therefore not be relayed again.
        mapping(bytes32 => bool) public successfulMessages;
        /// @notice Address of the sender of the currently executing message on the other chain. If the
        ///         value of this variable is the default value (0x00000000...dead) then no message is
        ///         currently being executed. Use the xDomainMessageSender getter which will throw an
        ///         error if this is the case.
        address internal xDomainMsgSender;
        /// @notice Nonce for the next message to be sent, without the message version applied. Use the
        ///         messageNonce getter which will insert the message version into the nonce to give you
        ///         the actual nonce to be used for the message.
        uint240 internal msgNonce;
        /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
        ///         executed at least once. A message will not be present in this mapping if it
        ///         successfully executed on the first attempt.
        mapping(bytes32 => bool) public failedMessages;
        /// @notice Reserve extra slots in the storage layout for future upgrades.
        ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[42] private __gap;
        /// @notice Emitted whenever a message is sent to the other chain.
        /// @param target       Address of the recipient of the message.
        /// @param sender       Address of the sender of the message.
        /// @param message      Message to trigger the recipient address with.
        /// @param messageNonce Unique nonce attached to the message.
        /// @param gasLimit     Minimum gas limit that the message can be executed with.
        event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
        /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
        ///         SentMessage event without breaking the ABI of this contract, this is good enough.
        /// @param sender Address of the sender of the message.
        /// @param value  ETH value sent along with the message to the recipient.
        event SentMessageExtension1(address indexed sender, uint256 value);
        /// @notice Emitted whenever a message is successfully relayed on this chain.
        /// @param msgHash Hash of the message that was relayed.
        event RelayedMessage(bytes32 indexed msgHash);
        /// @notice Emitted whenever a message fails to be relayed on this chain.
        /// @param msgHash Hash of the message that failed to be relayed.
        event FailedRelayedMessage(bytes32 indexed msgHash);
        /// @param _otherMessenger Address of the messenger on the paired chain.
        constructor(address _otherMessenger) {
            OTHER_MESSENGER = _otherMessenger;
        }
        /// @notice Sends a message to some target address on the other chain. Note that if the call
        ///         always reverts, then the message will be unrelayable, and any ETH sent will be
        ///         permanently locked. The same will occur if the target on the other chain is
        ///         considered unsafe (see the _isUnsafeTarget() function).
        /// @param _target      Target contract or wallet address.
        /// @param _message     Message to trigger the target address with.
        /// @param _minGasLimit Minimum gas limit that the message can be executed with.
        function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
            // Triggers a message to the other messenger. Note that the amount of gas provided to the
            // message is the amount of gas requested by the user PLUS the base gas value. We want to
            // guarantee the property that the call to the target contract will always have at least
            // the minimum gas limit specified by the user.
            _sendMessage(
                OTHER_MESSENGER,
                baseGas(_message, _minGasLimit),
                msg.value,
                abi.encodeWithSelector(
                    this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                )
            );
            emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
            emit SentMessageExtension1(msg.sender, msg.value);
            unchecked {
                ++msgNonce;
            }
        }
        /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
        ///         be executed via cross-chain call from the other messenger OR if the message was
        ///         already received once and is currently being replayed.
        /// @param _nonce       Nonce of the message being relayed.
        /// @param _sender      Address of the user who sent the message.
        /// @param _target      Address that the message is targeted at.
        /// @param _value       ETH value to send with the message.
        /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
        /// @param _message     Message to send to the target.
        function relayMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _minGasLimit,
            bytes calldata _message
        )
            external
            payable
            virtual
        {
            (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
            require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
            // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
            // to check that the legacy version of the message has not already been relayed.
            if (version == 0) {
                bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
            }
            // We use the v1 message hash as the unique identifier for the message because it commits
            // to the value and minimum gas limit of the message.
            bytes32 versionedHash =
                Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
            if (_isOtherMessenger()) {
                // These properties should always hold when the message is first submitted (as
                // opposed to being replayed).
                assert(msg.value == _value);
                assert(!failedMessages[versionedHash]);
            } else {
                require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
            }
            require(
                _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
            );
            require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
            // If there is not enough gas left to perform the external call and finish the execution,
            // return early and assign the message to the failedMessages mapping.
            // We are asserting that we have enough gas to:
            // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
            //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
            // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
            //
            // If `xDomainMsgSender` is not the default L2 sender, this function
            // is being re-entered. This marks the message as failed to allow it to be replayed.
            if (
                !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                    || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
            ) {
                failedMessages[versionedHash] = true;
                emit FailedRelayedMessage(versionedHash);
                // Revert in this case if the transaction was triggered by the estimation address. This
                // should only be possible during gas estimation or we have bigger problems. Reverting
                // here will make the behavior of gas estimation change such that the gas limit
                // computed will be the amount required to relay the message, even if that amount is
                // greater than the minimum gas limit specified by the user.
                if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                    revert("CrossDomainMessenger: failed to relay message");
                }
                return;
            }
            xDomainMsgSender = _sender;
            bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
            if (success) {
                // This check is identical to one above, but it ensures that the same message cannot be relayed
                // twice, and adds a layer of protection against rentrancy.
                assert(successfulMessages[versionedHash] == false);
                successfulMessages[versionedHash] = true;
                emit RelayedMessage(versionedHash);
            } else {
                failedMessages[versionedHash] = true;
                emit FailedRelayedMessage(versionedHash);
                // Revert in this case if the transaction was triggered by the estimation address. This
                // should only be possible during gas estimation or we have bigger problems. Reverting
                // here will make the behavior of gas estimation change such that the gas limit
                // computed will be the amount required to relay the message, even if that amount is
                // greater than the minimum gas limit specified by the user.
                if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                    revert("CrossDomainMessenger: failed to relay message");
                }
            }
        }
        /// @notice Retrieves the address of the contract or wallet that initiated the currently
        ///         executing message on the other chain. Will throw an error if there is no message
        ///         currently being executed. Allows the recipient of a call to see who triggered it.
        /// @return Address of the sender of the currently executing message on the other chain.
        function xDomainMessageSender() external view returns (address) {
            require(
                xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
            );
            return xDomainMsgSender;
        }
        /// @notice Retrieves the next message nonce. Message version will be added to the upper two
        ///         bytes of the message nonce. Message version allows us to treat messages as having
        ///         different structures.
        /// @return Nonce of the next message to be sent, with added message version.
        function messageNonce() public view returns (uint256) {
            return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
        }
        /// @notice Computes the amount of gas required to guarantee that a given message will be
        ///         received on the other chain without running out of gas. Guaranteeing that a message
        ///         will not run out of gas is important because this ensures that a message can always
        ///         be replayed on the other chain if it fails to execute completely.
        /// @param _message     Message to compute the amount of required gas for.
        /// @param _minGasLimit Minimum desired gas limit when message goes to target.
        /// @return Amount of gas required to guarantee message receipt.
        function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
            return
            // Constant overhead
            RELAY_CONSTANT_OVERHEAD
            // Calldata overhead
            + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
            // Dynamic overhead (EIP-150)
            + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
            // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
            // factors. (Conservative)
            + RELAY_CALL_OVERHEAD
            // Relay reserved gas (to ensure execution of `relayMessage` completes after the
            // subcontext finishes executing) (Conservative)
            + RELAY_RESERVED_GAS
            // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
            // opcode. (Conservative)
            + RELAY_GAS_CHECK_BUFFER;
        }
        /// @notice Initializer.
        // solhint-disable-next-line func-name-mixedcase
        function __CrossDomainMessenger_init() internal onlyInitializing {
            // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
            // meaning that this is a fresh contract deployment.
            // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
            // a reentrant withdrawal to sandwich the upgrade replay a withdrawal twice.
            if (xDomainMsgSender == address(0)) {
                xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
            }
        }
        /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
        ///         contracts because the logic for this depends on the network where the messenger is
        ///         being deployed.
        /// @param _to       Recipient of the message on the other chain.
        /// @param _gasLimit Minimum gas limit the message can be executed with.
        /// @param _value    Amount of ETH to send with the message.
        /// @param _data     Message data.
        function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
        /// @notice Checks whether the message is coming from the other messenger. Implemented by child
        ///         contracts because the logic for this depends on the network where the messenger is
        ///         being deployed.
        /// @return Whether the message is coming from the other messenger.
        function _isOtherMessenger() internal view virtual returns (bool);
        /// @notice Checks whether a given call target is a system address that could cause the
        ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
        ///         addresses. This is ONLY used to prevent the execution of messages to specific
        ///         system addresses that could cause security issues, e.g., having the
        ///         CrossDomainMessenger send messages to itself.
        /// @param _target Address of the contract to check.
        /// @return Whether or not the address is an unsafe system address.
        function _isUnsafeTarget(address _target) internal view virtual returns (bool);
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
    import { SystemConfig } from "src/L1/SystemConfig.sol";
    import { Constants } from "src/libraries/Constants.sol";
    import { Types } from "src/libraries/Types.sol";
    import { Hashing } from "src/libraries/Hashing.sol";
    import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
    import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
    import { ResourceMetering } from "src/L1/ResourceMetering.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    /// @custom:proxied
    /// @title OptimismPortal
    /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
    ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
    ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
    contract OptimismPortal is Initializable, ResourceMetering, ISemver {
        /// @notice Represents a proven withdrawal.
        /// @custom:field outputRoot    Root of the L2 output this was proven against.
        /// @custom:field timestamp     Timestamp at which the withdrawal was proven.
        /// @custom:field l2OutputIndex Index of the output this was proven against.
        struct ProvenWithdrawal {
            bytes32 outputRoot;
            uint128 timestamp;
            uint128 l2OutputIndex;
            uint256 requestId;
        }
        /// @notice Version of the deposit event.
        uint256 internal constant DEPOSIT_VERSION = 0;
        /// @notice The L2 gas limit set when eth is deposited using the receive() function.
        uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
        /// @notice The L1 gas limit set when sending eth to the YieldManager.
        uint64 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
        /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
        ///         If the address of this variable is the default L2 sender address, then we
        ///         are NOT inside of a call to finalizeWithdrawalTransaction.
        address public l2Sender;
        /// @notice A list of withdrawal hashes which have been successfully finalized.
        mapping(bytes32 => bool) public finalizedWithdrawals;
        /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
        mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
        /// @notice Determines if cross domain messaging is paused.
        ///         When set to true, withdrawals are paused.
        ///         This may be removed in the future.
        bool public paused;
        /// @notice Address of the L2OutputOracle contract.
        /// @custom:network-specific
        L2OutputOracle public l2Oracle;
        /// @notice Address of the SystemConfig contract.
        /// @custom:network-specific
        SystemConfig public systemConfig;
        /// @notice Address that has the ability to pause and unpause withdrawals.
        /// @custom:network-specific
        address public guardian;
        /// @notice Address of the ETH yield manager.
        ETHYieldManager public yieldManager;
        /// @notice Emitted when a transaction is deposited from L1 to L2.
        ///         The parameters of this event are read by the rollup node and used to derive deposit
        ///         transactions on L2.
        /// @param from       Address that triggered the deposit transaction.
        /// @param to         Address that the deposit transaction is directed to.
        /// @param version    Version of this deposit transaction event.
        /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
        event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
        /// @notice Emitted when a withdrawal transaction is proven.
        /// @param withdrawalHash Hash of the withdrawal transaction.
        /// @param from           Address that triggered the withdrawal transaction.
        /// @param to             Address that the withdrawal transaction is directed to.
        /// @param requestId      Id of the withdrawal request
        event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to, uint256 requestId);
        /// @notice Emitted when a withdrawal transaction is finalized.
        /// @param withdrawalHash Hash of the withdrawal transaction.
        /// @param hintId is the checkpoint ID produce by YieldManager
        /// @param success        Whether the withdrawal transaction was successful.
        event WithdrawalFinalized(bytes32 indexed withdrawalHash, uint256 indexed hintId, bool success);
        /// @notice Emitted when the pause is triggered.
        /// @param account Address of the account triggering the pause.
        event Paused(address account);
        /// @notice Emitted when the pause is lifted.
        /// @param account Address of the account triggering the unpause.
        event Unpaused(address account);
        /// @notice Reverts when paused.
        modifier whenNotPaused() {
            require(paused == false, "OptimismPortal: paused");
            _;
        }
        /// @notice Semantic version.
        /// @custom:semver 1.10.0
        string public constant version = "1.10.0";
        /// @notice Constructs the OptimismPortal contract.
        constructor() {
            initialize({
                _l2Oracle: L2OutputOracle(address(0)),
                _guardian: address(0),
                _systemConfig: SystemConfig(address(0)),
                _paused: true,
                _yieldManager: ETHYieldManager(payable(address(0)))
            });
        }
        /// @notice Initializer.
        /// @param _l2Oracle Address of the L2OutputOracle contract.
        /// @param _guardian Address that can pause withdrawals.
        /// @param _paused Sets the contract's pausability state.
        /// @param _systemConfig Address of the SystemConfig contract.
        function initialize(
            L2OutputOracle _l2Oracle,
            address _guardian,
            SystemConfig _systemConfig,
            bool _paused,
            ETHYieldManager _yieldManager
        )
            public
            reinitializer(Constants.INITIALIZER)
        {
            if (l2Sender == address(0)) {
                l2Sender = Constants.DEFAULT_L2_SENDER;
            }
            l2Oracle = _l2Oracle;
            systemConfig = _systemConfig;
            guardian = _guardian;
            paused = _paused;
            yieldManager = _yieldManager;
            __ResourceMetering_init();
        }
        /// @notice Getter for the L2OutputOracle
        /// @custom:legacy
        function L2_ORACLE() external view returns (L2OutputOracle) {
            return l2Oracle;
        }
        /// @notice Getter for the SystemConfig
        /// @custom:legacy
        function SYSTEM_CONFIG() external view returns (SystemConfig) {
            return systemConfig;
        }
        /// @notice Getter for the Guardian
        /// @custom:legacy
        function GUARDIAN() external view returns (address) {
            return guardian;
        }
        /// @notice Pauses withdrawals.
        function pause() external {
            require(msg.sender == guardian, "OptimismPortal: only guardian can pause");
            paused = true;
            emit Paused(msg.sender);
        }
        /// @notice Unpauses withdrawals.
        function unpause() external {
            require(msg.sender == guardian, "OptimismPortal: only guardian can unpause");
            paused = false;
            emit Unpaused(msg.sender);
        }
        /// @notice Computes the minimum gas limit for a deposit.
        ///         The minimum gas limit linearly increases based on the size of the calldata.
        ///         This is to prevent users from creating L2 resource usage without paying for it.
        ///         This function can be used when interacting with the portal to ensure forwards
        ///         compatibility.
        /// @param _byteCount Number of bytes in the calldata.
        /// @return The minimum gas limit for a deposit.
        function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
            return _byteCount * 16 + 21000;
        }
        /// @notice Accepts value so that users can send ETH directly to this contract and have the
        ///         funds be deposited to their address on L2. This is intended as a convenience
        ///         function for EOAs. Contracts should call the depositTransaction() function directly
        ///         otherwise any deposited funds will be lost due to address aliasing.
        // solhint-disable-next-line ordering
        receive() external payable {
            if (msg.sender != address(yieldManager)) {
                depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
            }
        }
        /// @notice Getter for the resource config.
        ///         Used internally by the ResourceMetering contract.
        ///         The SystemConfig is the source of truth for the resource config.
        /// @return ResourceMetering ResourceConfig
        function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
            return systemConfig.resourceConfig();
        }
        /// @notice Proves a withdrawal transaction.
        /// @param _tx              Withdrawal transaction to finalize.
        /// @param _l2OutputIndex   L2 output index to prove against.
        /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
        /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
        function proveWithdrawalTransaction(
            Types.WithdrawalTransaction memory _tx,
            uint256 _l2OutputIndex,
            Types.OutputRootProof calldata _outputRootProof,
            bytes[] calldata _withdrawalProof
        )
            external
            whenNotPaused
        {
            // Prevent users from creating a deposit transaction where this address is the message
            // sender on L2. Because this is checked here, we do not need to check again in
            // `finalizeWithdrawalTransaction`.
            require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
            // Get the output root and load onto the stack to prevent multiple mloads. This will
            // revert if there is no output root for the given block number.
            bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
            // Verify that the output root can be generated with the elements in the proof.
            require(
                outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
            );
            // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
            bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
            ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
            // We generally want to prevent users from proving the same withdrawal multiple times
            // because each successive proof will update the timestamp. A malicious user can take
            // advantage of this to prevent other users from finalizing their withdrawal. However,
            // since withdrawals are proven before an output root is finalized, we need to allow users
            // to re-prove their withdrawal only in the case that the output root for their specified
            // output index has been updated.
            require(
                provenWithdrawal.timestamp == 0
                    || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                "OptimismPortal: withdrawal hash has already been proven"
            );
            // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
            // Refer to the Solidity documentation for more information on how storage layouts are
            // computed for mappings.
            bytes32 storageKey = keccak256(
                abi.encode(
                    withdrawalHash,
                    uint256(0) // The withdrawals mapping is at the first slot in the layout.
                )
            );
            // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
            // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
            // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
            // be relayed on L1.
            require(
                SecureMerkleTrie.verifyInclusionProof(
                    abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                ),
                "OptimismPortal: invalid withdrawal inclusion proof"
            );
            // Blast: request ether withdrawal from the yield manager. Should not request a withdrawal
            // when the withdrawal is being re-proven.
            uint256 requestId;
            if (_tx.value > 0 && provenWithdrawal.timestamp == 0) {
                requestId = yieldManager.requestWithdrawal(_tx.value);
            } else {
                // If withdrawal is being re-proven, then set original requestId.
                requestId = provenWithdrawal.requestId;
            }
            require(_tx.target != address(yieldManager), "OptimismPortal: unauthorized call to yield manager");
            // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
            // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
            // proven once unless it is submitted again with a different outputRoot.
            provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                outputRoot: outputRoot,
                timestamp: uint128(block.timestamp),
                l2OutputIndex: uint128(_l2OutputIndex),
                requestId: requestId
            });
            // Emit a `WithdrawalProven` event.
            emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target, requestId);
        }
        /// @notice Finalizes a withdrawal transaction.
        /// @param hintId Hint ID of the withdrawal transaction to finalize. The caller can find this
        ///               value by calling ETHYieldManager.findCheckpointHint().
        /// @param _tx Withdrawal transaction to finalize.
        function finalizeWithdrawalTransaction(uint256 hintId, Types.WithdrawalTransaction memory _tx) external whenNotPaused {
            // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
            // than the default value when a withdrawal transaction is being finalized. This check is
            // a defacto reentrancy guard.
            require(
                l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
            );
            // Grab the proven withdrawal from the `provenWithdrawals` map.
            bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
            ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
            // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
            // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
            // a timestamp of zero.
            require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
            // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
            // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
            // safety against weird bugs in the proving step.
            require(
                provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
            );
            // A proven withdrawal must wait at least the finalization period before it can be
            // finalized. This waiting period can elapse in parallel with the waiting period for the
            // output the withdrawal was proven against. In effect, this means that the minimum
            // withdrawal time is proposal submission time + finalization period.
            require(
                _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                "OptimismPortal: proven withdrawal finalization period has not elapsed"
            );
            // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
            // corresponds to the given index has not been proposed yet.
            Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
            // Check that the output root that was used to prove the withdrawal is the same as the
            // current output root for the given output index. An output root may change if it is
            // deleted by the challenger address and then re-proposed.
            require(
                proposal.outputRoot == provenWithdrawal.outputRoot,
                "OptimismPortal: output root proven is not the same as current output root"
            );
            // Check that the output proposal has also been finalized.
            require(
                _isFinalizationPeriodElapsed(proposal.timestamp),
                "OptimismPortal: output proposal finalization period has not elapsed"
            );
            // Check that this withdrawal has not already been finalized, this is replay protection.
            require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
            // Mark the withdrawal as finalized so it can't be replayed.
            finalizedWithdrawals[withdrawalHash] = true;
            // Set the l2Sender so contracts know who triggered this withdrawal on L2.
            l2Sender = _tx.sender;
            // Blast: claim withdrawal for ether
            uint256 txValueWithDiscount;
            if (_tx.value > 0) {
                uint256 etherBalance = address(this).balance;
                yieldManager.claimWithdrawal(provenWithdrawal.requestId, hintId);
                txValueWithDiscount = address(this).balance - etherBalance;
            }
            // Trigger the call to the target contract. We use a custom low level method
            // SafeCall.callWithMinGas to ensure two key properties
            //   1. Target contracts cannot force this call to run out of gas by returning a very large
            //      amount of data (and this is OK because we don't care about the returndata here).
            //   2. The amount of gas provided to the execution context of the target is at least the
            //      gas limit specified by the user. If there is not enough gas in the current context
            //      to accomplish this, `callWithMinGas` will revert.
            bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, txValueWithDiscount, _tx.data);
            // Reset the l2Sender back to the default value.
            l2Sender = Constants.DEFAULT_L2_SENDER;
            // All withdrawals are immediately finalized. Replayability can
            // be achieved through contracts built on top of this contract
            emit WithdrawalFinalized(withdrawalHash, hintId, success);
            // Reverting here is useful for determining the exact gas cost to successfully execute the
            // sub call to the target contract if the minimum gas limit specified by the user would not
            // be sufficient to execute the sub call.
            if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("OptimismPortal: withdrawal failed");
            }
        }
        /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
        ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
        ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
        ///         using the CrossDomainMessenger contracts for a simpler developer experience.
        /// @param _to         Target address on L2.
        /// @param _value      ETH value to send to the recipient.
        /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
        /// @param _isCreation Whether or not the transaction is a contract creation.
        /// @param _data       Data to trigger the recipient with.
        function depositTransaction(
            address _to,
            uint256 _value,
            uint64 _gasLimit,
            bool _isCreation,
            bytes memory _data
        )
            public
            payable
            metered(_gasLimit)
        {
            // Just to be safe, make sure that people specify address(0) as the target when doing
            // contract creations.
            if (_isCreation) {
                require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
            }
            // Prevent depositing transactions that have too small of a gas limit. Users should pay
            // more for more resource usage.
            require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
            // Prevent the creation of deposit transactions that have too much calldata. This gives an
            // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
            // that the transaction can fit into the p2p network policy of 128kb even though deposit
            // transactions are not gossipped over the p2p network.
            require(_data.length <= 120_000, "OptimismPortal: data too large");
            // Transform the from-address to its alias if the caller is a contract.
            address from = msg.sender;
            if (msg.sender != tx.origin) {
                from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
            }
            // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
            // We use opaque data so that we can update the TransactionDeposited event in the future
            // without breaking the current interface.
            bytes memory opaqueData;
            // Blast: When receiving already staked funds (stETH) to be bridged for ether on L2, we
            // have to request that `_value` is minted on L2 without an equivalent `msg.value` being
            // sent in the call. This bypass allows the L1BlastBridge to request `_value` to be minted
            // in exchange for a deposit of the equivalent amount of a staked ether asset.
            if (_to == Predeploys.L2_BLAST_BRIDGE) {
                if (msg.sender != yieldManager.blastBridge() || yieldManager.blastBridge() == address(0)) {
                    // second case is when the blast bridge address has not been set on the yield manager
                    revert("OptimismPortal: only the BlastBridge can deposit");
                }
                opaqueData = abi.encodePacked(_value, _value, _gasLimit, _isCreation, _data);
            } else {
                opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
            }
            // Blast: Send the received ether to the yield manager to handle staking the funds.
            if (msg.value > 0) {
                (bool success) = SafeCall.send(address(yieldManager), SEND_DEFAULT_GAS_LIMIT, msg.value);
                require(success, "OptimismPortal: ETH transfer to YieldManager failed");
            }
            // Emit a TransactionDeposited event so that the rollup node can derive a deposit
            // transaction for this deposit.
            emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
        }
        /// @notice Determine if a given output is finalized.
        ///         Reverts if the call to L2_ORACLE.getL2Output reverts.
        ///         Returns a boolean otherwise.
        /// @param _l2OutputIndex Index of the L2 output to check.
        /// @return Whether or not the output is finalized.
        function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
            return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
        }
        /// @notice Determines whether the finalization period has elapsed with respect to
        ///         the provided block timestamp.
        /// @param _timestamp Timestamp to check.
        /// @return Whether or not the finalization period has elapsed.
        function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
            return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
    import { OptimismPortal } from "src/L1/OptimismPortal.sol";
    import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    /// @custom:proxied
    /// @title USDYieldManager
    /// @notice Coordinates the accounting, asset management and
    ///         yield reporting from USD yield providers.
    contract USDYieldManager is YieldManager, Semver {
        /// @param _token Address of withdrawal token. It is assumed that the token
        ///               has 18 decimals.
        constructor(address _token) YieldManager(_token) Semver(1, 0, 0) {
            _disableInitializers();
        }
        /// @notice initializer
        /// @param _portal Address of the OptimismPortal.
        /// @param _owner  Address of the YieldManager owner.
        function initialize(OptimismPortal _portal, address _owner) public initializer {
            __YieldManager_init(_portal, _owner);
            if (TOKEN == address(USDConversions.DAI)) {
                USDConversions._init();
            }
        }
        /// @inheritdoc YieldManager
        function tokenBalance() public view override returns (uint256) {
            return IERC20(TOKEN).balanceOf(address(this));
        }
        /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
        function requestWithdrawal(address recipient, uint256 amount)
            external
            onlyBlastBridge
            returns (uint256)
        {
            return _requestWithdrawal(address(recipient), amount);
        }
        /// @notice Wrapper for USDConversions._convertTo
        function convert(
            address inputTokenAddress,
            uint256 inputAmountWad,
            bytes memory _extraData
        ) external onlyBlastBridge returns (uint256) {
            return USDConversions._convertTo(
                inputTokenAddress,
                TOKEN,
                inputAmountWad,
                _extraData
            );
        }
        /// @notice Sends the yield report to the USDB contract.
        /// @param data Calldata to send in the message.
        function _reportYield(bytes memory data) internal override {
            portal.depositTransaction(Predeploys.USDB, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
    import { OptimismPortal } from "src/L1/OptimismPortal.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    /// @custom:proxied
    /// @title ETHYieldManager
    /// @notice Coordinates the accounting, asset management and
    ///         yield reporting from ETH yield providers.
    contract ETHYieldManager is YieldManager, Semver {
        error CallerIsNotPortal();
        constructor() YieldManager(address(0)) Semver(1, 0, 0) {
            initialize(OptimismPortal(payable(address(0))), address(0));
        }
        receive() external payable {}
        /// @notice initializer
        /// @param _portal Address of the OptimismPortal.
        /// @param _owner  Address of the YieldManager owner.
        function initialize(OptimismPortal _portal, address _owner) public initializer {
            __YieldManager_init(_portal, _owner);
        }
        /// @inheritdoc YieldManager
        function tokenBalance() public view override returns (uint256) {
            return address(this).balance;
        }
        /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
        function requestWithdrawal(uint256 amount)
            external
            returns (uint256)
        {
            if (msg.sender != address(portal)) {
                revert CallerIsNotPortal();
            }
            return _requestWithdrawal(address(portal), amount);
        }
        /// @notice Sends the yield report to the Shares contract.
        /// @param data Calldata to send in the message.
        function _reportYield(bytes memory data) internal override {
            portal.depositTransaction(Predeploys.SHARES, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import { ERC20Rebasing } from "src/L2/ERC20Rebasing.sol";
    import { SharesBase } from "src/L2/Shares.sol";
    import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
    import { StandardBridge } from "src/universal/StandardBridge.sol";
    import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    /// @custom:proxied
    /// @custom:predeploy 0x4300000000000000000000000000000000000003
    /// @title USDB
    /// @notice Rebasing ERC20 token with the share price determined by an L1
    ///         REPORTER. Conforms to OptimismMintableERC20 interface to allow mint/burn
    ///         interactions from the L1BlastBridge.
    contract USDB is ERC20Rebasing, Semver, IOptimismMintableERC20 {
        /// @notice Address of the corresponding version of this token on the remote chain.
        address public immutable REMOTE_TOKEN;
        /// @notice Address of the BlastBridge on this network.
        address public immutable BRIDGE;
        error CallerIsNotBridge();
        /// @notice A modifier that only allows the bridge to call
        modifier onlyBridge() {
            if (msg.sender != BRIDGE) {
                revert CallerIsNotBridge();
            }
            _;
        }
        /// @custom:semver 1.0.0
        /// @param _usdYieldManager Address of the USD Yield Manager. SharesBase yield reporter.
        /// @param _l2Bridge        Address of the L2 Blast bridge.
        /// @param _remoteToken     Address of the corresponding L1 token.
        constructor(address _usdYieldManager, address _l2Bridge, address _remoteToken)
            ERC20Rebasing(_usdYieldManager, 18)
            Semver(1, 0, 0)
        {
            BRIDGE = _l2Bridge;
            REMOTE_TOKEN = _remoteToken;
            _disableInitializers();
        }
        /// @notice Initializer
        function initialize() public initializer {
            __ERC20Rebasing_init("USDB", "USDB", 1e9);
            Blast(Predeploys.BLAST).configureContract(
                address(this),
                YieldMode.VOID,
                GasMode.VOID,
                address(0xdead) /// don't set a governor
            );
        }
        /// @notice ERC165 interface check function.
        /// @param _interfaceId Interface ID to check.
        /// @return Whether or not the interface is supported by this contract.
        function supportsInterface(bytes4 _interfaceId) external pure returns (bool) {
            bytes4 iface1 = type(IERC165).interfaceId;
            // Interface corresponding to the updated OptimismMintableERC20.
            bytes4 iface2 = type(IOptimismMintableERC20).interfaceId;
            return _interfaceId == iface1 || _interfaceId == iface2;
        }
        /// @custom:legacy
        /// @notice Legacy getter for REMOTE_TOKEN.
        function remoteToken() public view returns (address) {
            return REMOTE_TOKEN;
        }
        /// @custom:legacy
        /// @notice Legacy getter for BRIDGE.
        function bridge() public view returns (address) {
            return BRIDGE;
        }
        /// @notice Allows the StandardBridge on this network to mint tokens.
        /// @param _to     Address to mint tokens to.
        /// @param _amount Amount of tokens to mint.
        function mint(address _to, uint256 _amount)
            external
            virtual
            onlyBridge
        {
            if (_to == address(0)) {
                revert TransferToZeroAddress();
            }
            _deposit(_to, _amount);
            emit Transfer(address(0), _to, _amount);
        }
        /// @notice Allows the StandardBridge on this network to burn tokens.
        /// @param _from   Address to burn tokens from.
        /// @param _amount Amount of tokens to burn.
        function burn(address _from, uint256 _amount)
            external
            virtual
            onlyBridge
        {
            if (_from == address(0)) {
                revert TransferFromZeroAddress();
            }
            _withdraw(_from, _amount);
            emit Transfer(_from, address(0), _amount);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
    interface IUSDT {
        function approve(address spender, uint256 amount) external;
        function balanceOf(address) external view returns (uint256);
    }
    interface IDssPsm {
        function sellGem(address usr, uint256 gemAmt) external;
        function buyGem(address usr, uint256 gemAmt) external;
        function gemJoin() external view returns (address);
    }
    interface ICurve3Pool {
        function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
    }
    /// @title USDConversions
    /// @notice Stateless helper module for converting between USD tokens (DAI/USDC/USDT).
    ///
    ///         DAI and USDC are converted 1-to-1 using Maker's Peg Stability Mechanism.
    ///         All other tokens conversions are completed through Curve's 3Pool.
    library USDConversions {
        uint256 constant WAD_DECIMALS = 18;
        uint256 constant USD_DECIMALS = 6;
        int128 constant DAI_INDEX = 0;
        int128 constant USDC_INDEX = 1;
        int128 constant USDT_INDEX = 2;
        IERC20 constant DAI = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
        IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
        IUSDT constant USDT = IUSDT(0xdAC17F958D2ee523a2206206994597C13D831ec7);
        IDssPsm constant PSM = IDssPsm(0x89B78CfA322F6C5dE0aBcEecab66Aee45393cC5A);
        ICurve3Pool constant CURVE_3POOL = ICurve3Pool(0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7);
        /// @notice immutable address of PSM's GemJoin contract
        address constant GEM_JOIN = 0x0A59649758aa4d66E25f08Dd01271e891fe52199;
        error InsufficientBalance();
        error MinimumAmountNotMet();
        error IncorrectInputAmountUsed();
        error UnsupportedToken();
        error InvalidExtraData();
        error InvalidTokenIndex();
        /// @notice Initializer
        function _init() internal {
            USDC.approve(address(CURVE_3POOL), type(uint256).max);
            USDC.approve(GEM_JOIN, type(uint256).max);
            USDT.approve(address(CURVE_3POOL), type(uint256).max);
            DAI.approve(address(CURVE_3POOL), type(uint256).max);
            DAI.approve(GEM_JOIN, type(uint256).max);
            DAI.approve(address(PSM), type(uint256).max);
        }
        /// @notice Convert between the 3 stablecoin tokens using Curve's 3Pool and Maker's
        ///         Peg Stability Mechanism.
        /// @param inputToken         Input token index.
        /// @param outputToken        Output token index.
        /// @param inputAmountWad     Input amount in WAD.
        /// @param minOutputAmountWad Minimum amount of output token accepted in WAD.
        /// @return amountReceived Amount of output token received in the token's
        ///         decimal representation.
        function _convert(int128 inputToken, int128 outputToken, uint256 inputAmountWad, uint256 minOutputAmountWad) internal returns (uint256 amountReceived) {
            require(inputToken >= 0 && inputToken < 3 && outputToken >= 0 && outputToken < 3);
            require(inputToken != outputToken);
            if (inputAmountWad > 0) {
                uint256 inputAmount = _convertDecimals(inputAmountWad, inputToken);
                uint256 minOutputAmount = _convertDecimals(minOutputAmountWad, outputToken);
                if (_tokenBalance(inputToken) < inputAmount) {
                    revert InsufficientBalance();
                }
                uint256 beforeBalance = _tokenBalance(outputToken);
                if (inputToken == USDC_INDEX && outputToken == DAI_INDEX) {
                    PSM.sellGem(address(this), inputAmount);
                } else if (inputToken == DAI_INDEX && outputToken == USDC_INDEX) {
                    uint256 beforeInputBalance = _tokenBalance(inputToken);
                    PSM.buyGem(address(this), _wadToUSD(minOutputAmountWad)); // buyGem expects the input amount in USDC
                    uint256 amountSent = beforeInputBalance - _tokenBalance(inputToken);
                    if (amountSent != inputAmountWad) {
                        revert IncorrectInputAmountUsed();
                    }
                } else {
                    CURVE_3POOL.exchange(
                        inputToken,
                        outputToken,
                        inputAmount,
                        minOutputAmount
                    );
                }
                amountReceived = _tokenBalance(outputToken) - beforeBalance;
                if (amountReceived < minOutputAmount) {
                    revert MinimumAmountNotMet();
                }
            }
        }
        /// @notice Convert between supported token pairs, reverting if not supported.
        /// @param inputTokenAddress  Address of the input token.
        /// @param outputTokenAddress Address of the output token.
        /// @param inputAmountWad     Amount of input token to convert in WAD.
        /// @param _extraData         Extra data containing the minimum amount of output token to receive in WAD.
        /// @return amountReceived Amount of output token received in WAD.
        function _convertTo(
            address inputTokenAddress,
            address outputTokenAddress,
            uint256 inputAmountWad,
            bytes memory _extraData
        ) internal returns (uint256 amountReceived) {
            if (inputTokenAddress == outputTokenAddress) {
                return inputAmountWad;
            }
            if (outputTokenAddress == address(DAI)) {
                return _convertToDAI(inputTokenAddress, inputAmountWad, _extraData);
            } else {
                revert UnsupportedToken();
            }
        }
        /// @notice Convert USDC, USDT, and DAI to DAI. If the input token is DAI,
        ///         the input amount is returned without conversion.
        /// @param inputTokenAddress Address of the input token.
        /// @param inputAmountWad    Amount of input token to convert in WAD.
        /// @param _extraData        Extra data containing the minimum amount of USDB to be minted in WAD.
        ///                          Only needed for USDC and USDT. The expected format is: (uint256 minOutputAmountWad).
        /// @return amountReceived Amount of DAI received.
        function _convertToDAI(address inputTokenAddress, uint256 inputAmountWad, bytes memory _extraData) internal returns (uint256 amountReceived) {
            if (inputTokenAddress == address(DAI)) {
                return inputAmountWad;
            }
            if (_extraData.length != 32) {
                revert InvalidExtraData();
            }
            uint256 minOutputAmountWad = abi.decode(_extraData, (uint256));
            if (inputTokenAddress == address(USDC)) {
                return USDConversions._convert(USDC_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
            } else if (inputTokenAddress == address(USDT)) {
                return USDConversions._convert(USDT_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
            } else {
                revert UnsupportedToken();
            }
        }
        /// @notice Get the token address from the Curve token index.
        /// @param index Curve token index.
        /// @return Address of the token.
        function _token(int128 index) private pure returns (address) {
            if (index == USDC_INDEX) {
                return address(USDC);
            } else if (index == USDT_INDEX) {
                return address(USDT);
            } else if (index == DAI_INDEX) {
                return address(DAI);
            } else {
                revert InvalidTokenIndex();
            }
        }
        /// @notice Get the contract's token balance from the Curve token index.
        /// @param index Curve token index.
        /// @return Token balance.
        function _tokenBalance(int128 index) internal view returns (uint256) {
            if (_token(index) == YieldManager(address(this)).TOKEN()) {
                return YieldManager(address(this)).availableBalance();
            } else {
                return IERC20(_token(index)).balanceOf(address(this));
            }
        }
        /// @notice Convert WAD representation to the token's native decimal representation.
        ///         USDT and USDC are both 6 decimals and are converted.
        /// @param wad   Amount in WAD.
        /// @param index Curve 3Pool index of the token.
        /// @return result Amount in native decimals representation.
        function _convertDecimals(uint256 wad, int128 index) internal pure returns (uint256 result) {
            if (index == USDT_INDEX || index == USDC_INDEX) {
                result = _wadToUSD(wad);
            } else {
                result = wad;
            }
        }
        /// @notice Convert value in WAD (18 decimals) to USD (6 decimals).
        /// @param wad Amount to convert in WAD.
        /// @return Amount in USD.
        function _wadToUSD(uint256 wad) internal pure returns (uint256) {
            return _convertDecimals(wad, WAD_DECIMALS, USD_DECIMALS);
        }
        /// @notice Convert value in USD (6 decimals) to WAD (18 decimals).
        /// @param usd Amount to convert in USD.
        /// @return Amount in WAD.
        function _usdToWad(uint256 usd) internal pure returns (uint256) {
            return _convertDecimals(usd, USD_DECIMALS, WAD_DECIMALS);
        }
        /// @notice Convert value to desired output decimals representation.
        /// @param input          Input amount.
        /// @param inputDecimals  Number of decimals in the input.
        /// @param outputDecimals Desired number of decimals in the output.
        /// @return `input` in `outputDecimals`.
        function _convertDecimals(uint256 input, uint256 inputDecimals, uint256 outputDecimals) internal pure returns (uint256) {
            if (inputDecimals > outputDecimals) {
                return input / (10 ** (inputDecimals - outputDecimals));
            } else {
                return input * (10 ** (outputDecimals - inputDecimals));
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
    pragma solidity ^0.8.0;
    import "./IERC165.sol";
    /**
     * @dev Library used to query support of an interface declared via {IERC165}.
     *
     * Note that these functions return the actual result of the query: they do not
     * `revert` if an interface is not supported. It is up to the caller to decide
     * what to do in these cases.
     */
    library ERC165Checker {
        // As per the EIP-165 spec, no interface should ever match 0xffffffff
        bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
        /**
         * @dev Returns true if `account` supports the {IERC165} interface,
         */
        function supportsERC165(address account) internal view returns (bool) {
            // Any contract that implements ERC165 must explicitly indicate support of
            // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
            return
                _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
        }
        /**
         * @dev Returns true if `account` supports the interface defined by
         * `interfaceId`. Support for {IERC165} itself is queried automatically.
         *
         * See {IERC165-supportsInterface}.
         */
        function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
            // query support of both ERC165 as per the spec and support of _interfaceId
            return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
        }
        /**
         * @dev Returns a boolean array where each value corresponds to the
         * interfaces passed in and whether they're supported or not. This allows
         * you to batch check interfaces for a contract where your expectation
         * is that some interfaces may not be supported.
         *
         * See {IERC165-supportsInterface}.
         *
         * _Available since v3.4._
         */
        function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
            internal
            view
            returns (bool[] memory)
        {
            // an array of booleans corresponding to interfaceIds and whether they're supported or not
            bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
            // query support of ERC165 itself
            if (supportsERC165(account)) {
                // query support of each interface in interfaceIds
                for (uint256 i = 0; i < interfaceIds.length; i++) {
                    interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                }
            }
            return interfaceIdsSupported;
        }
        /**
         * @dev Returns true if `account` supports all the interfaces defined in
         * `interfaceIds`. Support for {IERC165} itself is queried automatically.
         *
         * Batch-querying can lead to gas savings by skipping repeated checks for
         * {IERC165} support.
         *
         * See {IERC165-supportsInterface}.
         */
        function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
            // query support of ERC165 itself
            if (!supportsERC165(account)) {
                return false;
            }
            // query support of each interface in _interfaceIds
            for (uint256 i = 0; i < interfaceIds.length; i++) {
                if (!_supportsERC165Interface(account, interfaceIds[i])) {
                    return false;
                }
            }
            // all interfaces supported
            return true;
        }
        /**
         * @notice Query if a contract implements an interface, does not check ERC165 support
         * @param account The address of the contract to query for support of an interface
         * @param interfaceId The interface identifier, as specified in ERC-165
         * @return true if the contract at account indicates support of the interface with
         * identifier interfaceId, false otherwise
         * @dev Assumes that account contains a contract that supports ERC165, otherwise
         * the behavior of this method is undefined. This precondition can be checked
         * with {supportsERC165}.
         * Interface identification is specified in ERC-165.
         */
        function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
            // prepare call
            bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
            // perform static call
            bool success;
            uint256 returnSize;
            uint256 returnValue;
            assembly {
                success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                returnSize := returndatasize()
                returnValue := mload(0x00)
            }
            return success && returnSize >= 0x20 && returnValue > 0;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    /// @title IOptimismMintableERC20
    /// @notice This interface is available on the OptimismMintableERC20 contract.
    ///         We declare it as a separate interface so that it can be used in
    ///         custom implementations of OptimismMintableERC20.
    interface IOptimismMintableERC20 is IERC165 {
        function remoteToken() external view returns (address);
        function bridge() external returns (address);
        function mint(address _to, uint256 _amount) external;
        function burn(address _from, uint256 _amount) external;
    }
    /// @custom:legacy
    /// @title ILegacyMintableERC20
    /// @notice This interface was available on the legacy L2StandardERC20 contract.
    ///         It remains available on the OptimismMintableERC20 contract for
    ///         backwards compatibility.
    interface ILegacyMintableERC20 is IERC165 {
        function l1Token() external view returns (address);
        function mint(address _to, uint256 _amount) external;
        function burn(address _from, uint256 _amount) external;
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
    import { Semver } from "src/universal/Semver.sol";
    /// @title OptimismMintableERC20
    /// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
    ///         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
    ///         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
    ///         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
    ///         meant for use on L2.
    contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver {
        /// @notice Address of the corresponding version of this token on the remote chain.
        address public immutable REMOTE_TOKEN;
        /// @notice Address of the StandardBridge on this network.
        address public immutable BRIDGE;
        /// @notice Decimals of the token
        uint8 private immutable DECIMALS;
        /// @notice Emitted whenever tokens are minted for an account.
        /// @param account Address of the account tokens are being minted for.
        /// @param amount  Amount of tokens minted.
        event Mint(address indexed account, uint256 amount);
        /// @notice Emitted whenever tokens are burned from an account.
        /// @param account Address of the account tokens are being burned from.
        /// @param amount  Amount of tokens burned.
        event Burn(address indexed account, uint256 amount);
        /// @notice A modifier that only allows the bridge to call
        modifier onlyBridge() {
            require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
            _;
        }
        /// @custom:semver 1.2.1
        /// @param _bridge      Address of the L2 standard bridge.
        /// @param _remoteToken Address of the corresponding L1 token.
        /// @param _name        ERC20 name.
        /// @param _symbol      ERC20 symbol.
        constructor(
            address _bridge,
            address _remoteToken,
            string memory _name,
            string memory _symbol,
            uint8 _decimals
        )
            ERC20(_name, _symbol)
            Semver(1, 2, 1)
        {
            REMOTE_TOKEN = _remoteToken;
            BRIDGE = _bridge;
            DECIMALS = _decimals;
        }
        /// @notice Allows the StandardBridge on this network to mint tokens.
        /// @param _to     Address to mint tokens to.
        /// @param _amount Amount of tokens to mint.
        function mint(
            address _to,
            uint256 _amount
        )
            external
            virtual
            override(IOptimismMintableERC20, ILegacyMintableERC20)
            onlyBridge
        {
            _mint(_to, _amount);
            emit Mint(_to, _amount);
        }
        /// @notice Allows the StandardBridge on this network to burn tokens.
        /// @param _from   Address to burn tokens from.
        /// @param _amount Amount of tokens to burn.
        function burn(
            address _from,
            uint256 _amount
        )
            external
            virtual
            override(IOptimismMintableERC20, ILegacyMintableERC20)
            onlyBridge
        {
            _burn(_from, _amount);
            emit Burn(_from, _amount);
        }
        /// @notice ERC165 interface check function.
        /// @param _interfaceId Interface ID to check.
        /// @return Whether or not the interface is supported by this contract.
        function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
            bytes4 iface1 = type(IERC165).interfaceId;
            // Interface corresponding to the legacy L2StandardERC20.
            bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
            // Interface corresponding to the updated OptimismMintableERC20 (this contract).
            bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
            return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
        }
        /// @custom:legacy
        /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
        function l1Token() public view returns (address) {
            return REMOTE_TOKEN;
        }
        /// @custom:legacy
        /// @notice Legacy getter for the bridge. Use BRIDGE going forward.
        function l2Bridge() public view returns (address) {
            return BRIDGE;
        }
        /// @custom:legacy
        /// @notice Legacy getter for REMOTE_TOKEN.
        function remoteToken() public view returns (address) {
            return REMOTE_TOKEN;
        }
        /// @custom:legacy
        /// @notice Legacy getter for BRIDGE.
        function bridge() public view returns (address) {
            return BRIDGE;
        }
        /// @dev Returns the number of decimals used to get its user representation.
        /// For example, if `decimals` equals `2`, a balance of `505` tokens should
        /// be displayed to a user as `5.05` (`505 / 10 ** 2`).
        /// NOTE: This information is only used for _display_ purposes: it in
        /// no way affects any of the arithmetic of the contract, including
        /// {IERC20-balanceOf} and {IERC20-transfer}.
        function decimals() public view override returns (uint8) {
            return DECIMALS;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/AddressUpgradeable.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```solidity
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     *
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
         * constructor.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: setting the version to 255 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized != type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
        /**
         * @dev Returns the highest version that has been initialized. See {reinitializer}.
         */
        function _getInitializedVersion() internal view returns (uint8) {
            return _initialized;
        }
        /**
         * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
         */
        function _isInitializing() internal view returns (bool) {
            return _initializing;
        }
    }
    // SPDX-License-Identifier: Apache-2.0
    /*
     * Copyright 2019-2021, Offchain Labs, Inc.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *    http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    pragma solidity ^0.8.0;
    library AddressAliasHelper {
        uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
        /// @notice Utility function that converts the address in the L1 that submitted a tx to
        /// the inbox to the msg.sender viewed in the L2
        /// @param l1Address the address in the L1 that triggered the tx to L2
        /// @return l2Address L2 address as viewed in msg.sender
        function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
            unchecked {
                l2Address = address(uint160(l1Address) + offset);
            }
        }
        /// @notice Utility function that converts the msg.sender viewed in the L2 to the
        /// address in the L1 that submitted a tx to the inbox
        /// @param l2Address L2 address as viewed in msg.sender
        /// @return l1Address the address in the L1 that triggered the tx to L2
        function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
            unchecked {
                l1Address = address(uint160(l2Address) - offset);
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { GasMode, IGas } from "src/L2/Gas.sol";
    enum YieldMode {
        AUTOMATIC,
        VOID,
        CLAIMABLE
    }
    interface IYield {
        function configure(address contractAddress, uint8 flags) external returns (uint256);
        function claim(address contractAddress, address recipientOfYield, uint256 desiredAmount) external returns (uint256);
        function getClaimableAmount(address contractAddress) external view returns (uint256);
        function getConfiguration(address contractAddress) external view returns (uint8);
    }
    interface IBlast{
        // configure
        function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external;
        function configure(YieldMode _yield, GasMode gasMode, address governor) external;
        // base configuration options
        function configureClaimableYield() external;
        function configureClaimableYieldOnBehalf(address contractAddress) external;
        function configureAutomaticYield() external;
        function configureAutomaticYieldOnBehalf(address contractAddress) external;
        function configureVoidYield() external;
        function configureVoidYieldOnBehalf(address contractAddress) external;
        function configureClaimableGas() external;
        function configureClaimableGasOnBehalf(address contractAddress) external;
        function configureVoidGas() external;
        function configureVoidGasOnBehalf(address contractAddress) external;
        function configureGovernor(address _governor) external;
        function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external;
        // claim yield
        function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
        function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);
        // claim gas
        function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256);
        // NOTE: can be off by 1 bip
        function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256);
        function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256);
        function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
        // read functions
        function readClaimableYield(address contractAddress) external view returns (uint256);
        function readYieldConfiguration(address contractAddress) external view returns (uint8);
        function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode);
    }
    /// @custom:predeploy 0x4300000000000000000000000000000000000002
    /// @title Blast
    contract Blast is IBlast, Initializable, Semver {
        address public immutable YIELD_CONTRACT;
        address public immutable GAS_CONTRACT;
        mapping(address => address) public governorMap;
        constructor(address _gasContract, address _yieldContract) Semver(1, 0, 0) {
            GAS_CONTRACT = _gasContract;
            YIELD_CONTRACT = _yieldContract;
            _disableInitializers();
        }
        function initialize() public initializer {}
        /**
         * @notice Checks if the caller is the governor of the contract
         * @param contractAddress The address of the contract
         * @return A boolean indicating if the caller is the governor
         */
        function isGovernor(address contractAddress) public view returns (bool) {
            return msg.sender == governorMap[contractAddress];
        }
        /**
         * @notice Checks if the governor is not set for the contract
         * @param contractAddress The address of the contract
         * @return boolean indicating if the governor is not set
         */
        function governorNotSet(address contractAddress) internal view returns (bool) {
            return governorMap[contractAddress] == address(0);
        }
        /**
         * @notice Checks if the caller is authorized
         * @param contractAddress The address of the contract
         * @return A boolean indicating if the caller is authorized
         */
        function isAuthorized(address contractAddress) public view returns (bool) {
            return isGovernor(contractAddress) || (governorNotSet(contractAddress) && msg.sender == contractAddress);
        }
        /**
         * @notice contract configures its yield and gas modes and sets the governor. called by contract
         * @param _yieldMode The yield mode to be set
         * @param _gasMode The gas mode to be set
         * @param governor The address of the governor to be set
         */
        function configure(YieldMode _yieldMode, GasMode _gasMode, address governor) external {
            // requires that no governor is set for contract
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            // set governor
            governorMap[msg.sender] = governor;
            // set gas mode
            IGas(GAS_CONTRACT).setGasMode(msg.sender, _gasMode);
            // set yield mode
            IYield(YIELD_CONTRACT).configure(msg.sender, uint8(_yieldMode));
        }
        /**
         * @notice Configures the yield and gas modes and sets the governor for a specific contract. called by authorized user
         * @param contractAddress The address of the contract to be configured
         * @param _yieldMode The yield mode to be set
         * @param _gasMode The gas mode to be set
         * @param _newGovernor The address of the new governor to be set
         */
        function configureContract(address contractAddress, YieldMode _yieldMode, GasMode _gasMode, address _newGovernor) external {
            // only allow governor, or if no governor is set, the contract itself to configure
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            // set governor
            governorMap[contractAddress] = _newGovernor;
            // set gas mode
            IGas(GAS_CONTRACT).setGasMode(contractAddress, _gasMode);
            // set yield mode
            IYield(YIELD_CONTRACT).configure(contractAddress, uint8(_yieldMode));
        }
        /**
         * @notice Configures the yield mode to CLAIMABLE for the contract that calls this function
         */
        function configureClaimableYield() external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.CLAIMABLE));
        }
        /**
         * @notice Configures the yield mode to CLAIMABLE for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureClaimableYieldOnBehalf(address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.CLAIMABLE));
        }
        /**
         * @notice Configures the yield mode to AUTOMATIC for the contract that calls this function
         */
        function configureAutomaticYield() external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.AUTOMATIC));
        }
        /**
         * @notice Configures the yield mode to AUTOMATIC for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureAutomaticYieldOnBehalf(address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.AUTOMATIC));
        }
        /**
         * @notice Configures the yield mode to VOID for the contract that calls this function
         */
        function configureVoidYield() external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.VOID));
        }
        /**
         * @notice Configures the yield mode to VOID for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureVoidYieldOnBehalf(address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.VOID));
        }
        /**
         * @notice Configures the gas mode to CLAIMABLE for the contract that calls this function
         */
        function configureClaimableGas() external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.CLAIMABLE);
        }
        /**
         * @notice Configures the gas mode to CLAIMABLE for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureClaimableGasOnBehalf(address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.CLAIMABLE);
        }
        /**
         * @notice Configures the gas mode to VOID for the contract that calls this function
         */
        function configureVoidGas() external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.VOID);
        }
        /**
         * @notice Configures the gas mode to void for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureVoidGasOnBehalf(address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.VOID);
        }
        /**
         * @notice Configures the governor for the contract that calls this function
         */
        function configureGovernor(address _governor) external {
            require(isAuthorized(msg.sender), "not authorized to configure contract");
            governorMap[msg.sender] = _governor;
        }
        /**
         * @notice Configures the governor for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract to be configured
         */
        function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external {
            require(isAuthorized(contractAddress), "not authorized to configure contract");
            governorMap[contractAddress] = _newGovernor;
        }
        // claim methods
        /**
         * @notice Claims yield for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract for which yield is to be claimed
         * @param recipientOfYield The address of the recipient of the yield
         * @param amount The amount of yield to be claimed
         * @return The amount of yield that was claimed
         */
        function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not authorized to claim yield");
            return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
        }
        /**
         * @notice Claims all yield for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract for which all yield is to be claimed
         * @param recipientOfYield The address of the recipient of the yield
         * @return The amount of yield that was claimed
         */
        function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not authorized to claim yield");
            uint256 amount = IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
            return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
        }
        /**
         * @notice Claims all gas for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract for which all gas is to be claimed
         * @param recipientOfGas The address of the recipient of the gas
         * @return The amount of gas that was claimed
         */
        function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not allowed to claim all gas");
            return IGas(GAS_CONTRACT).claimAll(contractAddress, recipientOfGas);
        }
        /**
         * @notice Claims gas at a minimum claim rate for a specific contract, with error rate '1'. Called by an authorized user
         * @param contractAddress The address of the contract for which gas is to be claimed
         * @param recipientOfGas The address of the recipient of the gas
         * @param minClaimRateBips The minimum claim rate in basis points
         * @return The amount of gas that was claimed
         */
        function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not allowed to claim gas at min claim rate");
            return IGas(GAS_CONTRACT).claimGasAtMinClaimRate(contractAddress, recipientOfGas, minClaimRateBips);
        }
        /**
         * @notice Claims gas available to be claimed at max claim rate for a specific contract. Called by an authorized user
         * @param contractAddress The address of the contract for which maximum gas is to be claimed
         * @param recipientOfGas The address of the recipient of the gas
         * @return The amount of gas that was claimed
         */
        function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not allowed to claim max gas");
            return IGas(GAS_CONTRACT).claimMax(contractAddress, recipientOfGas);
        }
        /**
         * @notice Claims a specific amount of gas for a specific contract. claim rate governed by integral of gas over time
         * @param contractAddress The address of the contract for which gas is to be claimed
         * @param recipientOfGas The address of the recipient of the gas
         * @param gasToClaim The amount of gas to be claimed
         * @param gasSecondsToConsume The amount of gas seconds to consume
         * @return The amount of gas that was claimed
         */
        function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256) {
            require(isAuthorized(contractAddress), "Not allowed to claim gas");
            return IGas(GAS_CONTRACT).claim(contractAddress, recipientOfGas, gasToClaim, gasSecondsToConsume);
        }
        /**
         * @notice Reads the claimable yield for a specific contract
         * @param contractAddress The address of the contract for which the claimable yield is to be read
         * @return claimable yield
         */
        function readClaimableYield(address contractAddress) public view returns (uint256) {
            return IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
        }
        /**
         * @notice Reads the yield configuration for a specific contract
         * @param contractAddress The address of the contract for which the yield configuration is to be read
         * @return uint8 representing yield enum
         */
        function readYieldConfiguration(address contractAddress) public view returns (uint8) {
            return IYield(YIELD_CONTRACT).getConfiguration(contractAddress);
        }
        /**
         * @notice Reads the gas parameters for a specific contract
         * @param contractAddress The address of the contract for which the gas parameters are to be read
         * @return uint256 representing the accumulated ether seconds
         * @return uint256 representing ether balance
         * @return uint256 representing last update timestamp
         * @return GasMode representing the gas mode (VOID, CLAIMABLE)
         */
        function readGasParams(address contractAddress) public view returns (uint256, uint256, uint256, GasMode) {
            return IGas(GAS_CONTRACT).readGasParams(contractAddress);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { Types } from "./Types.sol";
    import { Encoding } from "./Encoding.sol";
    /// @title Hashing
    /// @notice Hashing handles Optimism's various different hashing schemes.
    library Hashing {
        /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
        ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
        ///         system.
        /// @param _tx User deposit transaction to hash.
        /// @return Hash of the RLP encoded L2 deposit transaction.
        function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
            return keccak256(Encoding.encodeDepositTransaction(_tx));
        }
        /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
        ///         of the L2 transaction that corresponds to a deposit is unique and is
        ///         deterministically generated from L1 transaction data.
        /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
        /// @param _logIndex    The index of the log that created the deposit transaction.
        /// @return Hash of the deposit transaction's "source hash".
        function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
            bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
            return keccak256(abi.encode(bytes32(0), depositId));
        }
        /// @notice Hashes the cross domain message based on the version that is encoded into the
        ///         message nonce.
        /// @param _nonce    Message nonce with version encoded into the first two bytes.
        /// @param _sender   Address of the sender of the message.
        /// @param _target   Address of the target of the message.
        /// @param _value    ETH value to send to the target.
        /// @param _gasLimit Gas limit to use for the message.
        /// @param _data     Data to send with the message.
        /// @return Hashed cross domain message.
        function hashCrossDomainMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        )
            internal
            pure
            returns (bytes32)
        {
            (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
            if (version == 0) {
                return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
            } else if (version == 1) {
                return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
            } else {
                revert("Hashing: unknown cross domain message version");
            }
        }
        /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
        /// @param _target Address of the target of the message.
        /// @param _sender Address of the sender of the message.
        /// @param _data   Data to send with the message.
        /// @param _nonce  Message nonce.
        /// @return Hashed cross domain message.
        function hashCrossDomainMessageV0(
            address _target,
            address _sender,
            bytes memory _data,
            uint256 _nonce
        )
            internal
            pure
            returns (bytes32)
        {
            return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
        }
        /// @notice Hashes a cross domain message based on the V1 (current) encoding.
        /// @param _nonce    Message nonce.
        /// @param _sender   Address of the sender of the message.
        /// @param _target   Address of the target of the message.
        /// @param _value    ETH value to send to the target.
        /// @param _gasLimit Gas limit to use for the message.
        /// @param _data     Data to send with the message.
        /// @return Hashed cross domain message.
        function hashCrossDomainMessageV1(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        )
            internal
            pure
            returns (bytes32)
        {
            return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
        }
        /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
        /// @param _tx Withdrawal transaction to hash.
        /// @return Hashed withdrawal transaction.
        function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
            return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
        }
        /// @notice Hashes the various elements of an output root proof into an output root hash which
        ///         can be used to check if the proof is valid.
        /// @param _outputRootProof Output root proof which should hash to an output root.
        /// @return Hashed output root proof.
        function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
            return keccak256(
                abi.encode(
                    _outputRootProof.version,
                    _outputRootProof.stateRoot,
                    _outputRootProof.messagePasserStorageRoot,
                    _outputRootProof.latestBlockhash
                )
            );
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { Types } from "./Types.sol";
    import { Hashing } from "./Hashing.sol";
    import { RLPWriter } from "./rlp/RLPWriter.sol";
    /// @title Encoding
    /// @notice Encoding handles Optimism's various different encoding schemes.
    library Encoding {
        /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
        ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
        ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
        /// @param _tx User deposit transaction to encode.
        /// @return RLP encoded L2 deposit transaction.
        function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
            bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
            bytes[] memory raw = new bytes[](8);
            raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
            raw[1] = RLPWriter.writeAddress(_tx.from);
            raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
            raw[3] = RLPWriter.writeUint(_tx.mint);
            raw[4] = RLPWriter.writeUint(_tx.value);
            raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
            raw[6] = RLPWriter.writeBool(false);
            raw[7] = RLPWriter.writeBytes(_tx.data);
            return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
        }
        /// @notice Encodes the cross domain message based on the version that is encoded into the
        ///         message nonce.
        /// @param _nonce    Message nonce with version encoded into the first two bytes.
        /// @param _sender   Address of the sender of the message.
        /// @param _target   Address of the target of the message.
        /// @param _value    ETH value to send to the target.
        /// @param _gasLimit Gas limit to use for the message.
        /// @param _data     Data to send with the message.
        /// @return Encoded cross domain message.
        function encodeCrossDomainMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        )
            internal
            pure
            returns (bytes memory)
        {
            (, uint16 version) = decodeVersionedNonce(_nonce);
            if (version == 0) {
                return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
            } else if (version == 1) {
                return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
            } else {
                revert("Encoding: unknown cross domain message version");
            }
        }
        /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
        /// @param _target Address of the target of the message.
        /// @param _sender Address of the sender of the message.
        /// @param _data   Data to send with the message.
        /// @param _nonce  Message nonce.
        /// @return Encoded cross domain message.
        function encodeCrossDomainMessageV0(
            address _target,
            address _sender,
            bytes memory _data,
            uint256 _nonce
        )
            internal
            pure
            returns (bytes memory)
        {
            return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
        }
        /// @notice Encodes a cross domain message based on the V1 (current) encoding.
        /// @param _nonce    Message nonce.
        /// @param _sender   Address of the sender of the message.
        /// @param _target   Address of the target of the message.
        /// @param _value    ETH value to send to the target.
        /// @param _gasLimit Gas limit to use for the message.
        /// @param _data     Data to send with the message.
        /// @return Encoded cross domain message.
        function encodeCrossDomainMessageV1(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        )
            internal
            pure
            returns (bytes memory)
        {
            return abi.encodeWithSignature(
                "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                _nonce,
                _sender,
                _target,
                _value,
                _gasLimit,
                _data
            );
        }
        /// @notice Adds a version number into the first two bytes of a message nonce.
        /// @param _nonce   Message nonce to encode into.
        /// @param _version Version number to encode into the message nonce.
        /// @return Message nonce with version encoded into the first two bytes.
        function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
            uint256 nonce;
            assembly {
                nonce := or(shl(240, _version), _nonce)
            }
            return nonce;
        }
        /// @notice Pulls the version out of a version-encoded nonce.
        /// @param _nonce Message nonce with version encoded into the first two bytes.
        /// @return Nonce without encoded version.
        /// @return Version of the message.
        function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
            uint240 nonce;
            uint16 version;
            assembly {
                nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                version := shr(240, _nonce)
            }
            return (nonce, version);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { ResourceMetering } from "../L1/ResourceMetering.sol";
    /// @title Constants
    /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
    ///         the stuff used in multiple contracts. Constants that only apply to a single contract
    ///         should be defined in that contract instead.
    library Constants {
        /// @notice Special address to be used as the tx origin for gas estimation calls in the
        ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
        ///         the minimum gas limit specified by the user is not actually enough to execute the
        ///         given message and you're attempting to estimate the actual necessary gas limit. We
        ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
        ///         never have any code on any EVM chain.
        address internal constant ESTIMATION_ADDRESS = address(1);
        /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
        ///         CrossDomainMessenger contracts before an actual sender is set. This value is
        ///         non-zero to reduce the gas cost of message passing transactions.
        address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
        /// @notice The storage slot that holds the address of a proxy implementation.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
        bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /// @notice The storage slot that holds the address of the owner.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
        bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /// @notice Returns the default values for the ResourceConfig. These are the recommended values
        ///         for a production network.
        function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
            ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                maxResourceLimit: 20_000_000,
                elasticityMultiplier: 10,
                baseFeeMaxChangeDenominator: 8,
                minimumBaseFee: 1 gwei,
                systemTxMaxGas: 1_000_000,
                maximumBaseFee: type(uint128).max
            });
            return config;
        }
        /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
        ///         each time that the contracts are deployed.
        uint8 internal constant INITIALIZER = 1;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/Address.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { Types } from "src/libraries/Types.sol";
    import { Constants } from "src/libraries/Constants.sol";
    /// @custom:proxied
    /// @title L2OutputOracle
    /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
    ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
    ///         these outputs to verify information about the state of L2.
    contract L2OutputOracle is Initializable, ISemver {
        /// @notice The interval in L2 blocks at which checkpoints must be submitted.
        ///         Although this is immutable, it can safely be modified by upgrading the
        ///         implementation contract.
        ///         Public getter is legacy and will be removed in the future. Use `submissionInterval`
        ///         instead.
        /// @custom:legacy
        uint256 public immutable SUBMISSION_INTERVAL;
        /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
        ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime`
        ///         instead.
        /// @custom:legacy
        uint256 public immutable L2_BLOCK_TIME;
        /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
        ///         Public getter is legacy and will be removed in the future. Use
        //          `finalizationPeriodSeconds` instead.
        /// @custom:legacy
        uint256 public immutable FINALIZATION_PERIOD_SECONDS;
        /// @notice The number of the first L2 block recorded in this contract.
        uint256 public startingBlockNumber;
        /// @notice The timestamp of the first L2 block recorded in this contract.
        uint256 public startingTimestamp;
        /// @notice An array of L2 output proposals.
        Types.OutputProposal[] internal l2Outputs;
        /// @notice The address of the challenger. Can be updated via reinitialize.
        /// @custom:network-specific
        address public challenger;
        /// @notice The address of the proposer. Can be updated via reinitialize.
        /// @custom:network-specific
        address public proposer;
        /// @notice Emitted when an output is proposed.
        /// @param outputRoot    The output root.
        /// @param l2OutputIndex The index of the output in the l2Outputs array.
        /// @param l2BlockNumber The L2 block number of the output root.
        /// @param l1Timestamp   The L1 timestamp when proposed.
        event OutputProposed(
            bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
        );
        /// @notice Emitted when outputs are deleted.
        /// @param prevNextOutputIndex Next L2 output index before the deletion.
        /// @param newNextOutputIndex  Next L2 output index after the deletion.
        event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
        /// @notice Semantic version.
        /// @custom:semver 1.6.0
        string public constant version = "1.6.0";
        /// @notice Constructs the L2OutputOracle contract.
        /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
        /// @param _l2BlockTime         The time per L2 block, in seconds.
        /// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
        //                                    to be considered canonical.
        constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
            require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
            require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
            SUBMISSION_INTERVAL = _submissionInterval;
            L2_BLOCK_TIME = _l2BlockTime;
            FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
            initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
        }
        /// @notice Initializer.
        /// @param _startingBlockNumber Block number for the first recoded L2 block.
        /// @param _startingTimestamp   Timestamp for the first recoded L2 block.
        /// @param _proposer            The address of the proposer.
        /// @param _challenger          The address of the challenger.
        function initialize(
            uint256 _startingBlockNumber,
            uint256 _startingTimestamp,
            address _proposer,
            address _challenger
        )
            public
            reinitializer(Constants.INITIALIZER)
        {
            require(
                _startingTimestamp <= block.timestamp,
                "L2OutputOracle: starting L2 timestamp must be less than current time"
            );
            startingTimestamp = _startingTimestamp;
            startingBlockNumber = _startingBlockNumber;
            proposer = _proposer;
            challenger = _challenger;
        }
        /// @notice Getter for the output proposal submission interval.
        function submissionInterval() external view returns (uint256) {
            return SUBMISSION_INTERVAL;
        }
        /// @notice Getter for the L2 block time.
        function l2BlockTime() external view returns (uint256) {
            return L2_BLOCK_TIME;
        }
        /// @notice Getter for the finalization period.
        function finalizationPeriodSeconds() external view returns (uint256) {
            return FINALIZATION_PERIOD_SECONDS;
        }
        /// @notice Getter for the challenger address. This will be removed
        ///         in the future, use `challenger` instead.
        /// @custom:legacy
        function CHALLENGER() external view returns (address) {
            return challenger;
        }
        /// @notice Getter for the proposer address. This will be removed in the
        ///         future, use `proposer` instead.
        /// @custom:legacy
        function PROPOSER() external view returns (address) {
            return proposer;
        }
        /// @notice Deletes all output proposals after and including the proposal that corresponds to
        ///         the given output index. Only the challenger address can delete outputs.
        /// @param _l2OutputIndex Index of the first L2 output to be deleted.
        ///                       All outputs after this output will also be deleted.
        // solhint-disable-next-line ordering
        function deleteL2Outputs(uint256 _l2OutputIndex) external {
            require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
            // Make sure we're not *increasing* the length of the array.
            require(
                _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
            );
            // Do not allow deleting any outputs that have already been finalized.
            require(
                block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                "L2OutputOracle: cannot delete outputs that have already been finalized"
            );
            uint256 prevNextL2OutputIndex = nextOutputIndex();
            // Use assembly to delete the array elements because Solidity doesn't allow it.
            assembly {
                sstore(l2Outputs.slot, _l2OutputIndex)
            }
            emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
        }
        /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
        ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
        ///         order to be accepted. This function may only be called by the Proposer.
        /// @param _outputRoot    The L2 output of the checkpoint block.
        /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
        /// @param _l1BlockHash   A block hash which must be included in the current chain.
        /// @param _l1BlockNumber The block number with the specified block hash.
        function proposeL2Output(
            bytes32 _outputRoot,
            uint256 _l2BlockNumber,
            bytes32 _l1BlockHash,
            uint256 _l1BlockNumber
        )
            external
            payable
        {
            require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
            require(
                _l2BlockNumber == nextBlockNumber(),
                "L2OutputOracle: block number must be equal to next expected block number"
            );
            require(
                computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                "L2OutputOracle: cannot propose L2 output in the future"
            );
            require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
            if (_l1BlockHash != bytes32(0)) {
                // This check allows the proposer to propose an output based on a given L1 block,
                // without fear that it will be reorged out.
                // It will also revert if the blockheight provided is more than 256 blocks behind the
                // chain tip (as the hash will return as zero). This does open the door to a griefing
                // attack in which the proposer's submission is censored until the block is no longer
                // retrievable, if the proposer is experiencing this attack it can simply leave out the
                // blockhash value, and delay submission until it is confident that the L1 block is
                // finalized.
                require(
                    blockhash(_l1BlockNumber) == _l1BlockHash,
                    "L2OutputOracle: block hash does not match the hash at the expected height"
                );
            }
            emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
            l2Outputs.push(
                Types.OutputProposal({
                    outputRoot: _outputRoot,
                    timestamp: uint128(block.timestamp),
                    l2BlockNumber: uint128(_l2BlockNumber)
                })
            );
        }
        /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
        /// @param _l2OutputIndex Index of the output to return.
        /// @return The output at the given index.
        function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
            return l2Outputs[_l2OutputIndex];
        }
        /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
        ///         Uses a binary search to find the first output greater than or equal to the given
        ///         block.
        /// @param _l2BlockNumber L2 block number to find a checkpoint for.
        /// @return Index of the first checkpoint that commits to the given L2 block number.
        function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
            // Make sure an output for this block number has actually been proposed.
            require(
                _l2BlockNumber <= latestBlockNumber(),
                "L2OutputOracle: cannot get output for a block that has not been proposed"
            );
            // Make sure there's at least one output proposed.
            require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
            // Find the output via binary search, guaranteed to exist.
            uint256 lo = 0;
            uint256 hi = l2Outputs.length;
            while (lo < hi) {
                uint256 mid = (lo + hi) / 2;
                if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                    lo = mid + 1;
                } else {
                    hi = mid;
                }
            }
            return lo;
        }
        /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
        ///         Uses a binary search to find the first output greater than or equal to the given
        ///         block.
        /// @param _l2BlockNumber L2 block number to find a checkpoint for.
        /// @return First checkpoint that commits to the given L2 block number.
        function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
            return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
        }
        /// @notice Returns the number of outputs that have been proposed.
        ///         Will revert if no outputs have been proposed yet.
        /// @return The number of outputs that have been proposed.
        function latestOutputIndex() external view returns (uint256) {
            return l2Outputs.length - 1;
        }
        /// @notice Returns the index of the next output to be proposed.
        /// @return The index of the next output to be proposed.
        function nextOutputIndex() public view returns (uint256) {
            return l2Outputs.length;
        }
        /// @notice Returns the block number of the latest submitted L2 output proposal.
        ///         If no proposals been submitted yet then this function will return the starting
        ///         block number.
        /// @return Latest submitted L2 block number.
        function latestBlockNumber() public view returns (uint256) {
            return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
        }
        /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
        /// @return Next L2 block number.
        function nextBlockNumber() public view returns (uint256) {
            return latestBlockNumber() + SUBMISSION_INTERVAL;
        }
        /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
        /// @param _l2BlockNumber The L2 block number of the target block.
        /// @return L2 timestamp of the given block.
        function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
            return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { ResourceMetering } from "src/L1/ResourceMetering.sol";
    import { Storage } from "src/libraries/Storage.sol";
    import { Constants } from "src/libraries/Constants.sol";
    /// @title SystemConfig
    /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
    ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
    ///         the L2 chain.
    contract SystemConfig is OwnableUpgradeable, ISemver {
        /// @notice Enum representing different types of updates.
        /// @custom:value BATCHER              Represents an update to the batcher hash.
        /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
        /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
        /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
        ///                                    block distrubution.
        enum UpdateType {
            BATCHER,
            GAS_CONFIG,
            GAS_LIMIT,
            UNSAFE_BLOCK_SIGNER
        }
        /// @notice Struct representing the addresses of L1 system contracts. These should be the
        ///         proxies and will differ for each OP Stack chain.
        struct Addresses {
            address l1CrossDomainMessenger;
            address l1ERC721Bridge;
            address l1StandardBridge;
            address l2OutputOracle;
            address optimismPortal;
            address optimismMintableERC20Factory;
        }
        /// @notice Version identifier, used for upgrades.
        uint256 public constant VERSION = 0;
        /// @notice Storage slot that the unsafe block signer is stored at.
        ///         Storing it at this deterministic storage slot allows for decoupling the storage
        ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
        ///         proof to fetch this value.
        /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
        ///         User input should not be placed in storage in this contract until this migration
        ///         happens. It is unlikely that keccak second preimage resistance will be broken,
        ///         but it is better to be safe than sorry.
        bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
        /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
        bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
            bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
        /// @notice Storage slot that the L1ERC721Bridge address is stored at.
        bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
        /// @notice Storage slot that the L1StandardBridge address is stored at.
        bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
        /// @notice Storage slot that the L2OutputOracle address is stored at.
        bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
        /// @notice Storage slot that the OptimismPortal address is stored at.
        bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
        /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
        bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
            bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
        /// @notice Storage slot that the batch inbox address is stored at.
        bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
        /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
        uint256 public overhead;
        /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
        uint256 public scalar;
        /// @notice Identifier for the batcher.
        ///         For version 1 of this configuration, this is represented as an address left-padded
        ///         with zeros to 32 bytes.
        bytes32 public batcherHash;
        /// @notice L2 block gas limit.
        uint64 public gasLimit;
        /// @notice The configuration for the deposit fee market.
        ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
        ///         Set as internal with a getter so that the struct is returned instead of a tuple.
        ResourceMetering.ResourceConfig internal _resourceConfig;
        /// @notice Emitted when configuration is updated.
        /// @param version    SystemConfig version.
        /// @param updateType Type of update.
        /// @param data       Encoded update data.
        event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
        /// @notice The block at which the op-node can start searching for logs from.
        uint256 public startBlock;
        /// @notice Semantic version.
        /// @custom:semver 1.10.0
        string public constant version = "1.10.0";
        /// @notice Constructs the SystemConfig contract. Cannot set
        ///         the owner to `address(0)` due to the Ownable contract's
        ///         implementation, so set it to `address(0xdEaD)`
        constructor() {
            initialize({
                _owner: address(0xdEaD),
                _overhead: 0,
                _scalar: 0,
                _batcherHash: bytes32(0),
                _gasLimit: 1,
                _unsafeBlockSigner: address(0),
                _config: ResourceMetering.ResourceConfig({
                    maxResourceLimit: 1,
                    elasticityMultiplier: 1,
                    baseFeeMaxChangeDenominator: 2,
                    minimumBaseFee: 0,
                    systemTxMaxGas: 0,
                    maximumBaseFee: 0
                }),
                _startBlock: type(uint256).max,
                _batchInbox: address(0),
                _addresses: SystemConfig.Addresses({
                    l1CrossDomainMessenger: address(0),
                    l1ERC721Bridge: address(0),
                    l1StandardBridge: address(0),
                    l2OutputOracle: address(0),
                    optimismPortal: address(0),
                    optimismMintableERC20Factory: address(0)
                })
            });
        }
        /// @notice Initializer.
        ///         The resource config must be set before the require check.
        /// @param _owner             Initial owner of the contract.
        /// @param _overhead          Initial overhead value.
        /// @param _scalar            Initial scalar value.
        /// @param _batcherHash       Initial batcher hash.
        /// @param _gasLimit          Initial gas limit.
        /// @param _unsafeBlockSigner Initial unsafe block signer address.
        /// @param _config            Initial ResourceConfig.
        /// @param _startBlock        Starting block for the op-node to search for logs from.
        ///                           Contracts that were deployed before this field existed
        ///                           need to have this field set manually via an override.
        ///                           Newly deployed contracts should set this value to uint256(0).
        /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
        ///                           canonical data.
        /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
        function initialize(
            address _owner,
            uint256 _overhead,
            uint256 _scalar,
            bytes32 _batcherHash,
            uint64 _gasLimit,
            address _unsafeBlockSigner,
            ResourceMetering.ResourceConfig memory _config,
            uint256 _startBlock,
            address _batchInbox,
            SystemConfig.Addresses memory _addresses
        )
            public
            reinitializer(Constants.INITIALIZER)
        {
            __Ownable_init();
            transferOwnership(_owner);
            // These are set in ascending order of their UpdateTypes.
            _setBatcherHash(_batcherHash);
            _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
            _setGasLimit(_gasLimit);
            _setUnsafeBlockSigner(_unsafeBlockSigner);
            Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
            Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
            Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
            Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
            Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
            Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
            Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
            _setStartBlock(_startBlock);
            _setResourceConfig(_config);
            require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
        }
        /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
        ///         operate. The L2 gas limit must be larger than or equal to the amount of
        ///         gas that is allocated for deposits per block plus the amount of gas that
        ///         is allocated for the system transaction.
        ///         This function is used to determine if changes to parameters are safe.
        /// @return uint64 Minimum gas limit.
        function minimumGasLimit() public view returns (uint64) {
            return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
        }
        /// @notice High level getter for the unsafe block signer address.
        ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
        ///         key corresponding to this address.
        /// @return addr_ Address of the unsafe block signer.
        // solhint-disable-next-line ordering
        function unsafeBlockSigner() public view returns (address addr_) {
            addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
        }
        /// @notice Getter for the L1CrossDomainMessenger address.
        function l1CrossDomainMessenger() external view returns (address addr_) {
            addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
        }
        /// @notice Getter for the L1ERC721Bridge address.
        function l1ERC721Bridge() external view returns (address addr_) {
            addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
        }
        /// @notice Getter for the L1StandardBridge address.
        function l1StandardBridge() external view returns (address addr_) {
            addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
        }
        /// @notice Getter for the L2OutputOracle address.
        function l2OutputOracle() external view returns (address addr_) {
            addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
        }
        /// @notice Getter for the OptimismPortal address.
        function optimismPortal() external view returns (address addr_) {
            addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
        }
        /// @notice Getter for the OptimismMintableERC20Factory address.
        function optimismMintableERC20Factory() external view returns (address addr_) {
            addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
        }
        /// @notice Getter for the BatchInbox address.
        function batchInbox() external view returns (address addr_) {
            addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
        }
        /// @notice Sets the start block in a backwards compatible way. Proxies
        ///         that were initialized before the startBlock existed in storage
        ///         can have their start block set by a user provided override.
        ///         A start block of 0 indicates that there is no override and the
        ///         start block will be set by `block.number`.
        /// @dev    This logic is used to patch legacy deployments with new storage values.
        ///         Use the override if it is provided as a non zero value and the value
        ///         has not already been set in storage. Use `block.number` if the value
        ///         has already been set in storage
        /// @param  _startBlock The start block override to set in storage.
        function _setStartBlock(uint256 _startBlock) internal {
            if (_startBlock != 0 && startBlock == 0) {
                // There is an override and it is not already set, this is for legacy chains.
                startBlock = _startBlock;
            } else if (startBlock == 0) {
                // There is no override and it is not set in storage. Set it to the block number.
                // This is for newly deployed chains.
                startBlock = block.number;
            }
        }
        /// @notice Updates the unsafe block signer address. Can only be called by the owner.
        /// @param _unsafeBlockSigner New unsafe block signer address.
        function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
            _setUnsafeBlockSigner(_unsafeBlockSigner);
        }
        /// @notice Updates the unsafe block signer address.
        /// @param _unsafeBlockSigner New unsafe block signer address.
        function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
            Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
            bytes memory data = abi.encode(_unsafeBlockSigner);
            emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
        }
        /// @notice Updates the batcher hash. Can only be called by the owner.
        /// @param _batcherHash New batcher hash.
        function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
            _setBatcherHash(_batcherHash);
        }
        /// @notice Internal function for updating the batcher hash.
        /// @param _batcherHash New batcher hash.
        function _setBatcherHash(bytes32 _batcherHash) internal {
            batcherHash = _batcherHash;
            bytes memory data = abi.encode(_batcherHash);
            emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
        }
        /// @notice Updates gas config. Can only be called by the owner.
        /// @param _overhead New overhead value.
        /// @param _scalar   New scalar value.
        function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
            _setGasConfig(_overhead, _scalar);
        }
        /// @notice Internal function for updating the gas config.
        /// @param _overhead New overhead value.
        /// @param _scalar   New scalar value.
        function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
            overhead = _overhead;
            scalar = _scalar;
            bytes memory data = abi.encode(_overhead, _scalar);
            emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
        }
        /// @notice Updates the L2 gas limit. Can only be called by the owner.
        /// @param _gasLimit New gas limit.
        function setGasLimit(uint64 _gasLimit) external onlyOwner {
            _setGasLimit(_gasLimit);
        }
        /// @notice Internal function for updating the L2 gas limit.
        /// @param _gasLimit New gas limit.
        function _setGasLimit(uint64 _gasLimit) internal {
            require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
            gasLimit = _gasLimit;
            bytes memory data = abi.encode(_gasLimit);
            emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
        }
        /// @notice A getter for the resource config.
        ///         Ensures that the struct is returned instead of a tuple.
        /// @return ResourceConfig
        function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
            return _resourceConfig;
        }
        /// @notice An external setter for the resource config.
        ///         In the future, this method may emit an event that the `op-node` picks up
        ///         for when the resource config is changed.
        /// @param _config The new resource config values.
        function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
            _setResourceConfig(_config);
        }
        /// @notice An internal setter for the resource config.
        ///         Ensures that the config is sane before storing it by checking for invariants.
        /// @param _config The new resource config.
        function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
            // Min base fee must be less than or equal to max base fee.
            require(
                _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
            );
            // Base fee change denominator must be greater than 1.
            require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
            // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
            // The gas limit must be increased before these values can be increased.
            require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
            // Elasticity multiplier must be greater than 0.
            require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
            // No precision loss when computing target resource limit.
            require(
                ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                    == _config.maxResourceLimit,
                "SystemConfig: precision loss with target resource limit"
            );
            _resourceConfig = _config;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @title Types
    /// @notice Contains various types used throughout the Optimism contract system.
    library Types {
        /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
        ///         timestamp that the output root is posted. This timestamp is used to verify that the
        ///         finalization period has passed since the output root was submitted.
        /// @custom:field outputRoot    Hash of the L2 output.
        /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
        /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
        struct OutputProposal {
            bytes32 outputRoot;
            uint128 timestamp;
            uint128 l2BlockNumber;
        }
        /// @notice Struct representing the elements that are hashed together to generate an output root
        ///         which itself represents a snapshot of the L2 state.
        /// @custom:field version                  Version of the output root.
        /// @custom:field stateRoot                Root of the state trie at the block of this output.
        /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
        /// @custom:field latestBlockhash          Hash of the block this output was generated from.
        struct OutputRootProof {
            bytes32 version;
            bytes32 stateRoot;
            bytes32 messagePasserStorageRoot;
            bytes32 latestBlockhash;
        }
        /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
        ///         user (as opposed to a system deposit transaction generated by the system).
        /// @custom:field from        Address of the sender of the transaction.
        /// @custom:field to          Address of the recipient of the transaction.
        /// @custom:field isCreation  True if the transaction is a contract creation.
        /// @custom:field value       Value to send to the recipient.
        /// @custom:field mint        Amount of ETH to mint.
        /// @custom:field gasLimit    Gas limit of the transaction.
        /// @custom:field data        Data of the transaction.
        /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
        /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
        struct UserDepositTransaction {
            address from;
            address to;
            bool isCreation;
            uint256 value;
            uint256 mint;
            uint64 gasLimit;
            bytes data;
            bytes32 l1BlockHash;
            uint256 logIndex;
        }
        /// @notice Struct representing a withdrawal transaction.
        /// @custom:field nonce    Nonce of the withdrawal transaction
        /// @custom:field sender   Address of the sender of the transaction.
        /// @custom:field target   Address of the recipient of the transaction.
        /// @custom:field value    Value to send to the recipient.
        /// @custom:field gasLimit Gas limit of the transaction.
        /// @custom:field data     Data of the transaction.
        struct WithdrawalTransaction {
            uint256 nonce;
            address sender;
            address target;
            uint256 value;
            uint256 gasLimit;
            bytes data;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { MerkleTrie } from "./MerkleTrie.sol";
    /// @title SecureMerkleTrie
    /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
    ///         keys. Ethereum's state trie hashes input keys before storing them.
    library SecureMerkleTrie {
        /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
        /// @param _key   Key of the node to search for, as a hex string.
        /// @param _value Value of the node to search for, as a hex string.
        /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
        ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
        ///               nodes that make a path down to the target node.
        /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
        ///               correctly constructed.
        /// @return valid_ Whether or not the proof is valid.
        function verifyInclusionProof(
            bytes memory _key,
            bytes memory _value,
            bytes[] memory _proof,
            bytes32 _root
        )
            internal
            pure
            returns (bool valid_)
        {
            bytes memory key = _getSecureKey(_key);
            valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
        }
        /// @notice Retrieves the value associated with a given key.
        /// @param _key   Key to search for, as hex bytes.
        /// @param _proof Merkle trie inclusion proof for the key.
        /// @param _root  Known root of the Merkle trie.
        /// @return value_ Value of the key if it exists.
        function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
            bytes memory key = _getSecureKey(_key);
            value_ = MerkleTrie.get(key, _proof, _root);
        }
        /// @notice Computes the hashed version of the input key.
        /// @param _key Key to hash.
        /// @return hash_ Hashed version of the key.
        function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
            hash_ = abi.encodePacked(keccak256(_key));
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Burn } from "src/libraries/Burn.sol";
    import { Arithmetic } from "src/libraries/Arithmetic.sol";
    /// @custom:upgradeable
    /// @title ResourceMetering
    /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
    ///         updates automatically based on current demand.
    abstract contract ResourceMetering is Initializable {
        /// @notice Represents the various parameters that control the way in which resources are
        ///         metered. Corresponds to the EIP-1559 resource metering system.
        /// @custom:field prevBaseFee   Base fee from the previous block(s).
        /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
        /// @custom:field prevBlockNum  Last block number that the base fee was updated.
        struct ResourceParams {
            uint128 prevBaseFee;
            uint64 prevBoughtGas;
            uint64 prevBlockNum;
        }
        /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
        ///         market. These values should be set with care as it is possible to set them in
        ///         a way that breaks the deposit gas market. The target resource limit is defined as
        ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
        ///         single word. There is additional space for additions in the future.
        /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
        ///                                            can be purchased per block.
        /// @custom:field elasticityMultiplier         Determines the target resource limit along with
        ///                                            the resource limit.
        /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
        /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
        ///                                            value.
        /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
        ///                                            transaction. This should be set to the same
        ///                                            number that the op-node sets as the gas limit
        ///                                            for the system transaction.
        /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
        ///                                            value.
        struct ResourceConfig {
            uint32 maxResourceLimit;
            uint8 elasticityMultiplier;
            uint8 baseFeeMaxChangeDenominator;
            uint32 minimumBaseFee;
            uint32 systemTxMaxGas;
            uint128 maximumBaseFee;
        }
        /// @notice EIP-1559 style gas parameters.
        ResourceParams public params;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        uint256[48] private __gap;
        /// @notice Meters access to a function based an amount of a requested resource.
        /// @param _amount Amount of the resource requested.
        modifier metered(uint64 _amount) {
            // Record initial gas amount so we can refund for it later.
            uint256 initialGas = gasleft();
            // Run the underlying function.
            _;
            // Run the metering function.
            _metered(_amount, initialGas);
        }
        /// @notice An internal function that holds all of the logic for metering a resource.
        /// @param _amount     Amount of the resource requested.
        /// @param _initialGas The amount of gas before any modifier execution.
        function _metered(uint64 _amount, uint256 _initialGas) internal {
            // Update block number and base fee if necessary.
            uint256 blockDiff = block.number - params.prevBlockNum;
            ResourceConfig memory config = _resourceConfig();
            int256 targetResourceLimit =
                int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
            if (blockDiff > 0) {
                // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                // at which deposits can be created and therefore limit the potential for deposits to
                // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                    / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                // Update base fee by adding the base fee delta and clamp the resulting value between
                // min and max.
                int256 newBaseFee = Arithmetic.clamp({
                    _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
                // If we skipped more than one block, we also need to account for every empty block.
                // Empty block means there was no demand for deposits in that block, so we should
                // reflect this lack of demand in the fee.
                if (blockDiff > 1) {
                    // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                    // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                    // between min and max.
                    newBaseFee = Arithmetic.clamp({
                        _value: Arithmetic.cdexp({
                            _coefficient: newBaseFee,
                            _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                            _exponent: int256(blockDiff - 1)
                        }),
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                }
                // Update new base fee, reset bought gas, and update block number.
                params.prevBaseFee = uint128(uint256(newBaseFee));
                params.prevBoughtGas = 0;
                params.prevBlockNum = uint64(block.number);
            }
            // Make sure we can actually buy the resource amount requested by the user.
            params.prevBoughtGas += _amount;
            require(
                int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                "ResourceMetering: cannot buy more gas than available gas limit"
            );
            // Determine the amount of ETH to be paid.
            uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
            // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
            // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
            // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
            // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
            // during any 1 day period in the last 5 years, so should be fine.
            uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
            // Give the user a refund based on the amount of gas they used to do all of the work up to
            // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
            // effectively like a dynamic stipend (with a minimum value).
            uint256 usedGas = _initialGas - gasleft();
            if (gasCost > usedGas) {
                Burn.gas(gasCost - usedGas);
            }
        }
        /// @notice Virtual function that returns the resource config.
        ///         Contracts that inherit this contract must implement this function.
        /// @return ResourceConfig
        function _resourceConfig() internal virtual returns (ResourceConfig memory);
        /// @notice Sets initial resource parameter values.
        ///         This function must either be called by the initializer function of an upgradeable
        ///         child contract.
        // solhint-disable-next-line func-name-mixedcase
        function __ResourceMetering_init() internal onlyInitializing {
            if (params.prevBlockNum == 0) {
                params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
    import { WithdrawalQueue } from "src/mainnet-bridge/withdrawal-queue/WithdrawalQueue.sol";
    import { YieldProvider } from "src/mainnet-bridge/yield-providers/YieldProvider.sol";
    import { Types } from "src/libraries/Types.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
    import { SharesBase } from "src/L2/Shares.sol";
    import { DelegateCalls } from "src/mainnet-bridge/DelegateCalls.sol";
    import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { OptimismPortal } from "src/L1/OptimismPortal.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    interface IInsurance {
        function coverLoss(address token, uint256 amount) external;
    }
    /// @title YieldManager
    /// @notice Base contract to centralize accounting, asset management and
    ///         yield reporting from yield providers of a common base asset.
    abstract contract YieldManager is Ownable2StepUpgradeable, WithdrawalQueue, DelegateCalls {
        using EnumerableSet for EnumerableSet.AddressSet;
        /// @notice Maximum gas limit for the yield report call on L2.
        uint32 internal constant REPORT_YIELD_DEFAULT_GAS_LIMIT = 200_000;
        /// @notice Maximum insurance fee the owner is allowed to set.
        uint256 public constant MAX_INSURANCE_FEE_BIPS = 10_000; // 100%
        /// @notice Number of basis points representing 100 percent.
        uint256 internal constant BASIS_POINTS = 10_000;
        /// @notice Set of provider addresses.
        EnumerableSet.AddressSet private _providers;
        /// @notice Address of the admin handling regular tasks such as
        ///         `stake`, `unstake`, `claim`, `commitYieldReport`, and
        ///         `finalize`.
        address public admin;
        /// @notice Address of the insurance module.
        address public insurance;
        /// @notice Address of the L1BlastBridge.
        address public blastBridge;
        /// @notice Sum of negative yields to track the slippage between L2-L1 share price.
        ///         If negative yields accumulate, L1 withdrawals are discounted to cover the
        ///         loss.
        uint256 public accumulatedNegativeYields;
        /// @notice Current insurance fee in bips.
        uint256 public insuranceFeeBips;
        /// @notice Amount of additional funds to withdraw from insurance.
        ///         This buffer addresses the scenario where the transfer of the exact amount of accumulated
        ///         negative yields from insurance does not fully pay off the outstanding amount. In Lido's
        ///         system, the transfer logic is based on shares, which may lead to discrepancies in the
        ///         withdrawal of insurance funds. By including this buffer, the system ensures that when
        ///         insurance funds are withdrawn, the total amount withdrawn is the exact required amount
        ///         plus an additional buffer. This approach guarantees the complete payoff of any negative
        ///         yields, accommodating for any potential rounding discrepancies inherent in the share-based
        ///         transfer logic.
        uint256 public insuranceWithdrawalBuffer;
        /// @notice Address of the OptimismPortal.
        OptimismPortal public portal;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[41] private __gap;
        struct ProviderInfo {
            bytes32 id;
            address providerAddress;
            uint256 stakedBalance;
            uint256 pendingBalance;
            uint256 stakedPrincipal;
            uint256 totalValue;
            int256 yield;
        }
        /// @notice Emitted when the yield report is committed on L1 and
        ///         the yield is communicated to L2.
        /// @param yield                Amount of yield generated at this checkpoint.
        /// @param insurancePremiumPaid Amount paid in insurance.
        /// @param insuranceWithdrawn   Amount withdrawn from insurance.
        event YieldReport(
            int256  yield,
            uint256 insurancePremiumPaid,
            uint256 insuranceWithdrawn
        );
        error CallerIsNotAdmin();
        error FailedToInitializeProvider();
        error ProviderAddressDoesNotMatchIndex();
        error InsufficientInsuranceBalance();
        error NegativeYieldFromInsuredProvider();
        error TotalValueIsZero();
        error CallerIsNotBlastBridge();
        error ProviderNotFound();
        error YieldProviderIsNotMeantForThisManager();
        error NegativeYieldIncrease();
        modifier onlyAdmin() {
            if (msg.sender != admin) {
                revert CallerIsNotAdmin();
            }
            _;
        }
        /// @notice Modifier only allowing the L1BlastBridge to call a function.
        modifier onlyBlastBridge() {
            if (msg.sender != blastBridge) {
                revert CallerIsNotBlastBridge();
            }
            _;
        }
        /// @param _token Address of withdrawal token.
        constructor(address _token) WithdrawalQueue(_token) {}
        /// @notice initializer
        /// @param _portal Address of the OptimismPortal.
        /// @param _owner  Address of the YieldManager owner.
        function __YieldManager_init(OptimismPortal _portal, address _owner) internal onlyInitializing {
            __Ownable2Step_init();
            __WithdrawalQueue_init();
            _transferOwnership(_owner);
            portal = _portal;
        }
        /* ========== OWNER FUNCTIONS ========== */
        /// @notice Set new admin account to handle regular tasks including
        ///         (stake, unstake, claim).
        /// @param _admin Address of new admin
        function setAdmin(address _admin) external onlyOwner {
            require(_admin != address(0));
            admin = _admin;
        }
        /// @notice Set the yield insurance parameters.
        /// @param _insurance        Address of the insurance module.
        /// @param _insuranceFeeBips Insurance fee to take from positive yields.
        /// @param _withdrawalBuffer Amount of additional funds to withdraw from insurance.
        function setInsurance(address _insurance, uint256 _insuranceFeeBips, uint256 _withdrawalBuffer) external onlyOwner {
            require(_insurance != address(0));
            require(_insuranceFeeBips <= MAX_INSURANCE_FEE_BIPS);
            insurance = _insurance;
            insuranceFeeBips = _insuranceFeeBips;
            insuranceWithdrawalBuffer = _withdrawalBuffer;
        }
        /// @notice Set the address of the L1BlastBridge.
        /// @param _blastBridge Address of the L1BlastBridge.
        function setBlastBridge(address _blastBridge) external onlyOwner {
            require(_blastBridge != address(0));
            blastBridge = _blastBridge;
        }
        /// @notice Add a yield provider contract.
        /// @param provider Address of the yield provider.
        function addProvider(address provider) external onlyOwner {
            if (address(YieldProvider(provider).YIELD_MANAGER()) != address(this)) {
                revert YieldProviderIsNotMeantForThisManager();
            }
            _providers.add(provider);
            (bool success,) = provider.delegatecall(abi.encodeWithSignature("initialize()"));
            if (!success) {
                revert FailedToInitializeProvider();
            }
        }
        /// @notice Remove a yield provider contract.
        /// @param provider Address of the yield provider.
        function removeProvider(address provider) external onlyOwner {
            _providers.remove(provider);
        }
        /* ========== ADMIN FUNCTIONS ========== */
        /// @notice Stake funds for a particular yield provider and record the
        ///         staked deposit. The stake call is made via 'delegatecall'
        ///         so the yield provider implementation is executed with the
        ///         yield manager's funds.
        /// @param idx             Index of the provider.
        /// @param providerAddress Address of the provider at index 'idx'.
        /// @param amount          Amount to stake (wad).
        function stake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
            if (_providers.at(idx) != providerAddress) {
                revert ProviderAddressDoesNotMatchIndex();
            }
            _delegatecall_stake(providerAddress, amount);
            YieldProvider(providerAddress).recordStakedDeposit(amount);
        }
        /// @notice Unstake funds for a particular yield provider and record the
        ///         staked withdraw. The stake call is made via 'delegatecall'
        ///         so the yield provider implementation is executed with the
        ///         yield manager's funds.
        /// @param idx             Index of the provider.
        /// @param providerAddress Address of the provider at index 'idx'.
        /// @param amount          Amount to stake (wad).
        function unstake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
            if (_providers.at(idx) != providerAddress) {
                revert ProviderAddressDoesNotMatchIndex();
            }
            (uint256 pending, uint256 claimed) = _delegatecall_unstake(providerAddress, amount);
            YieldProvider(providerAddress).recordUnstaked(pending, claimed, amount);
        }
        /// @notice Commit yield report.
        /// @param enableInsurance Whether insurance should be taken from positive yields
        ///        and paid out for negative yields. If false, negative yields will
        ///        accumulate and withdrawals will be discounted. If true (and insurance
        ///        is supported by the provider), it will guarantee that committed yield
        ///        is always non-negative, or else revert. It also guarantees that
        ///        accumulated negative yields never increase.
        function commitYieldReport(bool enableInsurance) public onlyAdmin {
            uint256 providersLength = _providers.length();
            uint256 negativeYieldBefore = accumulatedNegativeYields;
            uint256 totalInsurancePremiumPaid;
            uint256 totalInsuranceWithdrawal;
            int256 totalYield;
            // For each provider, commit yield after paying to/from the insurance as necessary
            for (uint256 i; i < providersLength; i++) {
                // run the pre-commit yield report hook
                _delegatecall_preCommitYieldReportDelegateCallHook(_providers.at(i));
                // read the current yield from the provider
                int256 yield = YieldProvider(_providers.at(i)).yield();
                uint256 insurancePayment;
                // take care of insurance payments and withdrawals
                if (
                    enableInsurance &&
                    YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                    insurance != address(0)
                ) {
                    if (yield > 0) {
                        // pay the insurance premium
                        insurancePayment = uint256(yield) * insuranceFeeBips / BASIS_POINTS;
                        _delegatecall_payInsurancePremium(_providers.at(i), insurancePayment);
                        totalInsurancePremiumPaid += insurancePayment;
                    } else if (yield < 0) {
                        // withdraw from the insurance to cover the loss
                        uint256 insuranceWithdrawal = SignedMath.abs(yield) + insuranceWithdrawalBuffer;
                        uint256 insuranceBalance = YieldProvider(_providers.at(i)).insuranceBalance();
                        if (insuranceBalance < insuranceWithdrawal) {
                            revert InsufficientInsuranceBalance();
                        }
                        _delegatecall_withdrawFromInsurance(_providers.at(i), insuranceWithdrawal);
                        totalInsuranceWithdrawal += insuranceWithdrawal;
                    }
                }
                // Commit the yield for the provider
                int256 committedYield = YieldProvider(_providers.at(i)).commitYield();
                // Sanity check
                if (
                    enableInsurance &&
                    YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                    insurance != address(0)
                ) {
                    if (committedYield < 0) {
                        revert NegativeYieldFromInsuredProvider();
                    }
                }
                // update totalYield
                totalYield += committedYield;
            }
            // reflect the accumulated negative yield in totalYield
            if (accumulatedNegativeYields > 0) {
                totalYield -= SafeCast.toInt256(accumulatedNegativeYields);
            }
            emit YieldReport(totalYield, totalInsurancePremiumPaid, totalInsuranceWithdrawal);
            if (totalYield < 0) {
                accumulatedNegativeYields = uint256(-1 * totalYield);
            } else {
                accumulatedNegativeYields = 0;
                if (totalYield > 0) {
                    _reportYield(
                        abi.encodeWithSelector(
                            SharesBase.addValue.selector,
                            totalYield
                        )
                    );
                }
            }
            if (enableInsurance && accumulatedNegativeYields > negativeYieldBefore) {
                revert NegativeYieldIncrease();
            }
        }
        /// @notice Helper function to atomically withdraw from insurance and commit yield report.
        ///         This function can be used to maintain share price = 1e27 when yield from
        ///         the registered providers is not sufficient to cover negative yield from
        ///         LidoYieldProvider._claim().
        function commitYieldReportAfterInsuranceWithdrawal(
            address token,
            uint256 amount
        ) external onlyAdmin {
            require(insurance != address(0));
            IInsurance(insurance).coverLoss(token, amount);
            commitYieldReport(true);
        }
        /// @notice Report realized negative yield. This is meant to be called inside a YieldProvider
        ///         method that is executed via 'delegatecall' by the YieldManager.
        function recordNegativeYield(uint256 amount) external {
            require(msg.sender == address(this), "Caller is not this contract");
            accumulatedNegativeYields += amount;
        }
        /// @notice Finalize withdrawal requests up to 'requestId'.
        /// @param requestId Last request id to finalize in this batch.
        function finalize(uint256 requestId) external onlyAdmin returns (uint256 checkpointId) {
            uint256 nominalAmount; uint256 realAmount;
            (nominalAmount, realAmount, checkpointId) = _finalize(requestId, availableBalance(), sharePrice());
            // nominalAmount - realAmount is the share of the accumulated negative yield
            // that should be paid by the current withdrawal
            if (nominalAmount > realAmount) {
                accumulatedNegativeYields = _subClamped(accumulatedNegativeYields, nominalAmount - realAmount);
            }
        }
        /* ========== VIRTUAL FUNCTIONS ========== */
        /// @notice Get the amount of the withdrawal token that is held by the yield manager.
        function tokenBalance() public view virtual returns (uint256);
        /// @notice Send the yield report to the L2 contract that is responsible for
        ///         updating the L2 share price.
        /// @param data Calldata to send in the message.
        function _reportYield(bytes memory data) internal virtual;
        /* ========== VIEW FUNCTIONS ========== */
        /// @notice Available balance.
        function availableBalance() public view returns (uint256) {
            return tokenBalance() - getLockedBalance();
        }
        /// @notice Get the total value of all yield providers denominated in the withdrawal token.
        function totalProviderValue() public view returns (uint256 sum) {
            uint256 providersLength = _providers.length();
            for (uint256 i; i < providersLength; i++) {
                sum += YieldProvider(_providers.at(i)).totalValue();
            }
        }
        /// @notice Get the total value of all yield providers plus the available balance value.
        function totalValue() public view returns (uint256) {
            return availableBalance() + totalProviderValue();
        }
        /// @notice Get the share price of the withdrawal token with 1e27 precision.
        ///         The share price is capped at 1e27 and can only go down if there
        ///         are accumulated negative yields.
        function sharePrice() public view returns (uint256) {
            uint256 value = totalValue();
            if (value == 0) {
                revert TotalValueIsZero();
            }
            return value * E27_PRECISION_BASE / (value + accumulatedNegativeYields);
        }
        /// @notice Get an accounting report on the current state of a yield provider.
        ///         Due to how EnumerableSet works, 'idx' is not guaranteed to be stable
        ///         across add/remove operations so admin should verify the idx before
        ///         calling state-changing functions (e.g. stake, unstake).
        /// @param idx Index of the provider.
        /// @return info Accounting report on the yield provider.
        function getProviderInfoAt(uint256 idx) external view returns (ProviderInfo memory info) {
            YieldProvider provider = YieldProvider(_providers.at(idx));
            info.id = provider.id();
            info.providerAddress = address(provider);
            info.stakedBalance = provider.stakedBalance();
            info.pendingBalance = provider.pendingBalance();
            info.stakedPrincipal = provider.stakedPrincipal();
            info.totalValue = provider.totalValue();
            info.yield = provider.yield();
        }
        /// @notice Record an increase to the staked funds represented
        ///         by the provider.
        /// @param providerAddress Address of yield provider.
        /// @param amount          Amount of additional staked funds.
        function recordStakedDeposit(address providerAddress, uint256 amount) external onlyBlastBridge {
            if (!_providers.contains(providerAddress)) {
                revert ProviderNotFound();
            }
            YieldProvider(providerAddress).recordStakedDeposit(amount);
        }
        /// @notice Returns max(0, x - y) without reverting on underflow.
        function _subClamped(uint256 x, uint256 y) internal pure returns (uint256 z) {
            unchecked {
                z = x > y ? x - y : 0;
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
    /// @title Semver
    /// @notice Semver is a simple contract for managing contract versions.
    contract Semver {
        /// @notice Contract version number (major).
        uint256 private immutable MAJOR_VERSION;
        /// @notice Contract version number (minor).
        uint256 private immutable MINOR_VERSION;
        /// @notice Contract version number (patch).
        uint256 private immutable PATCH_VERSION;
        /// @param _major Version number (major).
        /// @param _minor Version number (minor).
        /// @param _patch Version number (patch).
        constructor(uint256 _major, uint256 _minor, uint256 _patch) {
            MAJOR_VERSION = _major;
            MINOR_VERSION = _minor;
            PATCH_VERSION = _patch;
        }
        /// @notice Returns the full semver contract version.
        /// @return Semver contract version as a string.
        function version() public view returns (string memory) {
            return string(
                abi.encodePacked(
                    Strings.toString(MAJOR_VERSION),
                    ".",
                    Strings.toString(MINOR_VERSION),
                    ".",
                    Strings.toString(PATCH_VERSION)
                )
            );
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { SharesBase } from "src/L2/Shares.sol";
    import { YieldMode } from "src/L2/Blast.sol";
    import { ERC20PermitUpgradeable } from "src/L2/ERC20PermitUpgradeable.sol";
    /// @custom:upgradeable
    /// @title ERC20Rebasing
    /// @notice ERC20 implementation with rebasing token balances. There are 3 yield
    /// modes with different rebasing behaviors.
    ///
    /// AUTOMATIC dynamically updates the balance as the share price increases.
    ///
    /// VOID fixes the balance and exempts the account from receiving yields.
    ///
    /// CLAIMABLE fixes the balance and allows the account to claim yields to
    /// another account.
    ///
    /// The child implementation is responsible for deciding how the share price is set.
    abstract contract ERC20Rebasing is ERC20PermitUpgradeable, SharesBase, IERC20 {
        /// @notice Number of decimals.
        uint8 public immutable decimals;
        /// @notice Name of the token.
        string public name;
        /// @notice Symbol of the token.
        string public symbol;
        /// @notice Mapping that stores the number of shares for each account.
        mapping(address => uint256) private _shares;
        /// @notice Total number of shares distributed.
        uint256 internal _totalShares;
        /// @notice Mapping that stores the number of remainder tokens for each account.
        mapping(address => uint256) private _remainders;
        /// @notice Mapping that stores the number of fixed tokens for each account.
        mapping(address => uint256) private _fixed;
        /// @notice Total number of non-rebasing tokens.
        uint256 internal _totalVoidAndRemainders;
        /// @notice Mapping that stores the configured yield mode for each account.
        mapping(address => YieldMode) private _yieldMode;
        /// @notice Mapping that stores the allowance for a given spender and operator pair.
        mapping(address => mapping(address => uint256)) private _allowances;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[41] private __gap;
        /// @notice Emitted when an account configures their yield mode.
        /// @param account   Address of the account.
        /// @param yieldMode Yield mode that was configured.
        event Configure(address indexed account, YieldMode yieldMode);
        /// @notice Emitted when a CLAIMABLE account claims their yield.
        /// @param account   Address of the account.
        /// @param recipient Address of the recipient.
        /// @param amount    Amount of yield claimed.
        event Claim(address indexed account, address indexed recipient, uint256 amount);
        error InsufficientBalance();
        error InsufficientAllowance();
        error TransferFromZeroAddress();
        error TransferToZeroAddress();
        error ApproveFromZeroAddress();
        error ApproveToZeroAddress();
        error ClaimToZeroAddress();
        error NotClaimableAccount();
        /// @param _decimals Number of decimals.
        constructor(address _reporter, uint8 _decimals) SharesBase(_reporter) {
            decimals = _decimals;
        }
        /// @param _name     Token name.
        /// @param _symbol   Token symbol.
        /// @param _price    Initial share price.
        function __ERC20Rebasing_init(string memory _name, string memory _symbol, uint256 _price) internal onlyInitializing {
            __ERC20Permit_init(_name);
            __SharesBase_init({ _price: _price });
            name = _name;
            symbol = _symbol;
        }
        /// @inheritdoc SharesBase
        function count() public view override returns (uint256) {
            return _totalShares;
        }
        /// @notice --- ERC20 Interface ---
        /// @inheritdoc IERC20
        function totalSupply() external view returns (uint256) {
            return price * _totalShares + _totalVoidAndRemainders;
        }
        /// @inheritdoc IERC20
        function balanceOf(address account)
            public
            view
            virtual
            returns (uint256 value)
        {
            YieldMode yieldMode = _yieldMode[account];
            if (yieldMode == YieldMode.AUTOMATIC) {
                value = _computeShareValue(_shares[account], _remainders[account]);
            } else {
                value = _fixed[account];
            }
        }
        /// @inheritdoc IERC20
        function allowance(address owner, address spender)
            public
            view
            virtual
            returns (uint256)
        {
            return _allowances[owner][spender];
        }
        /// @inheritdoc IERC20
        function transfer(address to, uint256 amount)
            public
            virtual
            returns (bool)
        {
            _transfer(msg.sender, to, amount);
            return true;
        }
        /// @inheritdoc IERC20
        function approve(address spender, uint256 amount)
            public
            virtual
            returns (bool)
        {
            address owner = msg.sender;
            _approve(owner, spender, amount);
            return true;
        }
        /// @inheritdoc IERC20
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual returns (bool) {
            _spendAllowance(from, msg.sender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /// @notice --- Blast Interface ---
        /// @notice Query an account's configured yield mode.
        /// @param account Address to query the configuration.
        /// @return Configured yield mode.
        function getConfiguration(address account) public view returns (YieldMode) {
            return _yieldMode[account];
        }
        /// @notice Query an CLAIMABLE account's claimable yield.
        /// @param account Address to query the claimable amount.
        /// @return amount Claimable amount.
        function getClaimableAmount(address account) public view returns (uint256) {
            if (getConfiguration(account) != YieldMode.CLAIMABLE) {
                revert NotClaimableAccount();
            }
            uint256 shareValue = _computeShareValue(_shares[account], _remainders[account]);
            return shareValue - _fixed[account];
        }
        /// @notice Claim yield from a CLAIMABLE account and send to
        ///         a recipient.
        /// @param recipient Address to receive the claimed balance.
        /// @param amount    Amount to claim.
        /// @return Amount claimed.
        function claim(address recipient, uint256 amount) external returns (uint256) {
            address account = msg.sender;
            if (recipient == address(0)) {
                revert ClaimToZeroAddress();
            }
            if (getConfiguration(account) != YieldMode.CLAIMABLE) {
                revert NotClaimableAccount();
            }
            uint256 shareValue = _computeShareValue(_shares[account], _remainders[account]);
            uint256 claimableAmount = shareValue - _fixed[account];
            if (amount > claimableAmount) {
                revert InsufficientBalance();
            }
            (uint256 newShares, uint256 newRemainder) = _computeSharesAndRemainder(shareValue - amount);
            _updateBalance(account, newShares, newRemainder, _fixed[account]);
            _deposit(recipient, amount);
            emit Claim(msg.sender, recipient, amount);
            return amount;
        }
        /// @notice Change the yield mode of the caller and update the
        ///         balance to reflect the configuration.
        /// @param yieldMode Yield mode to configure
        /// @return Current user balance
        function configure(YieldMode yieldMode) external returns (uint256) {
            _configure(msg.sender, yieldMode);
            emit Configure(msg.sender, yieldMode);
            return balanceOf(msg.sender);
        }
        /// @notice Moves `amount` of tokens from `from` to `to`.
        /// @param from   Address of the sender.
        /// @param to     Address of the recipient.
        /// @param amount Amount of tokens to send.
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            if (from == address(0)) revert TransferFromZeroAddress();
            if (to == address(0)) revert TransferToZeroAddress();
            _withdraw(from, amount);
            _deposit(to, amount);
            emit Transfer(from, to, amount);
        }
        /// @notice Sets `amount` as the allowance of `spender` over the `owner` s tokens.
        /// @param owner   Address of the owner.
        /// @param spender Address of the spender.
        /// @param amount  Amount of tokens to approve.
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal override {
            if (owner == address(0)) revert ApproveFromZeroAddress();
            if (spender == address(0)) revert ApproveToZeroAddress();
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /// @notice Updates `owner` s allowance for `spender` based on spent `amount`.
        /// @param owner   Address of the owner.
        /// @param spender Address of the spender.
        /// @param amount  Amount of tokens to spender.
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (amount > currentAllowance) revert InsufficientAllowance();
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /// @notice Deposit to an account.
        /// @param account Address of the account to deposit to.
        /// @param amount  Amount to deposit to the account.
        function _deposit(address account, uint256 amount) internal {
            uint256 balanceAfter = balanceOf(account) + amount;
            _setBalance(account, balanceAfter, false);
            /// If the user is configured as VOID, then the amount
            /// is added to the total voided funds.
            YieldMode yieldMode = getConfiguration(account);
            if (yieldMode == YieldMode.VOID) {
                _totalVoidAndRemainders += amount;
            }
        }
        /// @notice Withdraw from an account.
        /// @param account Address of the account to withdraw from.
        /// @param amount  Amount to withdraw to the account.
        function _withdraw(address account, uint256 amount) internal {
            uint256 balance = balanceOf(account);
            if (amount > balance) {
                revert InsufficientBalance();
            }
            unchecked {
                _setBalance(account, balance - amount, false);
            }
            /// If the user is configured as VOID, then the amount
            /// is deducted from the total voided funds.
            YieldMode yieldMode = getConfiguration(account);
            if (yieldMode == YieldMode.VOID) {
                _totalVoidAndRemainders -= amount;
            }
        }
        /// @notice Configures a new yield mode for an account and updates
        ///         the balance storage to reflect the change.
        /// @param account      Address of the account to configure.
        /// @param newYieldMode New yield mode to configure.
        function _configure(address account, YieldMode newYieldMode) internal {
            YieldMode prevYieldMode = getConfiguration(account);
            uint256 balance;
            if (prevYieldMode == YieldMode.CLAIMABLE) {
                /// If the balance is claimable, we need to use their share balance so they
                /// don't lose their claimable yield.
                balance = _computeShareValue(_shares[account], _remainders[account]);
            } else {
                balance = balanceOf(account);
            }
            _yieldMode[account] = newYieldMode;
            uint256 prevFixed = _fixed[account];
            _setBalance(account, balance, true);
            /// If the previous yield mode was VOID, then the amount
            /// is deducted from the total voided funds.
            if (prevYieldMode == YieldMode.VOID) {
                _totalVoidAndRemainders -= prevFixed;
            }
            /// If the new yield mode is VOID, then the amount
            /// is added to the total voided funds.
            if (newYieldMode == YieldMode.VOID) {
                _totalVoidAndRemainders += balance;
            }
        }
        /// @notice Sets the balance of an account according to its yield mode
        ///         configuration.
        /// @param account           Address of the account to set the balance of.
        /// @param amount            Balance to set for the account.
        /// @param resetClaimable    If the account is CLAIMABLE, true if the share
        ///                          balance should be set to the amount. Should only be true when
        ///                          configuring the account.
        function _setBalance(address account, uint256 amount, bool resetClaimable) internal {
            uint256 newShares; uint256 newRemainder; uint256 newFixed;
            YieldMode yieldMode = getConfiguration(account);
            if (yieldMode == YieldMode.AUTOMATIC) {
                (newShares, newRemainder) = _computeSharesAndRemainder(amount);
            } else if (yieldMode == YieldMode.VOID) {
                newFixed = amount;
            } else if (yieldMode == YieldMode.CLAIMABLE) {
                newFixed = amount;
                uint256 shareValue = amount;
                if (!resetClaimable) {
                    /// In order to not reset the claimable balance, we have to compute
                    /// the user's current share balance and add or subtract the change in
                    /// fixed balance before computing the new shares balance parameters.
                    shareValue = _computeShareValue(_shares[account], _remainders[account]);
                    shareValue = shareValue + amount - _fixed[account];
                }
                (newShares, newRemainder) = _computeSharesAndRemainder(shareValue);
            }
            _updateBalance(account, newShares, newRemainder, newFixed);
        }
        /// @notice Update the balance parameters of an account and appropriately refresh the global sums
        ///         to reflect the change of allocation.
        /// @param account      Address of account to update.
        /// @param newShares    New shares value for account.
        /// @param newRemainder New remainder value for account.
        /// @param newFixed     New fixed value for account.
        function _updateBalance(address account, uint256 newShares, uint256 newRemainder, uint256 newFixed) internal {
            _totalShares = _totalShares + newShares - _shares[account];
            _totalVoidAndRemainders = _totalVoidAndRemainders + newRemainder - _remainders[account];
            _shares[account] = newShares;
            _remainders[account] = newRemainder;
            _fixed[account] = newFixed;
        }
        /// @notice Convert nominal value to number of shares with remainder.
        /// @param value Amount to convert to shares (wad).
        /// @return shares Number of shares (wad), remainder Remainder (wad).
        function _computeSharesAndRemainder(uint256 value) internal view returns (uint256 shares, uint256 remainder) {
            if (price == 0) {
                remainder = value;
            } else {
                shares = value / price;
                remainder = value % price;
            }
        }
        /// @notice Compute nominal value from number of shares.
        /// @param shares     Number of shares (wad).
        /// @param remainders Amount of remainder (wad).
        /// @return value (wad).
        function _computeShareValue(uint256 shares, uint256 remainders) internal view returns (uint256) {
            return price * shares + remainders;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { Semver } from "src/universal/Semver.sol";
    import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
    import { Predeploys } from "src/libraries/Predeploys.sol";
    import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
    /// @custom:predeploy 0x4300000000000000000000000000000000000000
    /// @title SharesBase
    /// @notice Base contract to track share rebasing and yield reporting.
    abstract contract SharesBase is Initializable {
        /// @notice Approved yield reporter.
        address public immutable REPORTER;
        /// @notice Share price. This value can only increase.
        uint256 public price;
        /// @notice Accumulated yield that has not been distributed
        ///         to the share price.
        uint256 public pending;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        ///         A gap size of 48 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[48] private __gap;
        /// @notice Emitted when a new share price is set after a yield event.
        event NewPrice(uint256 price);
        error InvalidReporter();
        error DistributeFailed(uint256 count, uint256 pending);
        error PriceIsInitialized();
        /// @param _reporter Address of the approved yield reporter.
        constructor(address _reporter) {
            REPORTER = _reporter;
        }
        /// @notice Initializer.
        /// @param _price Initial share price.
        // solhint-disable-next-line func-name-mixedcase
        function __SharesBase_init(uint256 _price) internal onlyInitializing {
            if (price != 0) {
                revert PriceIsInitialized();
            }
            price = _price;
        }
        /// @notice Get the total number of shares. Needs to be
        ///         overridden by the child contract.
        /// @return Total number of shares.
        function count() public view virtual returns (uint256);
        /// @notice Report a yield event and update the share price.
        /// @param value Amount of new yield
        function addValue(uint256 value) external {
            _addValue(value);
        }
        function _addValue(uint256 value) internal virtual {
            if (AddressAliasHelper.undoL1ToL2Alias(msg.sender) != REPORTER) {
                revert InvalidReporter();
            }
            if (value > 0) {
                pending += value;
            }
            _tryDistributePending();
        }
        /// @notice Attempt to distribute pending yields if there
        ///         are sufficient pending yields to increase the
        ///         share price.
        /// @return True if there were sufficient pending yields to
        ///         increase the share price.
        function _tryDistributePending() internal returns (bool) {
            if (pending < count() || count() == 0) {
                return false;
            }
            price += pending / count();
            pending = pending % count();
            emit NewPrice(price);
            return true;
        }
    }
    /// @custom:predeploy 0x4300000000000000000000000000000000000000
    /// @title Shares
    /// @notice Integrated EVM contract to manage native ether share
    ///         rebasing from yield reports.
    contract Shares is SharesBase, Semver {
        /// @notice Total number of shares. This value is modified directly
        ///         by the sequencer EVM.
        uint256 private _count;
        /// @notice _reporter Address of approved yield reporter.
        constructor(address _reporter) SharesBase(_reporter) Semver(1, 0, 0) {
            _disableInitializers();
        }
        /// @notice Initializer.
        function initialize(uint256 _price) public initializer {
            __SharesBase_init({ _price: _price });
            Blast(Predeploys.BLAST).configureContract(
                address(this),
                YieldMode.VOID,
                GasMode.VOID,
                address(0xdead) /// don't set a governor
            );
        }
        /// @inheritdoc SharesBase
        function count() public view override returns (uint256) {
            return _count;
        }
        function _addValue(uint256 value) internal override {
            super._addValue(value);
            SharesBase(Predeploys.WETH_REBASING).addValue(value);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library AddressUpgradeable {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { SafeTransferLib } from "solmate/utils/SafeTransferLib.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { Semver } from "src/universal/Semver.sol";
    enum GasMode {
        VOID,
        CLAIMABLE
    }
    interface IGas {
        function readGasParams(address contractAddress) external view returns (uint256, uint256, uint256, GasMode);
        function setGasMode(address contractAddress, GasMode mode) external;
        function claimGasAtMinClaimRate(address contractAddress, address recipient, uint256 minClaimRateBips) external returns (uint256);
        function claimAll(address contractAddress, address recipient) external returns (uint256);
        function claimMax(address contractAddress, address recipient) external returns (uint256);
        function claim(address contractAddress, address recipient, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
    }
    /// @custom:predeploy 0x4300000000000000000000000000000000000001
    /// @title Gas
    contract Gas is IGas, Initializable, Semver {
        address public immutable admin;
        // Blast.sol --> controls all dAPP accesses to Gas.sol
        address public immutable blastConfigurationContract;
        // BaseFeeVault.sol -> fees from gas claims directed here
        address public immutable blastFeeVault;
        // zero claim rate in bps -> percent of gas user is able to claim
        // without consuming any gas seconds
        uint256 public zeroClaimRate; // bps
        // base claim rate in bps -> percent of gas user is able to claim
        // by consuming base gas seconds
        uint256 public baseGasSeconds;
        uint256 public baseClaimRate; // bps
        // ceil claim rate in bps -> percent of gas user is able to claim
        // by consuming ceil gas seconds or more
        uint256 public ceilGasSeconds;
        uint256 public ceilClaimRate; // bps
        /**
         * @notice Constructs the blast gas contract.
         * @param _admin The address of the admin.
         * @param _blastConfigurationContract The address of the Blast configuration contract.
         * @param _blastFeeVault The address of the Blast fee vault.
        */
        constructor (
            address _admin,
            address _blastConfigurationContract,
            address _blastFeeVault
        ) Semver(1, 0, 0) {
            admin =  _admin;
            blastConfigurationContract = _blastConfigurationContract;
            blastFeeVault = _blastFeeVault;
            _disableInitializers();
        }
        /**
         * @notice Initializer.
         * @param _zeroClaimRate The zero claim rate.
         * @param _baseGasSeconds The base gas seconds.
         * @param _baseClaimRate The base claim rate.
         * @param _ceilGasSeconds The ceiling gas seconds.
         * @param _ceilClaimRate The ceiling claim rate.
         */
        function initialize(
            uint256 _zeroClaimRate,
            uint256 _baseGasSeconds,
            uint256 _baseClaimRate,
            uint256 _ceilGasSeconds,
            uint256 _ceilClaimRate
        ) public initializer {
            require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
            require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
            require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
            require(_baseGasSeconds > 0, "base gas seconds must be > 0");
            require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
            // admin vars
            zeroClaimRate = _zeroClaimRate;
            baseGasSeconds = _baseGasSeconds;
            baseClaimRate = _baseClaimRate;
            ceilGasSeconds = _ceilGasSeconds;
            ceilClaimRate = _ceilClaimRate;
        }
        /**
         * @notice Allows only the admin to call a function
         */
        modifier onlyAdmin() {
            require(msg.sender == admin, "Caller is not the admin");
            _;
        }
        /**
         * @notice Allows only the Blast Configuration Contract to call a function
         */
        modifier onlyBlastConfigurationContract() {
            require(msg.sender == blastConfigurationContract, "Caller must be blast configuration contract");
            _;
        }
        /**
         * @notice Allows the admin to update the parameters
         * @param _zeroClaimRate The new zero claim rate
         * @param _baseGasSeconds The new base gas seconds
         * @param _baseClaimRate The new base claim rate
         * @param _ceilGasSeconds The new ceiling gas seconds
         * @param _ceilClaimRate The new ceiling claim rate
         */
        function updateAdminParameters(
            uint256 _zeroClaimRate,
            uint256 _baseGasSeconds,
            uint256 _baseClaimRate,
            uint256 _ceilGasSeconds,
            uint256 _ceilClaimRate
        ) external onlyAdmin {
            require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
            require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
            require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
            require(_baseGasSeconds > 0, "base gas seconds must be > 0");
            require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
            zeroClaimRate = _zeroClaimRate;
            baseGasSeconds = _baseGasSeconds;
            baseClaimRate = _baseClaimRate;
            ceilGasSeconds = _ceilGasSeconds;
            ceilClaimRate = _ceilClaimRate;
        }
        /**
         * @notice Allows the admin to claim the gas of any address
         * @param contractAddress The address of the contract
         * @return The amount of ether balance claimed
         */
        function adminClaimGas(address contractAddress) external onlyAdmin returns (uint256) {
            (, uint256 etherBalance,,) = readGasParams(contractAddress);
            _updateGasParams(contractAddress, 0, 0, GasMode.VOID);
            SafeTransferLib.safeTransferETH(blastFeeVault, etherBalance);
            return etherBalance;
        }
        /**
         * @notice Allows an authorized user to set the gas mode for a contract via the BlastConfigurationContract
         * @param contractAddress The address of the contract
         * @param mode The new gas mode for the contract
         */
        function setGasMode(address contractAddress, GasMode mode) external onlyBlastConfigurationContract {
            // retrieve gas params
            (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
            _updateGasParams(contractAddress, etherSeconds, etherBalance, mode);
        }
        /**
         * @notice Allows a user to claim gas at a minimum claim rate (error = 1 bip)
         * @param contractAddress The address of the contract
         * @param recipientOfGas The address of the recipient of the gas
         * @param minClaimRateBips The minimum claim rate in basis points
         * @return The amount of gas claimed
         */
        function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) public returns (uint256) {
            require(minClaimRateBips <= ceilClaimRate, "desired claim rate exceeds maximum");
            (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
            if (minClaimRateBips <= zeroClaimRate) {
                return claimAll(contractAddress, recipientOfGas);
            }
            // set minClaimRate to baseClaimRate in this case
            if (minClaimRateBips < baseClaimRate) {
                minClaimRateBips = baseClaimRate;
            }
            uint256 bipsDiff = minClaimRateBips - baseClaimRate;
            uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
            uint256 rateDiff = ceilClaimRate - baseClaimRate;
            uint256 minSecondsStaked = baseGasSeconds + Math.ceilDiv(bipsDiff * secondsDiff, rateDiff);
            uint256 maxEtherClaimable = etherSeconds / minSecondsStaked;
            if (maxEtherClaimable > etherBalance)  {
                maxEtherClaimable = etherBalance;
            }
            uint256 secondsToConsume = maxEtherClaimable * minSecondsStaked;
            return claim(contractAddress, recipientOfGas, maxEtherClaimable, secondsToConsume);
        }
        /**
         * @notice Allows a contract to claim all gas
         * @param contractAddress The address of the contract
         * @param recipientOfGas The address of the recipient of the gas
         * @return The amount of gas claimed
         */
        function claimAll(address contractAddress, address recipientOfGas) public returns (uint256) {
            (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
            return claim(contractAddress, recipientOfGas, etherBalance, etherSeconds);
        }
        /**
         * @notice Allows a contract to claim all gas at the highest possible claim rate
         * @param contractAddress The address of the contract
         * @param recipientOfGas The address of the recipient of the gas
         * @return The amount of gas claimed
         */
        function claimMax(address contractAddress, address recipientOfGas) public returns (uint256) {
            return claimGasAtMinClaimRate(contractAddress, recipientOfGas, ceilClaimRate);
        }
        /**
         * @notice Allows a contract to claim a specified amount of gas, at a claim rate set by the number of gas seconds
         * @param contractAddress The address of the contract
         * @param recipientOfGas The address of the recipient of the gas
         * @param gasToClaim The amount of gas to claim
         * @param gasSecondsToConsume The amount of gas seconds to consume
         * @return The amount of gas claimed (gasToClaim - penalty)
         */
        function claim(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) public onlyBlastConfigurationContract() returns (uint256)  {
            // retrieve gas params
            (uint256 etherSeconds, uint256 etherBalance,, GasMode mode) = readGasParams(contractAddress);
            // check validity requirements
            require(gasToClaim > 0, "must withdraw non-zero amount");
            require(gasToClaim <= etherBalance, "too much to withdraw");
            require(gasSecondsToConsume <= etherSeconds, "not enough gas seconds");
            // get claim rate
            (uint256 claimRate, uint256 gasSecondsToConsumeNormalized) = getClaimRateBps(gasSecondsToConsume, gasToClaim);
            // calculate tax
            uint256 userEther = gasToClaim * claimRate / 10_000;
            uint256 penalty = gasToClaim - userEther;
            _updateGasParams(contractAddress, etherSeconds - gasSecondsToConsumeNormalized, etherBalance - gasToClaim, mode);
            SafeTransferLib.safeTransferETH(recipientOfGas, userEther);
            if (penalty > 0) {
                SafeTransferLib.safeTransferETH(blastFeeVault, penalty);
            }
            return userEther;
        }
        /**
         * @notice Calculates the claim rate in basis points based on gasSeconds, gasToClaim
         * @param gasSecondsToConsume The amount of gas seconds to consume
         * @param gasToClaim The amount of gas to claim
         * @return claimRate The calculated claim rate in basis points
         * @return gasSecondsToConsume The normalized gas seconds to consume (<= gasSecondsToConsume)
         */
        function getClaimRateBps(uint256 gasSecondsToConsume, uint256 gasToClaim) public view returns (uint256, uint256) {
            uint256 secondsStaked = gasSecondsToConsume / gasToClaim;
            if (secondsStaked < baseGasSeconds) {
                return (zeroClaimRate, 0);
            }
            if (secondsStaked >= ceilGasSeconds) {
                uint256 gasToConsumeNormalized = gasToClaim * ceilGasSeconds;
                return (ceilClaimRate, gasToConsumeNormalized);
            }
            uint256 rateDiff = ceilClaimRate - baseClaimRate;
            uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
            uint256 secondsStakedDiff = secondsStaked - baseGasSeconds;
            uint256 additionalClaimRate = rateDiff * secondsStakedDiff / secondsDiff;
            uint256 claimRate = baseClaimRate + additionalClaimRate;
            return (claimRate, gasSecondsToConsume);
        }
        /**
         * @notice Reads the gas parameters for a given user
         * @param user The address of the user
         * @return etherSeconds The integral of ether over time (ether * seconds vested)
         * @return etherBalance The total ether balance for the user
         * @return lastUpdated The last updated timestamp for the user's gas parameters
         * @return mode The current gas mode for the user
         */
         function readGasParams(address user) public view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode mode) {
            bytes32 paramsHash = keccak256(abi.encodePacked(user, "parameters"));
            bytes32 packedParams;
            // read params
            assembly {
                packedParams := sload(paramsHash)
            }
            // unpack params
            // - The first byte (most significant byte) represents the mode
            // - The next 12 bytes represent the etherBalance
            // - The following 15 bytes represent the etherSeconds
            // - The last 4 bytes (least significant bytes) represent the lastUpdated timestamp
            mode         = GasMode(uint8(packedParams[0]));
            etherBalance = uint256((packedParams << (1             * 8)) >> ((32 - 12) * 8));
            etherSeconds = uint256((packedParams << ((1 + 12)      * 8)) >> ((32 - 15) * 8));
            lastUpdated  = uint256((packedParams << ((1 + 12 + 15) * 8)) >> ((32 -  4) * 8));
            // update ether seconds
            etherSeconds = etherSeconds + etherBalance * (block.timestamp - lastUpdated);
        }
        /**
         * @notice Updates the gas parameters for a given contract address
         * @param contractAddress The address of the contract
         * @param etherSeconds The integral of ether over time (ether * seconds vested)
         * @param etherBalance The total ether balance for the contract
         */
        function _updateGasParams(address contractAddress, uint256 etherSeconds, uint256 etherBalance, GasMode mode) internal {
            if (
                etherBalance >= 1 << (12 * 8) ||
                etherSeconds >= 1 << (15 * 8)
            ) {
                revert("Unexpected packing issue due to overflow");
            }
            uint256 updatedTimestamp = block.timestamp; // Known to fit in 4 bytes
            bytes32 paramsHash = keccak256(abi.encodePacked(contractAddress, "parameters"));
            bytes32 packedParams;
            packedParams = (
                (bytes32(uint256(mode)) << ((12 + 15 + 4) * 8)) | // Shift mode to the most significant byte
                (bytes32(etherBalance)  << ((15 + 4) * 8))      | // Shift etherBalance to start after 1 byte of mode
                (bytes32(etherSeconds)  << (4 * 8))             | // Shift etherSeconds to start after mode and etherBalance
                bytes32(updatedTimestamp)                         // Keep updatedTimestamp in the least significant bytes
            );
            assembly {
                sstore(paramsHash, packedParams)
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
    /// @title RLPWriter
    /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
    ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
    ///         modifications to improve legibility.
    library RLPWriter {
        /// @notice RLP encodes a byte string.
        /// @param _in The byte string to encode.
        /// @return out_ The RLP encoded string in bytes.
        function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
            if (_in.length == 1 && uint8(_in[0]) < 128) {
                out_ = _in;
            } else {
                out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
            }
        }
        /// @notice RLP encodes a list of RLP encoded byte byte strings.
        /// @param _in The list of RLP encoded byte strings.
        /// @return list_ The RLP encoded list of items in bytes.
        function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
            list_ = _flatten(_in);
            list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
        }
        /// @notice RLP encodes a string.
        /// @param _in The string to encode.
        /// @return out_ The RLP encoded string in bytes.
        function writeString(string memory _in) internal pure returns (bytes memory out_) {
            out_ = writeBytes(bytes(_in));
        }
        /// @notice RLP encodes an address.
        /// @param _in The address to encode.
        /// @return out_ The RLP encoded address in bytes.
        function writeAddress(address _in) internal pure returns (bytes memory out_) {
            out_ = writeBytes(abi.encodePacked(_in));
        }
        /// @notice RLP encodes a uint.
        /// @param _in The uint256 to encode.
        /// @return out_ The RLP encoded uint256 in bytes.
        function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
            out_ = writeBytes(_toBinary(_in));
        }
        /// @notice RLP encodes a bool.
        /// @param _in The bool to encode.
        /// @return out_ The RLP encoded bool in bytes.
        function writeBool(bool _in) internal pure returns (bytes memory out_) {
            out_ = new bytes(1);
            out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
        }
        /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
        /// @param _len    The length of the string or the payload.
        /// @param _offset 128 if item is string, 192 if item is list.
        /// @return out_ RLP encoded bytes.
        function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
            if (_len < 56) {
                out_ = new bytes(1);
                out_[0] = bytes1(uint8(_len) + uint8(_offset));
            } else {
                uint256 lenLen;
                uint256 i = 1;
                while (_len / i != 0) {
                    lenLen++;
                    i *= 256;
                }
                out_ = new bytes(lenLen + 1);
                out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                for (i = 1; i <= lenLen; i++) {
                    out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                }
            }
        }
        /// @notice Encode integer in big endian binary form with no leading zeroes.
        /// @param _x The integer to encode.
        /// @return out_ RLP encoded bytes.
        function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
            bytes memory b = abi.encodePacked(_x);
            uint256 i = 0;
            for (; i < 32; i++) {
                if (b[i] != 0) {
                    break;
                }
            }
            out_ = new bytes(32 - i);
            for (uint256 j = 0; j < out_.length; j++) {
                out_[j] = b[i++];
            }
        }
        /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
        /// @notice Copies a piece of memory to another location.
        /// @param _dest Destination location.
        /// @param _src  Source location.
        /// @param _len  Length of memory to copy.
        function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
            uint256 dest = _dest;
            uint256 src = _src;
            uint256 len = _len;
            for (; len >= 32; len -= 32) {
                assembly {
                    mstore(dest, mload(src))
                }
                dest += 32;
                src += 32;
            }
            uint256 mask;
            unchecked {
                mask = 256 ** (32 - len) - 1;
            }
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }
        /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
        /// @notice Flattens a list of byte strings into one byte string.
        /// @param _list List of byte strings to flatten.
        /// @return out_ The flattened byte string.
        function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
            if (_list.length == 0) {
                return new bytes(0);
            }
            uint256 len;
            uint256 i = 0;
            for (; i < _list.length; i++) {
                len += _list[i].length;
            }
            out_ = new bytes(len);
            uint256 flattenedPtr;
            assembly {
                flattenedPtr := add(out_, 0x20)
            }
            for (i = 0; i < _list.length; i++) {
                bytes memory item = _list[i];
                uint256 listPtr;
                assembly {
                    listPtr := add(item, 0x20)
                }
                _memcpy(flattenedPtr, listPtr, item.length);
                flattenedPtr += _list[i].length;
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/ContextUpgradeable.sol";
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        function __Ownable_init() internal onlyInitializing {
            __Ownable_init_unchained();
        }
        function __Ownable_init_unchained() internal onlyInitializing {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @title Storage
    /// @notice Storage handles reading and writing to arbitary storage locations
    library Storage {
        /// @notice Returns an address stored in an arbitrary storage slot.
        ///         These storage slots decouple the storage layout from
        ///         solc's automation.
        /// @param _slot The storage slot to retrieve the address from.
        function getAddress(bytes32 _slot) internal view returns (address addr_) {
            assembly {
                addr_ := sload(_slot)
            }
        }
        /// @notice Stores an address in an arbitrary storage slot, `_slot`.
        /// @param _slot The storage slot to store the address in.
        /// @param _address The protocol version to store
        /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
        ///      in arbitrary storage slots.
        function setAddress(bytes32 _slot, address _address) internal {
            assembly {
                sstore(_slot, _address)
            }
        }
        /// @notice Returns a uint256 stored in an arbitrary storage slot.
        ///         These storage slots decouple the storage layout from
        ///         solc's automation.
        /// @param _slot The storage slot to retrieve the address from.
        function getUint(bytes32 _slot) internal view returns (uint256 value_) {
            assembly {
                value_ := sload(_slot)
            }
        }
        /// @notice Stores a value in an arbitrary storage slot, `_slot`.
        /// @param _slot The storage slot to store the address in.
        /// @param _value The protocol version to store
        /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
        ///      in arbitrary storage slots.
        function setUint(bytes32 _slot, uint256 _value) internal {
            assembly {
                sstore(_slot, _value)
            }
        }
        /// @notice Returns a bytes32 stored in an arbitrary storage slot.
        ///         These storage slots decouple the storage layout from
        ///         solc's automation.
        /// @param _slot The storage slot to retrieve the address from.
        function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
            assembly {
                value_ := sload(_slot)
            }
        }
        /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
        /// @param _slot The storage slot to store the address in.
        /// @param _value The protocol version to store
        /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
        ///      in arbitrary storage slots.
        function setBytes32(bytes32 _slot, bytes32 _value) internal {
            assembly {
                sstore(_slot, _value)
            }
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    import { Bytes } from "../Bytes.sol";
    import { RLPReader } from "../rlp/RLPReader.sol";
    /// @title MerkleTrie
    /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
    ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
    ///         trie radix constant to support other trie radixes.
    library MerkleTrie {
        /// @notice Struct representing a node in the trie.
        /// @custom:field encoded The RLP-encoded node.
        /// @custom:field decoded The RLP-decoded node.
        struct TrieNode {
            bytes encoded;
            RLPReader.RLPItem[] decoded;
        }
        /// @notice Determines the number of elements per branch node.
        uint256 internal constant TREE_RADIX = 16;
        /// @notice Branch nodes have TREE_RADIX elements and one value element.
        uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
        /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
        uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
        /// @notice Prefix for even-nibbled extension node paths.
        uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
        /// @notice Prefix for odd-nibbled extension node paths.
        uint8 internal constant PREFIX_EXTENSION_ODD = 1;
        /// @notice Prefix for even-nibbled leaf node paths.
        uint8 internal constant PREFIX_LEAF_EVEN = 2;
        /// @notice Prefix for odd-nibbled leaf node paths.
        uint8 internal constant PREFIX_LEAF_ODD = 3;
        /// @notice Verifies a proof that a given key/value pair is present in the trie.
        /// @param _key   Key of the node to search for, as a hex string.
        /// @param _value Value of the node to search for, as a hex string.
        /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
        ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
        ///               nodes that make a path down to the target node.
        /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
        ///               correctly constructed.
        /// @return valid_ Whether or not the proof is valid.
        function verifyInclusionProof(
            bytes memory _key,
            bytes memory _value,
            bytes[] memory _proof,
            bytes32 _root
        )
            internal
            pure
            returns (bool valid_)
        {
            valid_ = Bytes.equal(_value, get(_key, _proof, _root));
        }
        /// @notice Retrieves the value associated with a given key.
        /// @param _key   Key to search for, as hex bytes.
        /// @param _proof Merkle trie inclusion proof for the key.
        /// @param _root  Known root of the Merkle trie.
        /// @return value_ Value of the key if it exists.
        function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
            require(_key.length > 0, "MerkleTrie: empty key");
            TrieNode[] memory proof = _parseProof(_proof);
            bytes memory key = Bytes.toNibbles(_key);
            bytes memory currentNodeID = abi.encodePacked(_root);
            uint256 currentKeyIndex = 0;
            // Proof is top-down, so we start at the first element (root).
            for (uint256 i = 0; i < proof.length; i++) {
                TrieNode memory currentNode = proof[i];
                // Key index should never exceed total key length or we'll be out of bounds.
                require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                if (currentKeyIndex == 0) {
                    // First proof element is always the root node.
                    require(
                        Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                        "MerkleTrie: invalid root hash"
                    );
                } else if (currentNode.encoded.length >= 32) {
                    // Nodes 32 bytes or larger are hashed inside branch nodes.
                    require(
                        Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                        "MerkleTrie: invalid large internal hash"
                    );
                } else {
                    // Nodes smaller than 32 bytes aren't hashed.
                    require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                }
                if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                    if (currentKeyIndex == key.length) {
                        // Value is the last element of the decoded list (for branch nodes). There's
                        // some ambiguity in the Merkle trie specification because bytes(0) is a
                        // valid value to place into the trie, but for branch nodes bytes(0) can exist
                        // even when the value wasn't explicitly placed there. Geth treats a value of
                        // bytes(0) as "key does not exist" and so we do the same.
                        value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                        require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                        // Extra proof elements are not allowed.
                        require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                        return value_;
                    } else {
                        // We're not at the end of the key yet.
                        // Figure out what the next node ID should be and continue.
                        uint8 branchKey = uint8(key[currentKeyIndex]);
                        RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                        currentNodeID = _getNodeID(nextNode);
                        currentKeyIndex += 1;
                    }
                } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                    bytes memory path = _getNodePath(currentNode);
                    uint8 prefix = uint8(path[0]);
                    uint8 offset = 2 - (prefix % 2);
                    bytes memory pathRemainder = Bytes.slice(path, offset);
                    bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                    uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                    // Whether this is a leaf node or an extension node, the path remainder MUST be a
                    // prefix of the key remainder (or be equal to the key remainder) or the proof is
                    // considered invalid.
                    require(
                        pathRemainder.length == sharedNibbleLength,
                        "MerkleTrie: path remainder must share all nibbles with key"
                    );
                    if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                        // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                        // the key remainder must be exactly equal to the path remainder. We already
                        // did the necessary byte comparison, so it's more efficient here to check that
                        // the key remainder length equals the shared nibble length, which implies
                        // equality with the path remainder (since we already did the same check with
                        // the path remainder and the shared nibble length).
                        require(
                            keyRemainder.length == sharedNibbleLength,
                            "MerkleTrie: key remainder must be identical to path remainder"
                        );
                        // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                        // state trie. Empty values are not allowed in the state trie, so we can safely
                        // say that if the value is empty, the key should not exist and the proof is
                        // invalid.
                        value_ = RLPReader.readBytes(currentNode.decoded[1]);
                        require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                        // Extra proof elements are not allowed.
                        require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                        return value_;
                    } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                        // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                        // in the proof and increment the key index by the length of the path remainder
                        // which is equal to the shared nibble length.
                        currentNodeID = _getNodeID(currentNode.decoded[1]);
                        currentKeyIndex += sharedNibbleLength;
                    } else {
                        revert("MerkleTrie: received a node with an unknown prefix");
                    }
                } else {
                    revert("MerkleTrie: received an unparseable node");
                }
            }
            revert("MerkleTrie: ran out of proof elements");
        }
        /// @notice Parses an array of proof elements into a new array that contains both the original
        ///         encoded element and the RLP-decoded element.
        /// @param _proof Array of proof elements to parse.
        /// @return proof_ Proof parsed into easily accessible structs.
        function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
            uint256 length = _proof.length;
            proof_ = new TrieNode[](length);
            for (uint256 i = 0; i < length;) {
                proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                unchecked {
                    ++i;
                }
            }
        }
        /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
        ///         specification, but nodes < 32 bytes are not actually hashed.
        /// @param _node Node to pull an ID for.
        /// @return id_ ID for the node, depending on the size of its contents.
        function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
            id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
        }
        /// @notice Gets the path for a leaf or extension node.
        /// @param _node Node to get a path for.
        /// @return nibbles_ Node path, converted to an array of nibbles.
        function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
            nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
        }
        /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
        /// @param _a First nibble array.
        /// @param _b Second nibble array.
        /// @return shared_ Number of shared nibbles.
        function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
            uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
            for (; shared_ < max && _a[shared_] == _b[shared_];) {
                unchecked {
                    ++shared_;
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`.
            // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
            // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
            // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
            // good first aproximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1;
            uint256 x = a;
            if (x >> 128 > 0) {
                x >>= 128;
                result <<= 64;
            }
            if (x >> 64 > 0) {
                x >>= 64;
                result <<= 32;
            }
            if (x >> 32 > 0) {
                x >>= 32;
                result <<= 16;
            }
            if (x >> 16 > 0) {
                x >>= 16;
                result <<= 8;
            }
            if (x >> 8 > 0) {
                x >>= 8;
                result <<= 4;
            }
            if (x >> 4 > 0) {
                x >>= 4;
                result <<= 2;
            }
            if (x >> 2 > 0) {
                result <<= 1;
            }
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            uint256 result = sqrt(a);
            if (rounding == Rounding.Up && result * result < a) {
                result += 1;
            }
            return result;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    /// @title Burn
    /// @notice Utilities for burning stuff.
    library Burn {
        /// @notice Burns a given amount of ETH.
        /// @param _amount Amount of ETH to burn.
        function eth(uint256 _amount) internal {
            new Burner{ value: _amount }();
        }
        /// @notice Burns a given amount of gas.
        /// @param _amount Amount of gas to burn.
        function gas(uint256 _amount) internal view {
            uint256 i = 0;
            uint256 initialGas = gasleft();
            while (initialGas - gasleft() < _amount) {
                ++i;
            }
        }
    }
    /// @title Burner
    /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
    ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
    ///         from the circulating supply.
    contract Burner {
        constructor() payable {
            selfdestruct(payable(address(this)));
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
    /// @title Arithmetic
    /// @notice Even more math than before.
    library Arithmetic {
        /// @notice Clamps a value between a minimum and maximum.
        /// @param _value The value to clamp.
        /// @param _min   The minimum value.
        /// @param _max   The maximum value.
        /// @return The clamped value.
        function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
            return SignedMath.min(SignedMath.max(_value, _min), _max);
        }
        /// @notice (c)oefficient (d)enominator (exp)onentiation function.
        ///         Returns the result of: c * (1 - 1/d)^exp.
        /// @param _coefficient Coefficient of the function.
        /// @param _denominator Fractional denominator.
        /// @param _exponent    Power function exponent.
        /// @return Result of c * (1 - 1/d)^exp.
        function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
            return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Library for managing
     * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
     * types.
     *
     * Sets have the following properties:
     *
     * - Elements are added, removed, and checked for existence in constant time
     * (O(1)).
     * - Elements are enumerated in O(n). No guarantees are made on the ordering.
     *
     * ```
     * contract Example {
     *     // Add the library methods
     *     using EnumerableSet for EnumerableSet.AddressSet;
     *
     *     // Declare a set state variable
     *     EnumerableSet.AddressSet private mySet;
     * }
     * ```
     *
     * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
     * and `uint256` (`UintSet`) are supported.
     *
     * [WARNING]
     * ====
     *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
     *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
     *
     *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
     * ====
     */
    library EnumerableSet {
        // To implement this library for multiple types with as little code
        // repetition as possible, we write it in terms of a generic Set type with
        // bytes32 values.
        // The Set implementation uses private functions, and user-facing
        // implementations (such as AddressSet) are just wrappers around the
        // underlying Set.
        // This means that we can only create new EnumerableSets for types that fit
        // in bytes32.
        struct Set {
            // Storage of set values
            bytes32[] _values;
            // Position of the value in the `values` array, plus 1 because index 0
            // means a value is not in the set.
            mapping(bytes32 => uint256) _indexes;
        }
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function _add(Set storage set, bytes32 value) private returns (bool) {
            if (!_contains(set, value)) {
                set._values.push(value);
                // The value is stored at length-1, but we add 1 to all indexes
                // and use 0 as a sentinel value
                set._indexes[value] = set._values.length;
                return true;
            } else {
                return false;
            }
        }
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function _remove(Set storage set, bytes32 value) private returns (bool) {
            // We read and store the value's index to prevent multiple reads from the same storage slot
            uint256 valueIndex = set._indexes[value];
            if (valueIndex != 0) {
                // Equivalent to contains(set, value)
                // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                // the array, and then remove the last element (sometimes called as 'swap and pop').
                // This modifies the order of the array, as noted in {at}.
                uint256 toDeleteIndex = valueIndex - 1;
                uint256 lastIndex = set._values.length - 1;
                if (lastIndex != toDeleteIndex) {
                    bytes32 lastValue = set._values[lastIndex];
                    // Move the last value to the index where the value to delete is
                    set._values[toDeleteIndex] = lastValue;
                    // Update the index for the moved value
                    set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                }
                // Delete the slot where the moved value was stored
                set._values.pop();
                // Delete the index for the deleted slot
                delete set._indexes[value];
                return true;
            } else {
                return false;
            }
        }
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function _contains(Set storage set, bytes32 value) private view returns (bool) {
            return set._indexes[value] != 0;
        }
        /**
         * @dev Returns the number of values on the set. O(1).
         */
        function _length(Set storage set) private view returns (uint256) {
            return set._values.length;
        }
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function _at(Set storage set, uint256 index) private view returns (bytes32) {
            return set._values[index];
        }
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function _values(Set storage set) private view returns (bytes32[] memory) {
            return set._values;
        }
        // Bytes32Set
        struct Bytes32Set {
            Set _inner;
        }
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _add(set._inner, value);
        }
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _remove(set._inner, value);
        }
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
            return _contains(set._inner, value);
        }
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(Bytes32Set storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
            return _at(set._inner, index);
        }
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
            return _values(set._inner);
        }
        // AddressSet
        struct AddressSet {
            Set _inner;
        }
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(AddressSet storage set, address value) internal returns (bool) {
            return _add(set._inner, bytes32(uint256(uint160(value))));
        }
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(AddressSet storage set, address value) internal returns (bool) {
            return _remove(set._inner, bytes32(uint256(uint160(value))));
        }
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(AddressSet storage set, address value) internal view returns (bool) {
            return _contains(set._inner, bytes32(uint256(uint160(value))));
        }
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(AddressSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(AddressSet storage set, uint256 index) internal view returns (address) {
            return address(uint160(uint256(_at(set._inner, index))));
        }
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(AddressSet storage set) internal view returns (address[] memory) {
            bytes32[] memory store = _values(set._inner);
            address[] memory result;
            /// @solidity memory-safe-assembly
            assembly {
                result := store
            }
            return result;
        }
        // UintSet
        struct UintSet {
            Set _inner;
        }
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(UintSet storage set, uint256 value) internal returns (bool) {
            return _add(set._inner, bytes32(value));
        }
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(UintSet storage set, uint256 value) internal returns (bool) {
            return _remove(set._inner, bytes32(value));
        }
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(UintSet storage set, uint256 value) internal view returns (bool) {
            return _contains(set._inner, bytes32(value));
        }
        /**
         * @dev Returns the number of values on the set. O(1).
         */
        function length(UintSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(UintSet storage set, uint256 index) internal view returns (uint256) {
            return uint256(_at(set._inner, index));
        }
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(UintSet storage set) internal view returns (uint256[] memory) {
            bytes32[] memory store = _values(set._inner);
            uint256[] memory result;
            /// @solidity memory-safe-assembly
            assembly {
                result := store
            }
            return result;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
    pragma solidity ^0.8.0;
    import "./OwnableUpgradeable.sol";
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module which provides access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership} and {acceptOwnership}.
     *
     * This module is used through inheritance. It will make available all functions
     * from parent (Ownable).
     */
    abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
        function __Ownable2Step_init() internal onlyInitializing {
            __Ownable_init_unchained();
        }
        function __Ownable2Step_init_unchained() internal onlyInitializing {
        }
        address private _pendingOwner;
        event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Returns the address of the pending owner.
         */
        function pendingOwner() public view virtual returns (address) {
            return _pendingOwner;
        }
        /**
         * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual override onlyOwner {
            _pendingOwner = newOwner;
            emit OwnershipTransferStarted(owner(), newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual override {
            delete _pendingOwner;
            super._transferOwnership(newOwner);
        }
        /**
         * @dev The new owner accepts the ownership transfer.
         */
        function acceptOwnership() public virtual {
            address sender = _msgSender();
            require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
            _transferOwnership(sender);
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/SafeCast.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
     * checks.
     *
     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
     * easily result in undesired exploitation or bugs, since developers usually
     * assume that overflows raise errors. `SafeCast` restores this intuition by
     * reverting the transaction when such an operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     *
     * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
     * all math on `uint256` and `int256` and then downcasting.
     */
    library SafeCast {
        /**
         * @dev Returns the downcasted uint248 from uint256, reverting on
         * overflow (when the input is greater than largest uint248).
         *
         * Counterpart to Solidity's `uint248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         *
         * _Available since v4.7._
         */
        function toUint248(uint256 value) internal pure returns (uint248) {
            require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
            return uint248(value);
        }
        /**
         * @dev Returns the downcasted uint240 from uint256, reverting on
         * overflow (when the input is greater than largest uint240).
         *
         * Counterpart to Solidity's `uint240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         *
         * _Available since v4.7._
         */
        function toUint240(uint256 value) internal pure returns (uint240) {
            require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
            return uint240(value);
        }
        /**
         * @dev Returns the downcasted uint232 from uint256, reverting on
         * overflow (when the input is greater than largest uint232).
         *
         * Counterpart to Solidity's `uint232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         *
         * _Available since v4.7._
         */
        function toUint232(uint256 value) internal pure returns (uint232) {
            require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
            return uint232(value);
        }
        /**
         * @dev Returns the downcasted uint224 from uint256, reverting on
         * overflow (when the input is greater than largest uint224).
         *
         * Counterpart to Solidity's `uint224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         *
         * _Available since v4.2._
         */
        function toUint224(uint256 value) internal pure returns (uint224) {
            require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
            return uint224(value);
        }
        /**
         * @dev Returns the downcasted uint216 from uint256, reverting on
         * overflow (when the input is greater than largest uint216).
         *
         * Counterpart to Solidity's `uint216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         *
         * _Available since v4.7._
         */
        function toUint216(uint256 value) internal pure returns (uint216) {
            require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
            return uint216(value);
        }
        /**
         * @dev Returns the downcasted uint208 from uint256, reverting on
         * overflow (when the input is greater than largest uint208).
         *
         * Counterpart to Solidity's `uint208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         *
         * _Available since v4.7._
         */
        function toUint208(uint256 value) internal pure returns (uint208) {
            require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
            return uint208(value);
        }
        /**
         * @dev Returns the downcasted uint200 from uint256, reverting on
         * overflow (when the input is greater than largest uint200).
         *
         * Counterpart to Solidity's `uint200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         *
         * _Available since v4.7._
         */
        function toUint200(uint256 value) internal pure returns (uint200) {
            require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
            return uint200(value);
        }
        /**
         * @dev Returns the downcasted uint192 from uint256, reverting on
         * overflow (when the input is greater than largest uint192).
         *
         * Counterpart to Solidity's `uint192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         *
         * _Available since v4.7._
         */
        function toUint192(uint256 value) internal pure returns (uint192) {
            require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
            return uint192(value);
        }
        /**
         * @dev Returns the downcasted uint184 from uint256, reverting on
         * overflow (when the input is greater than largest uint184).
         *
         * Counterpart to Solidity's `uint184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         *
         * _Available since v4.7._
         */
        function toUint184(uint256 value) internal pure returns (uint184) {
            require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
            return uint184(value);
        }
        /**
         * @dev Returns the downcasted uint176 from uint256, reverting on
         * overflow (when the input is greater than largest uint176).
         *
         * Counterpart to Solidity's `uint176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         *
         * _Available since v4.7._
         */
        function toUint176(uint256 value) internal pure returns (uint176) {
            require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
            return uint176(value);
        }
        /**
         * @dev Returns the downcasted uint168 from uint256, reverting on
         * overflow (when the input is greater than largest uint168).
         *
         * Counterpart to Solidity's `uint168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         *
         * _Available since v4.7._
         */
        function toUint168(uint256 value) internal pure returns (uint168) {
            require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
            return uint168(value);
        }
        /**
         * @dev Returns the downcasted uint160 from uint256, reverting on
         * overflow (when the input is greater than largest uint160).
         *
         * Counterpart to Solidity's `uint160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         *
         * _Available since v4.7._
         */
        function toUint160(uint256 value) internal pure returns (uint160) {
            require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
            return uint160(value);
        }
        /**
         * @dev Returns the downcasted uint152 from uint256, reverting on
         * overflow (when the input is greater than largest uint152).
         *
         * Counterpart to Solidity's `uint152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         *
         * _Available since v4.7._
         */
        function toUint152(uint256 value) internal pure returns (uint152) {
            require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
            return uint152(value);
        }
        /**
         * @dev Returns the downcasted uint144 from uint256, reverting on
         * overflow (when the input is greater than largest uint144).
         *
         * Counterpart to Solidity's `uint144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         *
         * _Available since v4.7._
         */
        function toUint144(uint256 value) internal pure returns (uint144) {
            require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
            return uint144(value);
        }
        /**
         * @dev Returns the downcasted uint136 from uint256, reverting on
         * overflow (when the input is greater than largest uint136).
         *
         * Counterpart to Solidity's `uint136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         *
         * _Available since v4.7._
         */
        function toUint136(uint256 value) internal pure returns (uint136) {
            require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
            return uint136(value);
        }
        /**
         * @dev Returns the downcasted uint128 from uint256, reverting on
         * overflow (when the input is greater than largest uint128).
         *
         * Counterpart to Solidity's `uint128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         *
         * _Available since v2.5._
         */
        function toUint128(uint256 value) internal pure returns (uint128) {
            require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
            return uint128(value);
        }
        /**
         * @dev Returns the downcasted uint120 from uint256, reverting on
         * overflow (when the input is greater than largest uint120).
         *
         * Counterpart to Solidity's `uint120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         *
         * _Available since v4.7._
         */
        function toUint120(uint256 value) internal pure returns (uint120) {
            require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
            return uint120(value);
        }
        /**
         * @dev Returns the downcasted uint112 from uint256, reverting on
         * overflow (when the input is greater than largest uint112).
         *
         * Counterpart to Solidity's `uint112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         *
         * _Available since v4.7._
         */
        function toUint112(uint256 value) internal pure returns (uint112) {
            require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
            return uint112(value);
        }
        /**
         * @dev Returns the downcasted uint104 from uint256, reverting on
         * overflow (when the input is greater than largest uint104).
         *
         * Counterpart to Solidity's `uint104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         *
         * _Available since v4.7._
         */
        function toUint104(uint256 value) internal pure returns (uint104) {
            require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
            return uint104(value);
        }
        /**
         * @dev Returns the downcasted uint96 from uint256, reverting on
         * overflow (when the input is greater than largest uint96).
         *
         * Counterpart to Solidity's `uint96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         *
         * _Available since v4.2._
         */
        function toUint96(uint256 value) internal pure returns (uint96) {
            require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
            return uint96(value);
        }
        /**
         * @dev Returns the downcasted uint88 from uint256, reverting on
         * overflow (when the input is greater than largest uint88).
         *
         * Counterpart to Solidity's `uint88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         *
         * _Available since v4.7._
         */
        function toUint88(uint256 value) internal pure returns (uint88) {
            require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
            return uint88(value);
        }
        /**
         * @dev Returns the downcasted uint80 from uint256, reverting on
         * overflow (when the input is greater than largest uint80).
         *
         * Counterpart to Solidity's `uint80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         *
         * _Available since v4.7._
         */
        function toUint80(uint256 value) internal pure returns (uint80) {
            require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
            return uint80(value);
        }
        /**
         * @dev Returns the downcasted uint72 from uint256, reverting on
         * overflow (when the input is greater than largest uint72).
         *
         * Counterpart to Solidity's `uint72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         *
         * _Available since v4.7._
         */
        function toUint72(uint256 value) internal pure returns (uint72) {
            require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
            return uint72(value);
        }
        /**
         * @dev Returns the downcasted uint64 from uint256, reverting on
         * overflow (when the input is greater than largest uint64).
         *
         * Counterpart to Solidity's `uint64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         *
         * _Available since v2.5._
         */
        function toUint64(uint256 value) internal pure returns (uint64) {
            require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
            return uint64(value);
        }
        /**
         * @dev Returns the downcasted uint56 from uint256, reverting on
         * overflow (when the input is greater than largest uint56).
         *
         * Counterpart to Solidity's `uint56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         *
         * _Available since v4.7._
         */
        function toUint56(uint256 value) internal pure returns (uint56) {
            require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
            return uint56(value);
        }
        /**
         * @dev Returns the downcasted uint48 from uint256, reverting on
         * overflow (when the input is greater than largest uint48).
         *
         * Counterpart to Solidity's `uint48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         *
         * _Available since v4.7._
         */
        function toUint48(uint256 value) internal pure returns (uint48) {
            require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
            return uint48(value);
        }
        /**
         * @dev Returns the downcasted uint40 from uint256, reverting on
         * overflow (when the input is greater than largest uint40).
         *
         * Counterpart to Solidity's `uint40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         *
         * _Available since v4.7._
         */
        function toUint40(uint256 value) internal pure returns (uint40) {
            require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
            return uint40(value);
        }
        /**
         * @dev Returns the downcasted uint32 from uint256, reverting on
         * overflow (when the input is greater than largest uint32).
         *
         * Counterpart to Solidity's `uint32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         *
         * _Available since v2.5._
         */
        function toUint32(uint256 value) internal pure returns (uint32) {
            require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
            return uint32(value);
        }
        /**
         * @dev Returns the downcasted uint24 from uint256, reverting on
         * overflow (when the input is greater than largest uint24).
         *
         * Counterpart to Solidity's `uint24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         *
         * _Available since v4.7._
         */
        function toUint24(uint256 value) internal pure returns (uint24) {
            require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
            return uint24(value);
        }
        /**
         * @dev Returns the downcasted uint16 from uint256, reverting on
         * overflow (when the input is greater than largest uint16).
         *
         * Counterpart to Solidity's `uint16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         *
         * _Available since v2.5._
         */
        function toUint16(uint256 value) internal pure returns (uint16) {
            require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
            return uint16(value);
        }
        /**
         * @dev Returns the downcasted uint8 from uint256, reverting on
         * overflow (when the input is greater than largest uint8).
         *
         * Counterpart to Solidity's `uint8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         *
         * _Available since v2.5._
         */
        function toUint8(uint256 value) internal pure returns (uint8) {
            require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
            return uint8(value);
        }
        /**
         * @dev Converts a signed int256 into an unsigned uint256.
         *
         * Requirements:
         *
         * - input must be greater than or equal to 0.
         *
         * _Available since v3.0._
         */
        function toUint256(int256 value) internal pure returns (uint256) {
            require(value >= 0, "SafeCast: value must be positive");
            return uint256(value);
        }
        /**
         * @dev Returns the downcasted int248 from int256, reverting on
         * overflow (when the input is less than smallest int248 or
         * greater than largest int248).
         *
         * Counterpart to Solidity's `int248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         *
         * _Available since v4.7._
         */
        function toInt248(int256 value) internal pure returns (int248) {
            require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
            return int248(value);
        }
        /**
         * @dev Returns the downcasted int240 from int256, reverting on
         * overflow (when the input is less than smallest int240 or
         * greater than largest int240).
         *
         * Counterpart to Solidity's `int240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         *
         * _Available since v4.7._
         */
        function toInt240(int256 value) internal pure returns (int240) {
            require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
            return int240(value);
        }
        /**
         * @dev Returns the downcasted int232 from int256, reverting on
         * overflow (when the input is less than smallest int232 or
         * greater than largest int232).
         *
         * Counterpart to Solidity's `int232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         *
         * _Available since v4.7._
         */
        function toInt232(int256 value) internal pure returns (int232) {
            require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
            return int232(value);
        }
        /**
         * @dev Returns the downcasted int224 from int256, reverting on
         * overflow (when the input is less than smallest int224 or
         * greater than largest int224).
         *
         * Counterpart to Solidity's `int224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         *
         * _Available since v4.7._
         */
        function toInt224(int256 value) internal pure returns (int224) {
            require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
            return int224(value);
        }
        /**
         * @dev Returns the downcasted int216 from int256, reverting on
         * overflow (when the input is less than smallest int216 or
         * greater than largest int216).
         *
         * Counterpart to Solidity's `int216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         *
         * _Available since v4.7._
         */
        function toInt216(int256 value) internal pure returns (int216) {
            require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
            return int216(value);
        }
        /**
         * @dev Returns the downcasted int208 from int256, reverting on
         * overflow (when the input is less than smallest int208 or
         * greater than largest int208).
         *
         * Counterpart to Solidity's `int208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         *
         * _Available since v4.7._
         */
        function toInt208(int256 value) internal pure returns (int208) {
            require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
            return int208(value);
        }
        /**
         * @dev Returns the downcasted int200 from int256, reverting on
         * overflow (when the input is less than smallest int200 or
         * greater than largest int200).
         *
         * Counterpart to Solidity's `int200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         *
         * _Available since v4.7._
         */
        function toInt200(int256 value) internal pure returns (int200) {
            require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
            return int200(value);
        }
        /**
         * @dev Returns the downcasted int192 from int256, reverting on
         * overflow (when the input is less than smallest int192 or
         * greater than largest int192).
         *
         * Counterpart to Solidity's `int192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         *
         * _Available since v4.7._
         */
        function toInt192(int256 value) internal pure returns (int192) {
            require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
            return int192(value);
        }
        /**
         * @dev Returns the downcasted int184 from int256, reverting on
         * overflow (when the input is less than smallest int184 or
         * greater than largest int184).
         *
         * Counterpart to Solidity's `int184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         *
         * _Available since v4.7._
         */
        function toInt184(int256 value) internal pure returns (int184) {
            require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
            return int184(value);
        }
        /**
         * @dev Returns the downcasted int176 from int256, reverting on
         * overflow (when the input is less than smallest int176 or
         * greater than largest int176).
         *
         * Counterpart to Solidity's `int176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         *
         * _Available since v4.7._
         */
        function toInt176(int256 value) internal pure returns (int176) {
            require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
            return int176(value);
        }
        /**
         * @dev Returns the downcasted int168 from int256, reverting on
         * overflow (when the input is less than smallest int168 or
         * greater than largest int168).
         *
         * Counterpart to Solidity's `int168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         *
         * _Available since v4.7._
         */
        function toInt168(int256 value) internal pure returns (int168) {
            require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
            return int168(value);
        }
        /**
         * @dev Returns the downcasted int160 from int256, reverting on
         * overflow (when the input is less than smallest int160 or
         * greater than largest int160).
         *
         * Counterpart to Solidity's `int160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         *
         * _Available since v4.7._
         */
        function toInt160(int256 value) internal pure returns (int160) {
            require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
            return int160(value);
        }
        /**
         * @dev Returns the downcasted int152 from int256, reverting on
         * overflow (when the input is less than smallest int152 or
         * greater than largest int152).
         *
         * Counterpart to Solidity's `int152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         *
         * _Available since v4.7._
         */
        function toInt152(int256 value) internal pure returns (int152) {
            require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
            return int152(value);
        }
        /**
         * @dev Returns the downcasted int144 from int256, reverting on
         * overflow (when the input is less than smallest int144 or
         * greater than largest int144).
         *
         * Counterpart to Solidity's `int144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         *
         * _Available since v4.7._
         */
        function toInt144(int256 value) internal pure returns (int144) {
            require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
            return int144(value);
        }
        /**
         * @dev Returns the downcasted int136 from int256, reverting on
         * overflow (when the input is less than smallest int136 or
         * greater than largest int136).
         *
         * Counterpart to Solidity's `int136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         *
         * _Available since v4.7._
         */
        function toInt136(int256 value) internal pure returns (int136) {
            require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
            return int136(value);
        }
        /**
         * @dev Returns the downcasted int128 from int256, reverting on
         * overflow (when the input is less than smallest int128 or
         * greater than largest int128).
         *
         * Counterpart to Solidity's `int128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         *
         * _Available since v3.1._
         */
        function toInt128(int256 value) internal pure returns (int128) {
            require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
            return int128(value);
        }
        /**
         * @dev Returns the downcasted int120 from int256, reverting on
         * overflow (when the input is less than smallest int120 or
         * greater than largest int120).
         *
         * Counterpart to Solidity's `int120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         *
         * _Available since v4.7._
         */
        function toInt120(int256 value) internal pure returns (int120) {
            require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
            return int120(value);
        }
        /**
         * @dev Returns the downcasted int112 from int256, reverting on
         * overflow (when the input is less than smallest int112 or
         * greater than largest int112).
         *
         * Counterpart to Solidity's `int112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         *
         * _Available since v4.7._
         */
        function toInt112(int256 value) internal pure returns (int112) {
            require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
            return int112(value);
        }
        /**
         * @dev Returns the downcasted int104 from int256, reverting on
         * overflow (when the input is less than smallest int104 or
         * greater than largest int104).
         *
         * Counterpart to Solidity's `int104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         *
         * _Available since v4.7._
         */
        function toInt104(int256 value) internal pure returns (int104) {
            require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
            return int104(value);
        }
        /**
         * @dev Returns the downcasted int96 from int256, reverting on
         * overflow (when the input is less than smallest int96 or
         * greater than largest int96).
         *
         * Counterpart to Solidity's `int96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         *
         * _Available since v4.7._
         */
        function toInt96(int256 value) internal pure returns (int96) {
            require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
            return int96(value);
        }
        /**
         * @dev Returns the downcasted int88 from int256, reverting on
         * overflow (when the input is less than smallest int88 or
         * greater than largest int88).
         *
         * Counterpart to Solidity's `int88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         *
         * _Available since v4.7._
         */
        function toInt88(int256 value) internal pure returns (int88) {
            require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
            return int88(value);
        }
        /**
         * @dev Returns the downcasted int80 from int256, reverting on
         * overflow (when the input is less than smallest int80 or
         * greater than largest int80).
         *
         * Counterpart to Solidity's `int80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         *
         * _Available since v4.7._
         */
        function toInt80(int256 value) internal pure returns (int80) {
            require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
            return int80(value);
        }
        /**
         * @dev Returns the downcasted int72 from int256, reverting on
         * overflow (when the input is less than smallest int72 or
         * greater than largest int72).
         *
         * Counterpart to Solidity's `int72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         *
         * _Available since v4.7._
         */
        function toInt72(int256 value) internal pure returns (int72) {
            require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
            return int72(value);
        }
        /**
         * @dev Returns the downcasted int64 from int256, reverting on
         * overflow (when the input is less than smallest int64 or
         * greater than largest int64).
         *
         * Counterpart to Solidity's `int64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         *
         * _Available since v3.1._
         */
        function toInt64(int256 value) internal pure returns (int64) {
            require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
            return int64(value);
        }
        /**
         * @dev Returns the downcasted int56 from int256, reverting on
         * overflow (when the input is less than smallest int56 or
         * greater than largest int56).
         *
         * Counterpart to Solidity's `int56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         *
         * _Available since v4.7._
         */
        function toInt56(int256 value) internal pure returns (int56) {
            require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
            return int56(value);
        }
        /**
         * @dev Returns the downcasted int48 from int256, reverting on
         * overflow (when the input is less than smallest int48 or
         * greater than largest int48).
         *
         * Counterpart to Solidity's `int48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         *
         * _Available since v4.7._
         */
        function toInt48(int256 value) internal pure returns (int48) {
            require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
            return int48(value);
        }
        /**
         * @dev Returns the downcasted int40 from int256, reverting on
         * overflow (when the input is less than smallest int40 or
         * greater than largest int40).
         *
         * Counterpart to Solidity's `int40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         *
         * _Available since v4.7._
         */
        function toInt40(int256 value) internal pure returns (int40) {
            require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
            return int40(value);
        }
        /**
         * @dev Returns the downcasted int32 from int256, reverting on
         * overflow (when the input is less than smallest int32 or
         * greater than largest int32).
         *
         * Counterpart to Solidity's `int32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         *
         * _Available since v3.1._
         */
        function toInt32(int256 value) internal pure returns (int32) {
            require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
            return int32(value);
        }
        /**
         * @dev Returns the downcasted int24 from int256, reverting on
         * overflow (when the input is less than smallest int24 or
         * greater than largest int24).
         *
         * Counterpart to Solidity's `int24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         *
         * _Available since v4.7._
         */
        function toInt24(int256 value) internal pure returns (int24) {
            require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
            return int24(value);
        }
        /**
         * @dev Returns the downcasted int16 from int256, reverting on
         * overflow (when the input is less than smallest int16 or
         * greater than largest int16).
         *
         * Counterpart to Solidity's `int16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         *
         * _Available since v3.1._
         */
        function toInt16(int256 value) internal pure returns (int16) {
            require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
            return int16(value);
        }
        /**
         * @dev Returns the downcasted int8 from int256, reverting on
         * overflow (when the input is less than smallest int8 or
         * greater than largest int8).
         *
         * Counterpart to Solidity's `int8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         *
         * _Available since v3.1._
         */
        function toInt8(int256 value) internal pure returns (int8) {
            require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
            return int8(value);
        }
        /**
         * @dev Converts an unsigned uint256 into a signed int256.
         *
         * Requirements:
         *
         * - input must be less than or equal to maxInt256.
         *
         * _Available since v3.0._
         */
        function toInt256(uint256 value) internal pure returns (int256) {
            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
            require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
            return int256(value);
        }
    }
    // SPDX-FileCopyrightText: 2023 Lido <[email protected]>
    // SPDX-License-Identifier: GPL-3.0
    pragma solidity 0.8.15;
    import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
    import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import { SafeCall } from "src/libraries/SafeCall.sol";
    /// @title WithdrawalQueue
    /// @notice Queue for storing and managing withdrawal requests.
    ///         This contract is based on Lido's WithdrawalQueue and has been
    ///         modified to support Blast specific logic such as withdrawal discounts.
    contract WithdrawalQueue is Initializable {
        using EnumerableSet for EnumerableSet.UintSet;
        using SafeERC20 for IERC20;
        /// @notice The L1 gas limit set when sending eth to the YieldManager.
        uint256 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
        /// @notice precision base for share rate
        uint256 internal constant E27_PRECISION_BASE = 1e27;
        /// @notice return value for the `find...` methods in case of no result
        uint256 internal constant NOT_FOUND = 0;
        address public immutable TOKEN;
        WithdrawalRequest[] private _requests;
        mapping(address => EnumerableSet.UintSet) private _requestsByOwner;
        Checkpoint[] private _checkpoints;
        uint256 private lastRequestId;
        uint256 private lastFinalizedRequestId;
        uint256 private lastCheckpointId;
        uint256 private lockedBalance;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
        ///         would be a multiple of 50.
        uint256[42] private __gap;
        /// @notice structure representing a request for withdrawal
        struct WithdrawalRequest {
            /// @notice sum of the all tokens submitted for withdrawals including this request (nominal amount)
            uint128 cumulativeAmount;
            /// @notice address that can claim the request and receives the funds
            address recipient;
            /// @notice block.timestamp when the request was created
            uint40 timestamp;
            /// @notice flag if the request was claimed
            bool claimed;
        }
        /// @notice output format struct for `_getWithdrawalStatus()` method
        struct WithdrawalRequestStatus {
            /// @notice nominal token amount that was locked on withdrawal queue for this request
            uint256 amount;
            /// @notice address that can claim or transfer this request
            address recipient;
            /// @notice timestamp of when the request was created, in seconds
            uint256 timestamp;
            /// @notice true, if request is finalized
            bool isFinalized;
            /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
            bool isClaimed;
        }
        /// @notice structure to store discounts for requests that are affected by negative rebase
        /// All requests covered by the checkpoint are affected by the same discount rate `sharePrice`.
        struct Checkpoint {
            uint256 fromRequestId;
            uint256 sharePrice;
        }
        /// @dev amount represents the nominal amount of tokens that were withdrawn (burned) on L2.
        event WithdrawalRequested(
            uint256 indexed requestId,
            address indexed requestor,
            address indexed recipient,
            uint256 amount
        );
        /// @dev amountOfETHLocked represents the real amount of ETH that was locked in the queue and will be
        ///      transferred to the recipient on claim.
        event WithdrawalsFinalized(
            uint256 indexed from,
            uint256 indexed to,
            uint256 indexed checkpointId,
            uint256 amountOfETHLocked,
            uint256 timestamp,
            uint256 sharePrice
        );
        /// @dev amount represents the real amount of ETH that was transferred to the recipient.
        event WithdrawalClaimed(
            uint256 indexed requestId, address indexed recipient, uint256 amountOfETH
        );
        error InvalidRequestId(uint256 _requestId);
        error InvalidRequestIdRange(uint256 startId, uint256 endId);
        error InvalidSharePrice();
        error RequestNotFoundOrNotFinalized(uint256 _requestId);
        error RequestAlreadyClaimed(uint256 _requestId);
        error InvalidHint(uint256 _hint);
        error RequestIdsNotSorted();
        error CallerIsNotRecipient();
        error WithdrawalTransferFailed();
        error InsufficientBalance();
        constructor(address _token) {
            TOKEN = _token;
        }
        /// @notice initialize the contract with the dummy request and checkpoint
        ///         as the zero elements of the corresponding arrays so that
        ///         the first element of the array has index 1
        function __WithdrawalQueue_init() internal onlyInitializing {
            _requests.push(WithdrawalRequest(0, address(0), uint40(block.timestamp), true));
            _checkpoints.push(Checkpoint(0, 0));
        }
        function getWithdrawalStatus(uint256[] calldata _requestIds)
            external
            view
            returns (WithdrawalRequestStatus[] memory statuses)
        {
            statuses = new WithdrawalRequestStatus[](_requestIds.length);
            for (uint256 i = 0; i < _requestIds.length; ++i) {
                statuses[i] = _getStatus(_requestIds[i]);
            }
        }
        function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestIds) {
            return _requestsByOwner[_owner].values();
        }
        function getClaimableEther(uint256[] calldata _requestIds, uint256[] calldata _hintIds)
            external
            view
            returns (uint256[] memory claimableEthValues)
        {
            claimableEthValues = new uint256[](_requestIds.length);
            for (uint256 i = 0; i < _requestIds.length; ++i) {
                claimableEthValues[i] = _getClaimableEther(_requestIds[i], _hintIds[i]);
            }
        }
        function _getClaimableEther(uint256 _requestId, uint256 _hintId) internal view returns (uint256) {
            if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
            if (_requestId > lastFinalizedRequestId) return 0;
            WithdrawalRequest storage request = _requests[_requestId];
            if (request.claimed) return 0;
            return _calculateClaimableEther(_requestId, _hintId);
        }
        /// @notice id of the last request
        ///  NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
        function getLastRequestId() external view returns (uint256) {
            return lastRequestId;
        }
        /// @notice id of the last finalized request
        ///  NB! requests are indexed from 1, so it returns 0 if there is no finalized requests in the queue
        function getLastFinalizedRequestId() external view returns (uint256) {
            return lastFinalizedRequestId;
        }
        /// @notice amount of ETH on this contract balance that is locked for withdrawal and available to claim
        ///  NB! this is the real amount of ETH (i.e. sum of (nominal amount of ETH burned on L2 * sharePrice))
        function getLockedBalance() public view returns (uint256) {
            return lockedBalance;
        }
        /// @notice return the last checkpoint id in the queue
        function getLastCheckpointId() external view returns (uint256) {
            return lastCheckpointId;
        }
        /// @notice return the number of unfinalized requests in the queue
        function unfinalizedRequestNumber() public view returns (uint256) {
            return lastRequestId - lastFinalizedRequestId;
        }
        /// @notice Returns the amount of ETH in the queue yet to be finalized
        ///  NB! this is the nominal amount of ETH burned on L2
        function unfinalizedAmount() internal view returns (uint256) {
            return
                _requests[lastRequestId].cumulativeAmount - _requests[lastFinalizedRequestId].cumulativeAmount;
        }
        /// @dev Finalize requests in the queue
        /// @notice sharePrice has 1e27 precision
        ///  Emits WithdrawalsFinalized event.
        function _finalize(
            uint256 _lastRequestIdToBeFinalized,
            uint256 availableBalance,
            uint256 sharePrice
        ) internal returns (uint256 nominalAmountToFinalize, uint256 realAmountToFinalize, uint256 checkpointId) {
            // share price cannot be larger than 1e27
            if (sharePrice > E27_PRECISION_BASE) {
                revert InvalidSharePrice();
            }
            if (_lastRequestIdToBeFinalized != 0) {
                if (_lastRequestIdToBeFinalized > lastRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                uint256 _lastFinalizedRequestId = lastFinalizedRequestId;
                if (_lastRequestIdToBeFinalized <= _lastFinalizedRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                WithdrawalRequest memory lastFinalizedRequest = _requests[_lastFinalizedRequestId];
                WithdrawalRequest memory requestToFinalize = _requests[_lastRequestIdToBeFinalized];
                nominalAmountToFinalize = requestToFinalize.cumulativeAmount - lastFinalizedRequest.cumulativeAmount;
                realAmountToFinalize = (nominalAmountToFinalize * sharePrice) / E27_PRECISION_BASE;
                if (realAmountToFinalize > availableBalance) {
                    revert InsufficientBalance();
                }
                uint256 firstRequestIdToFinalize = _lastFinalizedRequestId + 1;
                lockedBalance += realAmountToFinalize;
                lastFinalizedRequestId = _lastRequestIdToBeFinalized;
                checkpointId = _createCheckpoint(firstRequestIdToFinalize, sharePrice);
                emit WithdrawalsFinalized(
                    firstRequestIdToFinalize,
                    _lastRequestIdToBeFinalized,
                    checkpointId,
                    realAmountToFinalize,
                    block.timestamp,
                    sharePrice
                );
            }
        }
        /// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
        ///  in the range  `[_firstIndex, _lastIndex]`.
        ///  NB! Array of request ids should be sorted
        ///  NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
        ///  Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
        /// @param _requestIds ids of the requests sorted in the ascending order to get hints for
        /// @param _firstIndex left boundary of the search range. Should be greater than 0
        /// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
        /// @return hintIds array of hints used to find required checkpoint for the request
        function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex)
            external
            view
            returns (uint256[] memory hintIds)
        {
            hintIds = new uint256[](_requestIds.length);
            uint256 prevRequestId = 0;
            for (uint256 i = 0; i < _requestIds.length; ++i) {
                if (_requestIds[i] < prevRequestId) {
                    revert RequestIdsNotSorted();
                }
                hintIds[i] = findCheckpointHint(_requestIds[i], _firstIndex, _lastIndex);
                _firstIndex = hintIds[i];
                prevRequestId = _requestIds[i];
            }
        }
        /// @dev View function to find a checkpoint hint to use in `claimWithdrawal()` and `getClaimableEther()`
        ///  Search will be performed in the range of `[_firstIndex, _lastIndex]`
        ///
        /// @param _requestId request id to search the checkpoint for
        /// @param _start index of the left boundary of the search range, should be greater than 0
        /// @param _end index of the right boundary of the search range, should be less than or equal
        ///  to queue.lastCheckpointId
        ///
        /// @return hint for later use in other methods or 0 if hint not found in the range
        function findCheckpointHint(uint256 _requestId, uint256 _start, uint256 _end) public view returns (uint256) {
            if (_requestId == 0 || _requestId > lastRequestId) {
                revert InvalidRequestId(_requestId);
            }
            uint256 lastCheckpointIndex = lastCheckpointId;
            if (_start == 0 || _end > lastCheckpointIndex) {
                revert InvalidRequestIdRange(_start, _end);
            }
            if (lastCheckpointIndex == 0 || _requestId > lastFinalizedRequestId || _start > _end) {
                return NOT_FOUND;
            }
            // Right boundary
            if (_requestId >= _checkpoints[_end].fromRequestId) {
                // it's the last checkpoint, so it's valid
                if (_end == lastCheckpointIndex) {
                    return _end;
                }
                // it fits right before the next checkpoint
                if (_requestId < _checkpoints[_end + 1].fromRequestId) {
                    return _end;
                }
                return NOT_FOUND;
            }
            // Left boundary
            if (_requestId < _checkpoints[_start].fromRequestId) {
                return NOT_FOUND;
            }
            // Binary search
            uint256 min = _start;
            uint256 max = _end - 1;
            while (max > min) {
                uint256 mid = (max + min + 1) / 2;
                if (_checkpoints[mid].fromRequestId <= _requestId) {
                    min = mid;
                } else {
                    max = mid - 1;
                }
            }
            return min;
        }
        /// @dev Returns the status of the withdrawal request with `_requestId` id
        function _getStatus(uint256 _requestId) internal view returns (WithdrawalRequestStatus memory status) {
            if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
            WithdrawalRequest memory request = _requests[_requestId];
            WithdrawalRequest memory previousRequest = _requests[_requestId - 1];
            status = WithdrawalRequestStatus(
                request.cumulativeAmount - previousRequest.cumulativeAmount,
                request.recipient,
                request.timestamp,
                _requestId <= lastFinalizedRequestId,
                request.claimed
            );
        }
        /// @dev creates a new `WithdrawalRequest` in the queue
        ///  Emits WithdrawalRequested event
        function _requestWithdrawal(address recipient, uint256 amount)
            internal
            returns (uint256 requestId)
        {
            uint256 _lastRequestId = lastRequestId;
            WithdrawalRequest memory lastRequest = _requests[_lastRequestId];
            uint128 cumulativeAmount = lastRequest.cumulativeAmount + SafeCast.toUint128(amount);
            requestId = _lastRequestId + 1;
            lastRequestId = requestId;
            WithdrawalRequest memory newRequest = WithdrawalRequest(
                cumulativeAmount,
                recipient,
                uint40(block.timestamp),
                false
            );
            _requests.push(newRequest);
            _requestsByOwner[recipient].add(requestId);
            emit WithdrawalRequested(requestId, msg.sender, recipient, amount);
        }
        /// @dev assumes firstRequestIdToFinalize > _lastFinalizedRequestId && sharePrice <= 1e27
        function _createCheckpoint(uint256 firstRequestIdToFinalize, uint256 sharePrice) internal returns (uint256) {
            _checkpoints.push(Checkpoint(firstRequestIdToFinalize, sharePrice));
            lastCheckpointId += 1;
            return lastCheckpointId;
        }
        /// @dev can only be called by request.recipient (YieldManager)
        function claimWithdrawal(uint256 _requestId, uint256 _hintId) external returns (bool success) {
            if (_requestId == 0) revert InvalidRequestId(_requestId);
            if (_requestId > lastFinalizedRequestId) revert RequestNotFoundOrNotFinalized(_requestId);
            WithdrawalRequest storage request = _requests[_requestId];
            if (request.claimed) revert RequestAlreadyClaimed(_requestId);
            request.claimed = true;
            address recipient = request.recipient;
            if (msg.sender != recipient) {
                revert CallerIsNotRecipient();
            }
            uint256 realAmount = _calculateClaimableEther(_requestId, _hintId);
            lockedBalance -= realAmount;
            if (TOKEN == address(0)) {
                (success) = SafeCall.send(recipient, SEND_DEFAULT_GAS_LIMIT, realAmount);
            } else {
                IERC20(TOKEN).safeTransfer(recipient, realAmount);
                success = true;
            }
            if (!success) {
                revert WithdrawalTransferFailed();
            }
            emit WithdrawalClaimed(_requestId, recipient, realAmount);
        }
        /// @dev Calculate the amount of ETH that can be claimed for the withdrawal request with `_requestId`.
        ///  NB! This function returns the real amount of ETH that can be claimed by the recipient, not the nominal amount
        ///  that was burned on L2. The real amount is calculated as nominal amount * share price, which can be found
        ///  in the checkpoint with `_hintId`.
        function _calculateClaimableEther(uint256 _requestId, uint256 _hintId)
            internal
            view
            returns (uint256)
        {
            if (_hintId == 0) {
                revert InvalidHint(_hintId);
            }
            uint256 lastCheckpointIndex = lastCheckpointId;
            if (_hintId > lastCheckpointIndex) {
                revert InvalidHint(_hintId);
            }
            Checkpoint memory checkpoint = _checkpoints[_hintId];
            if (_requestId < checkpoint.fromRequestId) {
                revert InvalidHint(_hintId);
            }
            if (_hintId < lastCheckpointIndex) {
                Checkpoint memory nextCheckpoint = _checkpoints[_hintId + 1];
                if (_requestId >= nextCheckpoint.fromRequestId) {
                    revert InvalidHint(_hintId);
                }
            }
            WithdrawalRequest storage prevRequest = _requests[_requestId - 1];
            WithdrawalRequest storage request = _requests[_requestId];
            uint256 nominalAmount = request.cumulativeAmount - prevRequest.cumulativeAmount;
            return (nominalAmount * checkpoint.sharePrice) / E27_PRECISION_BASE;
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
    import { Semver } from "src/universal/Semver.sol";
    /// @title YieldProvider
    /// @notice Base contract for interacting and accounting for a
    ///         specific yield source.
    abstract contract YieldProvider is Semver {
        YieldManager public immutable YIELD_MANAGER;
        uint256 public stakedPrincipal;
        uint256 public pendingBalance;
        event YieldCommit(bytes32 indexed provider, int256 yield);
        event Staked(bytes32 indexed provider, uint256 amount);
        event Unstaked(bytes32 indexed provider, uint256 amount);
        event Pending(bytes32 indexed provider, uint256 amount);
        event Claimed(bytes32 indexed provider, uint256 claimedAmount, uint256 expectedAmount);
        event InsurancePremiumPaid(bytes32 indexed provider, uint256 amount);
        event InsuranceWithdrawn(bytes32 indexed provider, uint256 amount);
        error InsufficientStakableFunds();
        error CallerIsNotYieldManager();
        error ContextIsNotYieldManager();
        error NotSupported();
        modifier onlyYieldManager() {
            if (msg.sender != address(YIELD_MANAGER)) {
                revert CallerIsNotYieldManager();
            }
            _;
        }
        modifier onlyDelegateCall() {
            if (address(this) != address(YIELD_MANAGER)) {
                revert ContextIsNotYieldManager();
            }
            _;
        }
        /// @param _yieldManager Address of the yield manager for the underlying
        ///        yield asset of this provider.
        constructor(YieldManager _yieldManager) Semver(1, 0, 0) {
            require(address(_yieldManager) != address(this));
            YIELD_MANAGER = _yieldManager;
        }
        /// @notice initialize
        function initialize() external onlyDelegateCall virtual {}
        function name() public pure virtual returns (string memory);
        function id() public view returns (bytes32) {
            return keccak256(abi.encodePacked(name(), version()));
        }
        /// @notice Whether staking is enabled for the given asset.
        function isStakingEnabled(address token) external view virtual returns (bool);
        /// @notice Current balance of the provider's staked funds.
        function stakedBalance() public view virtual returns (uint256);
        /// @notice Total value in the provider's yield method/protocol.
        function totalValue() public view returns (uint256) {
            return stakedBalance() + pendingBalance;
        }
        /// @notice Current amount of yield gained since the previous commit.
        function yield() public view virtual returns (int256);
        /// @notice Whether the provider supports yield insurance.
        function supportsInsurancePayment() public view virtual returns (bool) {
            return false;
        }
        /// @notice Gets insurance balance available for the provider's assets.
        function insuranceBalance() public view virtual returns (uint256) {
            revert("not supported");
        }
        /// @notice Commit the current amount of yield and checkpoint the accounting
        ///         variables.
        /// @return Amount of yield at this checkpoint.
        function commitYield() external onlyYieldManager returns (int256) {
            _beforeCommitYield();
            int256 _yield = yield();
            stakedPrincipal = stakedBalance();
            _afterCommitYield();
            emit YieldCommit(id(), _yield);
            return _yield;
        }
        /// @notice Stake YieldManager funds using the provider's yield method/protocol.
        ///         Must be called via `delegatecall` from the YieldManager.
        function stake(uint256) external virtual;
        /// @notice Unstake YieldManager funds from the provider's yield method/protocol.
        ///         Must be called via `delegatecall` from the YieldManager.
        /// @return pending Amount of funds pending in an unstaking delay
        /// @return claimed Amount of funds that have been claimed.
        ///         The yield provider is expected to return
        ///         (pending = 0, claimed = non-zero) if the funds are immediately
        ///         available for withdrawal, and (pending = non-zero, claimed = 0)
        ///         if the funds are in an unstaking delay.
        function unstake(uint256) external virtual returns (uint256 pending, uint256 claimed);
        /// @notice Pay insurance premium during a yield report. Must be called via
        ///         `delegatecall` from the YieldManager.
        function payInsurancePremium(uint256) external virtual onlyDelegateCall {
            revert NotSupported();
        }
        /// @notice Withdraw insurance funds to cover yield losses during a yield report.
        ///         Must be called via `delegatecall` from the YieldManager.
        function withdrawFromInsurance(uint256) external virtual onlyDelegateCall {
            revert NotSupported();
        }
        /// @notice Record a deposit to the stake balance of the provider to track the
        ///         principal balance.
        /// @param amount Amount of new staked balance to record.
        function recordStakedDeposit(uint256 amount) external virtual onlyYieldManager {
            stakedPrincipal += amount;
            emit Staked(id(), amount);
        }
        /// @notice Record a withdraw to the stake balance of the provider to track the
        ///         principal balance. This method should be called by the Yield Manager
        ///         after delegate-calling the provider's `unstake` method, which should
        ///         return the arguments to this method.
        function recordUnstaked(uint256 pending, uint256 claimed, uint256 expected) external virtual onlyYieldManager {
            _recordStakedWithdraw(expected);
            if (pending > 0) {
                require(claimed == 0 && pending == expected, "invalid yield provider implementation");
                _recordPending(pending);
            }
            if (claimed > 0) {
                require(pending == 0 && claimed == expected, "invalid yield provider implementation");
                _recordClaimed(claimed, expected);
            }
        }
        /// @notice A hook that is DELEGATE-CALLed by the Yield Manager for the provider
        ///         to perform any actions before the yield report process begins.
        function preCommitYieldReportDelegateCallHook() external virtual onlyDelegateCall {}
        /// @notice Record a withdraw the stake balance of the provider.
        /// @param amount Amount of staked balance to remove.
        function _recordStakedWithdraw(uint256 amount) internal virtual {
            stakedPrincipal -= amount;
            emit Unstaked(id(), amount);
        }
        /// @notice Record a pending balance to the provider. Needed only for providers
        ///         that use two-step withdrawals (e.g. Lido).
        function _recordPending(uint256 amount) internal virtual {
            pendingBalance += amount;
            emit Pending(id(), amount);
        }
        /// @notice Record a claimed balance to the provider. For providers with one-step
        ///         withdrawals, this method should be overriden to just emit the event
        ///         to avoid integer underflow.
        function _recordClaimed(uint256 claimed, uint256 expected) internal virtual {
            require(claimed <= expected, "invalid yield provider implementation");
            // Decrements pending balance by the expected amount, not the claimed amount.
            // If claimed < expected, the difference (expected - claimed) must be considered
            // as realized negative yield. To correctly reflect this, the difference is
            // subtracted from the pending balance (and totalProviderValue).
            pendingBalance -= expected;
            emit Claimed(id(), claimed, expected);
        }
        function _beforeCommitYield() internal virtual {}
        function _afterCommitYield() internal virtual {}
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity 0.8.15;
    interface IDelegateCalls {
        function payInsurancePremium(uint256) external;
        function withdrawFromInsurance(uint256) external;
        function stake(uint256) external;
        function unstake(uint256) external returns (uint256, uint256);
        function preCommitYieldReportDelegateCallHook() external;
    }
    abstract contract DelegateCalls {
        function _delegatecall_payInsurancePremium(address provider, uint256 arg) internal {
            (bool success,) = provider.delegatecall(
                abi.encodeCall(IDelegateCalls.payInsurancePremium, (arg))
            );
            require(success, "delegatecall failed");
        }
        function _delegatecall_withdrawFromInsurance(address provider, uint256 arg) internal {
            (bool success,) = provider.delegatecall(
                abi.encodeCall(IDelegateCalls.withdrawFromInsurance, (arg))
            );
            require(success, "delegatecall failed");
        }
        function _delegatecall_stake(address provider, uint256 arg) internal {
            (bool success,) = provider.delegatecall(
                abi.encodeCall(IDelegateCalls.stake, (arg))
            );
            require(success, "delegatecall failed");
        }
        function _delegatecall_unstake(address provider, uint256 arg) internal returns (uint256, uint256) {
            (bool success, bytes memory res) = provider.delegatecall(
                abi.encodeCall(IDelegateCalls.unstake, (arg))
            );
            require(success, "delegatecall failed");
            return abi.decode(res, (uint256, uint256));
        }
        function _delegatecall_preCommitYieldReportDelegateCallHook(address provider) internal {
            (bool success,) = provider.delegatecall(
                abi.encodeCall(IDelegateCalls.preCommitYieldReportDelegateCallHook, ())
            );
            require(success, "delegatecall failed");
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            // Inspired by OraclizeAPI's implementation - MIT licence
            // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
            if (value == 0) {
                return "0";
            }
            uint256 temp = value;
            uint256 digits;
            while (temp != 0) {
                digits++;
                temp /= 10;
            }
            bytes memory buffer = new bytes(digits);
            while (value != 0) {
                digits -= 1;
                buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                value /= 10;
            }
            return string(buffer);
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            if (value == 0) {
                return "0x00";
            }
            uint256 temp = value;
            uint256 length = 0;
            while (temp != 0) {
                length++;
                temp >>= 8;
            }
            return toHexString(value, length);
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _HEX_SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20PermitUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/utils/CountersUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    /**
     * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * _Available since v3.4._
     *
     * @custom:storage-size 51
     */
    abstract contract ERC20PermitUpgradeable is Initializable, IERC20PermitUpgradeable, EIP712Upgradeable {
        using CountersUpgradeable for CountersUpgradeable.Counter;
        mapping(address => CountersUpgradeable.Counter) private _nonces;
        // solhint-disable-next-line var-name-mixedcase
        bytes32 public constant PERMIT_TYPEHASH =
            keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        /**
         * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
         * However, to ensure consistency with the upgradeable transpiler, we will continue
         * to reserve a slot.
         * @custom:oz-renamed-from _PERMIT_TYPEHASH
         */
        // solhint-disable-next-line var-name-mixedcase
        bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
        /**
         * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
         *
         * It's a good idea to use the same `name` that is defined as the ERC20 token name.
         */
        function __ERC20Permit_init(string memory name) internal onlyInitializing {
            __EIP712_init_unchained(name, "1");
        }
        function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
        /**
         * @dev See {IERC20Permit-permit}.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) public virtual override {
            require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
            bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
            bytes32 hash = _hashTypedDataV4(structHash);
            address signer = ECDSAUpgradeable.recover(hash, v, r, s);
            require(signer == owner, "ERC20Permit: invalid signature");
            _approve(owner, spender, value);
        }
        /**
         * @dev See {IERC20Permit-nonces}.
         */
        function nonces(address owner) public view virtual override returns (uint256) {
            return _nonces[owner].current();
        }
        /**
         * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view override returns (bytes32) {
            return _domainSeparatorV4();
        }
        /**
         * @dev "Consume a nonce": return the current value and increment.
         *
         * _Available since v4.1._
         */
        function _useNonce(address owner) internal virtual returns (uint256 current) {
            CountersUpgradeable.Counter storage nonce = _nonces[owner];
            current = nonce.current();
            nonce.increment();
        }
        /**
         * @dev See {ERC20-_approve}.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual;
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    import {ERC20} from "../tokens/ERC20.sol";
    /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
    /// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
    library SafeTransferLib {
        /*//////////////////////////////////////////////////////////////
                                 ETH OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function safeTransferETH(address to, uint256 amount) internal {
            bool success;
            assembly {
                // Transfer the ETH and store if it succeeded or not.
                success := call(gas(), to, amount, 0, 0, 0, 0)
            }
            require(success, "ETH_TRANSFER_FAILED");
        }
        /*//////////////////////////////////////////////////////////////
                                ERC20 OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function safeTransferFrom(
            ERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            bool success;
            assembly {
                // We'll write our calldata to this slot below, but restore it later.
                let memPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                mstore(4, from) // Append the "from" argument.
                mstore(36, to) // Append the "to" argument.
                mstore(68, amount) // Append the "amount" argument.
                success := and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                    // We use 100 because that's the total length of our calldata (4 + 32 * 3)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0, 100, 0, 32)
                )
                mstore(0x60, 0) // Restore the zero slot to zero.
                mstore(0x40, memPointer) // Restore the memPointer.
            }
            require(success, "TRANSFER_FROM_FAILED");
        }
        function safeTransfer(
            ERC20 token,
            address to,
            uint256 amount
        ) internal {
            bool success;
            assembly {
                // We'll write our calldata to this slot below, but restore it later.
                let memPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(0, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                mstore(4, to) // Append the "to" argument.
                mstore(36, amount) // Append the "amount" argument.
                success := and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                    // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0, 68, 0, 32)
                )
                mstore(0x60, 0) // Restore the zero slot to zero.
                mstore(0x40, memPointer) // Restore the memPointer.
            }
            require(success, "TRANSFER_FAILED");
        }
        function safeApprove(
            ERC20 token,
            address to,
            uint256 amount
        ) internal {
            bool success;
            assembly {
                // We'll write our calldata to this slot below, but restore it later.
                let memPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(0, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                mstore(4, to) // Append the "to" argument.
                mstore(36, amount) // Append the "amount" argument.
                success := and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                    // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    call(gas(), token, 0, 0, 68, 0, 32)
                )
                mstore(0x60, 0) // Restore the zero slot to zero.
                mstore(0x40, memPointer) // Restore the memPointer.
            }
            require(success, "APPROVE_FAILED");
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.0;
    /// @title Bytes
    /// @notice Bytes is a library for manipulating byte arrays.
    library Bytes {
        /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
        /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
        ///         as opposed to a pointer to the original array. Will throw if trying to slice more
        ///         bytes than exist in the array.
        /// @param _bytes Byte array to slice.
        /// @param _start Starting index of the slice.
        /// @param _length Length of the slice.
        /// @return Slice of the input byte array.
        function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
            unchecked {
                require(_length + 31 >= _length, "slice_overflow");
                require(_start + _length >= _start, "slice_overflow");
                require(_bytes.length >= _start + _length, "slice_outOfBounds");
            }
            bytes memory tempBytes;
            assembly {
                switch iszero(_length)
                case 0 {
                    // Get a location of some free memory and store it in tempBytes as
                    // Solidity does for memory variables.
                    tempBytes := mload(0x40)
                    // The first word of the slice result is potentially a partial
                    // word read from the original array. To read it, we calculate
                    // the length of that partial word and start copying that many
                    // bytes into the array. The first word we copy will start with
                    // data we don't care about, but the last `lengthmod` bytes will
                    // land at the beginning of the contents of the new array. When
                    // we're done copying, we overwrite the full first word with
                    // the actual length of the slice.
                    let lengthmod := and(_length, 31)
                    // The multiplication in the next line is necessary
                    // because when slicing multiples of 32 bytes (lengthmod == 0)
                    // the following copy loop was copying the origin's length
                    // and then ending prematurely not copying everything it should.
                    let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                    let end := add(mc, _length)
                    for {
                        // The multiplication in the next line has the same exact purpose
                        // as the one above.
                        let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                    } lt(mc, end) {
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } { mstore(mc, mload(cc)) }
                    mstore(tempBytes, _length)
                    //update free-memory pointer
                    //allocating the array padded to 32 bytes like the compiler does now
                    mstore(0x40, and(add(mc, 31), not(31)))
                }
                //if we want a zero-length slice let's just return a zero-length array
                default {
                    tempBytes := mload(0x40)
                    //zero out the 32 bytes slice we are about to return
                    //we need to do it because Solidity does not garbage collect
                    mstore(tempBytes, 0)
                    mstore(0x40, add(tempBytes, 0x20))
                }
            }
            return tempBytes;
        }
        /// @notice Slices a byte array with a given starting index up to the end of the original byte
        ///         array. Returns a new array rathern than a pointer to the original.
        /// @param _bytes Byte array to slice.
        /// @param _start Starting index of the slice.
        /// @return Slice of the input byte array.
        function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
            if (_start >= _bytes.length) {
                return bytes("");
            }
            return slice(_bytes, _start, _bytes.length - _start);
        }
        /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
        ///         Resulting nibble array will be exactly twice as long as the input byte array.
        /// @param _bytes Input byte array to convert.
        /// @return Resulting nibble array.
        function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
            bytes memory _nibbles;
            assembly {
                // Grab a free memory offset for the new array
                _nibbles := mload(0x40)
                // Load the length of the passed bytes array from memory
                let bytesLength := mload(_bytes)
                // Calculate the length of the new nibble array
                // This is the length of the input array times 2
                let nibblesLength := shl(0x01, bytesLength)
                // Update the free memory pointer to allocate memory for the new array.
                // To do this, we add the length of the new array + 32 bytes for the array length
                // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                // Store the length of the new array in memory
                mstore(_nibbles, nibblesLength)
                // Store the memory offset of the _bytes array's contents on the stack
                let bytesStart := add(_bytes, 0x20)
                // Store the memory offset of the nibbles array's contents on the stack
                let nibblesStart := add(_nibbles, 0x20)
                // Loop through each byte in the input array
                for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                    // Get the starting offset of the next 2 bytes in the nibbles array
                    let offset := add(nibblesStart, shl(0x01, i))
                    // Load the byte at the current index within the `_bytes` array
                    let b := byte(0x00, mload(add(bytesStart, i)))
                    // Pull out the first nibble and store it in the new array
                    mstore8(offset, shr(0x04, b))
                    // Pull out the second nibble and store it in the new array
                    mstore8(add(offset, 0x01), and(b, 0x0F))
                }
            }
            return _nibbles;
        }
        /// @notice Compares two byte arrays by comparing their keccak256 hashes.
        /// @param _bytes First byte array to compare.
        /// @param _other Second byte array to compare.
        /// @return True if the two byte arrays are equal, false otherwise.
        function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
            return keccak256(_bytes) == keccak256(_other);
        }
    }
    // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
    pragma solidity ^0.8.8;
    /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
    /// @title RLPReader
    /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
    ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
    ///         various tweaks to improve readability.
    library RLPReader {
        /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
        type MemoryPointer is uint256;
        /// @notice RLP item types.
        /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
        /// @custom:value LIST_ITEM Represents an RLP list item.
        enum RLPItemType {
            DATA_ITEM,
            LIST_ITEM
        }
        /// @notice Struct representing an RLP item.
        /// @custom:field length Length of the RLP item.
        /// @custom:field ptr    Pointer to the RLP item in memory.
        struct RLPItem {
            uint256 length;
            MemoryPointer ptr;
        }
        /// @notice Max list length that this library will accept.
        uint256 internal constant MAX_LIST_LENGTH = 32;
        /// @notice Converts bytes to a reference to memory position and length.
        /// @param _in Input bytes to convert.
        /// @return out_ Output memory reference.
        function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
            // Empty arrays are not RLP items.
            require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
            MemoryPointer ptr;
            assembly {
                ptr := add(_in, 32)
            }
            out_ = RLPItem({ length: _in.length, ptr: ptr });
        }
        /// @notice Reads an RLP list value into a list of RLP items.
        /// @param _in RLP list value.
        /// @return out_ Decoded RLP list items.
        function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
            (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
            require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
            require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
            // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
            // writing to the length. Since we can't know the number of RLP items without looping over
            // the entire input, we'd have to loop twice to accurately size this array. It's easier to
            // simply set a reasonable maximum list length and decrease the size before we finish.
            out_ = new RLPItem[](MAX_LIST_LENGTH);
            uint256 itemCount = 0;
            uint256 offset = listOffset;
            while (offset < _in.length) {
                (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                    RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                );
                // We don't need to check itemCount < out.length explicitly because Solidity already
                // handles this check on our behalf, we'd just be wasting gas.
                out_[itemCount] = RLPItem({
                    length: itemLength + itemOffset,
                    ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                });
                itemCount += 1;
                offset += itemOffset + itemLength;
            }
            // Decrease the array size to match the actual item count.
            assembly {
                mstore(out_, itemCount)
            }
        }
        /// @notice Reads an RLP list value into a list of RLP items.
        /// @param _in RLP list value.
        /// @return out_ Decoded RLP list items.
        function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
            out_ = readList(toRLPItem(_in));
        }
        /// @notice Reads an RLP bytes value into bytes.
        /// @param _in RLP bytes value.
        /// @return out_ Decoded bytes.
        function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
            (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
            require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
            require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
            out_ = _copy(_in.ptr, itemOffset, itemLength);
        }
        /// @notice Reads an RLP bytes value into bytes.
        /// @param _in RLP bytes value.
        /// @return out_ Decoded bytes.
        function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
            out_ = readBytes(toRLPItem(_in));
        }
        /// @notice Reads the raw bytes of an RLP item.
        /// @param _in RLP item to read.
        /// @return out_ Raw RLP bytes.
        function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
            out_ = _copy(_in.ptr, 0, _in.length);
        }
        /// @notice Decodes the length of an RLP item.
        /// @param _in RLP item to decode.
        /// @return offset_ Offset of the encoded data.
        /// @return length_ Length of the encoded data.
        /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
        function _decodeLength(RLPItem memory _in)
            private
            pure
            returns (uint256 offset_, uint256 length_, RLPItemType type_)
        {
            // Short-circuit if there's nothing to decode, note that we perform this check when
            // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
            // that function and create an RLP item directly. So we need to check this anyway.
            require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
            MemoryPointer ptr = _in.ptr;
            uint256 prefix;
            assembly {
                prefix := byte(0, mload(ptr))
            }
            if (prefix <= 0x7f) {
                // Single byte.
                return (0, 1, RLPItemType.DATA_ITEM);
            } else if (prefix <= 0xb7) {
                // Short string.
                // slither-disable-next-line variable-scope
                uint256 strLen = prefix - 0x80;
                require(
                    _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                );
                bytes1 firstByteOfContent;
                assembly {
                    firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                }
                require(
                    strLen != 1 || firstByteOfContent >= 0x80,
                    "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                );
                return (1, strLen, RLPItemType.DATA_ITEM);
            } else if (prefix <= 0xbf) {
                // Long string.
                uint256 lenOfStrLen = prefix - 0xb7;
                require(
                    _in.length > lenOfStrLen,
                    "RLPReader: length of content must be > than length of string length (long string)"
                );
                bytes1 firstByteOfContent;
                assembly {
                    firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                }
                require(
                    firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                );
                uint256 strLen;
                assembly {
                    strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                }
                require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                require(
                    _in.length > lenOfStrLen + strLen,
                    "RLPReader: length of content must be greater than total length (long string)"
                );
                return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
            } else if (prefix <= 0xf7) {
                // Short list.
                // slither-disable-next-line variable-scope
                uint256 listLen = prefix - 0xc0;
                require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                return (1, listLen, RLPItemType.LIST_ITEM);
            } else {
                // Long list.
                uint256 lenOfListLen = prefix - 0xf7;
                require(
                    _in.length > lenOfListLen,
                    "RLPReader: length of content must be > than length of list length (long list)"
                );
                bytes1 firstByteOfContent;
                assembly {
                    firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                }
                require(
                    firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                );
                uint256 listLen;
                assembly {
                    listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                }
                require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                require(
                    _in.length > lenOfListLen + listLen,
                    "RLPReader: length of content must be greater than total length (long list)"
                );
                return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
            }
        }
        /// @notice Copies the bytes from a memory location.
        /// @param _src    Pointer to the location to read from.
        /// @param _offset Offset to start reading from.
        /// @param _length Number of bytes to read.
        /// @return out_ Copied bytes.
        function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
            out_ = new bytes(_length);
            if (_length == 0) {
                return out_;
            }
            // Mostly based on Solidity's copy_memory_to_memory:
            // solhint-disable max-line-length
            // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
            uint256 src = MemoryPointer.unwrap(_src) + _offset;
            assembly {
                let dest := add(out_, 32)
                let i := 0
                for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                if gt(i, _length) { mstore(add(dest, _length), 0) }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Arithmetic library with operations for fixed-point numbers.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
    library FixedPointMathLib {
        /*//////////////////////////////////////////////////////////////
                        SIMPLIFIED FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
        function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
        }
        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
        }
        function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
        }
        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
        }
        function powWad(int256 x, int256 y) internal pure returns (int256) {
            // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
            return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
        }
        function expWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                // When the result is < 0.5 we return zero. This happens when
                // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                if (x <= -42139678854452767551) return 0;
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                // for more intermediate precision and a binary basis. This base conversion
                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                x = (x << 78) / 5**18;
                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                x = x - k * 54916777467707473351141471128;
                // k is in the range [-61, 195].
                // Evaluate using a (6, 7)-term rational approximation.
                // p is made monic, we'll multiply by a scale factor later.
                int256 y = x + 1346386616545796478920950773328;
                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                int256 p = y + x - 94201549194550492254356042504812;
                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                p = p * x + (4385272521454847904659076985693276 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                int256 q = x - 2855989394907223263936484059900;
                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                    // No scaling is necessary because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r should be in the range (0.09, 0.25) * 2**96.
                // We now need to multiply r by:
                // * the scale factor s = ~6.031367120.
                // * the 2**k factor from the range reduction.
                // * the 1e18 / 2**96 factor for base conversion.
                // We do this all at once, with an intermediate result in 2**213
                // basis, so the final right shift is always by a positive amount.
                r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
            }
        }
        function lnWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                require(x > 0, "UNDEFINED");
                // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                // We do this by multiplying by 2**96 / 10**18. But since
                // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                // and add ln(2**96 / 10**18) at the end.
                // Reduce range of x to (1, 2) * 2**96
                // ln(2^k * x) = k * ln(2) + ln(x)
                int256 k = int256(log2(uint256(x))) - 96;
                x <<= uint256(159 - k);
                x = int256(uint256(x) >> 159);
                // Evaluate using a (8, 8)-term rational approximation.
                // p is made monic, we will multiply by a scale factor later.
                int256 p = x + 3273285459638523848632254066296;
                p = ((p * x) >> 96) + 24828157081833163892658089445524;
                p = ((p * x) >> 96) + 43456485725739037958740375743393;
                p = ((p * x) >> 96) - 11111509109440967052023855526967;
                p = ((p * x) >> 96) - 45023709667254063763336534515857;
                p = ((p * x) >> 96) - 14706773417378608786704636184526;
                p = p * x - (795164235651350426258249787498 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                // q is monic by convention.
                int256 q = x + 5573035233440673466300451813936;
                q = ((q * x) >> 96) + 71694874799317883764090561454958;
                q = ((q * x) >> 96) + 283447036172924575727196451306956;
                q = ((q * x) >> 96) + 401686690394027663651624208769553;
                q = ((q * x) >> 96) + 204048457590392012362485061816622;
                q = ((q * x) >> 96) + 31853899698501571402653359427138;
                q = ((q * x) >> 96) + 909429971244387300277376558375;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r is in the range (0, 0.125) * 2**96
                // Finalization, we need to:
                // * multiply by the scale factor s = 5.549…
                // * add ln(2**96 / 10**18)
                // * add k * ln(2)
                // * multiply by 10**18 / 2**96 = 5**18 >> 78
                // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                r *= 1677202110996718588342820967067443963516166;
                // add ln(2) * k * 5e18 * 2**192
                r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                // add ln(2**96 / 10**18) * 5e18 * 2**192
                r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                // base conversion: mul 2**18 / 2**192
                r >>= 174;
            }
        }
        /*//////////////////////////////////////////////////////////////
                        LOW LEVEL FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function mulDivDown(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // Divide z by the denominator.
                z := div(z, denominator)
            }
        }
        function mulDivUp(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // First, divide z - 1 by the denominator and add 1.
                // We allow z - 1 to underflow if z is 0, because we multiply the
                // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
            }
        }
        function rpow(
            uint256 x,
            uint256 n,
            uint256 scalar
        ) internal pure returns (uint256 z) {
            assembly {
                switch x
                case 0 {
                    switch n
                    case 0 {
                        // 0 ** 0 = 1
                        z := scalar
                    }
                    default {
                        // 0 ** n = 0
                        z := 0
                    }
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        // If n is even, store scalar in z for now.
                        z := scalar
                    }
                    default {
                        // If n is odd, store x in z for now.
                        z := x
                    }
                    // Shifting right by 1 is like dividing by 2.
                    let half := shr(1, scalar)
                    for {
                        // Shift n right by 1 before looping to halve it.
                        n := shr(1, n)
                    } n {
                        // Shift n right by 1 each iteration to halve it.
                        n := shr(1, n)
                    } {
                        // Revert immediately if x ** 2 would overflow.
                        // Equivalent to iszero(eq(div(xx, x), x)) here.
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        // Store x squared.
                        let xx := mul(x, x)
                        // Round to the nearest number.
                        let xxRound := add(xx, half)
                        // Revert if xx + half overflowed.
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        // Set x to scaled xxRound.
                        x := div(xxRound, scalar)
                        // If n is even:
                        if mod(n, 2) {
                            // Compute z * x.
                            let zx := mul(z, x)
                            // If z * x overflowed:
                            if iszero(eq(div(zx, x), z)) {
                                // Revert if x is non-zero.
                                if iszero(iszero(x)) {
                                    revert(0, 0)
                                }
                            }
                            // Round to the nearest number.
                            let zxRound := add(zx, half)
                            // Revert if zx + half overflowed.
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            // Return properly scaled zxRound.
                            z := div(zxRound, scalar)
                        }
                    }
                }
            }
        }
        /*//////////////////////////////////////////////////////////////
                            GENERAL NUMBER UTILITIES
        //////////////////////////////////////////////////////////////*/
        function sqrt(uint256 x) internal pure returns (uint256 z) {
            assembly {
                let y := x // We start y at x, which will help us make our initial estimate.
                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                // We check y >= 2^(k + 8) but shift right by k bits
                // each branch to ensure that if x >= 256, then y >= 256.
                if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                    y := shr(128, y)
                    z := shl(64, z)
                }
                if iszero(lt(y, 0x1000000000000000000)) {
                    y := shr(64, y)
                    z := shl(32, z)
                }
                if iszero(lt(y, 0x10000000000)) {
                    y := shr(32, y)
                    z := shl(16, z)
                }
                if iszero(lt(y, 0x1000000)) {
                    y := shr(16, y)
                    z := shl(8, z)
                }
                // Goal was to get z*z*y within a small factor of x. More iterations could
                // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                // That's not possible if x < 256 but we can just verify those cases exhaustively.
                // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                // There is no overflow risk here since y < 2^136 after the first branch above.
                z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                // If x+1 is a perfect square, the Babylonian method cycles between
                // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                z := sub(z, lt(div(x, z), z))
            }
        }
        function log2(uint256 x) internal pure returns (uint256 r) {
            require(x > 0, "UNDEFINED");
            assembly {
                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                r := or(r, shl(3, lt(0xff, shr(r, x))))
                r := or(r, shl(2, lt(0xf, shr(r, x))))
                r := or(r, shl(1, lt(0x3, shr(r, x))))
                r := or(r, lt(0x1, shr(r, x)))
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20PermitUpgradeable {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20Upgradeable.sol";
    import "./extensions/IERC20MetadataUpgradeable.sol";
    import "../../utils/ContextUpgradeable.sol";
    import "../../proxy/utils/Initializable.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
            __ERC20_init_unchained(name_, symbol_);
        }
        function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(address from, address to, uint256 amount) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[45] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.0;
    import "../StringsUpgradeable.sol";
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSAUpgradeable {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
            return (signer, RecoverError.NoError);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\\x19Ethereum Signed Message:\
    32")
                mstore(0x1c, hash)
                message := keccak256(0x00, 0x3c)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    ", StringsUpgradeable.toString(s.length), s));
        }
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, "\\x19\\x01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                data := keccak256(ptr, 0x42)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Data with intended validator, created from a
         * `validator` and `data` according to the version 0 of EIP-191.
         *
         * See {recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
    pragma solidity ^0.8.8;
    import "./ECDSAUpgradeable.sol";
    import "../../interfaces/IERC5267Upgradeable.sol";
    import "../../proxy/utils/Initializable.sol";
    /**
     * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
     *
     * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
     * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
     * they need in their contracts using a combination of `abi.encode` and `keccak256`.
     *
     * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
     * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
     * ({_hashTypedDataV4}).
     *
     * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
     * the chain id to protect against replay attacks on an eventual fork of the chain.
     *
     * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
     * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
     *
     * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
     * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
     * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
     *
     * _Available since v3.4._
     *
     * @custom:storage-size 52
     */
    abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
        bytes32 private constant _TYPE_HASH =
            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
        /// @custom:oz-renamed-from _HASHED_NAME
        bytes32 private _hashedName;
        /// @custom:oz-renamed-from _HASHED_VERSION
        bytes32 private _hashedVersion;
        string private _name;
        string private _version;
        /**
         * @dev Initializes the domain separator and parameter caches.
         *
         * The meaning of `name` and `version` is specified in
         * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
         *
         * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
         * - `version`: the current major version of the signing domain.
         *
         * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
         * contract upgrade].
         */
        function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
            __EIP712_init_unchained(name, version);
        }
        function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
            _name = name;
            _version = version;
            // Reset prior values in storage if upgrading
            _hashedName = 0;
            _hashedVersion = 0;
        }
        /**
         * @dev Returns the domain separator for the current chain.
         */
        function _domainSeparatorV4() internal view returns (bytes32) {
            return _buildDomainSeparator();
        }
        function _buildDomainSeparator() private view returns (bytes32) {
            return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
        }
        /**
         * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
         * function returns the hash of the fully encoded EIP712 message for this domain.
         *
         * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
         *
         * ```solidity
         * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
         *     keccak256("Mail(address to,string contents)"),
         *     mailTo,
         *     keccak256(bytes(mailContents))
         * )));
         * address signer = ECDSA.recover(digest, signature);
         * ```
         */
        function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
            return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
        }
        /**
         * @dev See {EIP-5267}.
         *
         * _Available since v4.9._
         */
        function eip712Domain()
            public
            view
            virtual
            override
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            )
        {
            // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
            // and the EIP712 domain is not reliable, as it will be missing name and version.
            require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");
            return (
                hex"0f", // 01111
                _EIP712Name(),
                _EIP712Version(),
                block.chainid,
                address(this),
                bytes32(0),
                new uint256[](0)
            );
        }
        /**
         * @dev The name parameter for the EIP712 domain.
         *
         * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
         * are a concern.
         */
        function _EIP712Name() internal virtual view returns (string memory) {
            return _name;
        }
        /**
         * @dev The version parameter for the EIP712 domain.
         *
         * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
         * are a concern.
         */
        function _EIP712Version() internal virtual view returns (string memory) {
            return _version;
        }
        /**
         * @dev The hash of the name parameter for the EIP712 domain.
         *
         * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
         */
        function _EIP712NameHash() internal view returns (bytes32) {
            string memory name = _EIP712Name();
            if (bytes(name).length > 0) {
                return keccak256(bytes(name));
            } else {
                // If the name is empty, the contract may have been upgraded without initializing the new storage.
                // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                bytes32 hashedName = _hashedName;
                if (hashedName != 0) {
                    return hashedName;
                } else {
                    return keccak256("");
                }
            }
        }
        /**
         * @dev The hash of the version parameter for the EIP712 domain.
         *
         * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
         */
        function _EIP712VersionHash() internal view returns (bytes32) {
            string memory version = _EIP712Version();
            if (bytes(version).length > 0) {
                return keccak256(bytes(version));
            } else {
                // If the version is empty, the contract may have been upgraded without initializing the new storage.
                // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                bytes32 hashedVersion = _hashedVersion;
                if (hashedVersion != 0) {
                    return hashedVersion;
                } else {
                    return keccak256("");
                }
            }
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[48] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
    pragma solidity ^0.8.0;
    /**
     * @title Counters
     * @author Matt Condon (@shrugs)
     * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
     * of elements in a mapping, issuing ERC721 ids, or counting request ids.
     *
     * Include with `using Counters for Counters.Counter;`
     */
    library CountersUpgradeable {
        struct Counter {
            // This variable should never be directly accessed by users of the library: interactions must be restricted to
            // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
            // this feature: see https://github.com/ethereum/solidity/issues/4637
            uint256 _value; // default: 0
        }
        function current(Counter storage counter) internal view returns (uint256) {
            return counter._value;
        }
        function increment(Counter storage counter) internal {
            unchecked {
                counter._value += 1;
            }
        }
        function decrement(Counter storage counter) internal {
            uint256 value = counter._value;
            require(value > 0, "Counter: decrement overflow");
            unchecked {
                counter._value = value - 1;
            }
        }
        function reset(Counter storage counter) internal {
            counter._value = 0;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
    /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
    /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
    abstract contract ERC20 {
        /*//////////////////////////////////////////////////////////////
                                     EVENTS
        //////////////////////////////////////////////////////////////*/
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
        /*//////////////////////////////////////////////////////////////
                                METADATA STORAGE
        //////////////////////////////////////////////////////////////*/
        string public name;
        string public symbol;
        uint8 public immutable decimals;
        /*//////////////////////////////////////////////////////////////
                                  ERC20 STORAGE
        //////////////////////////////////////////////////////////////*/
        uint256 public totalSupply;
        mapping(address => uint256) public balanceOf;
        mapping(address => mapping(address => uint256)) public allowance;
        /*//////////////////////////////////////////////////////////////
                                EIP-2612 STORAGE
        //////////////////////////////////////////////////////////////*/
        uint256 internal immutable INITIAL_CHAIN_ID;
        bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
        mapping(address => uint256) public nonces;
        /*//////////////////////////////////////////////////////////////
                                   CONSTRUCTOR
        //////////////////////////////////////////////////////////////*/
        constructor(
            string memory _name,
            string memory _symbol,
            uint8 _decimals
        ) {
            name = _name;
            symbol = _symbol;
            decimals = _decimals;
            INITIAL_CHAIN_ID = block.chainid;
            INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
        }
        /*//////////////////////////////////////////////////////////////
                                   ERC20 LOGIC
        //////////////////////////////////////////////////////////////*/
        function approve(address spender, uint256 amount) public virtual returns (bool) {
            allowance[msg.sender][spender] = amount;
            emit Approval(msg.sender, spender, amount);
            return true;
        }
        function transfer(address to, uint256 amount) public virtual returns (bool) {
            balanceOf[msg.sender] -= amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(msg.sender, to, amount);
            return true;
        }
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual returns (bool) {
            uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
            if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
            balanceOf[from] -= amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(from, to, amount);
            return true;
        }
        /*//////////////////////////////////////////////////////////////
                                 EIP-2612 LOGIC
        //////////////////////////////////////////////////////////////*/
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) public virtual {
            require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
            // Unchecked because the only math done is incrementing
            // the owner's nonce which cannot realistically overflow.
            unchecked {
                address recoveredAddress = ecrecover(
                    keccak256(
                        abi.encodePacked(
                            "\\x19\\x01",
                            DOMAIN_SEPARATOR(),
                            keccak256(
                                abi.encode(
                                    keccak256(
                                        "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                    ),
                                    owner,
                                    spender,
                                    value,
                                    nonces[owner]++,
                                    deadline
                                )
                            )
                        )
                    ),
                    v,
                    r,
                    s
                );
                require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                allowance[recoveredAddress][spender] = value;
            }
            emit Approval(owner, spender, value);
        }
        function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
            return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
        }
        function computeDomainSeparator() internal view virtual returns (bytes32) {
            return
                keccak256(
                    abi.encode(
                        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                        keccak256(bytes(name)),
                        keccak256("1"),
                        block.chainid,
                        address(this)
                    )
                );
        }
        /*//////////////////////////////////////////////////////////////
                            INTERNAL MINT/BURN LOGIC
        //////////////////////////////////////////////////////////////*/
        function _mint(address to, uint256 amount) internal virtual {
            totalSupply += amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(address(0), to, amount);
        }
        function _burn(address from, uint256 amount) internal virtual {
            balanceOf[from] -= amount;
            // Cannot underflow because a user's balance
            // will never be larger than the total supply.
            unchecked {
                totalSupply -= amount;
            }
            emit Transfer(from, address(0), amount);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20Upgradeable {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20Upgradeable.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20MetadataUpgradeable is IERC20Upgradeable {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/MathUpgradeable.sol";
    import "./math/SignedMathUpgradeable.sol";
    /**
     * @dev String operations.
     */
    library StringsUpgradeable {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = MathUpgradeable.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toString(int256 value) internal pure returns (string memory) {
            return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, MathUpgradeable.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
    pragma solidity ^0.8.0;
    interface IERC5267Upgradeable {
        /**
         * @dev MAY be emitted to signal that the domain could have changed.
         */
        event EIP712DomainChanged();
        /**
         * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
         * signature.
         */
        function eip712Domain()
            external
            view
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            );
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library MathUpgradeable {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1, "Math: mulDiv overflow");
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMathUpgradeable {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }