ETH Price: $2,543.57 (-4.26%)

Transaction Decoder

Block:
17986680 at Aug-24-2023 07:35:47 PM +UTC
Transaction Fee:
0.00227184565590752 ETH $5.78
Gas Used:
112,960 Gas / 20.111948087 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x043Aa014...923737111
0.093539962070448669 Eth
Nonce: 2
0.091268116414541149 Eth
Nonce: 3
0.00227184565590752
(MEV Builder: 0x333...203)
1.964887534063441515 Eth1.964915774063441515 Eth0.00002824

Execution Trace

PowerPod.delegate( delegatee=0xE023f53f735c196e4a028233C2ee425957812a41 )
  • St1inch.podBalanceOf( pod=0xAccfAc2339e16DC80c50d2fa81b5c2B049B4f947, account=0x043Aa01475E03761FCe0ADE49ce8846923737111 ) => ( 12183132293913546969909 )
  • DelegatedShare.mint( account=0x043Aa01475E03761FCe0ADE49ce8846923737111, amount=12183132293913546969909 )
    File 1 of 3: PowerPod
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
    import "./interfaces/IDelegatedShare.sol";
    contract DelegatedShare is IDelegatedShare, ERC20Pods {
        error ApproveDisabled();
        error TransferDisabled();
        error NotOwner();
        address immutable private _owner;
        modifier onlyOwner {
            if (msg.sender != _owner) revert NotOwner();
            _;
        }
        constructor(
            string memory name,
            string memory symbol,
            uint256 maxUserPods,
            uint256 podCallGasLimit
        ) ERC20(name, symbol) ERC20Pods(maxUserPods, podCallGasLimit) {
            _owner = msg.sender;
        }
        function addDefaultFarmIfNeeded(address account, address farm) external onlyOwner {
            if (!hasPod(account, farm)) {
                _addPod(account, farm);
            }
        }
        function mint(address account, uint256 amount) external onlyOwner {
            _mint(account, amount);
        }
        function burn(address account, uint256 amount) external onlyOwner {
            _burn(account, amount);
        }
        function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "./interfaces/IDelegationPod.sol";
    contract DelegationPod is IDelegationPod, Pod, ERC20 {
        error ApproveDisabled();
        error TransferDisabled();
        mapping(address => address) public delegated;
        constructor(string memory name_, string memory symbol_, IERC20Pods token_)
            ERC20(name_, symbol_) Pod(token_)
        {}  // solhint-disable-line no-empty-blocks
        function delegate(address delegatee) public virtual {
            address prevDelegatee = delegated[msg.sender];
            if (prevDelegatee != delegatee) {
                delegated[msg.sender] = delegatee;
                emit Delegated(msg.sender, delegatee);
                uint256 balance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
                if (balance > 0) {
                    _updateBalances(msg.sender, msg.sender, prevDelegatee, delegatee, balance);
                }
            }
        }
        function _updateBalances(address from, address to, uint256 amount) internal override {
            _updateBalances(
                from,
                to,
                from == address(0) ? address(0) : delegated[from],
                to == address(0) ? address(0) : delegated[to],
                amount
            );
        }
        function _updateBalances(address /* from */, address /* to */, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual {
            if (fromDelegatee != toDelegatee && amount > 0) {
                if (fromDelegatee == address(0)) {
                    _mint(toDelegatee, amount);
                } else if (toDelegatee == address(0)) {
                    _burn(fromDelegatee, amount);
                } else {
                    _transfer(fromDelegatee, toDelegatee, amount);
                }
            }
        }
        // ERC20 overrides
        function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./TokenizedDelegationPod.sol";
    import "./interfaces/IFarmingDelegationPod.sol";
    import "@1inch/farming/contracts/MultiFarmingPod.sol";
    contract FarmingDelegationPod is IFarmingDelegationPod, TokenizedDelegationPod {
        error DefaultFarmTokenMismatch();
        uint256 private constant _MAX_FARM_REWARDS = 3;
        mapping(address => address) public defaultFarms;
        constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_)
            TokenizedDelegationPod(name_, symbol_, token_, maxSharePods_, sharePodGasLimit_)
        {}  // solhint-disable-line no-empty-blocks
        function register(string memory name, string memory symbol) public override(ITokenizedDelegationPod, TokenizedDelegationPod) returns(IDelegatedShare shareToken) {
            shareToken = super.register(name, symbol);
            MultiFarmingPod farm = new MultiFarmingPod(shareToken, _MAX_FARM_REWARDS);
            farm.transferOwnership(msg.sender);
            defaultFarms[msg.sender] = address(farm);
        }
        function delegate(address delegatee) public override(IDelegationPod, TokenizedDelegationPod) {
            super.delegate(delegatee);
            address defaultFarm = defaultFarms[delegatee];
            if (defaultFarm != address(0)) {
                registration[delegatee].addDefaultFarmIfNeeded(msg.sender, defaultFarm);
            }
        }
        function setDefaultFarm(address farm) external onlyRegistered {
            if (farm != address(0) && Pod(farm).token() != registration[msg.sender]) revert DefaultFarmTokenMismatch();
            defaultFarms[msg.sender] = farm;
            emit DefaultFarmSet(farm);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    interface IDelegatedShare is IERC20Pods {
        function addDefaultFarmIfNeeded(address account, address farm) external; // onlyOwner
        function mint(address account, uint256 amount) external; // onlyOwner
        function burn(address account, uint256 amount) external; // onlyOwner
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
    interface IDelegationPod is IPod, IERC20 {
        event Delegated(address account, address delegatee);
        function delegated(address delegator) external view returns(address delegatee);
        function delegate(address delegatee) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./ITokenizedDelegationPod.sol";
    interface IFarmingDelegationPod is ITokenizedDelegationPod {
        event DefaultFarmSet(address defaultFarm);
        function setDefaultFarm(address farm) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./IDelegationPod.sol";
    import "./IDelegatedShare.sol";
    interface ITokenizedDelegationPod is IDelegationPod {
        event RegisterDelegatee(address delegatee);
        function register(string memory name, string memory symbol) external returns(IDelegatedShare shareToken);
        function registration(address account) external returns(IDelegatedShare shareToken);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./DelegationPod.sol";
    import "./DelegatedShare.sol";
    import "./interfaces/ITokenizedDelegationPod.sol";
    import "./interfaces/IDelegatedShare.sol";
    contract TokenizedDelegationPod is ITokenizedDelegationPod, DelegationPod {
        error NotRegisteredDelegatee();
        error AlreadyRegistered();
        uint256 public immutable maxSharePods;
        uint256 public immutable sharePodGasLimit;
        mapping(address => IDelegatedShare) public registration;
        modifier onlyRegistered {
            if (address(registration[msg.sender]) == address(0)) revert NotRegisteredDelegatee();
            _;
        }
        modifier onlyNotRegistered {
            if (address(registration[msg.sender]) != address(0)) revert AlreadyRegistered();
            _;
        }
        constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_) DelegationPod(name_, symbol_, token_) {
            maxSharePods = maxSharePods_;
            sharePodGasLimit = sharePodGasLimit_;
        }
        function delegate(address delegatee) public virtual override(IDelegationPod, DelegationPod) {
            if (delegatee != address(0) && address(registration[delegatee]) == address(0)) revert NotRegisteredDelegatee();
            super.delegate(delegatee);
        }
        function register(string memory name, string memory symbol) public virtual onlyNotRegistered returns(IDelegatedShare shareToken) {
            shareToken = new DelegatedShare(name, symbol, maxSharePods, sharePodGasLimit);
            registration[msg.sender] = shareToken;
            emit RegisterDelegatee(msg.sender);
        }
        function _updateBalances(address from, address to, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual override {
            super._updateBalances(from, to, fromDelegatee, toDelegatee, amount);
            if (fromDelegatee != address(0)) {
                registration[fromDelegatee].burn(from, amount);
            }
            if (toDelegatee != address(0)) {
                registration[toDelegatee].mint(to, amount);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
    import "./interfaces/IERC20Pods.sol";
    import "./interfaces/IPod.sol";
    import "./libs/ReentrancyGuard.sol";
    abstract contract ERC20Pods is ERC20, IERC20Pods, ReentrancyGuardExt {
        using AddressSet for AddressSet.Data;
        using AddressArray for AddressArray.Data;
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        error PodAlreadyAdded();
        error PodNotFound();
        error InvalidPodAddress();
        error PodsLimitReachedForAccount();
        error InsufficientGas();
        error ZeroPodsLimit();
        uint256 public immutable podsLimit;
        uint256 public immutable podCallGasLimit;
        ReentrancyGuardLib.Data private _guard;
        mapping(address => AddressSet.Data) private _pods;
        constructor(uint256 podsLimit_, uint256 podCallGasLimit_) {
            if (podsLimit_ == 0) revert ZeroPodsLimit();
            podsLimit = podsLimit_;
            podCallGasLimit = podCallGasLimit_;
            _guard.init();
        }
        function hasPod(address account, address pod) public view virtual returns(bool) {
            return _pods[account].contains(pod);
        }
        function podsCount(address account) public view virtual returns(uint256) {
            return _pods[account].length();
        }
        function podAt(address account, uint256 index) public view virtual returns(address) {
            return _pods[account].at(index);
        }
        function pods(address account) public view virtual returns(address[] memory) {
            return _pods[account].items.get();
        }
        function balanceOf(address account) public nonReentrantView(_guard) view override(IERC20, ERC20) virtual returns(uint256) {
            return super.balanceOf(account);
        }
        function podBalanceOf(address pod, address account) public nonReentrantView(_guard) view virtual returns(uint256) {
            if (hasPod(account, pod)) {
                return super.balanceOf(account);
            }
            return 0;
        }
        function addPod(address pod) public virtual {
            _addPod(msg.sender, pod);
        }
        function removePod(address pod) public virtual {
            _removePod(msg.sender, pod);
        }
        function removeAllPods() public virtual {
            _removeAllPods(msg.sender);
        }
        function _addPod(address account, address pod) internal virtual {
            if (pod == address(0)) revert InvalidPodAddress();
            if (!_pods[account].add(pod)) revert PodAlreadyAdded();
            if (_pods[account].length() > podsLimit) revert PodsLimitReachedForAccount();
            emit PodAdded(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, address(0), account, balance);
            }
        }
        function _removePod(address account, address pod) internal virtual {
            if (!_pods[account].remove(pod)) revert PodNotFound();
            emit PodRemoved(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, account, address(0), balance);
            }
        }
        function _removeAllPods(address account) internal virtual {
            address[] memory items = _pods[account].items.get();
            uint256 balance = balanceOf(account);
            unchecked {
                for (uint256 i = items.length; i > 0; i--) {
                    _pods[account].remove(items[i - 1]);
                    emit PodRemoved(account, items[i - 1]);
                    if (balance > 0) {
                        _updateBalances(items[i - 1], account, address(0), balance);
                    }
                }
            }
        }
        /// @notice Assembly implementation of the gas limited call to avoid return gas bomb,
        // moreover call to a destructed pod would also revert even inside try-catch block in Solidity 0.8.17
        /// @dev try IPod(pod).updateBalances{gas: _POD_CALL_GAS_LIMIT}(from, to, amount) {} catch {}
        function _updateBalances(address pod, address from, address to, uint256 amount) private {
            bytes4 selector = IPod.updateBalances.selector;
            bytes4 exception = InsufficientGas.selector;
            uint256 gasLimit = podCallGasLimit;
            assembly {  // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                mstore(ptr, selector)
                mstore(add(ptr, 0x04), from)
                mstore(add(ptr, 0x24), to)
                mstore(add(ptr, 0x44), amount)
                if lt(div(mul(gas(), 63), 64), gasLimit) {
                    mstore(0, exception)
                    revert(0, 4)
                }
                pop(call(gasLimit, pod, 0, ptr, 0x64, 0, 0))
            }
        }
        // ERC20 Overrides
        function _afterTokenTransfer(address from, address to, uint256 amount) internal nonReentrant(_guard) override virtual {
            super._afterTokenTransfer(from, to, amount);
            unchecked {
                if (amount > 0 && from != to) {
                    address[] memory a = _pods[from].items.get();
                    address[] memory b = _pods[to].items.get();
                    uint256 aLength = a.length;
                    uint256 bLength = b.length;
                    for (uint256 i = 0; i < aLength; i++) {
                        address pod = a[i];
                        uint256 j;
                        for (j = 0; j < bLength; j++) {
                            if (pod == b[j]) {
                                // Both parties are participating of the same Pod
                                _updateBalances(pod, from, to, amount);
                                b[j] = address(0);
                                break;
                            }
                        }
                        if (j == bLength) {
                            // Sender is participating in a Pod, but receiver is not
                            _updateBalances(pod, from, address(0), amount);
                        }
                    }
                    for (uint256 j = 0; j < bLength; j++) {
                        address pod = b[j];
                        if (pod != address(0)) {
                            // Receiver is participating in a Pod, but sender is not
                            _updateBalances(pod, address(0), to, amount);
                        }
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IERC20Pods is IERC20 {
        event PodAdded(address account, address pod);
        event PodRemoved(address account, address pod);
        function hasPod(address account, address pod) external view returns(bool);
        function podsCount(address account) external view returns(uint256);
        function podAt(address account, uint256 index) external view returns(address);
        function pods(address account) external view returns(address[] memory);
        function podBalanceOf(address pod, address account) external view returns(uint256);
        function addPod(address pod) external;
        function removePod(address pod) external;
        function removeAllPods() external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IPod {
        function updateBalances(address from, address to, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    library ReentrancyGuardLib {
        error ReentrantCall();
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        struct Data {
            uint256 _status;
        }
        function init(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function enter(Data storage self) internal {
            if (self._status == _ENTERED) revert ReentrantCall();
            self._status = _ENTERED;
        }
        function exit(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function check(Data storage self) internal view returns (bool) {
            return self._status == _ENTERED;
        }
    }
    contract ReentrancyGuardExt {
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        modifier nonReentrant(ReentrancyGuardLib.Data storage self) {
            self.enter();
            _;
            self.exit();
        }
        modifier nonReentrantView(ReentrancyGuardLib.Data storage self) {
            if (self.check()) revert ReentrancyGuardLib.ReentrantCall();
            _;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./interfaces/IPod.sol";
    import "./interfaces/IERC20Pods.sol";
    abstract contract Pod is IPod {
        error AccessDenied();
        IERC20Pods public immutable token;
        modifier onlyToken {
            if (msg.sender != address(token)) revert AccessDenied();
            _;
        }
        constructor(IERC20Pods token_) {
            token = token_;
        }
        function updateBalances(address from, address to, uint256 amount) external onlyToken {
            _updateBalances(from, to, amount);
        }
        function _updateBalances(address from, address to, uint256 amount) internal virtual;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/utils/math/Math.sol";
    library FarmAccounting {
        error ZeroDuration();
        error DurationTooLarge();
        error AmountTooLarge();
        struct Info {
            uint40 finished;
            uint32 duration;
            uint184 reward;
        }
        uint256 internal constant _MAX_REWARD_AMOUNT = 1e32;  // 108 bits
        uint256 internal constant _SCALE = 1e18;  // 60 bits
        /// @dev Requires extra 18 decimals for precision, result fits in 168 bits
        function farmedSinceCheckpointScaled(Info memory info, uint256 checkpoint) internal view returns(uint256 amount) {
            unchecked {
                if (info.duration > 0) {
                    uint256 elapsed = Math.min(block.timestamp, info.finished) - Math.min(checkpoint, info.finished);
                    // size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflow
                    return elapsed * info.reward * _SCALE / info.duration;
                }
            }
        }
        function startFarming(Info storage info, uint256 amount, uint256 period) internal returns(uint256) {
            if (period == 0) revert ZeroDuration();
            if (period > type(uint32).max) revert DurationTooLarge();
            if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
            // If something left from prev farming add it to the new farming
            Info memory prev = info;
            if (block.timestamp < prev.finished) {
                amount += prev.reward - farmedSinceCheckpointScaled(prev, prev.finished - prev.duration) / _SCALE;
            }
            (info.finished, info.duration, info.reward) = (uint40(block.timestamp + period), uint32(period), uint184(amount));
            return amount;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./FarmAccounting.sol";
    library UserAccounting {
        struct Info {
            uint40 checkpoint;
            uint216 farmedPerTokenStored;
            mapping(address => int256) corrections;
        }
        function farmedPerToken(
            Info storage info,
            bytes32 context,
            function(bytes32) internal view returns(uint256) lazyGetSupply,
            function(bytes32, uint256) internal view returns(uint256) lazyGetFarmed
        ) internal view returns(uint256) {
            (uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
            if (block.timestamp != checkpoint) {
                uint256 supply = lazyGetSupply(context);
                if (supply > 0) {
                    // fpt increases by 168 bit / supply
                    unchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
                }
            }
            return fpt;
        }
        function farmed(Info storage info, address account, uint256 balance, uint256 fpt) internal view returns(uint256) {
            // balance * fpt is less than 168 bit
            return uint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
        }
        function eraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal {
            // balance * fpt is less than 168 bit
            info.corrections[account] = int256(balance * fpt);
        }
        function updateFarmedPerToken(Info storage info, uint256 fpt) internal {
            (info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
        }
        function updateBalances(Info storage info, address from, address to, uint256 amount, uint256 fpt) internal {
            bool fromZero = (from == address(0));
            bool toZero = (to == address(0));
            if (amount > 0 && from != to) {
                if (fromZero || toZero) {
                    updateFarmedPerToken(info, fpt);
                }
                // fpt is less than 168 bit, so amount should be less 98 bit
                int256 diff = int256(amount * fpt);
                if (!fromZero) {
                    info.corrections[from] -= diff;
                }
                if (!toZero) {
                    info.corrections[to] += diff;
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./accounting/FarmAccounting.sol";
    import "./accounting/UserAccounting.sol";
    library FarmingLib {
        using FarmAccounting for FarmAccounting.Info;
        using UserAccounting for UserAccounting.Info;
        using FarmingLib for FarmingLib.Info;
        struct Data {
            FarmAccounting.Info farmInfo;
            UserAccounting.Info userInfo;
        }
        struct Info {
            function() internal view returns(uint256) getTotalSupply;
            bytes32 dataSlot;
        }
        function makeInfo(function() internal view returns(uint256) getTotalSupply, Data storage data) internal pure returns(Info memory info) {
            info.getTotalSupply = getTotalSupply;
            bytes32 dataSlot;
            assembly {  // solhint-disable-line no-inline-assembly
                dataSlot := data.slot
            }
            info.dataSlot = dataSlot;
        }
        function getData(Info memory self) internal pure returns(Data storage data) {
            bytes32 dataSlot = self.dataSlot;
            assembly {  // solhint-disable-line no-inline-assembly
                data.slot := dataSlot
            }
        }
        function startFarming(Info memory self, uint256 amount, uint256 period) internal returns(uint256 reward) {
            Data storage data = self.getData();
            data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
            reward = data.farmInfo.startFarming(amount, period);
        }
        function farmed(Info memory self, address account, uint256 balance) internal view returns(uint256) {
            return self.getData().userInfo.farmed(account, balance, _farmedPerToken(self));
        }
        function claim(Info memory self, address account, uint256 balance) internal returns(uint256 amount) {
            Data storage data = self.getData();
            uint256 fpt = _farmedPerToken(self);
            amount = data.userInfo.farmed(account, balance, fpt);
            if (amount > 0) {
                data.userInfo.eraseFarmed(account, balance, fpt);
            }
        }
        function updateBalances(Info memory self, address from, address to, uint256 amount) internal {
            self.getData().userInfo.updateBalances(from, to, amount, _farmedPerToken(self));
        }
        function _farmedPerToken(Info memory self) private view returns (uint256) {
            return self.getData().userInfo.farmedPerToken(_infoToContext(self), _lazyGetSupply, _lazyGetFarmed);
        }
        // UserAccounting bindings
        function _lazyGetSupply(bytes32 context) private view returns(uint256) {
            Info memory self = _contextToInfo(context);
            return self.getTotalSupply();
        }
        function _lazyGetFarmed(bytes32 context, uint256 checkpoint) private view returns(uint256) {
            Info memory self = _contextToInfo(context);
            return self.getData().farmInfo.farmedSinceCheckpointScaled(checkpoint);
        }
        function _contextToInfo(bytes32 context) private pure returns(Info memory self) {
            assembly {  // solhint-disable-line no-inline-assembly
                self := context
            }
        }
        function _infoToContext(Info memory self) private pure returns(bytes32 context) {
            assembly {  // solhint-disable-line no-inline-assembly
                context := self
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
    import "../accounting/FarmAccounting.sol";
    interface IMultiFarmingPod is IPod {
        event FarmCreated(address token, address reward);
        event DistributorChanged(address oldDistributor, address newDistributor);
        event RewardAdded(address token, uint256 reward, uint256 duration);
        // View functions
        function totalSupply() external view returns(uint256);
        function distributor() external view returns(address);
        function farmInfo(IERC20 rewardsToken) external view returns(FarmAccounting.Info memory);
        function farmed(IERC20 rewardsToken, address account) external view returns(uint256);
        // User functions
        function claim(IERC20 rewardsToken) external;
        function claim() external;
        // Owner functions
        function setDistributor(address distributor_) external;
        // Distributor functions
        function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) external;
        function rescueFunds(IERC20 token, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/utils/Address.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
    import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    import "./interfaces/IMultiFarmingPod.sol";
    import "./FarmingLib.sol";
    contract MultiFarmingPod is Pod, IMultiFarmingPod, Ownable {
        using SafeERC20 for IERC20;
        using FarmingLib for FarmingLib.Info;
        using Address for address payable;
        using AddressSet for AddressSet.Data;
        using AddressArray for AddressArray.Data;
        error ZeroFarmableTokenAddress();
        error ZeroRewardsTokenAddress();
        error SameDistributor();
        error RewardsTokenAlreadyAdded();
        error RewardsTokensLimitTooHigh(uint256);
        error RewardsTokensLimitReached();
        error RewardsTokenNotFound();
        uint256 public immutable rewardsTokensLimit;
        address private _distributor;
        uint256 private _totalSupply;
        mapping(IERC20 => FarmingLib.Data) private _farms;
        AddressSet.Data private _rewardsTokens;
        modifier onlyDistributor {
            if (msg.sender != _distributor) revert AccessDenied();
            _;
        }
        constructor(IERC20Pods farmableToken_, uint256 rewardsTokensLimit_) Pod(farmableToken_) {
            if (rewardsTokensLimit_ > 5) revert RewardsTokensLimitTooHigh(rewardsTokensLimit_);
            if (address(farmableToken_) == address(0)) revert ZeroFarmableTokenAddress();
            rewardsTokensLimit = rewardsTokensLimit_;
        }
        function rewardsTokens() external view returns(address[] memory) {
            return _rewardsTokens.items.get();
        }
        function farmInfo(IERC20 rewardsToken) public view returns(FarmAccounting.Info memory) {
            return _farms[rewardsToken].farmInfo;
        }
        function totalSupply() public view returns(uint256) {
            return _totalSupply;
        }
        function distributor() public view returns(address) {
            return _distributor;
        }
        function setDistributor(address distributor_) public virtual onlyOwner {
            address oldDistributor = _distributor;
            if (distributor_ == oldDistributor) revert SameDistributor();
            emit DistributorChanged(oldDistributor, distributor_);
            _distributor = distributor_;
        }
        function addRewardsToken(address rewardsToken) public virtual onlyOwner {
            if (_rewardsTokens.length() == rewardsTokensLimit) revert RewardsTokensLimitReached();
            if (!_rewardsTokens.add(rewardsToken)) revert RewardsTokenAlreadyAdded();
            emit FarmCreated(address(token), rewardsToken);
        }
        function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) public virtual onlyDistributor {
            if (!_rewardsTokens.contains(address(rewardsToken))) revert RewardsTokenNotFound();
            uint256 reward = _makeInfo(rewardsToken).startFarming(amount, period);
            emit RewardAdded(address(rewardsToken), reward, period);
            rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
        }
        function farmed(IERC20 rewardsToken, address account) public view virtual returns(uint256) {
            uint256 balance = IERC20Pods(token).podBalanceOf(address(this), account);
            return _makeInfo(rewardsToken).farmed(account, balance);
        }
        function claim(IERC20 rewardsToken) public virtual {
            uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
            _claim(rewardsToken, msg.sender, podBalance);
        }
        function claim() public virtual {
            uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
            address[] memory tokens = _rewardsTokens.items.get();
            unchecked {
                for (uint256 i = 0; i < tokens.length; i++) {
                    _claim(IERC20(tokens[i]), msg.sender, podBalance);
                }
            }
        }
        function _claim(IERC20 rewardsToken, address account, uint256 podBalance) private {
            uint256 amount = _makeInfo(rewardsToken).claim(account, podBalance);
            if (amount > 0) {
                _transferReward(rewardsToken, account, amount);
            }
        }
        function _transferReward(IERC20 reward, address to, uint256 amount) internal virtual {
            reward.safeTransfer(to, amount);
        }
        function _updateBalances(address from, address to, uint256 amount) internal virtual override {
            address[] memory tokens = _rewardsTokens.items.get();
            unchecked {
                for (uint256 i = 0; i < tokens.length; i++) {
                    _makeInfo(IERC20(tokens[i])).updateBalances(from, to, amount);
                }
            }
            if (from == address(0)) {
                _totalSupply += amount;
            }
            if (to == address(0)) {
                _totalSupply -= amount;
            }
        }
        function rescueFunds(IERC20 token, uint256 amount) public virtual onlyDistributor {
            if(token == IERC20(address(0))) {
                payable(_distributor).sendValue(amount);
            } else {
                token.safeTransfer(_distributor, amount);
            }
        }
        function _makeInfo(IERC20 rewardsToken) private view returns(FarmingLib.Info memory) {
            return FarmingLib.makeInfo(totalSupply, _farms[rewardsToken]);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    interface IDaiLikePermit {
        function permit(
            address holder,
            address spender,
            uint256 nonce,
            uint256 expiry,
            bool allowed,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Library that implements address array on mapping, stores array length at 0 index.
    library AddressArray {
        error IndexOutOfBounds();
        error PopFromEmptyArray();
        error OutputArrayTooSmall();
        /// @dev Data struct containing raw mapping.
        struct Data {
            mapping(uint256 => uint256) _raw;
        }
        /// @dev Length of array.
        function length(Data storage self) internal view returns (uint256) {
            return self._raw[0] >> 160;
        }
        /// @dev Returns data item from `self` storage at `i`.
        function at(Data storage self, uint256 i) internal view returns (address) {
            return address(uint160(self._raw[i]));
        }
        /// @dev Returns list of addresses from storage `self`.
        function get(Data storage self) internal view returns (address[] memory arr) {
            uint256 lengthAndFirst = self._raw[0];
            arr = new address[](lengthAndFirst >> 160);
            _get(self, arr, lengthAndFirst);
        }
        /// @dev Puts list of addresses from `self` storage into `output` array.
        function get(Data storage self, address[] memory output) internal view returns (address[] memory) {
            return _get(self, output, self._raw[0]);
        }
        function _get(
            Data storage self,
            address[] memory output,
            uint256 lengthAndFirst
        ) private view returns (address[] memory) {
            uint256 len = lengthAndFirst >> 160;
            if (len > output.length) revert OutputArrayTooSmall();
            if (len > 0) {
                output[0] = address(uint160(lengthAndFirst));
                unchecked {
                    for (uint256 i = 1; i < len; i++) {
                        output[i] = address(uint160(self._raw[i]));
                    }
                }
            }
            return output;
        }
        /// @dev Array push back `account` operation on storage `self`.
        function push(Data storage self, address account) internal returns (uint256) {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) {
                    self._raw[0] = (1 << 160) + uint160(account);
                } else {
                    self._raw[0] = lengthAndFirst + (1 << 160);
                    self._raw[len] = uint160(account);
                }
                return len + 1;
            }
        }
        /// @dev Array pop back operation for storage `self`.
        function pop(Data storage self) internal {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) revert PopFromEmptyArray();
                self._raw[len - 1] = 0;
                if (len > 1) {
                    self._raw[0] = lengthAndFirst - (1 << 160);
                }
            }
        }
        /// @dev Set element for storage `self` at `index` to `account`.
        function set(
            Data storage self,
            uint256 index,
            address account
        ) internal {
            uint256 len = length(self);
            if (index >= len) revert IndexOutOfBounds();
            if (index == 0) {
                self._raw[0] = (len << 160) | uint160(account);
            } else {
                self._raw[index] = uint160(account);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "./AddressArray.sol";
    /** @title Library that is using AddressArray library for AddressArray.Data
     * and allows Set operations on address storage data:
     * 1. add
     * 2. remove
     * 3. contains
     */
    library AddressSet {
        using AddressArray for AddressArray.Data;
        /** @dev Data struct from AddressArray.Data items
         * and lookup mapping address => index in data array.
         */
        struct Data {
            AddressArray.Data items;
            mapping(address => uint256) lookup;
        }
        /// @dev Length of data storage.
        function length(Data storage s) internal view returns (uint256) {
            return s.items.length();
        }
        /// @dev Returns data item from `s` storage at `index`.
        function at(Data storage s, uint256 index) internal view returns (address) {
            return s.items.at(index);
        }
        /// @dev Returns true if storage `s` has `item`.
        function contains(Data storage s, address item) internal view returns (bool) {
            return s.lookup[item] != 0;
        }
        /// @dev Adds `item` into storage `s` and returns true if successful.
        function add(Data storage s, address item) internal returns (bool) {
            if (s.lookup[item] > 0) {
                return false;
            }
            s.lookup[item] = s.items.push(item);
            return true;
        }
        /// @dev Removes `item` from storage `s` and returns true if successful.
        function remove(Data storage s, address item) internal returns (bool) {
            uint256 index = s.lookup[item];
            if (index == 0) {
                return false;
            }
            if (index < s.items.length()) {
                unchecked {
                    address lastItem = s.items.at(s.items.length() - 1);
                    s.items.set(index - 1, lastItem);
                    s.lookup[lastItem] = index;
                }
            }
            s.items.pop();
            delete s.lookup[item];
            return true;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Revert reason forwarder.
    library RevertReasonForwarder {
        /// @dev Forwards latest externall call revert.
        function reRevert() internal pure {
            // bubble up revert reason from latest external call
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
    import "../interfaces/IDaiLikePermit.sol";
    import "../libraries/RevertReasonForwarder.sol";
    /// @title Implements efficient safe methods for ERC20 interface.
    library SafeERC20 {
        error SafeTransferFailed();
        error SafeTransferFromFailed();
        error ForceApproveFailed();
        error SafeIncreaseAllowanceFailed();
        error SafeDecreaseAllowanceFailed();
        error SafePermitBadLength();
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            bytes4 selector = token.transferFrom.selector;
            bool success;
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), from)
                mstore(add(data, 0x24), to)
                mstore(add(data, 0x44), amount)
                success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
            if (!success) revert SafeTransferFromFailed();
        }
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.transfer.selector, to, value)) {
                revert SafeTransferFailed();
            }
        }
        /// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
        function forceApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.approve.selector, spender, value)) {
                if (
                    !_makeCall(token, token.approve.selector, spender, 0) ||
                    !_makeCall(token, token.approve.selector, spender, value)
                ) {
                    revert ForceApproveFailed();
                }
            }
        }
        /// @dev Allowance increase with safe math check.
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
            forceApprove(token, spender, allowance + value);
        }
        /// @dev Allowance decrease with safe math check.
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > allowance) revert SafeDecreaseAllowanceFailed();
            forceApprove(token, spender, allowance - value);
        }
        /// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
        function safePermit(IERC20 token, bytes calldata permit) internal {
            if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
        }
        function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
            if (permit.length == 32 * 7) {
                return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
            }
            if (permit.length == 32 * 8) {
                return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
            }
            revert SafePermitBadLength();
        }
        function _makeCall(
            IERC20 token,
            bytes4 selector,
            address to,
            uint256 amount
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), to)
                mstore(add(data, 0x24), amount)
                success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
        function _makeCalldataCall(
            IERC20 token,
            bytes4 selector,
            bytes calldata args
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let len := add(4, args.length)
                let data := mload(0x40)
                mstore(data, selector)
                calldatacopy(add(data, 0x04), args.offset, args.length)
                success := call(gas(), token, 0, data, len, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    contract VotingPowerCalculator {
        error OriginInTheFuture();
        uint256 private constant _ONE = 1e18;
        uint256 public immutable origin;
        uint256 public immutable expBase;
        uint256 private immutable _expTable0;
        uint256 private immutable _expTable1;
        uint256 private immutable _expTable2;
        uint256 private immutable _expTable3;
        uint256 private immutable _expTable4;
        uint256 private immutable _expTable5;
        uint256 private immutable _expTable6;
        uint256 private immutable _expTable7;
        uint256 private immutable _expTable8;
        uint256 private immutable _expTable9;
        uint256 private immutable _expTable10;
        uint256 private immutable _expTable11;
        uint256 private immutable _expTable12;
        uint256 private immutable _expTable13;
        uint256 private immutable _expTable14;
        uint256 private immutable _expTable15;
        uint256 private immutable _expTable16;
        uint256 private immutable _expTable17;
        uint256 private immutable _expTable18;
        uint256 private immutable _expTable19;
        uint256 private immutable _expTable20;
        uint256 private immutable _expTable21;
        uint256 private immutable _expTable22;
        uint256 private immutable _expTable23;
        uint256 private immutable _expTable24;
        uint256 private immutable _expTable25;
        uint256 private immutable _expTable26;
        uint256 private immutable _expTable27;
        uint256 private immutable _expTable28;
        uint256 private immutable _expTable29;
        constructor(uint256 expBase_, uint256 origin_) {
            if (origin_ > block.timestamp) revert OriginInTheFuture();
            origin = origin_;
            expBase = expBase_;
            _expTable0 = expBase_;
            _expTable1 = (_expTable0 * _expTable0) / _ONE;
            _expTable2 = (_expTable1 * _expTable1) / _ONE;
            _expTable3 = (_expTable2 * _expTable2) / _ONE;
            _expTable4 = (_expTable3 * _expTable3) / _ONE;
            _expTable5 = (_expTable4 * _expTable4) / _ONE;
            _expTable6 = (_expTable5 * _expTable5) / _ONE;
            _expTable7 = (_expTable6 * _expTable6) / _ONE;
            _expTable8 = (_expTable7 * _expTable7) / _ONE;
            _expTable9 = (_expTable8 * _expTable8) / _ONE;
            _expTable10 = (_expTable9 * _expTable9) / _ONE;
            _expTable11 = (_expTable10 * _expTable10) / _ONE;
            _expTable12 = (_expTable11 * _expTable11) / _ONE;
            _expTable13 = (_expTable12 * _expTable12) / _ONE;
            _expTable14 = (_expTable13 * _expTable13) / _ONE;
            _expTable15 = (_expTable14 * _expTable14) / _ONE;
            _expTable16 = (_expTable15 * _expTable15) / _ONE;
            _expTable17 = (_expTable16 * _expTable16) / _ONE;
            _expTable18 = (_expTable17 * _expTable17) / _ONE;
            _expTable19 = (_expTable18 * _expTable18) / _ONE;
            _expTable20 = (_expTable19 * _expTable19) / _ONE;
            _expTable21 = (_expTable20 * _expTable20) / _ONE;
            _expTable22 = (_expTable21 * _expTable21) / _ONE;
            _expTable23 = (_expTable22 * _expTable22) / _ONE;
            _expTable24 = (_expTable23 * _expTable23) / _ONE;
            _expTable25 = (_expTable24 * _expTable24) / _ONE;
            _expTable26 = (_expTable25 * _expTable25) / _ONE;
            _expTable27 = (_expTable26 * _expTable26) / _ONE;
            _expTable28 = (_expTable27 * _expTable27) / _ONE;
            _expTable29 = (_expTable28 * _expTable28) / _ONE;
        }
        function _votingPowerAt(uint256 balance, uint256 timestamp) internal view returns (uint256 votingPower) {
            timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
            unchecked {
                uint256 t = timestamp - origin;
                votingPower = balance;
                if (t & 0x01 != 0) {
                    votingPower = (votingPower * _expTable0) / _ONE;
                }
                if (t & 0x02 != 0) {
                    votingPower = (votingPower * _expTable1) / _ONE;
                }
                if (t & 0x04 != 0) {
                    votingPower = (votingPower * _expTable2) / _ONE;
                }
                if (t & 0x08 != 0) {
                    votingPower = (votingPower * _expTable3) / _ONE;
                }
                if (t & 0x10 != 0) {
                    votingPower = (votingPower * _expTable4) / _ONE;
                }
                if (t & 0x20 != 0) {
                    votingPower = (votingPower * _expTable5) / _ONE;
                }
                if (t & 0x40 != 0) {
                    votingPower = (votingPower * _expTable6) / _ONE;
                }
                if (t & 0x80 != 0) {
                    votingPower = (votingPower * _expTable7) / _ONE;
                }
                if (t & 0x100 != 0) {
                    votingPower = (votingPower * _expTable8) / _ONE;
                }
                if (t & 0x200 != 0) {
                    votingPower = (votingPower * _expTable9) / _ONE;
                }
                if (t & 0x400 != 0) {
                    votingPower = (votingPower * _expTable10) / _ONE;
                }
                if (t & 0x800 != 0) {
                    votingPower = (votingPower * _expTable11) / _ONE;
                }
                if (t & 0x1000 != 0) {
                    votingPower = (votingPower * _expTable12) / _ONE;
                }
                if (t & 0x2000 != 0) {
                    votingPower = (votingPower * _expTable13) / _ONE;
                }
                if (t & 0x4000 != 0) {
                    votingPower = (votingPower * _expTable14) / _ONE;
                }
                if (t & 0x8000 != 0) {
                    votingPower = (votingPower * _expTable15) / _ONE;
                }
                if (t & 0x10000 != 0) {
                    votingPower = (votingPower * _expTable16) / _ONE;
                }
                if (t & 0x20000 != 0) {
                    votingPower = (votingPower * _expTable17) / _ONE;
                }
                if (t & 0x40000 != 0) {
                    votingPower = (votingPower * _expTable18) / _ONE;
                }
                if (t & 0x80000 != 0) {
                    votingPower = (votingPower * _expTable19) / _ONE;
                }
                if (t & 0x100000 != 0) {
                    votingPower = (votingPower * _expTable20) / _ONE;
                }
                if (t & 0x200000 != 0) {
                    votingPower = (votingPower * _expTable21) / _ONE;
                }
                if (t & 0x400000 != 0) {
                    votingPower = (votingPower * _expTable22) / _ONE;
                }
                if (t & 0x800000 != 0) {
                    votingPower = (votingPower * _expTable23) / _ONE;
                }
                if (t & 0x1000000 != 0) {
                    votingPower = (votingPower * _expTable24) / _ONE;
                }
                if (t & 0x2000000 != 0) {
                    votingPower = (votingPower * _expTable25) / _ONE;
                }
                if (t & 0x4000000 != 0) {
                    votingPower = (votingPower * _expTable26) / _ONE;
                }
                if (t & 0x8000000 != 0) {
                    votingPower = (votingPower * _expTable27) / _ONE;
                }
                if (t & 0x10000000 != 0) {
                    votingPower = (votingPower * _expTable28) / _ONE;
                }
                if (t & 0x20000000 != 0) {
                    votingPower = (votingPower * _expTable29) / _ONE;
                }
            }
            return votingPower;
        }
        function _balanceAt(uint256 votingPower, uint256 timestamp) internal view returns (uint256 balance) {
            timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
            unchecked {
                uint256 t = timestamp - origin;
                balance = votingPower;
                if (t & 0x01 != 0) {
                    balance = (balance * _ONE) / _expTable0;
                }
                if (t & 0x02 != 0) {
                    balance = (balance * _ONE) / _expTable1;
                }
                if (t & 0x04 != 0) {
                    balance = (balance * _ONE) / _expTable2;
                }
                if (t & 0x08 != 0) {
                    balance = (balance * _ONE) / _expTable3;
                }
                if (t & 0x10 != 0) {
                    balance = (balance * _ONE) / _expTable4;
                }
                if (t & 0x20 != 0) {
                    balance = (balance * _ONE) / _expTable5;
                }
                if (t & 0x40 != 0) {
                    balance = (balance * _ONE) / _expTable6;
                }
                if (t & 0x80 != 0) {
                    balance = (balance * _ONE) / _expTable7;
                }
                if (t & 0x100 != 0) {
                    balance = (balance * _ONE) / _expTable8;
                }
                if (t & 0x200 != 0) {
                    balance = (balance * _ONE) / _expTable9;
                }
                if (t & 0x400 != 0) {
                    balance = (balance * _ONE) / _expTable10;
                }
                if (t & 0x800 != 0) {
                    balance = (balance * _ONE) / _expTable11;
                }
                if (t & 0x1000 != 0) {
                    balance = (balance * _ONE) / _expTable12;
                }
                if (t & 0x2000 != 0) {
                    balance = (balance * _ONE) / _expTable13;
                }
                if (t & 0x4000 != 0) {
                    balance = (balance * _ONE) / _expTable14;
                }
                if (t & 0x8000 != 0) {
                    balance = (balance * _ONE) / _expTable15;
                }
                if (t & 0x10000 != 0) {
                    balance = (balance * _ONE) / _expTable16;
                }
                if (t & 0x20000 != 0) {
                    balance = (balance * _ONE) / _expTable17;
                }
                if (t & 0x40000 != 0) {
                    balance = (balance * _ONE) / _expTable18;
                }
                if (t & 0x80000 != 0) {
                    balance = (balance * _ONE) / _expTable19;
                }
                if (t & 0x100000 != 0) {
                    balance = (balance * _ONE) / _expTable20;
                }
                if (t & 0x200000 != 0) {
                    balance = (balance * _ONE) / _expTable21;
                }
                if (t & 0x400000 != 0) {
                    balance = (balance * _ONE) / _expTable22;
                }
                if (t & 0x800000 != 0) {
                    balance = (balance * _ONE) / _expTable23;
                }
                if (t & 0x1000000 != 0) {
                    balance = (balance * _ONE) / _expTable24;
                }
                if (t & 0x2000000 != 0) {
                    balance = (balance * _ONE) / _expTable25;
                }
                if (t & 0x4000000 != 0) {
                    balance = (balance * _ONE) / _expTable26;
                }
                if (t & 0x8000000 != 0) {
                    balance = (balance * _ONE) / _expTable27;
                }
                if (t & 0x10000000 != 0) {
                    balance = (balance * _ONE) / _expTable28;
                }
                if (t & 0x20000000 != 0) {
                    balance = (balance * _ONE) / _expTable29;
                }
            }
            return balance;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    pragma abicoder v1;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IVotable is IERC20 {
        /// @dev we assume that voting power is a function of balance that preserves order
        function votingPowerOf(address account) external view returns (uint256);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    import "@1inch/delegating/contracts/FarmingDelegationPod.sol";
    import "./helpers/VotingPowerCalculator.sol";
    import "./interfaces/IVotable.sol";
    import "./St1inch.sol";
    contract PowerPod is FarmingDelegationPod, VotingPowerCalculator, IVotable {
        uint256 private constant _MAX_SHARE_PODS = 3;
        uint256 private constant _SHARE_POD_GAS_LIMIT = 140_000;
        constructor(string memory name_, string memory symbol_, St1inch st1inch)
            FarmingDelegationPod(name_, symbol_, st1inch, _MAX_SHARE_PODS, _SHARE_POD_GAS_LIMIT)
            VotingPowerCalculator(st1inch.expBase(), st1inch.origin())
        {}
        function votingPowerOf(address account) external view virtual returns (uint256) {
            return _votingPowerAt(balanceOf(account), block.timestamp);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/utils/math/Math.sol";
    import "@openzeppelin/contracts/utils/Address.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
    import "./helpers/VotingPowerCalculator.sol";
    import "./interfaces/IVotable.sol";
    /**
     * @title 1inch staking contract
     * @notice The contract provides the following features: staking, delegation, farming
     * How lock period works:
     * - balances and voting power
     * - Lock min and max
     * - Add lock
     * - earlyWithdrawal
     * - penalty math
     */
    contract St1inch is ERC20Pods, Ownable, VotingPowerCalculator, IVotable {
        using SafeERC20 for IERC20;
        event EmergencyExitSet(bool status);
        event MaxLossRatioSet(uint256 ratio);
        event MinLockPeriodRatioSet(uint256 ratio);
        event FeeReceiverSet(address receiver);
        event DefaultFarmSet(address defaultFarm);
        error ApproveDisabled();
        error TransferDisabled();
        error LockTimeMoreMaxLock();
        error LockTimeLessMinLock();
        error UnlockTimeHasNotCome();
        error StakeUnlocked();
        error MinLockPeriodRatioNotReached();
        error MinReturnIsNotMet();
        error MaxLossIsNotMet();
        error MaxLossOverflow();
        error LossIsTooBig();
        error RescueAmountIsTooLarge();
        error ExpBaseTooBig();
        error ExpBaseTooSmall();
        error DefaultFarmTokenMismatch();
        error DepositsDisabled();
        error ZeroAddress();
        /// @notice The minimum allowed staking period
        uint256 public constant MIN_LOCK_PERIOD = 30 days;
        /// @notice The maximum allowed staking period
        /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
        uint256 public constant MAX_LOCK_PERIOD = 2 * 365 days;
        /// @notice Voting power decreased to 1/_VOTING_POWER_DIVIDER after lock expires
        /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
        uint256 private constant _VOTING_POWER_DIVIDER = 20;
        uint256 private constant _PODS_LIMIT = 5;
        /// @notice Maximum allowed gas spent by each attached pod. If there not enough gas for pod execution then
        /// transaction is reverted. If pod uses more gas then its execution is reverted silently, not affection the
        /// main transaction
        uint256 private constant _POD_CALL_GAS_LIMIT = 500_000;
        uint256 private constant _ONE = 1e9;
        IERC20 public immutable oneInch;
        /// @notice The stucture to store stake information for a staker
        struct Depositor {
            uint40 lockTime;    // Unix time in seconds
            uint40 unlockTime;  // Unix time in seconds
            uint176 amount;     // Staked 1inch token amount
        }
        mapping(address => Depositor) public depositors;
        uint256 public totalDeposits;
        bool public emergencyExit;
        uint256 public maxLossRatio;
        uint256 public minLockPeriodRatio;
        address public feeReceiver;
        address public defaultFarm;
        /**
         * @notice Initializes the contract
         * @param oneInch_ The token to be staked
         * @param expBase_ The rate for the voting power decrease over time
         */
        constructor(IERC20 oneInch_, uint256 expBase_)
            ERC20Pods(_PODS_LIMIT, _POD_CALL_GAS_LIMIT)
            ERC20("Staking 1INCH v2", "st1INCH")
            VotingPowerCalculator(expBase_, block.timestamp)
        {
            // voting power after MAX_LOCK_PERIOD should be equal to staked amount divided by _VOTING_POWER_DIVIDER
            if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD) * _VOTING_POWER_DIVIDER < 1e18) revert ExpBaseTooBig();
            if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD + 1) * _VOTING_POWER_DIVIDER > 1e18) revert ExpBaseTooSmall();
            oneInch = oneInch_;
        }
        /**
         * @notice Sets the new contract that would recieve early withdrawal fees
         * @param feeReceiver_ The receiver contract address
         */
        function setFeeReceiver(address feeReceiver_) external onlyOwner {
            if (feeReceiver_ == address(0)) revert ZeroAddress();
            feeReceiver = feeReceiver_;
            emit FeeReceiverSet(feeReceiver_);
        }
        /**
         * @notice Sets the new farm that all staking users will automatically join after staking for reward farming
         * @param defaultFarm_ The farm contract address
         */
        function setDefaultFarm(address defaultFarm_) external onlyOwner {
            if (defaultFarm_ != address(0) && Pod(defaultFarm_).token() != this) revert DefaultFarmTokenMismatch();
            defaultFarm = defaultFarm_;
            emit DefaultFarmSet(defaultFarm_);
        }
        /**
         * @notice Sets the maximum allowed loss ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
         * then early withdrawal will revert.
         * Example: maxLossRatio = 90% and 1000 staked 1inch tokens means that a user can execute early withdrawal only
         * if his loss is less than or equals 90% of his stake, which is 900 tokens. Thus, if a user loses 900 tokens he is allowed
         * to do early withdrawal and not if the loss is greater.
         * @param maxLossRatio_ The maximum loss allowed (9 decimals).
         */
        function setMaxLossRatio(uint256 maxLossRatio_) external onlyOwner {
            if (maxLossRatio_ > _ONE) revert MaxLossOverflow();
            maxLossRatio = maxLossRatio_;
            emit MaxLossRatioSet(maxLossRatio_);
        }
        /**
         * @notice Sets the minimum allowed lock period ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
         * then early withdrawal will revert.
         * @param minLockPeriodRatio_ The maximum loss allowed (9 decimals).
         */
        function setMinLockPeriodRatio(uint256 minLockPeriodRatio_) external onlyOwner {
            if (minLockPeriodRatio_ > _ONE) revert MaxLossOverflow();
            minLockPeriodRatio = minLockPeriodRatio_;
            emit MinLockPeriodRatioSet(minLockPeriodRatio_);
        }
        /**
         * @notice Sets the emergency exit mode. In emergency mode any stake may withdraw its stake regardless of lock.
         * The mode is intended to use only for migration to a new version of staking contract.
         * @param emergencyExit_ set `true` to enter emergency exit mode and `false` to return to normal operations
         */
        function setEmergencyExit(bool emergencyExit_) external onlyOwner {
            emergencyExit = emergencyExit_;
            emit EmergencyExitSet(emergencyExit_);
        }
        /**
         * @notice Gets the voting power of the provided account
         * @param account The address of an account to get voting power for
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPowerOf(address account) external view returns (uint256) {
            return _votingPowerAt(balanceOf(account), block.timestamp);
        }
        /**
         * @notice Gets the voting power of the provided account at the given timestamp
         * @dev To calculate voting power at any timestamp provided the contract stores each balance
         * as it was staked for the maximum lock time. If a staker locks its stake for less than the maximum
         * then at the moment of deposit its balance is recorded as it was staked for the maximum but time
         * equal to `max lock period-lock time` has passed. It makes available voting power calculation
         * available at any point in time within the maximum lock period.
         * @param account The address of an account to get voting power for
         * @param timestamp The timestamp to calculate voting power at
         * @return votingPower The voting power available at the moment of `timestamp`
         */
        function votingPowerOfAt(address account, uint256 timestamp) external view returns (uint256) {
            return _votingPowerAt(balanceOf(account), timestamp);
        }
        /**
         * @notice Gets the voting power for the provided balance at the current timestamp assuming that
         * the balance is a balance at the moment of the maximum lock time
         * @param balance The balance for the maximum lock time
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPower(uint256 balance) external view returns (uint256) {
            return _votingPowerAt(balance, block.timestamp);
        }
        /**
         * @notice Gets the voting power for the provided balance at the current timestamp assuming that
         * the balance is a balance at the moment of the maximum lock time
         * @param balance The balance for the maximum lock time
         * @param timestamp The timestamp to calculate the voting power at
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPowerAt(uint256 balance, uint256 timestamp) external view returns (uint256) {
            return _votingPowerAt(balance, timestamp);
        }
        /**
         * @notice Stakes given amount and locks it for the given duration
         * @param amount The amount of tokens to stake
         * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
         * To keep the current lock period unchanged pass 0 for the duration.
         */
        function deposit(uint256 amount, uint256 duration) external {
            _deposit(msg.sender, amount, duration);
        }
        /**
         * @notice Stakes given amount and locks it for the given duration with permit
         * @param amount The amount of tokens to stake
         * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
         * To keep the current lock period unchanged pass 0 for the duration
         * @param permit Permit given by the staker
         */
        function depositWithPermit(uint256 amount, uint256 duration, bytes calldata permit) external {
            oneInch.safePermit(permit);
            _deposit(msg.sender, amount, duration);
        }
        /**
         * @notice Stakes given amount on behalf of provided account without locking or extending lock
         * @param account The account to stake for
         * @param amount The amount to stake
         */
        function depositFor(address account, uint256 amount) external {
            _deposit(account, amount, 0);
        }
        /**
         * @notice Stakes given amount on behalf of provided account without locking or extending lock with permit
         * @param account The account to stake for
         * @param amount The amount to stake
         * @param permit Permit given by the caller
         */
        function depositForWithPermit(address account, uint256 amount, bytes calldata permit) external {
            oneInch.safePermit(permit);
            _deposit(account, amount, 0);
        }
        function _deposit(address account, uint256 amount, uint256 duration) private {
            if (emergencyExit) revert DepositsDisabled();
            Depositor memory depositor = depositors[account]; // SLOAD
            uint256 lockedTill = Math.max(depositor.unlockTime, block.timestamp) + duration;
            uint256 lockLeft = lockedTill - block.timestamp;
            if (lockLeft < MIN_LOCK_PERIOD) revert LockTimeLessMinLock();
            if (lockLeft > MAX_LOCK_PERIOD) revert LockTimeMoreMaxLock();
            uint256 balanceDiff = _balanceAt(depositor.amount + amount, lockedTill) / _VOTING_POWER_DIVIDER - balanceOf(account);
            depositor.lockTime = uint40(duration == 0 ? depositor.lockTime : block.timestamp);
            depositor.unlockTime = uint40(lockedTill);
            depositor.amount += uint176(amount);
            depositors[account] = depositor; // SSTORE
            totalDeposits += amount;
            _mint(account, balanceDiff);
            if (amount > 0) {
                oneInch.safeTransferFrom(msg.sender, address(this), amount);
            }
            if (defaultFarm != address(0) && !hasPod(account, defaultFarm)) {
                _addPod(account, defaultFarm);
            }
        }
        /**
         * @notice Withdraw stake before lock period expires at the cost of losing part of a stake.
         * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
         * The more time is passed the less would be the loss.
         * Formula to calculate return amount = (deposit - voting power)) / 0.95
         * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
         * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
         */
        function earlyWithdraw(uint256 minReturn, uint256 maxLoss) external {
            earlyWithdrawTo(msg.sender, minReturn, maxLoss);
        }
        /**
         * @notice Withdraw stake before lock period expires at the cost of losing part of a stake to the specified account
         * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
         * The more time is passed the less would be the loss.
         * Formula to calculate return amount = (deposit - voting power)) / 0.95
         * @param to The account to withdraw the stake to
         * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
         * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
         */
        // ret(balance) = (deposit - vp(balance)) / 0.95
        function earlyWithdrawTo(address to, uint256 minReturn, uint256 maxLoss) public {
            Depositor memory depositor = depositors[msg.sender]; // SLOAD
            if (emergencyExit || block.timestamp >= depositor.unlockTime) revert StakeUnlocked();
            uint256 allowedExitTime = depositor.lockTime + (depositor.unlockTime - depositor.lockTime) * minLockPeriodRatio / _ONE;
            if (block.timestamp < allowedExitTime) revert MinLockPeriodRatioNotReached();
            uint256 amount = depositor.amount;
            if (amount > 0) {
                uint256 balance = balanceOf(msg.sender);
                (uint256 loss, uint256 ret) = _earlyWithdrawLoss(amount, balance);
                if (ret < minReturn) revert MinReturnIsNotMet();
                if (loss > maxLoss) revert MaxLossIsNotMet();
                if (loss > amount * maxLossRatio / _ONE) revert LossIsTooBig();
                _withdraw(depositor, balance);
                oneInch.safeTransfer(to, ret);
                oneInch.safeTransfer(feeReceiver, loss);
            }
        }
        /**
         * @notice Gets the loss amount if the staker do early withdrawal at the current block
         * @param account The account to calculate early withdrawal loss for
         * @return loss The loss amount amount
         * @return ret The return amount
         * @return canWithdraw  True if the staker can withdraw without penalty, false otherwise
         */
        function earlyWithdrawLoss(address account) external view returns (uint256 loss, uint256 ret, bool canWithdraw) {
            uint256 amount = depositors[account].amount;
            (loss, ret) = _earlyWithdrawLoss(amount, balanceOf(account));
            canWithdraw = loss <= amount * maxLossRatio / _ONE;
        }
        function _earlyWithdrawLoss(uint256 depAmount, uint256 stBalance) private view returns (uint256 loss, uint256 ret) {
            ret = (depAmount - _votingPowerAt(stBalance, block.timestamp)) * 100 / 95;
            loss = depAmount - ret;
        }
        /**
         * @notice Withdraws stake if lock period expired
         */
        function withdraw() external {
            withdrawTo(msg.sender);
        }
        /**
         * @notice Withdraws stake if lock period expired to the given address
         */
        function withdrawTo(address to) public {
            Depositor memory depositor = depositors[msg.sender]; // SLOAD
            if (!emergencyExit && block.timestamp < depositor.unlockTime) revert UnlockTimeHasNotCome();
            uint256 amount = depositor.amount;
            if (amount > 0) {
                _withdraw(depositor, balanceOf(msg.sender));
                oneInch.safeTransfer(to, amount);
            }
        }
        function _withdraw(Depositor memory depositor, uint256 balance) private {
            totalDeposits -= depositor.amount;
            depositor.amount = 0;
            // keep unlockTime in storage for next tx optimization
            depositor.unlockTime = uint40(Math.min(depositor.unlockTime, block.timestamp));
            depositors[msg.sender] = depositor; // SSTORE
            _burn(msg.sender, balance);
        }
        /**
         * @notice Retrieves funds from the contract in emergency situations
         * @param token The token to retrieve
         * @param amount The amount of funds to transfer
         */
        function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
            if (address(token) == address(0)) {
                Address.sendValue(payable(msg.sender), amount);
            } else {
                if (token == oneInch) {
                    if (amount > oneInch.balanceOf(address(this)) - totalDeposits) revert RescueAmountIsTooLarge();
                }
                token.safeTransfer(msg.sender, amount);
            }
        }
        // ERC20 methods disablers
        function approve(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function transfer(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address, address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function increaseAllowance(address, uint256) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address, uint256) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    

    File 2 of 3: St1inch
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
    import "./interfaces/IERC20Pods.sol";
    import "./interfaces/IPod.sol";
    import "./libs/ReentrancyGuard.sol";
    abstract contract ERC20Pods is ERC20, IERC20Pods, ReentrancyGuardExt {
        using AddressSet for AddressSet.Data;
        using AddressArray for AddressArray.Data;
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        error PodAlreadyAdded();
        error PodNotFound();
        error InvalidPodAddress();
        error PodsLimitReachedForAccount();
        error InsufficientGas();
        error ZeroPodsLimit();
        uint256 public immutable podsLimit;
        uint256 public immutable podCallGasLimit;
        ReentrancyGuardLib.Data private _guard;
        mapping(address => AddressSet.Data) private _pods;
        constructor(uint256 podsLimit_, uint256 podCallGasLimit_) {
            if (podsLimit_ == 0) revert ZeroPodsLimit();
            podsLimit = podsLimit_;
            podCallGasLimit = podCallGasLimit_;
            _guard.init();
        }
        function hasPod(address account, address pod) public view virtual returns(bool) {
            return _pods[account].contains(pod);
        }
        function podsCount(address account) public view virtual returns(uint256) {
            return _pods[account].length();
        }
        function podAt(address account, uint256 index) public view virtual returns(address) {
            return _pods[account].at(index);
        }
        function pods(address account) public view virtual returns(address[] memory) {
            return _pods[account].items.get();
        }
        function balanceOf(address account) public nonReentrantView(_guard) view override(IERC20, ERC20) virtual returns(uint256) {
            return super.balanceOf(account);
        }
        function podBalanceOf(address pod, address account) public nonReentrantView(_guard) view virtual returns(uint256) {
            if (hasPod(account, pod)) {
                return super.balanceOf(account);
            }
            return 0;
        }
        function addPod(address pod) public virtual {
            _addPod(msg.sender, pod);
        }
        function removePod(address pod) public virtual {
            _removePod(msg.sender, pod);
        }
        function removeAllPods() public virtual {
            _removeAllPods(msg.sender);
        }
        function _addPod(address account, address pod) internal virtual {
            if (pod == address(0)) revert InvalidPodAddress();
            if (!_pods[account].add(pod)) revert PodAlreadyAdded();
            if (_pods[account].length() > podsLimit) revert PodsLimitReachedForAccount();
            emit PodAdded(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, address(0), account, balance);
            }
        }
        function _removePod(address account, address pod) internal virtual {
            if (!_pods[account].remove(pod)) revert PodNotFound();
            emit PodRemoved(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, account, address(0), balance);
            }
        }
        function _removeAllPods(address account) internal virtual {
            address[] memory items = _pods[account].items.get();
            uint256 balance = balanceOf(account);
            unchecked {
                for (uint256 i = items.length; i > 0; i--) {
                    _pods[account].remove(items[i - 1]);
                    emit PodRemoved(account, items[i - 1]);
                    if (balance > 0) {
                        _updateBalances(items[i - 1], account, address(0), balance);
                    }
                }
            }
        }
        /// @notice Assembly implementation of the gas limited call to avoid return gas bomb,
        // moreover call to a destructed pod would also revert even inside try-catch block in Solidity 0.8.17
        /// @dev try IPod(pod).updateBalances{gas: _POD_CALL_GAS_LIMIT}(from, to, amount) {} catch {}
        function _updateBalances(address pod, address from, address to, uint256 amount) private {
            bytes4 selector = IPod.updateBalances.selector;
            bytes4 exception = InsufficientGas.selector;
            uint256 gasLimit = podCallGasLimit;
            assembly {  // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                mstore(ptr, selector)
                mstore(add(ptr, 0x04), from)
                mstore(add(ptr, 0x24), to)
                mstore(add(ptr, 0x44), amount)
                if lt(div(mul(gas(), 63), 64), gasLimit) {
                    mstore(0, exception)
                    revert(0, 4)
                }
                pop(call(gasLimit, pod, 0, ptr, 0x64, 0, 0))
            }
        }
        // ERC20 Overrides
        function _afterTokenTransfer(address from, address to, uint256 amount) internal nonReentrant(_guard) override virtual {
            super._afterTokenTransfer(from, to, amount);
            unchecked {
                if (amount > 0 && from != to) {
                    address[] memory a = _pods[from].items.get();
                    address[] memory b = _pods[to].items.get();
                    uint256 aLength = a.length;
                    uint256 bLength = b.length;
                    for (uint256 i = 0; i < aLength; i++) {
                        address pod = a[i];
                        uint256 j;
                        for (j = 0; j < bLength; j++) {
                            if (pod == b[j]) {
                                // Both parties are participating of the same Pod
                                _updateBalances(pod, from, to, amount);
                                b[j] = address(0);
                                break;
                            }
                        }
                        if (j == bLength) {
                            // Sender is participating in a Pod, but receiver is not
                            _updateBalances(pod, from, address(0), amount);
                        }
                    }
                    for (uint256 j = 0; j < bLength; j++) {
                        address pod = b[j];
                        if (pod != address(0)) {
                            // Receiver is participating in a Pod, but sender is not
                            _updateBalances(pod, address(0), to, amount);
                        }
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IERC20Pods is IERC20 {
        event PodAdded(address account, address pod);
        event PodRemoved(address account, address pod);
        function hasPod(address account, address pod) external view returns(bool);
        function podsCount(address account) external view returns(uint256);
        function podAt(address account, uint256 index) external view returns(address);
        function pods(address account) external view returns(address[] memory);
        function podBalanceOf(address pod, address account) external view returns(uint256);
        function addPod(address pod) external;
        function removePod(address pod) external;
        function removeAllPods() external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IPod {
        function updateBalances(address from, address to, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    library ReentrancyGuardLib {
        error ReentrantCall();
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        struct Data {
            uint256 _status;
        }
        function init(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function enter(Data storage self) internal {
            if (self._status == _ENTERED) revert ReentrantCall();
            self._status = _ENTERED;
        }
        function exit(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function check(Data storage self) internal view returns (bool) {
            return self._status == _ENTERED;
        }
    }
    contract ReentrancyGuardExt {
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        modifier nonReentrant(ReentrancyGuardLib.Data storage self) {
            self.enter();
            _;
            self.exit();
        }
        modifier nonReentrantView(ReentrancyGuardLib.Data storage self) {
            if (self.check()) revert ReentrancyGuardLib.ReentrantCall();
            _;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./interfaces/IPod.sol";
    import "./interfaces/IERC20Pods.sol";
    abstract contract Pod is IPod {
        error AccessDenied();
        IERC20Pods public immutable token;
        modifier onlyToken {
            if (msg.sender != address(token)) revert AccessDenied();
            _;
        }
        constructor(IERC20Pods token_) {
            token = token_;
        }
        function updateBalances(address from, address to, uint256 amount) external onlyToken {
            _updateBalances(from, to, amount);
        }
        function _updateBalances(address from, address to, uint256 amount) internal virtual;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    interface IDaiLikePermit {
        function permit(
            address holder,
            address spender,
            uint256 nonce,
            uint256 expiry,
            bool allowed,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Library that implements address array on mapping, stores array length at 0 index.
    library AddressArray {
        error IndexOutOfBounds();
        error PopFromEmptyArray();
        error OutputArrayTooSmall();
        /// @dev Data struct containing raw mapping.
        struct Data {
            mapping(uint256 => uint256) _raw;
        }
        /// @dev Length of array.
        function length(Data storage self) internal view returns (uint256) {
            return self._raw[0] >> 160;
        }
        /// @dev Returns data item from `self` storage at `i`.
        function at(Data storage self, uint256 i) internal view returns (address) {
            return address(uint160(self._raw[i]));
        }
        /// @dev Returns list of addresses from storage `self`.
        function get(Data storage self) internal view returns (address[] memory arr) {
            uint256 lengthAndFirst = self._raw[0];
            arr = new address[](lengthAndFirst >> 160);
            _get(self, arr, lengthAndFirst);
        }
        /// @dev Puts list of addresses from `self` storage into `output` array.
        function get(Data storage self, address[] memory output) internal view returns (address[] memory) {
            return _get(self, output, self._raw[0]);
        }
        function _get(
            Data storage self,
            address[] memory output,
            uint256 lengthAndFirst
        ) private view returns (address[] memory) {
            uint256 len = lengthAndFirst >> 160;
            if (len > output.length) revert OutputArrayTooSmall();
            if (len > 0) {
                output[0] = address(uint160(lengthAndFirst));
                unchecked {
                    for (uint256 i = 1; i < len; i++) {
                        output[i] = address(uint160(self._raw[i]));
                    }
                }
            }
            return output;
        }
        /// @dev Array push back `account` operation on storage `self`.
        function push(Data storage self, address account) internal returns (uint256) {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) {
                    self._raw[0] = (1 << 160) + uint160(account);
                } else {
                    self._raw[0] = lengthAndFirst + (1 << 160);
                    self._raw[len] = uint160(account);
                }
                return len + 1;
            }
        }
        /// @dev Array pop back operation for storage `self`.
        function pop(Data storage self) internal {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) revert PopFromEmptyArray();
                self._raw[len - 1] = 0;
                if (len > 1) {
                    self._raw[0] = lengthAndFirst - (1 << 160);
                }
            }
        }
        /// @dev Set element for storage `self` at `index` to `account`.
        function set(
            Data storage self,
            uint256 index,
            address account
        ) internal {
            uint256 len = length(self);
            if (index >= len) revert IndexOutOfBounds();
            if (index == 0) {
                self._raw[0] = (len << 160) | uint160(account);
            } else {
                self._raw[index] = uint160(account);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "./AddressArray.sol";
    /** @title Library that is using AddressArray library for AddressArray.Data
     * and allows Set operations on address storage data:
     * 1. add
     * 2. remove
     * 3. contains
     */
    library AddressSet {
        using AddressArray for AddressArray.Data;
        /** @dev Data struct from AddressArray.Data items
         * and lookup mapping address => index in data array.
         */
        struct Data {
            AddressArray.Data items;
            mapping(address => uint256) lookup;
        }
        /// @dev Length of data storage.
        function length(Data storage s) internal view returns (uint256) {
            return s.items.length();
        }
        /// @dev Returns data item from `s` storage at `index`.
        function at(Data storage s, uint256 index) internal view returns (address) {
            return s.items.at(index);
        }
        /// @dev Returns true if storage `s` has `item`.
        function contains(Data storage s, address item) internal view returns (bool) {
            return s.lookup[item] != 0;
        }
        /// @dev Adds `item` into storage `s` and returns true if successful.
        function add(Data storage s, address item) internal returns (bool) {
            if (s.lookup[item] > 0) {
                return false;
            }
            s.lookup[item] = s.items.push(item);
            return true;
        }
        /// @dev Removes `item` from storage `s` and returns true if successful.
        function remove(Data storage s, address item) internal returns (bool) {
            uint256 index = s.lookup[item];
            if (index == 0) {
                return false;
            }
            if (index < s.items.length()) {
                unchecked {
                    address lastItem = s.items.at(s.items.length() - 1);
                    s.items.set(index - 1, lastItem);
                    s.lookup[lastItem] = index;
                }
            }
            s.items.pop();
            delete s.lookup[item];
            return true;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Revert reason forwarder.
    library RevertReasonForwarder {
        /// @dev Forwards latest externall call revert.
        function reRevert() internal pure {
            // bubble up revert reason from latest external call
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
    import "../interfaces/IDaiLikePermit.sol";
    import "../libraries/RevertReasonForwarder.sol";
    /// @title Implements efficient safe methods for ERC20 interface.
    library SafeERC20 {
        error SafeTransferFailed();
        error SafeTransferFromFailed();
        error ForceApproveFailed();
        error SafeIncreaseAllowanceFailed();
        error SafeDecreaseAllowanceFailed();
        error SafePermitBadLength();
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            bytes4 selector = token.transferFrom.selector;
            bool success;
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), from)
                mstore(add(data, 0x24), to)
                mstore(add(data, 0x44), amount)
                success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
            if (!success) revert SafeTransferFromFailed();
        }
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.transfer.selector, to, value)) {
                revert SafeTransferFailed();
            }
        }
        /// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
        function forceApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.approve.selector, spender, value)) {
                if (
                    !_makeCall(token, token.approve.selector, spender, 0) ||
                    !_makeCall(token, token.approve.selector, spender, value)
                ) {
                    revert ForceApproveFailed();
                }
            }
        }
        /// @dev Allowance increase with safe math check.
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
            forceApprove(token, spender, allowance + value);
        }
        /// @dev Allowance decrease with safe math check.
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > allowance) revert SafeDecreaseAllowanceFailed();
            forceApprove(token, spender, allowance - value);
        }
        /// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
        function safePermit(IERC20 token, bytes calldata permit) internal {
            if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
        }
        function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
            if (permit.length == 32 * 7) {
                return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
            }
            if (permit.length == 32 * 8) {
                return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
            }
            revert SafePermitBadLength();
        }
        function _makeCall(
            IERC20 token,
            bytes4 selector,
            address to,
            uint256 amount
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), to)
                mstore(add(data, 0x24), amount)
                success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
        function _makeCalldataCall(
            IERC20 token,
            bytes4 selector,
            bytes calldata args
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let len := add(4, args.length)
                let data := mload(0x40)
                mstore(data, selector)
                calldatacopy(add(data, 0x04), args.offset, args.length)
                success := call(gas(), token, 0, data, len, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    contract VotingPowerCalculator {
        error OriginInTheFuture();
        uint256 private constant _ONE = 1e18;
        uint256 public immutable origin;
        uint256 public immutable expBase;
        uint256 private immutable _expTable0;
        uint256 private immutable _expTable1;
        uint256 private immutable _expTable2;
        uint256 private immutable _expTable3;
        uint256 private immutable _expTable4;
        uint256 private immutable _expTable5;
        uint256 private immutable _expTable6;
        uint256 private immutable _expTable7;
        uint256 private immutable _expTable8;
        uint256 private immutable _expTable9;
        uint256 private immutable _expTable10;
        uint256 private immutable _expTable11;
        uint256 private immutable _expTable12;
        uint256 private immutable _expTable13;
        uint256 private immutable _expTable14;
        uint256 private immutable _expTable15;
        uint256 private immutable _expTable16;
        uint256 private immutable _expTable17;
        uint256 private immutable _expTable18;
        uint256 private immutable _expTable19;
        uint256 private immutable _expTable20;
        uint256 private immutable _expTable21;
        uint256 private immutable _expTable22;
        uint256 private immutable _expTable23;
        uint256 private immutable _expTable24;
        uint256 private immutable _expTable25;
        uint256 private immutable _expTable26;
        uint256 private immutable _expTable27;
        uint256 private immutable _expTable28;
        uint256 private immutable _expTable29;
        constructor(uint256 expBase_, uint256 origin_) {
            if (origin_ > block.timestamp) revert OriginInTheFuture();
            origin = origin_;
            expBase = expBase_;
            _expTable0 = expBase_;
            _expTable1 = (_expTable0 * _expTable0) / _ONE;
            _expTable2 = (_expTable1 * _expTable1) / _ONE;
            _expTable3 = (_expTable2 * _expTable2) / _ONE;
            _expTable4 = (_expTable3 * _expTable3) / _ONE;
            _expTable5 = (_expTable4 * _expTable4) / _ONE;
            _expTable6 = (_expTable5 * _expTable5) / _ONE;
            _expTable7 = (_expTable6 * _expTable6) / _ONE;
            _expTable8 = (_expTable7 * _expTable7) / _ONE;
            _expTable9 = (_expTable8 * _expTable8) / _ONE;
            _expTable10 = (_expTable9 * _expTable9) / _ONE;
            _expTable11 = (_expTable10 * _expTable10) / _ONE;
            _expTable12 = (_expTable11 * _expTable11) / _ONE;
            _expTable13 = (_expTable12 * _expTable12) / _ONE;
            _expTable14 = (_expTable13 * _expTable13) / _ONE;
            _expTable15 = (_expTable14 * _expTable14) / _ONE;
            _expTable16 = (_expTable15 * _expTable15) / _ONE;
            _expTable17 = (_expTable16 * _expTable16) / _ONE;
            _expTable18 = (_expTable17 * _expTable17) / _ONE;
            _expTable19 = (_expTable18 * _expTable18) / _ONE;
            _expTable20 = (_expTable19 * _expTable19) / _ONE;
            _expTable21 = (_expTable20 * _expTable20) / _ONE;
            _expTable22 = (_expTable21 * _expTable21) / _ONE;
            _expTable23 = (_expTable22 * _expTable22) / _ONE;
            _expTable24 = (_expTable23 * _expTable23) / _ONE;
            _expTable25 = (_expTable24 * _expTable24) / _ONE;
            _expTable26 = (_expTable25 * _expTable25) / _ONE;
            _expTable27 = (_expTable26 * _expTable26) / _ONE;
            _expTable28 = (_expTable27 * _expTable27) / _ONE;
            _expTable29 = (_expTable28 * _expTable28) / _ONE;
        }
        function _votingPowerAt(uint256 balance, uint256 timestamp) internal view returns (uint256 votingPower) {
            timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
            unchecked {
                uint256 t = timestamp - origin;
                votingPower = balance;
                if (t & 0x01 != 0) {
                    votingPower = (votingPower * _expTable0) / _ONE;
                }
                if (t & 0x02 != 0) {
                    votingPower = (votingPower * _expTable1) / _ONE;
                }
                if (t & 0x04 != 0) {
                    votingPower = (votingPower * _expTable2) / _ONE;
                }
                if (t & 0x08 != 0) {
                    votingPower = (votingPower * _expTable3) / _ONE;
                }
                if (t & 0x10 != 0) {
                    votingPower = (votingPower * _expTable4) / _ONE;
                }
                if (t & 0x20 != 0) {
                    votingPower = (votingPower * _expTable5) / _ONE;
                }
                if (t & 0x40 != 0) {
                    votingPower = (votingPower * _expTable6) / _ONE;
                }
                if (t & 0x80 != 0) {
                    votingPower = (votingPower * _expTable7) / _ONE;
                }
                if (t & 0x100 != 0) {
                    votingPower = (votingPower * _expTable8) / _ONE;
                }
                if (t & 0x200 != 0) {
                    votingPower = (votingPower * _expTable9) / _ONE;
                }
                if (t & 0x400 != 0) {
                    votingPower = (votingPower * _expTable10) / _ONE;
                }
                if (t & 0x800 != 0) {
                    votingPower = (votingPower * _expTable11) / _ONE;
                }
                if (t & 0x1000 != 0) {
                    votingPower = (votingPower * _expTable12) / _ONE;
                }
                if (t & 0x2000 != 0) {
                    votingPower = (votingPower * _expTable13) / _ONE;
                }
                if (t & 0x4000 != 0) {
                    votingPower = (votingPower * _expTable14) / _ONE;
                }
                if (t & 0x8000 != 0) {
                    votingPower = (votingPower * _expTable15) / _ONE;
                }
                if (t & 0x10000 != 0) {
                    votingPower = (votingPower * _expTable16) / _ONE;
                }
                if (t & 0x20000 != 0) {
                    votingPower = (votingPower * _expTable17) / _ONE;
                }
                if (t & 0x40000 != 0) {
                    votingPower = (votingPower * _expTable18) / _ONE;
                }
                if (t & 0x80000 != 0) {
                    votingPower = (votingPower * _expTable19) / _ONE;
                }
                if (t & 0x100000 != 0) {
                    votingPower = (votingPower * _expTable20) / _ONE;
                }
                if (t & 0x200000 != 0) {
                    votingPower = (votingPower * _expTable21) / _ONE;
                }
                if (t & 0x400000 != 0) {
                    votingPower = (votingPower * _expTable22) / _ONE;
                }
                if (t & 0x800000 != 0) {
                    votingPower = (votingPower * _expTable23) / _ONE;
                }
                if (t & 0x1000000 != 0) {
                    votingPower = (votingPower * _expTable24) / _ONE;
                }
                if (t & 0x2000000 != 0) {
                    votingPower = (votingPower * _expTable25) / _ONE;
                }
                if (t & 0x4000000 != 0) {
                    votingPower = (votingPower * _expTable26) / _ONE;
                }
                if (t & 0x8000000 != 0) {
                    votingPower = (votingPower * _expTable27) / _ONE;
                }
                if (t & 0x10000000 != 0) {
                    votingPower = (votingPower * _expTable28) / _ONE;
                }
                if (t & 0x20000000 != 0) {
                    votingPower = (votingPower * _expTable29) / _ONE;
                }
            }
            return votingPower;
        }
        function _balanceAt(uint256 votingPower, uint256 timestamp) internal view returns (uint256 balance) {
            timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
            unchecked {
                uint256 t = timestamp - origin;
                balance = votingPower;
                if (t & 0x01 != 0) {
                    balance = (balance * _ONE) / _expTable0;
                }
                if (t & 0x02 != 0) {
                    balance = (balance * _ONE) / _expTable1;
                }
                if (t & 0x04 != 0) {
                    balance = (balance * _ONE) / _expTable2;
                }
                if (t & 0x08 != 0) {
                    balance = (balance * _ONE) / _expTable3;
                }
                if (t & 0x10 != 0) {
                    balance = (balance * _ONE) / _expTable4;
                }
                if (t & 0x20 != 0) {
                    balance = (balance * _ONE) / _expTable5;
                }
                if (t & 0x40 != 0) {
                    balance = (balance * _ONE) / _expTable6;
                }
                if (t & 0x80 != 0) {
                    balance = (balance * _ONE) / _expTable7;
                }
                if (t & 0x100 != 0) {
                    balance = (balance * _ONE) / _expTable8;
                }
                if (t & 0x200 != 0) {
                    balance = (balance * _ONE) / _expTable9;
                }
                if (t & 0x400 != 0) {
                    balance = (balance * _ONE) / _expTable10;
                }
                if (t & 0x800 != 0) {
                    balance = (balance * _ONE) / _expTable11;
                }
                if (t & 0x1000 != 0) {
                    balance = (balance * _ONE) / _expTable12;
                }
                if (t & 0x2000 != 0) {
                    balance = (balance * _ONE) / _expTable13;
                }
                if (t & 0x4000 != 0) {
                    balance = (balance * _ONE) / _expTable14;
                }
                if (t & 0x8000 != 0) {
                    balance = (balance * _ONE) / _expTable15;
                }
                if (t & 0x10000 != 0) {
                    balance = (balance * _ONE) / _expTable16;
                }
                if (t & 0x20000 != 0) {
                    balance = (balance * _ONE) / _expTable17;
                }
                if (t & 0x40000 != 0) {
                    balance = (balance * _ONE) / _expTable18;
                }
                if (t & 0x80000 != 0) {
                    balance = (balance * _ONE) / _expTable19;
                }
                if (t & 0x100000 != 0) {
                    balance = (balance * _ONE) / _expTable20;
                }
                if (t & 0x200000 != 0) {
                    balance = (balance * _ONE) / _expTable21;
                }
                if (t & 0x400000 != 0) {
                    balance = (balance * _ONE) / _expTable22;
                }
                if (t & 0x800000 != 0) {
                    balance = (balance * _ONE) / _expTable23;
                }
                if (t & 0x1000000 != 0) {
                    balance = (balance * _ONE) / _expTable24;
                }
                if (t & 0x2000000 != 0) {
                    balance = (balance * _ONE) / _expTable25;
                }
                if (t & 0x4000000 != 0) {
                    balance = (balance * _ONE) / _expTable26;
                }
                if (t & 0x8000000 != 0) {
                    balance = (balance * _ONE) / _expTable27;
                }
                if (t & 0x10000000 != 0) {
                    balance = (balance * _ONE) / _expTable28;
                }
                if (t & 0x20000000 != 0) {
                    balance = (balance * _ONE) / _expTable29;
                }
            }
            return balance;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    pragma abicoder v1;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IVotable is IERC20 {
        /// @dev we assume that voting power is a function of balance that preserves order
        function votingPowerOf(address account) external view returns (uint256);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.17;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/utils/math/Math.sol";
    import "@openzeppelin/contracts/utils/Address.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
    import "./helpers/VotingPowerCalculator.sol";
    import "./interfaces/IVotable.sol";
    /**
     * @title 1inch staking contract
     * @notice The contract provides the following features: staking, delegation, farming
     * How lock period works:
     * - balances and voting power
     * - Lock min and max
     * - Add lock
     * - earlyWithdrawal
     * - penalty math
     */
    contract St1inch is ERC20Pods, Ownable, VotingPowerCalculator, IVotable {
        using SafeERC20 for IERC20;
        event EmergencyExitSet(bool status);
        event MaxLossRatioSet(uint256 ratio);
        event MinLockPeriodRatioSet(uint256 ratio);
        event FeeReceiverSet(address receiver);
        event DefaultFarmSet(address defaultFarm);
        error ApproveDisabled();
        error TransferDisabled();
        error LockTimeMoreMaxLock();
        error LockTimeLessMinLock();
        error UnlockTimeHasNotCome();
        error StakeUnlocked();
        error MinLockPeriodRatioNotReached();
        error MinReturnIsNotMet();
        error MaxLossIsNotMet();
        error MaxLossOverflow();
        error LossIsTooBig();
        error RescueAmountIsTooLarge();
        error ExpBaseTooBig();
        error ExpBaseTooSmall();
        error DefaultFarmTokenMismatch();
        error DepositsDisabled();
        error ZeroAddress();
        /// @notice The minimum allowed staking period
        uint256 public constant MIN_LOCK_PERIOD = 30 days;
        /// @notice The maximum allowed staking period
        /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
        uint256 public constant MAX_LOCK_PERIOD = 2 * 365 days;
        /// @notice Voting power decreased to 1/_VOTING_POWER_DIVIDER after lock expires
        /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
        uint256 private constant _VOTING_POWER_DIVIDER = 20;
        uint256 private constant _PODS_LIMIT = 5;
        /// @notice Maximum allowed gas spent by each attached pod. If there not enough gas for pod execution then
        /// transaction is reverted. If pod uses more gas then its execution is reverted silently, not affection the
        /// main transaction
        uint256 private constant _POD_CALL_GAS_LIMIT = 500_000;
        uint256 private constant _ONE = 1e9;
        IERC20 public immutable oneInch;
        /// @notice The stucture to store stake information for a staker
        struct Depositor {
            uint40 lockTime;    // Unix time in seconds
            uint40 unlockTime;  // Unix time in seconds
            uint176 amount;     // Staked 1inch token amount
        }
        mapping(address => Depositor) public depositors;
        uint256 public totalDeposits;
        bool public emergencyExit;
        uint256 public maxLossRatio;
        uint256 public minLockPeriodRatio;
        address public feeReceiver;
        address public defaultFarm;
        /**
         * @notice Initializes the contract
         * @param oneInch_ The token to be staked
         * @param expBase_ The rate for the voting power decrease over time
         */
        constructor(IERC20 oneInch_, uint256 expBase_)
            ERC20Pods(_PODS_LIMIT, _POD_CALL_GAS_LIMIT)
            ERC20("Staking 1INCH v2", "st1INCH")
            VotingPowerCalculator(expBase_, block.timestamp)
        {
            // voting power after MAX_LOCK_PERIOD should be equal to staked amount divided by _VOTING_POWER_DIVIDER
            if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD) * _VOTING_POWER_DIVIDER < 1e18) revert ExpBaseTooBig();
            if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD + 1) * _VOTING_POWER_DIVIDER > 1e18) revert ExpBaseTooSmall();
            oneInch = oneInch_;
        }
        /**
         * @notice Sets the new contract that would recieve early withdrawal fees
         * @param feeReceiver_ The receiver contract address
         */
        function setFeeReceiver(address feeReceiver_) external onlyOwner {
            if (feeReceiver_ == address(0)) revert ZeroAddress();
            feeReceiver = feeReceiver_;
            emit FeeReceiverSet(feeReceiver_);
        }
        /**
         * @notice Sets the new farm that all staking users will automatically join after staking for reward farming
         * @param defaultFarm_ The farm contract address
         */
        function setDefaultFarm(address defaultFarm_) external onlyOwner {
            if (defaultFarm_ != address(0) && Pod(defaultFarm_).token() != this) revert DefaultFarmTokenMismatch();
            defaultFarm = defaultFarm_;
            emit DefaultFarmSet(defaultFarm_);
        }
        /**
         * @notice Sets the maximum allowed loss ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
         * then early withdrawal will revert.
         * Example: maxLossRatio = 90% and 1000 staked 1inch tokens means that a user can execute early withdrawal only
         * if his loss is less than or equals 90% of his stake, which is 900 tokens. Thus, if a user loses 900 tokens he is allowed
         * to do early withdrawal and not if the loss is greater.
         * @param maxLossRatio_ The maximum loss allowed (9 decimals).
         */
        function setMaxLossRatio(uint256 maxLossRatio_) external onlyOwner {
            if (maxLossRatio_ > _ONE) revert MaxLossOverflow();
            maxLossRatio = maxLossRatio_;
            emit MaxLossRatioSet(maxLossRatio_);
        }
        /**
         * @notice Sets the minimum allowed lock period ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
         * then early withdrawal will revert.
         * @param minLockPeriodRatio_ The maximum loss allowed (9 decimals).
         */
        function setMinLockPeriodRatio(uint256 minLockPeriodRatio_) external onlyOwner {
            if (minLockPeriodRatio_ > _ONE) revert MaxLossOverflow();
            minLockPeriodRatio = minLockPeriodRatio_;
            emit MinLockPeriodRatioSet(minLockPeriodRatio_);
        }
        /**
         * @notice Sets the emergency exit mode. In emergency mode any stake may withdraw its stake regardless of lock.
         * The mode is intended to use only for migration to a new version of staking contract.
         * @param emergencyExit_ set `true` to enter emergency exit mode and `false` to return to normal operations
         */
        function setEmergencyExit(bool emergencyExit_) external onlyOwner {
            emergencyExit = emergencyExit_;
            emit EmergencyExitSet(emergencyExit_);
        }
        /**
         * @notice Gets the voting power of the provided account
         * @param account The address of an account to get voting power for
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPowerOf(address account) external view returns (uint256) {
            return _votingPowerAt(balanceOf(account), block.timestamp);
        }
        /**
         * @notice Gets the voting power of the provided account at the given timestamp
         * @dev To calculate voting power at any timestamp provided the contract stores each balance
         * as it was staked for the maximum lock time. If a staker locks its stake for less than the maximum
         * then at the moment of deposit its balance is recorded as it was staked for the maximum but time
         * equal to `max lock period-lock time` has passed. It makes available voting power calculation
         * available at any point in time within the maximum lock period.
         * @param account The address of an account to get voting power for
         * @param timestamp The timestamp to calculate voting power at
         * @return votingPower The voting power available at the moment of `timestamp`
         */
        function votingPowerOfAt(address account, uint256 timestamp) external view returns (uint256) {
            return _votingPowerAt(balanceOf(account), timestamp);
        }
        /**
         * @notice Gets the voting power for the provided balance at the current timestamp assuming that
         * the balance is a balance at the moment of the maximum lock time
         * @param balance The balance for the maximum lock time
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPower(uint256 balance) external view returns (uint256) {
            return _votingPowerAt(balance, block.timestamp);
        }
        /**
         * @notice Gets the voting power for the provided balance at the current timestamp assuming that
         * the balance is a balance at the moment of the maximum lock time
         * @param balance The balance for the maximum lock time
         * @param timestamp The timestamp to calculate the voting power at
         * @return votingPower The voting power available at the block timestamp
         */
        function votingPowerAt(uint256 balance, uint256 timestamp) external view returns (uint256) {
            return _votingPowerAt(balance, timestamp);
        }
        /**
         * @notice Stakes given amount and locks it for the given duration
         * @param amount The amount of tokens to stake
         * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
         * To keep the current lock period unchanged pass 0 for the duration.
         */
        function deposit(uint256 amount, uint256 duration) external {
            _deposit(msg.sender, amount, duration);
        }
        /**
         * @notice Stakes given amount and locks it for the given duration with permit
         * @param amount The amount of tokens to stake
         * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
         * To keep the current lock period unchanged pass 0 for the duration
         * @param permit Permit given by the staker
         */
        function depositWithPermit(uint256 amount, uint256 duration, bytes calldata permit) external {
            oneInch.safePermit(permit);
            _deposit(msg.sender, amount, duration);
        }
        /**
         * @notice Stakes given amount on behalf of provided account without locking or extending lock
         * @param account The account to stake for
         * @param amount The amount to stake
         */
        function depositFor(address account, uint256 amount) external {
            _deposit(account, amount, 0);
        }
        /**
         * @notice Stakes given amount on behalf of provided account without locking or extending lock with permit
         * @param account The account to stake for
         * @param amount The amount to stake
         * @param permit Permit given by the caller
         */
        function depositForWithPermit(address account, uint256 amount, bytes calldata permit) external {
            oneInch.safePermit(permit);
            _deposit(account, amount, 0);
        }
        function _deposit(address account, uint256 amount, uint256 duration) private {
            if (emergencyExit) revert DepositsDisabled();
            Depositor memory depositor = depositors[account]; // SLOAD
            uint256 lockedTill = Math.max(depositor.unlockTime, block.timestamp) + duration;
            uint256 lockLeft = lockedTill - block.timestamp;
            if (lockLeft < MIN_LOCK_PERIOD) revert LockTimeLessMinLock();
            if (lockLeft > MAX_LOCK_PERIOD) revert LockTimeMoreMaxLock();
            uint256 balanceDiff = _balanceAt(depositor.amount + amount, lockedTill) / _VOTING_POWER_DIVIDER - balanceOf(account);
            depositor.lockTime = uint40(duration == 0 ? depositor.lockTime : block.timestamp);
            depositor.unlockTime = uint40(lockedTill);
            depositor.amount += uint176(amount);
            depositors[account] = depositor; // SSTORE
            totalDeposits += amount;
            _mint(account, balanceDiff);
            if (amount > 0) {
                oneInch.safeTransferFrom(msg.sender, address(this), amount);
            }
            if (defaultFarm != address(0) && !hasPod(account, defaultFarm)) {
                _addPod(account, defaultFarm);
            }
        }
        /**
         * @notice Withdraw stake before lock period expires at the cost of losing part of a stake.
         * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
         * The more time is passed the less would be the loss.
         * Formula to calculate return amount = (deposit - voting power)) / 0.95
         * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
         * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
         */
        function earlyWithdraw(uint256 minReturn, uint256 maxLoss) external {
            earlyWithdrawTo(msg.sender, minReturn, maxLoss);
        }
        /**
         * @notice Withdraw stake before lock period expires at the cost of losing part of a stake to the specified account
         * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
         * The more time is passed the less would be the loss.
         * Formula to calculate return amount = (deposit - voting power)) / 0.95
         * @param to The account to withdraw the stake to
         * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
         * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
         */
        // ret(balance) = (deposit - vp(balance)) / 0.95
        function earlyWithdrawTo(address to, uint256 minReturn, uint256 maxLoss) public {
            Depositor memory depositor = depositors[msg.sender]; // SLOAD
            if (emergencyExit || block.timestamp >= depositor.unlockTime) revert StakeUnlocked();
            uint256 allowedExitTime = depositor.lockTime + (depositor.unlockTime - depositor.lockTime) * minLockPeriodRatio / _ONE;
            if (block.timestamp < allowedExitTime) revert MinLockPeriodRatioNotReached();
            uint256 amount = depositor.amount;
            if (amount > 0) {
                uint256 balance = balanceOf(msg.sender);
                (uint256 loss, uint256 ret) = _earlyWithdrawLoss(amount, balance);
                if (ret < minReturn) revert MinReturnIsNotMet();
                if (loss > maxLoss) revert MaxLossIsNotMet();
                if (loss > amount * maxLossRatio / _ONE) revert LossIsTooBig();
                _withdraw(depositor, balance);
                oneInch.safeTransfer(to, ret);
                oneInch.safeTransfer(feeReceiver, loss);
            }
        }
        /**
         * @notice Gets the loss amount if the staker do early withdrawal at the current block
         * @param account The account to calculate early withdrawal loss for
         * @return loss The loss amount amount
         * @return ret The return amount
         * @return canWithdraw  True if the staker can withdraw without penalty, false otherwise
         */
        function earlyWithdrawLoss(address account) external view returns (uint256 loss, uint256 ret, bool canWithdraw) {
            uint256 amount = depositors[account].amount;
            (loss, ret) = _earlyWithdrawLoss(amount, balanceOf(account));
            canWithdraw = loss <= amount * maxLossRatio / _ONE;
        }
        function _earlyWithdrawLoss(uint256 depAmount, uint256 stBalance) private view returns (uint256 loss, uint256 ret) {
            ret = (depAmount - _votingPowerAt(stBalance, block.timestamp)) * 100 / 95;
            loss = depAmount - ret;
        }
        /**
         * @notice Withdraws stake if lock period expired
         */
        function withdraw() external {
            withdrawTo(msg.sender);
        }
        /**
         * @notice Withdraws stake if lock period expired to the given address
         */
        function withdrawTo(address to) public {
            Depositor memory depositor = depositors[msg.sender]; // SLOAD
            if (!emergencyExit && block.timestamp < depositor.unlockTime) revert UnlockTimeHasNotCome();
            uint256 amount = depositor.amount;
            if (amount > 0) {
                _withdraw(depositor, balanceOf(msg.sender));
                oneInch.safeTransfer(to, amount);
            }
        }
        function _withdraw(Depositor memory depositor, uint256 balance) private {
            totalDeposits -= depositor.amount;
            depositor.amount = 0;
            // keep unlockTime in storage for next tx optimization
            depositor.unlockTime = uint40(Math.min(depositor.unlockTime, block.timestamp));
            depositors[msg.sender] = depositor; // SSTORE
            _burn(msg.sender, balance);
        }
        /**
         * @notice Retrieves funds from the contract in emergency situations
         * @param token The token to retrieve
         * @param amount The amount of funds to transfer
         */
        function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
            if (address(token) == address(0)) {
                Address.sendValue(payable(msg.sender), amount);
            } else {
                if (token == oneInch) {
                    if (amount > oneInch.balanceOf(address(this)) - totalDeposits) revert RescueAmountIsTooLarge();
                }
                token.safeTransfer(msg.sender, amount);
            }
        }
        // ERC20 methods disablers
        function approve(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function transfer(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address, address, uint256) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function increaseAllowance(address, uint256) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address, uint256) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    

    File 3 of 3: DelegatedShare
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
    import "./interfaces/IERC20Pods.sol";
    import "./interfaces/IPod.sol";
    import "./libs/ReentrancyGuard.sol";
    abstract contract ERC20Pods is ERC20, IERC20Pods, ReentrancyGuardExt {
        using AddressSet for AddressSet.Data;
        using AddressArray for AddressArray.Data;
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        error PodAlreadyAdded();
        error PodNotFound();
        error InvalidPodAddress();
        error PodsLimitReachedForAccount();
        error InsufficientGas();
        error ZeroPodsLimit();
        uint256 public immutable podsLimit;
        uint256 public immutable podCallGasLimit;
        ReentrancyGuardLib.Data private _guard;
        mapping(address => AddressSet.Data) private _pods;
        constructor(uint256 podsLimit_, uint256 podCallGasLimit_) {
            if (podsLimit_ == 0) revert ZeroPodsLimit();
            podsLimit = podsLimit_;
            podCallGasLimit = podCallGasLimit_;
            _guard.init();
        }
        function hasPod(address account, address pod) public view virtual returns(bool) {
            return _pods[account].contains(pod);
        }
        function podsCount(address account) public view virtual returns(uint256) {
            return _pods[account].length();
        }
        function podAt(address account, uint256 index) public view virtual returns(address) {
            return _pods[account].at(index);
        }
        function pods(address account) public view virtual returns(address[] memory) {
            return _pods[account].items.get();
        }
        function balanceOf(address account) public nonReentrantView(_guard) view override(IERC20, ERC20) virtual returns(uint256) {
            return super.balanceOf(account);
        }
        function podBalanceOf(address pod, address account) public nonReentrantView(_guard) view virtual returns(uint256) {
            if (hasPod(account, pod)) {
                return super.balanceOf(account);
            }
            return 0;
        }
        function addPod(address pod) public virtual {
            _addPod(msg.sender, pod);
        }
        function removePod(address pod) public virtual {
            _removePod(msg.sender, pod);
        }
        function removeAllPods() public virtual {
            _removeAllPods(msg.sender);
        }
        function _addPod(address account, address pod) internal virtual {
            if (pod == address(0)) revert InvalidPodAddress();
            if (!_pods[account].add(pod)) revert PodAlreadyAdded();
            if (_pods[account].length() > podsLimit) revert PodsLimitReachedForAccount();
            emit PodAdded(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, address(0), account, balance);
            }
        }
        function _removePod(address account, address pod) internal virtual {
            if (!_pods[account].remove(pod)) revert PodNotFound();
            emit PodRemoved(account, pod);
            uint256 balance = balanceOf(account);
            if (balance > 0) {
                _updateBalances(pod, account, address(0), balance);
            }
        }
        function _removeAllPods(address account) internal virtual {
            address[] memory items = _pods[account].items.get();
            uint256 balance = balanceOf(account);
            unchecked {
                for (uint256 i = items.length; i > 0; i--) {
                    _pods[account].remove(items[i - 1]);
                    emit PodRemoved(account, items[i - 1]);
                    if (balance > 0) {
                        _updateBalances(items[i - 1], account, address(0), balance);
                    }
                }
            }
        }
        /// @notice Assembly implementation of the gas limited call to avoid return gas bomb,
        // moreover call to a destructed pod would also revert even inside try-catch block in Solidity 0.8.17
        /// @dev try IPod(pod).updateBalances{gas: _POD_CALL_GAS_LIMIT}(from, to, amount) {} catch {}
        function _updateBalances(address pod, address from, address to, uint256 amount) private {
            bytes4 selector = IPod.updateBalances.selector;
            bytes4 exception = InsufficientGas.selector;
            uint256 gasLimit = podCallGasLimit;
            assembly {  // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                mstore(ptr, selector)
                mstore(add(ptr, 0x04), from)
                mstore(add(ptr, 0x24), to)
                mstore(add(ptr, 0x44), amount)
                if lt(div(mul(gas(), 63), 64), gasLimit) {
                    mstore(0, exception)
                    revert(0, 4)
                }
                pop(call(gasLimit, pod, 0, ptr, 0x64, 0, 0))
            }
        }
        // ERC20 Overrides
        function _afterTokenTransfer(address from, address to, uint256 amount) internal nonReentrant(_guard) override virtual {
            super._afterTokenTransfer(from, to, amount);
            unchecked {
                if (amount > 0 && from != to) {
                    address[] memory a = _pods[from].items.get();
                    address[] memory b = _pods[to].items.get();
                    uint256 aLength = a.length;
                    uint256 bLength = b.length;
                    for (uint256 i = 0; i < aLength; i++) {
                        address pod = a[i];
                        uint256 j;
                        for (j = 0; j < bLength; j++) {
                            if (pod == b[j]) {
                                // Both parties are participating of the same Pod
                                _updateBalances(pod, from, to, amount);
                                b[j] = address(0);
                                break;
                            }
                        }
                        if (j == bLength) {
                            // Sender is participating in a Pod, but receiver is not
                            _updateBalances(pod, from, address(0), amount);
                        }
                    }
                    for (uint256 j = 0; j < bLength; j++) {
                        address pod = b[j];
                        if (pod != address(0)) {
                            // Receiver is participating in a Pod, but sender is not
                            _updateBalances(pod, address(0), to, amount);
                        }
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IERC20Pods is IERC20 {
        event PodAdded(address account, address pod);
        event PodRemoved(address account, address pod);
        function hasPod(address account, address pod) external view returns(bool);
        function podsCount(address account) external view returns(uint256);
        function podAt(address account, uint256 index) external view returns(address);
        function pods(address account) external view returns(address[] memory);
        function podBalanceOf(address pod, address account) external view returns(uint256);
        function addPod(address pod) external;
        function removePod(address pod) external;
        function removeAllPods() external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IPod {
        function updateBalances(address from, address to, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    library ReentrancyGuardLib {
        error ReentrantCall();
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        struct Data {
            uint256 _status;
        }
        function init(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function enter(Data storage self) internal {
            if (self._status == _ENTERED) revert ReentrantCall();
            self._status = _ENTERED;
        }
        function exit(Data storage self) internal {
            self._status = _NOT_ENTERED;
        }
        function check(Data storage self) internal view returns (bool) {
            return self._status == _ENTERED;
        }
    }
    contract ReentrancyGuardExt {
        using ReentrancyGuardLib for ReentrancyGuardLib.Data;
        modifier nonReentrant(ReentrancyGuardLib.Data storage self) {
            self.enter();
            _;
            self.exit();
        }
        modifier nonReentrantView(ReentrancyGuardLib.Data storage self) {
            if (self.check()) revert ReentrancyGuardLib.ReentrantCall();
            _;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "../ERC20Pods.sol";
    contract ERC20PodsMock is ERC20Pods {
        constructor(string memory name, string memory symbol, uint256 podsLimit, uint256 podCallGasLimit)
            ERC20(name, symbol)
            ERC20Pods(podsLimit, podCallGasLimit)
        {} // solhint-disable-line no-empty-blocks
        function mint(address account, uint256 amount) external {
            _mint(account, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./interfaces/IPod.sol";
    import "./interfaces/IERC20Pods.sol";
    abstract contract Pod is IPod {
        error AccessDenied();
        IERC20Pods public immutable token;
        modifier onlyToken {
            if (msg.sender != address(token)) revert AccessDenied();
            _;
        }
        constructor(IERC20Pods token_) {
            token = token_;
        }
        function updateBalances(address from, address to, uint256 amount) external onlyToken {
            _updateBalances(from, to, amount);
        }
        function _updateBalances(address from, address to, uint256 amount) internal virtual;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/utils/math/Math.sol";
    library FarmAccounting {
        error ZeroDuration();
        error DurationTooLarge();
        error AmountTooLarge();
        struct Info {
            uint40 finished;
            uint32 duration;
            uint184 reward;
        }
        uint256 internal constant _MAX_REWARD_AMOUNT = 1e32;  // 108 bits
        uint256 internal constant _SCALE = 1e18;  // 60 bits
        /// @dev Requires extra 18 decimals for precision, result fits in 168 bits
        function farmedSinceCheckpointScaled(Info memory info, uint256 checkpoint) internal view returns(uint256 amount) {
            unchecked {
                if (info.duration > 0) {
                    uint256 elapsed = Math.min(block.timestamp, info.finished) - Math.min(checkpoint, info.finished);
                    // size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflow
                    return elapsed * info.reward * _SCALE / info.duration;
                }
            }
        }
        function startFarming(Info storage info, uint256 amount, uint256 period) internal returns(uint256) {
            if (period == 0) revert ZeroDuration();
            if (period > type(uint32).max) revert DurationTooLarge();
            if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
            // If something left from prev farming add it to the new farming
            Info memory prev = info;
            if (block.timestamp < prev.finished) {
                amount += prev.reward - farmedSinceCheckpointScaled(prev, prev.finished - prev.duration) / _SCALE;
            }
            (info.finished, info.duration, info.reward) = (uint40(block.timestamp + period), uint32(period), uint184(amount));
            return amount;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./FarmAccounting.sol";
    library UserAccounting {
        struct Info {
            uint40 checkpoint;
            uint216 farmedPerTokenStored;
            mapping(address => int256) corrections;
        }
        function farmedPerToken(
            Info storage info,
            bytes32 context,
            function(bytes32) internal view returns(uint256) lazyGetSupply,
            function(bytes32, uint256) internal view returns(uint256) lazyGetFarmed
        ) internal view returns(uint256) {
            (uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
            if (block.timestamp != checkpoint) {
                uint256 supply = lazyGetSupply(context);
                if (supply > 0) {
                    // fpt increases by 168 bit / supply
                    unchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
                }
            }
            return fpt;
        }
        function farmed(Info storage info, address account, uint256 balance, uint256 fpt) internal view returns(uint256) {
            // balance * fpt is less than 168 bit
            return uint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
        }
        function eraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal {
            // balance * fpt is less than 168 bit
            info.corrections[account] = int256(balance * fpt);
        }
        function updateFarmedPerToken(Info storage info, uint256 fpt) internal {
            (info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
        }
        function updateBalances(Info storage info, address from, address to, uint256 amount, uint256 fpt) internal {
            bool fromZero = (from == address(0));
            bool toZero = (to == address(0));
            if (amount > 0 && from != to) {
                if (fromZero || toZero) {
                    updateFarmedPerToken(info, fpt);
                }
                // fpt is less than 168 bit, so amount should be less 98 bit
                int256 diff = int256(amount * fpt);
                if (!fromZero) {
                    info.corrections[from] -= diff;
                }
                if (!toZero) {
                    info.corrections[to] += diff;
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./accounting/FarmAccounting.sol";
    import "./accounting/UserAccounting.sol";
    library FarmingLib {
        using FarmAccounting for FarmAccounting.Info;
        using UserAccounting for UserAccounting.Info;
        using FarmingLib for FarmingLib.Info;
        struct Data {
            FarmAccounting.Info farmInfo;
            UserAccounting.Info userInfo;
        }
        struct Info {
            function() internal view returns(uint256) getTotalSupply;
            bytes32 dataSlot;
        }
        function makeInfo(function() internal view returns(uint256) getTotalSupply, Data storage data) internal pure returns(Info memory info) {
            info.getTotalSupply = getTotalSupply;
            bytes32 dataSlot;
            assembly {  // solhint-disable-line no-inline-assembly
                dataSlot := data.slot
            }
            info.dataSlot = dataSlot;
        }
        function getData(Info memory self) internal pure returns(Data storage data) {
            bytes32 dataSlot = self.dataSlot;
            assembly {  // solhint-disable-line no-inline-assembly
                data.slot := dataSlot
            }
        }
        function startFarming(Info memory self, uint256 amount, uint256 period) internal returns(uint256 reward) {
            Data storage data = self.getData();
            data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
            reward = data.farmInfo.startFarming(amount, period);
        }
        function farmed(Info memory self, address account, uint256 balance) internal view returns(uint256) {
            return self.getData().userInfo.farmed(account, balance, _farmedPerToken(self));
        }
        function claim(Info memory self, address account, uint256 balance) internal returns(uint256 amount) {
            Data storage data = self.getData();
            uint256 fpt = _farmedPerToken(self);
            amount = data.userInfo.farmed(account, balance, fpt);
            if (amount > 0) {
                data.userInfo.eraseFarmed(account, balance, fpt);
            }
        }
        function updateBalances(Info memory self, address from, address to, uint256 amount) internal {
            self.getData().userInfo.updateBalances(from, to, amount, _farmedPerToken(self));
        }
        function _farmedPerToken(Info memory self) private view returns (uint256) {
            return self.getData().userInfo.farmedPerToken(_infoToContext(self), _lazyGetSupply, _lazyGetFarmed);
        }
        // UserAccounting bindings
        function _lazyGetSupply(bytes32 context) private view returns(uint256) {
            Info memory self = _contextToInfo(context);
            return self.getTotalSupply();
        }
        function _lazyGetFarmed(bytes32 context, uint256 checkpoint) private view returns(uint256) {
            Info memory self = _contextToInfo(context);
            return self.getData().farmInfo.farmedSinceCheckpointScaled(checkpoint);
        }
        function _contextToInfo(bytes32 context) private pure returns(Info memory self) {
            assembly {  // solhint-disable-line no-inline-assembly
                self := context
            }
        }
        function _infoToContext(Info memory self) private pure returns(bytes32 context) {
            assembly {  // solhint-disable-line no-inline-assembly
                context := self
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
    import "../accounting/FarmAccounting.sol";
    interface IMultiFarmingPod is IPod {
        event FarmCreated(address token, address reward);
        event DistributorChanged(address oldDistributor, address newDistributor);
        event RewardAdded(address token, uint256 reward, uint256 duration);
        // View functions
        function totalSupply() external view returns(uint256);
        function distributor() external view returns(address);
        function farmInfo(IERC20 rewardsToken) external view returns(FarmAccounting.Info memory);
        function farmed(IERC20 rewardsToken, address account) external view returns(uint256);
        // User functions
        function claim(IERC20 rewardsToken) external;
        function claim() external;
        // Owner functions
        function setDistributor(address distributor_) external;
        // Distributor functions
        function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) external;
        function rescueFunds(IERC20 token, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/utils/Address.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
    import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    import "./interfaces/IMultiFarmingPod.sol";
    import "./FarmingLib.sol";
    contract MultiFarmingPod is Pod, IMultiFarmingPod, Ownable {
        using SafeERC20 for IERC20;
        using FarmingLib for FarmingLib.Info;
        using Address for address payable;
        using AddressSet for AddressSet.Data;
        using AddressArray for AddressArray.Data;
        error ZeroFarmableTokenAddress();
        error ZeroRewardsTokenAddress();
        error SameDistributor();
        error RewardsTokenAlreadyAdded();
        error RewardsTokensLimitTooHigh(uint256);
        error RewardsTokensLimitReached();
        error RewardsTokenNotFound();
        uint256 public immutable rewardsTokensLimit;
        address private _distributor;
        uint256 private _totalSupply;
        mapping(IERC20 => FarmingLib.Data) private _farms;
        AddressSet.Data private _rewardsTokens;
        modifier onlyDistributor {
            if (msg.sender != _distributor) revert AccessDenied();
            _;
        }
        constructor(IERC20Pods farmableToken_, uint256 rewardsTokensLimit_) Pod(farmableToken_) {
            if (rewardsTokensLimit_ > 5) revert RewardsTokensLimitTooHigh(rewardsTokensLimit_);
            if (address(farmableToken_) == address(0)) revert ZeroFarmableTokenAddress();
            rewardsTokensLimit = rewardsTokensLimit_;
        }
        function rewardsTokens() external view returns(address[] memory) {
            return _rewardsTokens.items.get();
        }
        function farmInfo(IERC20 rewardsToken) public view returns(FarmAccounting.Info memory) {
            return _farms[rewardsToken].farmInfo;
        }
        function totalSupply() public view returns(uint256) {
            return _totalSupply;
        }
        function distributor() public view returns(address) {
            return _distributor;
        }
        function setDistributor(address distributor_) public virtual onlyOwner {
            address oldDistributor = _distributor;
            if (distributor_ == oldDistributor) revert SameDistributor();
            emit DistributorChanged(oldDistributor, distributor_);
            _distributor = distributor_;
        }
        function addRewardsToken(address rewardsToken) public virtual onlyOwner {
            if (_rewardsTokens.length() == rewardsTokensLimit) revert RewardsTokensLimitReached();
            if (!_rewardsTokens.add(rewardsToken)) revert RewardsTokenAlreadyAdded();
            emit FarmCreated(address(token), rewardsToken);
        }
        function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) public virtual onlyDistributor {
            if (!_rewardsTokens.contains(address(rewardsToken))) revert RewardsTokenNotFound();
            uint256 reward = _makeInfo(rewardsToken).startFarming(amount, period);
            emit RewardAdded(address(rewardsToken), reward, period);
            rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
        }
        function farmed(IERC20 rewardsToken, address account) public view virtual returns(uint256) {
            uint256 balance = IERC20Pods(token).podBalanceOf(address(this), account);
            return _makeInfo(rewardsToken).farmed(account, balance);
        }
        function claim(IERC20 rewardsToken) public virtual {
            uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
            _claim(rewardsToken, msg.sender, podBalance);
        }
        function claim() public virtual {
            uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
            address[] memory tokens = _rewardsTokens.items.get();
            unchecked {
                for (uint256 i = 0; i < tokens.length; i++) {
                    _claim(IERC20(tokens[i]), msg.sender, podBalance);
                }
            }
        }
        function _claim(IERC20 rewardsToken, address account, uint256 podBalance) private {
            uint256 amount = _makeInfo(rewardsToken).claim(account, podBalance);
            if (amount > 0) {
                _transferReward(rewardsToken, account, amount);
            }
        }
        function _transferReward(IERC20 reward, address to, uint256 amount) internal virtual {
            reward.safeTransfer(to, amount);
        }
        function _updateBalances(address from, address to, uint256 amount) internal virtual override {
            address[] memory tokens = _rewardsTokens.items.get();
            unchecked {
                for (uint256 i = 0; i < tokens.length; i++) {
                    _makeInfo(IERC20(tokens[i])).updateBalances(from, to, amount);
                }
            }
            if (from == address(0)) {
                _totalSupply += amount;
            }
            if (to == address(0)) {
                _totalSupply -= amount;
            }
        }
        function rescueFunds(IERC20 token, uint256 amount) public virtual onlyDistributor {
            if(token == IERC20(address(0))) {
                payable(_distributor).sendValue(amount);
            } else {
                token.safeTransfer(_distributor, amount);
            }
        }
        function _makeInfo(IERC20 rewardsToken) private view returns(FarmingLib.Info memory) {
            return FarmingLib.makeInfo(totalSupply, _farms[rewardsToken]);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    interface IDaiLikePermit {
        function permit(
            address holder,
            address spender,
            uint256 nonce,
            uint256 expiry,
            bool allowed,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Library that implements address array on mapping, stores array length at 0 index.
    library AddressArray {
        error IndexOutOfBounds();
        error PopFromEmptyArray();
        error OutputArrayTooSmall();
        /// @dev Data struct containing raw mapping.
        struct Data {
            mapping(uint256 => uint256) _raw;
        }
        /// @dev Length of array.
        function length(Data storage self) internal view returns (uint256) {
            return self._raw[0] >> 160;
        }
        /// @dev Returns data item from `self` storage at `i`.
        function at(Data storage self, uint256 i) internal view returns (address) {
            return address(uint160(self._raw[i]));
        }
        /// @dev Returns list of addresses from storage `self`.
        function get(Data storage self) internal view returns (address[] memory arr) {
            uint256 lengthAndFirst = self._raw[0];
            arr = new address[](lengthAndFirst >> 160);
            _get(self, arr, lengthAndFirst);
        }
        /// @dev Puts list of addresses from `self` storage into `output` array.
        function get(Data storage self, address[] memory output) internal view returns (address[] memory) {
            return _get(self, output, self._raw[0]);
        }
        function _get(
            Data storage self,
            address[] memory output,
            uint256 lengthAndFirst
        ) private view returns (address[] memory) {
            uint256 len = lengthAndFirst >> 160;
            if (len > output.length) revert OutputArrayTooSmall();
            if (len > 0) {
                output[0] = address(uint160(lengthAndFirst));
                unchecked {
                    for (uint256 i = 1; i < len; i++) {
                        output[i] = address(uint160(self._raw[i]));
                    }
                }
            }
            return output;
        }
        /// @dev Array push back `account` operation on storage `self`.
        function push(Data storage self, address account) internal returns (uint256) {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) {
                    self._raw[0] = (1 << 160) + uint160(account);
                } else {
                    self._raw[0] = lengthAndFirst + (1 << 160);
                    self._raw[len] = uint160(account);
                }
                return len + 1;
            }
        }
        /// @dev Array pop back operation for storage `self`.
        function pop(Data storage self) internal {
            unchecked {
                uint256 lengthAndFirst = self._raw[0];
                uint256 len = lengthAndFirst >> 160;
                if (len == 0) revert PopFromEmptyArray();
                self._raw[len - 1] = 0;
                if (len > 1) {
                    self._raw[0] = lengthAndFirst - (1 << 160);
                }
            }
        }
        /// @dev Set element for storage `self` at `index` to `account`.
        function set(
            Data storage self,
            uint256 index,
            address account
        ) internal {
            uint256 len = length(self);
            if (index >= len) revert IndexOutOfBounds();
            if (index == 0) {
                self._raw[0] = (len << 160) | uint160(account);
            } else {
                self._raw[index] = uint160(account);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "./AddressArray.sol";
    /** @title Library that is using AddressArray library for AddressArray.Data
     * and allows Set operations on address storage data:
     * 1. add
     * 2. remove
     * 3. contains
     */
    library AddressSet {
        using AddressArray for AddressArray.Data;
        /** @dev Data struct from AddressArray.Data items
         * and lookup mapping address => index in data array.
         */
        struct Data {
            AddressArray.Data items;
            mapping(address => uint256) lookup;
        }
        /// @dev Length of data storage.
        function length(Data storage s) internal view returns (uint256) {
            return s.items.length();
        }
        /// @dev Returns data item from `s` storage at `index`.
        function at(Data storage s, uint256 index) internal view returns (address) {
            return s.items.at(index);
        }
        /// @dev Returns true if storage `s` has `item`.
        function contains(Data storage s, address item) internal view returns (bool) {
            return s.lookup[item] != 0;
        }
        /// @dev Adds `item` into storage `s` and returns true if successful.
        function add(Data storage s, address item) internal returns (bool) {
            if (s.lookup[item] > 0) {
                return false;
            }
            s.lookup[item] = s.items.push(item);
            return true;
        }
        /// @dev Removes `item` from storage `s` and returns true if successful.
        function remove(Data storage s, address item) internal returns (bool) {
            uint256 index = s.lookup[item];
            if (index == 0) {
                return false;
            }
            if (index < s.items.length()) {
                unchecked {
                    address lastItem = s.items.at(s.items.length() - 1);
                    s.items.set(index - 1, lastItem);
                    s.lookup[lastItem] = index;
                }
            }
            s.items.pop();
            delete s.lookup[item];
            return true;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    /// @title Revert reason forwarder.
    library RevertReasonForwarder {
        /// @dev Forwards latest externall call revert.
        function reRevert() internal pure {
            // bubble up revert reason from latest external call
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    pragma abicoder v1;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
    import "../interfaces/IDaiLikePermit.sol";
    import "../libraries/RevertReasonForwarder.sol";
    /// @title Implements efficient safe methods for ERC20 interface.
    library SafeERC20 {
        error SafeTransferFailed();
        error SafeTransferFromFailed();
        error ForceApproveFailed();
        error SafeIncreaseAllowanceFailed();
        error SafeDecreaseAllowanceFailed();
        error SafePermitBadLength();
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            bytes4 selector = token.transferFrom.selector;
            bool success;
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), from)
                mstore(add(data, 0x24), to)
                mstore(add(data, 0x44), amount)
                success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
            if (!success) revert SafeTransferFromFailed();
        }
        /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.transfer.selector, to, value)) {
                revert SafeTransferFailed();
            }
        }
        /// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
        function forceApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            if (!_makeCall(token, token.approve.selector, spender, value)) {
                if (
                    !_makeCall(token, token.approve.selector, spender, 0) ||
                    !_makeCall(token, token.approve.selector, spender, value)
                ) {
                    revert ForceApproveFailed();
                }
            }
        }
        /// @dev Allowance increase with safe math check.
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
            forceApprove(token, spender, allowance + value);
        }
        /// @dev Allowance decrease with safe math check.
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 allowance = token.allowance(address(this), spender);
            if (value > allowance) revert SafeDecreaseAllowanceFailed();
            forceApprove(token, spender, allowance - value);
        }
        /// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
        function safePermit(IERC20 token, bytes calldata permit) internal {
            if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
        }
        function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
            if (permit.length == 32 * 7) {
                return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
            }
            if (permit.length == 32 * 8) {
                return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
            }
            revert SafePermitBadLength();
        }
        function _makeCall(
            IERC20 token,
            bytes4 selector,
            address to,
            uint256 amount
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let data := mload(0x40)
                mstore(data, selector)
                mstore(add(data, 0x04), to)
                mstore(add(data, 0x24), amount)
                success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
        function _makeCalldataCall(
            IERC20 token,
            bytes4 selector,
            bytes calldata args
        ) private returns (bool success) {
            /// @solidity memory-safe-assembly
            assembly { // solhint-disable-line no-inline-assembly
                let len := add(4, args.length)
                let data := mload(0x40)
                mstore(data, selector)
                calldatacopy(add(data, 0x04), args.offset, args.length)
                success := call(gas(), token, 0, data, len, 0x0, 0x20)
                if success {
                    switch returndatasize()
                    case 0 {
                        success := gt(extcodesize(token), 0)
                    }
                    default {
                        success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                    }
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
    import "./interfaces/IDelegatedShare.sol";
    contract DelegatedShare is IDelegatedShare, ERC20Pods {
        error ApproveDisabled();
        error TransferDisabled();
        error NotOwner();
        address immutable private _owner;
        modifier onlyOwner {
            if (msg.sender != _owner) revert NotOwner();
            _;
        }
        constructor(
            string memory name,
            string memory symbol,
            uint256 maxUserPods,
            uint256 podCallGasLimit
        ) ERC20(name, symbol) ERC20Pods(maxUserPods, podCallGasLimit) {
            _owner = msg.sender;
        }
        function addDefaultFarmIfNeeded(address account, address farm) external onlyOwner {
            if (!hasPod(account, farm)) {
                _addPod(account, farm);
            }
        }
        function mint(address account, uint256 amount) external onlyOwner {
            _mint(account, amount);
        }
        function burn(address account, uint256 amount) external onlyOwner {
            _burn(account, amount);
        }
        function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    import "@1inch/erc20-pods/contracts/Pod.sol";
    import "./interfaces/IDelegationPod.sol";
    contract DelegationPod is IDelegationPod, Pod, ERC20 {
        error ApproveDisabled();
        error TransferDisabled();
        mapping(address => address) public delegated;
        constructor(string memory name_, string memory symbol_, IERC20Pods token_)
            ERC20(name_, symbol_) Pod(token_)
        {}  // solhint-disable-line no-empty-blocks
        function delegate(address delegatee) public virtual {
            address prevDelegatee = delegated[msg.sender];
            if (prevDelegatee != delegatee) {
                delegated[msg.sender] = delegatee;
                emit Delegated(msg.sender, delegatee);
                uint256 balance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
                if (balance > 0) {
                    _updateBalances(msg.sender, msg.sender, prevDelegatee, delegatee, balance);
                }
            }
        }
        function _updateBalances(address from, address to, uint256 amount) internal override {
            _updateBalances(
                from,
                to,
                from == address(0) ? address(0) : delegated[from],
                to == address(0) ? address(0) : delegated[to],
                amount
            );
        }
        function _updateBalances(address /* from */, address /* to */, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual {
            if (fromDelegatee != toDelegatee && amount > 0) {
                if (fromDelegatee == address(0)) {
                    _mint(toDelegatee, amount);
                } else if (toDelegatee == address(0)) {
                    _burn(fromDelegatee, amount);
                } else {
                    _transfer(fromDelegatee, toDelegatee, amount);
                }
            }
        }
        // ERC20 overrides
        function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
            revert TransferDisabled();
        }
        function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
            revert ApproveDisabled();
        }
        function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
        function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
            revert ApproveDisabled();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./TokenizedDelegationPod.sol";
    import "./interfaces/IFarmingDelegationPod.sol";
    import "@1inch/farming/contracts/MultiFarmingPod.sol";
    contract FarmingDelegationPod is IFarmingDelegationPod, TokenizedDelegationPod {
        error DefaultFarmTokenMismatch();
        uint256 private constant _MAX_FARM_REWARDS = 3;
        mapping(address => address) public defaultFarms;
        constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_)
            TokenizedDelegationPod(name_, symbol_, token_, maxSharePods_, sharePodGasLimit_)
        {}  // solhint-disable-line no-empty-blocks
        function register(string memory name, string memory symbol) public override(ITokenizedDelegationPod, TokenizedDelegationPod) returns(IDelegatedShare shareToken) {
            shareToken = super.register(name, symbol);
            MultiFarmingPod farm = new MultiFarmingPod(shareToken, _MAX_FARM_REWARDS);
            farm.transferOwnership(msg.sender);
            defaultFarms[msg.sender] = address(farm);
        }
        function delegate(address delegatee) public override(IDelegationPod, TokenizedDelegationPod) {
            super.delegate(delegatee);
            address defaultFarm = defaultFarms[delegatee];
            if (defaultFarm != address(0)) {
                registration[delegatee].addDefaultFarmIfNeeded(msg.sender, defaultFarm);
            }
        }
        function setDefaultFarm(address farm) external onlyRegistered {
            if (farm != address(0) && Pod(farm).token() != registration[msg.sender]) revert DefaultFarmTokenMismatch();
            defaultFarms[msg.sender] = farm;
            emit DefaultFarmSet(farm);
        }
    }
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity >0.0.0;
    import '@1inch/erc20-pods/contracts/mocks/ERC20PodsMock.sol';
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
    interface IDelegatedShare is IERC20Pods {
        function addDefaultFarmIfNeeded(address account, address farm) external; // onlyOwner
        function mint(address account, uint256 amount) external; // onlyOwner
        function burn(address account, uint256 amount) external; // onlyOwner
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
    interface IDelegationPod is IPod, IERC20 {
        event Delegated(address account, address delegatee);
        function delegated(address delegator) external view returns(address delegatee);
        function delegate(address delegatee) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./ITokenizedDelegationPod.sol";
    interface IFarmingDelegationPod is ITokenizedDelegationPod {
        event DefaultFarmSet(address defaultFarm);
        function setDefaultFarm(address farm) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./IDelegationPod.sol";
    import "./IDelegatedShare.sol";
    interface ITokenizedDelegationPod is IDelegationPod {
        event RegisterDelegatee(address delegatee);
        function register(string memory name, string memory symbol) external returns(IDelegatedShare shareToken);
        function registration(address account) external returns(IDelegatedShare shareToken);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./DelegationPod.sol";
    import "./DelegatedShare.sol";
    import "./interfaces/ITokenizedDelegationPod.sol";
    import "./interfaces/IDelegatedShare.sol";
    contract TokenizedDelegationPod is ITokenizedDelegationPod, DelegationPod {
        error NotRegisteredDelegatee();
        error AlreadyRegistered();
        uint256 public immutable maxSharePods;
        uint256 public immutable sharePodGasLimit;
        mapping(address => IDelegatedShare) public registration;
        modifier onlyRegistered {
            if (address(registration[msg.sender]) == address(0)) revert NotRegisteredDelegatee();
            _;
        }
        modifier onlyNotRegistered {
            if (address(registration[msg.sender]) != address(0)) revert AlreadyRegistered();
            _;
        }
        constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_) DelegationPod(name_, symbol_, token_) {
            maxSharePods = maxSharePods_;
            sharePodGasLimit = sharePodGasLimit_;
        }
        function delegate(address delegatee) public virtual override(IDelegationPod, DelegationPod) {
            if (delegatee != address(0) && address(registration[delegatee]) == address(0)) revert NotRegisteredDelegatee();
            super.delegate(delegatee);
        }
        function register(string memory name, string memory symbol) public virtual onlyNotRegistered returns(IDelegatedShare shareToken) {
            shareToken = new DelegatedShare(name, symbol, maxSharePods, sharePodGasLimit);
            registration[msg.sender] = shareToken;
            emit RegisterDelegatee(msg.sender);
        }
        function _updateBalances(address from, address to, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual override {
            super._updateBalances(from, to, fromDelegatee, toDelegatee, amount);
            if (fromDelegatee != address(0)) {
                registration[fromDelegatee].burn(from, amount);
            }
            if (toDelegatee != address(0)) {
                registration[toDelegatee].mint(to, amount);
            }
        }
    }