Transaction Hash:
Block:
16906131 at Mar-25-2023 06:02:47 PM +UTC
Transaction Fee:
0.004074565143293456 ETH
$10.43
Gas Used:
150,829 Gas / 27.014467664 Gwei
Emitted Events:
186 |
CanonicalTransactionChain.TransactionEnqueued( _l1TxOrigin=0x36BDE71C...4f7AB70B2, _target=0x42000000...000000007, _gasLimit=200000, _data=0xCBD4ECE9000000000000000000000000420000000000000000000000000000000000001000000000000000000000000099C9FC46F92E8A1C0DEC1B1747D010903E884BE10000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000004F7B900000000000000000000000000000000000000000000000000000000000000E4662A633A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000DEADDEADDEADDEADDEADDEADDEADDEADDEAD0000000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000000000000000000000000000058D15E17628000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, _queueIndex=325561, _timestamp=1679767367 )
|
187 |
Lib_ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000080, 000000000000000000000000000000000000000000000000000000000004f7b9, 0000000000000000000000000000000000000000000000000000000000030d40, 00000000000000000000000000000000000000000000000000000000000000e4, 662a633a00000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000deaddeaddeaddeaddeaddeaddeaddead, dead0000000000000000000000000000812e1f85c43b0937e52d924c7eb7569e, f0592fdb000000000000000000000000812e1f85c43b0937e52d924c7eb7569e, f0592fdb000000000000000000000000000000000000000000000000058d15e1, 7628000000000000000000000000000000000000000000000000000000000000, 000000c000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
|
188 |
L1ChugSplashProxy.0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23( 0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23, 0x000000000000000000000000812e1f85c43b0937e52d924c7eb7569ef0592fdb, 0x000000000000000000000000812e1f85c43b0937e52d924c7eb7569ef0592fdb, 000000000000000000000000000000000000000000000000058d15e176280000, 0000000000000000000000000000000000000000000000000000000000000040, 0000000000000000000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1e54945F...1704Df8B2
Miner
| (MEV Builder: 0x1e54...8B2) | 0.308032203069224178 Eth | 0.308047285969224178 Eth | 0.0000150829 | |
0x5E4e6592...0D24E9dD2 | (Optimism: Canonical Transaction Chain) | ||||
0x812E1F85...ef0592fdB |
0.437634944456744518 Eth
Nonce: 6
|
0.033560379313451062 Eth
Nonce: 7
| 0.404074565143293456 | ||
0x99C9fc46...03E884bE1 | (Optimism: Gateway) | 289,237.301647284952152187 Eth | 289,237.701647284952152187 Eth | 0.4 |
Execution Trace
ETH 0.4
L1ChugSplashProxy.b1a1a882( )
Proxy.STATICCALL( )
GnosisSafe.DELEGATECALL( )
-
DefaultCallbackHandler.CALL( )
-
ETH 0.4
L1StandardBridge.depositETH( _l2Gas=200000, _data=0x )
Lib_ResolvedDelegateProxy.3dbb202b( )
-
Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0xd9166833FF12A5F900ccfBf2c8B62a90F1Ca1FD5 )
L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x662A633A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000DEADDEADDEADDEADDEADDEADDEADDEADDEAD0000000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000000000000000000000000000058D15E17628000000000000000000000000000000000000000000000000000000000000000000C00000000000000000000000000000000000000000000000000000000000000000, _gasLimit=200000 )
-
Lib_AddressManager.getAddress( _name=CanonicalTransactionChain ) => ( 0x5E4e65926BA27467555EB562121fac00D24E9dD2 )
-
CanonicalTransactionChain.STATICCALL( )
-
CanonicalTransactionChain.enqueue( _target=0x4200000000000000000000000000000000000007, _gasLimit=200000, _data=0xCBD4ECE9000000000000000000000000420000000000000000000000000000000000001000000000000000000000000099C9FC46F92E8A1C0DEC1B1747D010903E884BE10000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000004F7B900000000000000000000000000000000000000000000000000000000000000E4662A633A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000DEADDEADDEADDEADDEADDEADDEADDEADDEAD0000000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000812E1F85C43B0937E52D924C7EB7569EF0592FDB000000000000000000000000000000000000000000000000058D15E17628000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
-
-
File 1 of 9: L1ChugSplashProxy
File 2 of 9: CanonicalTransactionChain
File 3 of 9: Lib_ResolvedDelegateProxy
File 4 of 9: Proxy
File 5 of 9: GnosisSafe
File 6 of 9: DefaultCallbackHandler
File 7 of 9: L1StandardBridge
File 8 of 9: Lib_AddressManager
File 9 of 9: L1CrossDomainMessenger
// SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.8.0; import { iL1ChugSplashDeployer } from "./interfaces/iL1ChugSplashDeployer.sol"; /** * @title L1ChugSplashProxy * @dev Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. Nifty! * * Note for future developers: do NOT make anything in this contract 'public' unless you know what * you're doing. Anything public can potentially have a function signature that conflicts with a * signature attached to the implementation contract. Public functions SHOULD always have the * 'proxyCallIfNotOwner' modifier unless there's some *really* good reason not to have that * modifier. And there almost certainly is not a good reason to not have that modifier. Beware! */ contract L1ChugSplashProxy { /************* * Constants * *************/ // "Magic" prefix. When prepended to some arbitrary bytecode and used to create a contract, the // appended bytecode will be deployed as given. bytes13 constant internal DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) bytes32 constant internal IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; // bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) bytes32 constant internal OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /*************** * Constructor * ***************/ /** * @param _owner Address of the initial contract owner. */ constructor( address _owner ) { _setOwner(_owner); } /********************** * Function Modifiers * **********************/ /** * Blocks a function from being called when the parent signals that the system should be paused * via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector( iL1ChugSplashDeployer.isUpgrading.selector ) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require( ret == 0, "L1ChugSplashProxy: system is currently being upgraded" ); } _; } /** * Makes a proxy call instead of triggering the given function when the caller is either the * owner or the zero address. Caller can only ever be the zero address if this function is * being called off-chain via eth_call, which is totally fine and can be convenient for * client-side tooling. Avoids situations where the proxy and implementation share a sighash * and the proxy function ends up being called instead of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If there's a * way for someone to send a transaction with msg.sender == address(0) in any real context then * we have much bigger problems. Primary reason to include this additional allowed sender is * because the owner address can be changed dynamically and we do not want clients to have to * keep track of the current owner in order to make an eth_call that doesn't trigger the * proxied contract. */ modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /********************* * Fallback Function * *********************/ fallback() external payable { // Proxy call by default. _doProxyCall(); } /******************** * Public Functions * ********************/ /** * Sets the code that should be running behind this proxy. Note that this scheme is a bit * different from the standard proxy scheme where one would typically deploy the code * separately and then set the implementation address. We're doing it this way because it gives * us a lot more freedom on the client side. Can only be triggered by the contract owner. * @param _code New contract code to run inside this contract. */ function setCode( bytes memory _code ) proxyCallIfNotOwner public { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked( DEPLOY_CODE_PREFIX, _code ); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed." ); _setImplementation(newImplementation); } /** * Modifies some storage slot within the proxy contract. Gives us a lot of power to perform * upgrades in a more transparent way. Only callable by the owner. * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage( bytes32 _key, bytes32 _value ) proxyCallIfNotOwner public { assembly { sstore(_key, _value) } } /** * Changes the owner of the proxy contract. Only callable by the owner. * @param _owner New owner of the proxy contract. */ function setOwner( address _owner ) proxyCallIfNotOwner public { _setOwner(_owner); } /** * Queries the owner of the proxy contract. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * @return Owner address. */ function getOwner() proxyCallIfNotOwner public returns ( address ) { return _getOwner(); } /** * Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * @return Implementation address. */ function getImplementation() proxyCallIfNotOwner public returns ( address ) { return _getImplementation(); } /********************** * Internal Functions * **********************/ /** * Sets the implementation address. * @param _implementation New implementation address. */ function _setImplementation( address _implementation ) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * Queries the implementation address. * @return Implementation address. */ function _getImplementation() internal view returns ( address ) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * Changes the owner of the proxy contract. * @param _owner New owner of the proxy contract. */ function _setOwner( address _owner ) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * Queries the owner of the proxy contract. * @return Owner address. */ function _getOwner() internal view returns ( address ) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * Gets the code hash for a given account. * @param _account Address of the account to get a code hash for. * @return Code hash for the account. */ function _getAccountCodeHash( address _account ) internal view returns ( bytes32 ) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } /** * Performs the proxy call via a delegatecall. */ function _doProxyCall() onlyWhenNotPaused internal { address implementation = _getImplementation(); require( implementation != address(0), "L1ChugSplashProxy: implementation is not set yet" ); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.8.0; /** * @title iL1ChugSplashDeployer */ interface iL1ChugSplashDeployer { function isUpgrading() external view returns ( bool ); }
File 2 of 9: CanonicalTransactionChain
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { AddressAliasHelper } from "../../standards/AddressAliasHelper.sol"; import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol"; /* Interface Imports */ import { ICanonicalTransactionChain } from "./ICanonicalTransactionChain.sol"; import { IChainStorageContainer } from "./IChainStorageContainer.sol"; /** * @title CanonicalTransactionChain * @dev The Canonical Transaction Chain (CTC) contract is an append-only log of transactions * which must be applied to the rollup state. It defines the ordering of rollup transactions by * writing them to the 'CTC:batches' instance of the Chain Storage Container. * The CTC also allows any account to 'enqueue' an L2 transaction, which will require that the * Sequencer will eventually append it to the rollup state. * * Runtime target: EVM */ contract CanonicalTransactionChain is ICanonicalTransactionChain, Lib_AddressResolver { /************* * Constants * *************/ // L2 tx gas-related uint256 public constant MIN_ROLLUP_TX_GAS = 100000; uint256 public constant MAX_ROLLUP_TX_SIZE = 50000; // The approximate cost of calling the enqueue function uint256 public enqueueGasCost; // The ratio of the cost of L1 gas to the cost of L2 gas uint256 public l2GasDiscountDivisor; // The amount of L2 gas which can be forwarded to L2 without spam prevention via 'gas burn'. // Calculated as the product of l2GasDiscountDivisor * enqueueGasCost. // See comments in enqueue() for further detail. uint256 public enqueueL2GasPrepaid; // Encoding-related (all in bytes) uint256 internal constant BATCH_CONTEXT_SIZE = 16; uint256 internal constant BATCH_CONTEXT_LENGTH_POS = 12; uint256 internal constant BATCH_CONTEXT_START_POS = 15; uint256 internal constant TX_DATA_HEADER_SIZE = 3; uint256 internal constant BYTES_TILL_TX_DATA = 65; /************* * Variables * *************/ uint256 public maxTransactionGasLimit; /*************** * Queue State * ***************/ uint40 private _nextQueueIndex; // index of the first queue element not yet included Lib_OVMCodec.QueueElement[] queueElements; /*************** * Constructor * ***************/ constructor( address _libAddressManager, uint256 _maxTransactionGasLimit, uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost ) Lib_AddressResolver(_libAddressManager) { maxTransactionGasLimit = _maxTransactionGasLimit; l2GasDiscountDivisor = _l2GasDiscountDivisor; enqueueGasCost = _enqueueGasCost; enqueueL2GasPrepaid = _l2GasDiscountDivisor * _enqueueGasCost; } /********************** * Function Modifiers * **********************/ /** * Modifier to enforce that, if configured, only the Burn Admin may * successfully call a method. */ modifier onlyBurnAdmin() { require(msg.sender == libAddressManager.owner(), "Only callable by the Burn Admin."); _; } /******************************* * Authorized Setter Functions * *******************************/ /** * Allows the Burn Admin to update the parameters which determine the amount of gas to burn. * The value of enqueueL2GasPrepaid is immediately updated as well. */ function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost) external onlyBurnAdmin { enqueueGasCost = _enqueueGasCost; l2GasDiscountDivisor = _l2GasDiscountDivisor; // See the comment in enqueue() for the rationale behind this formula. enqueueL2GasPrepaid = _l2GasDiscountDivisor * _enqueueGasCost; emit L2GasParamsUpdated(l2GasDiscountDivisor, enqueueGasCost, enqueueL2GasPrepaid); } /******************** * Public Functions * ********************/ /** * Accesses the batch storage container. * @return Reference to the batch storage container. */ function batches() public view returns (IChainStorageContainer) { return IChainStorageContainer(resolve("ChainStorageContainer-CTC-batches")); } /** * Retrieves the total number of elements submitted. * @return _totalElements Total submitted elements. */ function getTotalElements() public view returns (uint256 _totalElements) { (uint40 totalElements, , , ) = _getBatchExtraData(); return uint256(totalElements); } /** * Retrieves the total number of batches submitted. * @return _totalBatches Total submitted batches. */ function getTotalBatches() public view returns (uint256 _totalBatches) { return batches().length(); } /** * Returns the index of the next element to be enqueued. * @return Index for the next queue element. */ function getNextQueueIndex() public view returns (uint40) { return _nextQueueIndex; } /** * Returns the timestamp of the last transaction. * @return Timestamp for the last transaction. */ function getLastTimestamp() public view returns (uint40) { (, , uint40 lastTimestamp, ) = _getBatchExtraData(); return lastTimestamp; } /** * Returns the blocknumber of the last transaction. * @return Blocknumber for the last transaction. */ function getLastBlockNumber() public view returns (uint40) { (, , , uint40 lastBlockNumber) = _getBatchExtraData(); return lastBlockNumber; } /** * Gets the queue element at a particular index. * @param _index Index of the queue element to access. * @return _element Queue element at the given index. */ function getQueueElement(uint256 _index) public view returns (Lib_OVMCodec.QueueElement memory _element) { return queueElements[_index]; } /** * Get the number of queue elements which have not yet been included. * @return Number of pending queue elements. */ function getNumPendingQueueElements() public view returns (uint40) { return uint40(queueElements.length) - _nextQueueIndex; } /** * Retrieves the length of the queue, including * both pending and canonical transactions. * @return Length of the queue. */ function getQueueLength() public view returns (uint40) { return uint40(queueElements.length); } /** * Adds a transaction to the queue. * @param _target Target L2 contract to send the transaction to. * @param _gasLimit Gas limit for the enqueued L2 transaction. * @param _data Transaction data. */ function enqueue( address _target, uint256 _gasLimit, bytes memory _data ) external { require( _data.length <= MAX_ROLLUP_TX_SIZE, "Transaction data size exceeds maximum for rollup transaction." ); require( _gasLimit <= maxTransactionGasLimit, "Transaction gas limit exceeds maximum for rollup transaction." ); require(_gasLimit >= MIN_ROLLUP_TX_GAS, "Transaction gas limit too low to enqueue."); // Transactions submitted to the queue lack a method for paying gas fees to the Sequencer. // So we need to prevent spam attacks by ensuring that the cost of enqueueing a transaction // from L1 to L2 is not underpriced. For transaction with a high L2 gas limit, we do this by // burning some extra gas on L1. Of course there is also some intrinsic cost to enqueueing a // transaction, so we want to make sure not to over-charge (by burning too much L1 gas). // Therefore, we define 'enqueueL2GasPrepaid' as the L2 gas limit above which we must burn // additional gas on L1. This threshold is the product of two inputs: // 1. enqueueGasCost: the base cost of calling this function. // 2. l2GasDiscountDivisor: the ratio between the cost of gas on L1 and L2. This is a // positive integer, meaning we assume L2 gas is always less costly. // The calculation below for gasToConsume can be seen as converting the difference (between // the specified L2 gas limit and the prepaid L2 gas limit) to an L1 gas amount. if (_gasLimit > enqueueL2GasPrepaid) { uint256 gasToConsume = (_gasLimit - enqueueL2GasPrepaid) / l2GasDiscountDivisor; uint256 startingGas = gasleft(); // Although this check is not necessary (burn below will run out of gas if not true), it // gives the user an explicit reason as to why the enqueue attempt failed. require(startingGas > gasToConsume, "Insufficient gas for L2 rate limiting burn."); uint256 i; while (startingGas - gasleft() < gasToConsume) { i++; } } // Apply an aliasing unless msg.sender == tx.origin. This prevents an attack in which a // contract on L1 has the same address as a contract on L2 but doesn't have the same code. // We can safely ignore this for EOAs because they're guaranteed to have the same "code" // (i.e. no code at all). This also makes it possible for users to interact with contracts // on L2 even when the Sequencer is down. address sender; if (msg.sender == tx.origin) { sender = msg.sender; } else { sender = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } bytes32 transactionHash = keccak256(abi.encode(sender, _target, _gasLimit, _data)); queueElements.push( Lib_OVMCodec.QueueElement({ transactionHash: transactionHash, timestamp: uint40(block.timestamp), blockNumber: uint40(block.number) }) ); uint256 queueIndex = queueElements.length - 1; emit TransactionEnqueued(sender, _target, _gasLimit, _data, queueIndex, block.timestamp); } /** * Allows the sequencer to append a batch of transactions. * @dev This function uses a custom encoding scheme for efficiency reasons. * .param _shouldStartAtElement Specific batch we expect to start appending to. * .param _totalElementsToAppend Total number of batch elements we expect to append. * .param _contexts Array of batch contexts. * .param _transactionDataFields Array of raw transaction data. */ function appendSequencerBatch() external { uint40 shouldStartAtElement; uint24 totalElementsToAppend; uint24 numContexts; assembly { shouldStartAtElement := shr(216, calldataload(4)) totalElementsToAppend := shr(232, calldataload(9)) numContexts := shr(232, calldataload(12)) } require( shouldStartAtElement == getTotalElements(), "Actual batch start index does not match expected start index." ); require( msg.sender == resolve("OVM_Sequencer"), "Function can only be called by the Sequencer." ); uint40 nextTransactionPtr = uint40( BATCH_CONTEXT_START_POS + BATCH_CONTEXT_SIZE * numContexts ); require(msg.data.length >= nextTransactionPtr, "Not enough BatchContexts provided."); // Counter for number of sequencer transactions appended so far. uint32 numSequencerTransactions = 0; // Cache the _nextQueueIndex storage variable to a temporary stack variable. // This is safe as long as nothing reads or writes to the storage variable // until it is updated by the temp variable. uint40 nextQueueIndex = _nextQueueIndex; BatchContext memory curContext; for (uint32 i = 0; i < numContexts; i++) { BatchContext memory nextContext = _getBatchContext(i); // Now we can update our current context. curContext = nextContext; // Process sequencer transactions first. numSequencerTransactions += uint32(curContext.numSequencedTransactions); // Now process any subsequent queue transactions. nextQueueIndex += uint40(curContext.numSubsequentQueueTransactions); } require( nextQueueIndex <= queueElements.length, "Attempted to append more elements than are available in the queue." ); // Generate the required metadata that we need to append this batch uint40 numQueuedTransactions = totalElementsToAppend - numSequencerTransactions; uint40 blockTimestamp; uint40 blockNumber; if (curContext.numSubsequentQueueTransactions == 0) { // The last element is a sequencer tx, therefore pull timestamp and block number from // the last context. blockTimestamp = uint40(curContext.timestamp); blockNumber = uint40(curContext.blockNumber); } else { // The last element is a queue tx, therefore pull timestamp and block number from the // queue element. // curContext.numSubsequentQueueTransactions > 0 which means that we've processed at // least one queue element. We increment nextQueueIndex after processing each queue // element, so the index of the last element we processed is nextQueueIndex - 1. Lib_OVMCodec.QueueElement memory lastElement = queueElements[nextQueueIndex - 1]; blockTimestamp = lastElement.timestamp; blockNumber = lastElement.blockNumber; } // Cache the previous blockhash to ensure all transaction data can be retrieved efficiently. _appendBatch( blockhash(block.number - 1), totalElementsToAppend, numQueuedTransactions, blockTimestamp, blockNumber ); emit SequencerBatchAppended( nextQueueIndex - numQueuedTransactions, numQueuedTransactions, getTotalElements() ); // Update the _nextQueueIndex storage variable. _nextQueueIndex = nextQueueIndex; } /********************** * Internal Functions * **********************/ /** * Returns the BatchContext located at a particular index. * @param _index The index of the BatchContext * @return The BatchContext at the specified index. */ function _getBatchContext(uint256 _index) internal pure returns (BatchContext memory) { uint256 contextPtr = 15 + _index * BATCH_CONTEXT_SIZE; uint256 numSequencedTransactions; uint256 numSubsequentQueueTransactions; uint256 ctxTimestamp; uint256 ctxBlockNumber; assembly { numSequencedTransactions := shr(232, calldataload(contextPtr)) numSubsequentQueueTransactions := shr(232, calldataload(add(contextPtr, 3))) ctxTimestamp := shr(216, calldataload(add(contextPtr, 6))) ctxBlockNumber := shr(216, calldataload(add(contextPtr, 11))) } return BatchContext({ numSequencedTransactions: numSequencedTransactions, numSubsequentQueueTransactions: numSubsequentQueueTransactions, timestamp: ctxTimestamp, blockNumber: ctxBlockNumber }); } /** * Parses the batch context from the extra data. * @return Total number of elements submitted. * @return Index of the next queue element. */ function _getBatchExtraData() internal view returns ( uint40, uint40, uint40, uint40 ) { bytes27 extraData = batches().getGlobalMetadata(); uint40 totalElements; uint40 nextQueueIndex; uint40 lastTimestamp; uint40 lastBlockNumber; // solhint-disable max-line-length assembly { extraData := shr(40, extraData) totalElements := and( extraData, 0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF ) nextQueueIndex := shr( 40, and(extraData, 0x00000000000000000000000000000000000000000000FFFFFFFFFF0000000000) ) lastTimestamp := shr( 80, and(extraData, 0x0000000000000000000000000000000000FFFFFFFFFF00000000000000000000) ) lastBlockNumber := shr( 120, and(extraData, 0x000000000000000000000000FFFFFFFFFF000000000000000000000000000000) ) } // solhint-enable max-line-length return (totalElements, nextQueueIndex, lastTimestamp, lastBlockNumber); } /** * Encodes the batch context for the extra data. * @param _totalElements Total number of elements submitted. * @param _nextQueueIdx Index of the next queue element. * @param _timestamp Timestamp for the last batch. * @param _blockNumber Block number of the last batch. * @return Encoded batch context. */ function _makeBatchExtraData( uint40 _totalElements, uint40 _nextQueueIdx, uint40 _timestamp, uint40 _blockNumber ) internal pure returns (bytes27) { bytes27 extraData; assembly { extraData := _totalElements extraData := or(extraData, shl(40, _nextQueueIdx)) extraData := or(extraData, shl(80, _timestamp)) extraData := or(extraData, shl(120, _blockNumber)) extraData := shl(40, extraData) } return extraData; } /** * Inserts a batch into the chain of batches. * @param _transactionRoot Root of the transaction tree for this batch. * @param _batchSize Number of elements in the batch. * @param _numQueuedTransactions Number of queue transactions in the batch. * @param _timestamp The latest batch timestamp. * @param _blockNumber The latest batch blockNumber. */ function _appendBatch( bytes32 _transactionRoot, uint256 _batchSize, uint256 _numQueuedTransactions, uint40 _timestamp, uint40 _blockNumber ) internal { IChainStorageContainer batchesRef = batches(); (uint40 totalElements, uint40 nextQueueIndex, , ) = _getBatchExtraData(); Lib_OVMCodec.ChainBatchHeader memory header = Lib_OVMCodec.ChainBatchHeader({ batchIndex: batchesRef.length(), batchRoot: _transactionRoot, batchSize: _batchSize, prevTotalElements: totalElements, extraData: hex"" }); emit TransactionBatchAppended( header.batchIndex, header.batchRoot, header.batchSize, header.prevTotalElements, header.extraData ); bytes32 batchHeaderHash = Lib_OVMCodec.hashBatchHeader(header); bytes27 latestBatchContext = _makeBatchExtraData( totalElements + uint40(header.batchSize), nextQueueIndex + uint40(_numQueuedTransactions), _timestamp, _blockNumber ); batchesRef.push(batchHeaderHash, latestBatchContext); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.7; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol"; import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol"; import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol"; import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol"; /** * @title Lib_OVMCodec */ library Lib_OVMCodec { /********* * Enums * *********/ enum QueueOrigin { SEQUENCER_QUEUE, L1TOL2_QUEUE } /*********** * Structs * ***********/ struct EVMAccount { uint256 nonce; uint256 balance; bytes32 storageRoot; bytes32 codeHash; } struct ChainBatchHeader { uint256 batchIndex; bytes32 batchRoot; uint256 batchSize; uint256 prevTotalElements; bytes extraData; } struct ChainInclusionProof { uint256 index; bytes32[] siblings; } struct Transaction { uint256 timestamp; uint256 blockNumber; QueueOrigin l1QueueOrigin; address l1TxOrigin; address entrypoint; uint256 gasLimit; bytes data; } struct TransactionChainElement { bool isSequenced; uint256 queueIndex; // QUEUED TX ONLY uint256 timestamp; // SEQUENCER TX ONLY uint256 blockNumber; // SEQUENCER TX ONLY bytes txData; // SEQUENCER TX ONLY } struct QueueElement { bytes32 transactionHash; uint40 timestamp; uint40 blockNumber; } /********************** * Internal Functions * **********************/ /** * Encodes a standard OVM transaction. * @param _transaction OVM transaction to encode. * @return Encoded transaction bytes. */ function encodeTransaction(Transaction memory _transaction) internal pure returns (bytes memory) { return abi.encodePacked( _transaction.timestamp, _transaction.blockNumber, _transaction.l1QueueOrigin, _transaction.l1TxOrigin, _transaction.entrypoint, _transaction.gasLimit, _transaction.data ); } /** * Hashes a standard OVM transaction. * @param _transaction OVM transaction to encode. * @return Hashed transaction */ function hashTransaction(Transaction memory _transaction) internal pure returns (bytes32) { return keccak256(encodeTransaction(_transaction)); } /** * @notice Decodes an RLP-encoded account state into a useful struct. * @param _encoded RLP-encoded account state. * @return Account state struct. */ function decodeEVMAccount(bytes memory _encoded) internal pure returns (EVMAccount memory) { Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(_encoded); return EVMAccount({ nonce: Lib_RLPReader.readUint256(accountState[0]), balance: Lib_RLPReader.readUint256(accountState[1]), storageRoot: Lib_RLPReader.readBytes32(accountState[2]), codeHash: Lib_RLPReader.readBytes32(accountState[3]) }); } /** * Calculates a hash for a given batch header. * @param _batchHeader Header to hash. * @return Hash of the header. */ function hashBatchHeader(Lib_OVMCodec.ChainBatchHeader memory _batchHeader) internal pure returns (bytes32) { return keccak256( abi.encode( _batchHeader.batchRoot, _batchHeader.batchSize, _batchHeader.prevTotalElements, _batchHeader.extraData ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_AddressManager } from "./Lib_AddressManager.sol"; /** * @title Lib_AddressResolver */ abstract contract Lib_AddressResolver { /************* * Variables * *************/ Lib_AddressManager public libAddressManager; /*************** * Constructor * ***************/ /** * @param _libAddressManager Address of the Lib_AddressManager. */ constructor(address _libAddressManager) { libAddressManager = Lib_AddressManager(_libAddressManager); } /******************** * Public Functions * ********************/ /** * Resolves the address associated with a given name. * @param _name Name to resolve an address for. * @return Address associated with the given name. */ function resolve(string memory _name) public view returns (address) { return libAddressManager.getAddress(_name); } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /* Library Imports */ import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; /* Interface Imports */ import { IChainStorageContainer } from "./IChainStorageContainer.sol"; /** * @title ICanonicalTransactionChain */ interface ICanonicalTransactionChain { /********** * Events * **********/ event L2GasParamsUpdated( uint256 l2GasDiscountDivisor, uint256 enqueueGasCost, uint256 enqueueL2GasPrepaid ); event TransactionEnqueued( address indexed _l1TxOrigin, address indexed _target, uint256 _gasLimit, bytes _data, uint256 indexed _queueIndex, uint256 _timestamp ); event QueueBatchAppended( uint256 _startingQueueIndex, uint256 _numQueueElements, uint256 _totalElements ); event SequencerBatchAppended( uint256 _startingQueueIndex, uint256 _numQueueElements, uint256 _totalElements ); event TransactionBatchAppended( uint256 indexed _batchIndex, bytes32 _batchRoot, uint256 _batchSize, uint256 _prevTotalElements, bytes _extraData ); /*********** * Structs * ***********/ struct BatchContext { uint256 numSequencedTransactions; uint256 numSubsequentQueueTransactions; uint256 timestamp; uint256 blockNumber; } /******************************* * Authorized Setter Functions * *******************************/ /** * Allows the Burn Admin to update the parameters which determine the amount of gas to burn. * The value of enqueueL2GasPrepaid is immediately updated as well. */ function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost) external; /******************** * Public Functions * ********************/ /** * Accesses the batch storage container. * @return Reference to the batch storage container. */ function batches() external view returns (IChainStorageContainer); /** * Retrieves the total number of elements submitted. * @return _totalElements Total submitted elements. */ function getTotalElements() external view returns (uint256 _totalElements); /** * Retrieves the total number of batches submitted. * @return _totalBatches Total submitted batches. */ function getTotalBatches() external view returns (uint256 _totalBatches); /** * Returns the index of the next element to be enqueued. * @return Index for the next queue element. */ function getNextQueueIndex() external view returns (uint40); /** * Gets the queue element at a particular index. * @param _index Index of the queue element to access. * @return _element Queue element at the given index. */ function getQueueElement(uint256 _index) external view returns (Lib_OVMCodec.QueueElement memory _element); /** * Returns the timestamp of the last transaction. * @return Timestamp for the last transaction. */ function getLastTimestamp() external view returns (uint40); /** * Returns the blocknumber of the last transaction. * @return Blocknumber for the last transaction. */ function getLastBlockNumber() external view returns (uint40); /** * Get the number of queue elements which have not yet been included. * @return Number of pending queue elements. */ function getNumPendingQueueElements() external view returns (uint40); /** * Retrieves the length of the queue, including * both pending and canonical transactions. * @return Length of the queue. */ function getQueueLength() external view returns (uint40); /** * Adds a transaction to the queue. * @param _target Target contract to send the transaction to. * @param _gasLimit Gas limit for the given transaction. * @param _data Transaction data. */ function enqueue( address _target, uint256 _gasLimit, bytes memory _data ) external; /** * Allows the sequencer to append a batch of transactions. * @dev This function uses a custom encoding scheme for efficiency reasons. * .param _shouldStartAtElement Specific batch we expect to start appending to. * .param _totalElementsToAppend Total number of batch elements we expect to append. * .param _contexts Array of batch contexts. * .param _transactionDataFields Array of raw transaction data. */ function appendSequencerBatch( // uint40 _shouldStartAtElement, // uint24 _totalElementsToAppend, // BatchContext[] _contexts, // bytes[] _transactionDataFields ) external; } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /** * @title IChainStorageContainer */ interface IChainStorageContainer { /******************** * Public Functions * ********************/ /** * Sets the container's global metadata field. We're using `bytes27` here because we use five * bytes to maintain the length of the underlying data structure, meaning we have an extra * 27 bytes to store arbitrary data. * @param _globalMetadata New global metadata to set. */ function setGlobalMetadata(bytes27 _globalMetadata) external; /** * Retrieves the container's global metadata field. * @return Container global metadata field. */ function getGlobalMetadata() external view returns (bytes27); /** * Retrieves the number of objects stored in the container. * @return Number of objects in the container. */ function length() external view returns (uint256); /** * Pushes an object into the container. * @param _object A 32 byte value to insert into the container. */ function push(bytes32 _object) external; /** * Pushes an object into the container. Function allows setting the global metadata since * we'll need to touch the "length" storage slot anyway, which also contains the global * metadata (it's an optimization). * @param _object A 32 byte value to insert into the container. * @param _globalMetadata New global metadata for the container. */ function push(bytes32 _object, bytes27 _globalMetadata) external; /** * Retrieves an object from the container. * @param _index Index of the particular object to access. * @return 32 byte object value. */ function get(uint256 _index) external view returns (bytes32); /** * Removes all objects after and including a given index. * @param _index Object index to delete from. */ function deleteElementsAfterInclusive(uint256 _index) external; /** * Removes all objects after and including a given index. Also allows setting the global * metadata field. * @param _index Object index to delete from. * @param _globalMetadata New global metadata for the container. */ function deleteElementsAfterInclusive(uint256 _index, bytes27 _globalMetadata) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_RLPReader * @dev Adapted from "RLPReader" by Hamdi Allam ([email protected]). */ library Lib_RLPReader { /************* * Constants * *************/ uint256 internal constant MAX_LIST_LENGTH = 32; /********* * Enums * *********/ enum RLPItemType { DATA_ITEM, LIST_ITEM } /*********** * Structs * ***********/ struct RLPItem { uint256 length; uint256 ptr; } /********************** * Internal Functions * **********************/ /** * Converts bytes to a reference to memory position and length. * @param _in Input bytes to convert. * @return Output memory reference. */ function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) { uint256 ptr; assembly { ptr := add(_in, 32) } return RLPItem({ length: _in.length, ptr: ptr }); } /** * Reads an RLP list value into a list of RLP items. * @param _in RLP list value. * @return Decoded RLP list items. */ function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) { (uint256 listOffset, , RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.LIST_ITEM, "Invalid RLP list value."); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { require(itemCount < MAX_LIST_LENGTH, "Provided RLP list exceeds max list length."); (uint256 itemOffset, uint256 itemLength, ) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: _in.ptr + offset }) ); out[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: _in.ptr + offset }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out, itemCount) } return out; } /** * Reads an RLP list value into a list of RLP items. * @param _in RLP list value. * @return Decoded RLP list items. */ function readList(bytes memory _in) internal pure returns (RLPItem[] memory) { return readList(toRLPItem(_in)); } /** * Reads an RLP bytes value into bytes. * @param _in RLP bytes value. * @return Decoded bytes. */ function readBytes(RLPItem memory _in) internal pure returns (bytes memory) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes value."); return _copy(_in.ptr, itemOffset, itemLength); } /** * Reads an RLP bytes value into bytes. * @param _in RLP bytes value. * @return Decoded bytes. */ function readBytes(bytes memory _in) internal pure returns (bytes memory) { return readBytes(toRLPItem(_in)); } /** * Reads an RLP string value into a string. * @param _in RLP string value. * @return Decoded string. */ function readString(RLPItem memory _in) internal pure returns (string memory) { return string(readBytes(_in)); } /** * Reads an RLP string value into a string. * @param _in RLP string value. * @return Decoded string. */ function readString(bytes memory _in) internal pure returns (string memory) { return readString(toRLPItem(_in)); } /** * Reads an RLP bytes32 value into a bytes32. * @param _in RLP bytes32 value. * @return Decoded bytes32. */ function readBytes32(RLPItem memory _in) internal pure returns (bytes32) { require(_in.length <= 33, "Invalid RLP bytes32 value."); (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes32 value."); uint256 ptr = _in.ptr + itemOffset; bytes32 out; assembly { out := mload(ptr) // Shift the bytes over to match the item size. if lt(itemLength, 32) { out := div(out, exp(256, sub(32, itemLength))) } } return out; } /** * Reads an RLP bytes32 value into a bytes32. * @param _in RLP bytes32 value. * @return Decoded bytes32. */ function readBytes32(bytes memory _in) internal pure returns (bytes32) { return readBytes32(toRLPItem(_in)); } /** * Reads an RLP uint256 value into a uint256. * @param _in RLP uint256 value. * @return Decoded uint256. */ function readUint256(RLPItem memory _in) internal pure returns (uint256) { return uint256(readBytes32(_in)); } /** * Reads an RLP uint256 value into a uint256. * @param _in RLP uint256 value. * @return Decoded uint256. */ function readUint256(bytes memory _in) internal pure returns (uint256) { return readUint256(toRLPItem(_in)); } /** * Reads an RLP bool value into a bool. * @param _in RLP bool value. * @return Decoded bool. */ function readBool(RLPItem memory _in) internal pure returns (bool) { require(_in.length == 1, "Invalid RLP boolean value."); uint256 ptr = _in.ptr; uint256 out; assembly { out := byte(0, mload(ptr)) } require(out == 0 || out == 1, "Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1"); return out != 0; } /** * Reads an RLP bool value into a bool. * @param _in RLP bool value. * @return Decoded bool. */ function readBool(bytes memory _in) internal pure returns (bool) { return readBool(toRLPItem(_in)); } /** * Reads an RLP address value into a address. * @param _in RLP address value. * @return Decoded address. */ function readAddress(RLPItem memory _in) internal pure returns (address) { if (_in.length == 1) { return address(0); } require(_in.length == 21, "Invalid RLP address value."); return address(uint160(readUint256(_in))); } /** * Reads an RLP address value into a address. * @param _in RLP address value. * @return Decoded address. */ function readAddress(bytes memory _in) internal pure returns (address) { return readAddress(toRLPItem(_in)); } /** * Reads the raw bytes of an RLP item. * @param _in RLP item to read. * @return Raw RLP bytes. */ function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) { return _copy(_in); } /********************* * Private Functions * *********************/ /** * Decodes the length of an RLP item. * @param _in RLP item to decode. * @return Offset of the encoded data. * @return Length of the encoded data. * @return RLP item type (LIST_ITEM or DATA_ITEM). */ function _decodeLength(RLPItem memory _in) private pure returns ( uint256, uint256, RLPItemType ) { require(_in.length > 0, "RLP item cannot be null."); uint256 ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. uint256 strLen = prefix - 0x80; require(_in.length > strLen, "Invalid RLP short string."); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; require(_in.length > lenOfStrLen, "Invalid RLP long string length."); uint256 strLen; assembly { // Pick out the string length. strLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfStrLen))) } require(_in.length > lenOfStrLen + strLen, "Invalid RLP long string."); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. uint256 listLen = prefix - 0xc0; require(_in.length > listLen, "Invalid RLP short list."); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; require(_in.length > lenOfListLen, "Invalid RLP long list length."); uint256 listLen; assembly { // Pick out the list length. listLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfListLen))) } require(_in.length > lenOfListLen + listLen, "Invalid RLP long list."); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /** * Copies the bytes from a memory location. * @param _src Pointer to the location to read from. * @param _offset Offset to start reading from. * @param _length Number of bytes to read. * @return Copied bytes. */ function _copy( uint256 _src, uint256 _offset, uint256 _length ) private pure returns (bytes memory) { bytes memory out = new bytes(_length); if (out.length == 0) { return out; } uint256 src = _src + _offset; uint256 dest; assembly { dest := add(out, 32) } // Copy over as many complete words as we can. for (uint256 i = 0; i < _length / 32; i++) { assembly { mstore(dest, mload(src)) } src += 32; dest += 32; } // Pick out the remaining bytes. uint256 mask; unchecked { mask = 256**(32 - (_length % 32)) - 1; } assembly { mstore(dest, or(and(mload(src), not(mask)), and(mload(dest), mask))) } return out; } /** * Copies an RLP item into bytes. * @param _in RLP item to copy. * @return Copied bytes. */ function _copy(RLPItem memory _in) private pure returns (bytes memory) { return _copy(_in.ptr, 0, _in.length); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_RLPWriter * @author Bakaoh (with modifications) */ library Lib_RLPWriter { /********************** * Internal Functions * **********************/ /** * RLP encodes a byte string. * @param _in The byte string to encode. * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * RLP encodes a list of RLP encoded byte byte strings. * @param _in The list of RLP encoded byte strings. * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * RLP encodes a string. * @param _in The string to encode. * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * RLP encodes an address. * @param _in The address to encode. * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * RLP encodes a uint. * @param _in The uint256 to encode. * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * RLP encodes a bool. * @param _in The bool to encode. * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /********************* * Private Functions * *********************/ /** * Encode the first byte, followed by the `len` in binary form if `length` is more than 55. * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * Encode integer in big endian binary form with no leading zeroes. * @notice TODO: This should be optimized with assembly to save gas costs. * @param _x The integer to encode. * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * Copies a piece of memory to another location. * @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol. * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * Flattens a list of byte strings into one byte string. * @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol. * @param _list List of byte strings to flatten. * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_BytesUtils */ library Lib_BytesUtils { /********************** * Internal Functions * **********************/ function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } function toBytes32(bytes memory _bytes) internal pure returns (bytes32) { if (_bytes.length < 32) { bytes32 ret; assembly { ret := mload(add(_bytes, 32)) } return ret; } return abi.decode(_bytes, (bytes32)); // will truncate if input length > 32 bytes } function toUint256(bytes memory _bytes) internal pure returns (uint256) { return uint256(toBytes32(_bytes)); } function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory nibbles = new bytes(_bytes.length * 2); for (uint256 i = 0; i < _bytes.length; i++) { nibbles[i * 2] = _bytes[i] >> 4; nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16); } return nibbles; } function fromNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory ret = new bytes(_bytes.length / 2); for (uint256 i = 0; i < ret.length; i++) { ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]); } return ret; } function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_Byte32Utils */ library Lib_Bytes32Utils { /********************** * Internal Functions * **********************/ /** * Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true." * @param _in Input bytes32 value. * @return Bytes32 as a boolean. */ function toBool(bytes32 _in) internal pure returns (bool) { return _in != 0; } /** * Converts a boolean to a bytes32 value. * @param _in Input boolean value. * @return Boolean as a bytes32. */ function fromBool(bool _in) internal pure returns (bytes32) { return bytes32(uint256(_in ? 1 : 0)); } /** * Converts a bytes32 value to an address. Takes the *last* 20 bytes. * @param _in Input bytes32 value. * @return Bytes32 as an address. */ function toAddress(bytes32 _in) internal pure returns (address) { return address(uint160(uint256(_in))); } /** * Converts an address to a bytes32. * @param _in Input address value. * @return Address as a bytes32. */ function fromAddress(address _in) internal pure returns (bytes32) { return bytes32(uint256(uint160(_in))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* External Imports */ import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Lib_AddressManager */ contract Lib_AddressManager is Ownable { /********** * Events * **********/ event AddressSet(string indexed _name, address _newAddress, address _oldAddress); /************* * Variables * *************/ mapping(bytes32 => address) private addresses; /******************** * Public Functions * ********************/ /** * Changes the address associated with a particular name. * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * Retrieves the address associated with a given name. * @param _name Name to retrieve an address for. * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /********************** * Internal Functions * **********************/ /** * Computes the hash of a name. * @param _name Name to compute a hash for. * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 3 of 9: Lib_ResolvedDelegateProxy
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.8.0; /* External Imports */ import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Lib_AddressManager */ contract Lib_AddressManager is Ownable { /********** * Events * **********/ event AddressSet( string indexed _name, address _newAddress, address _oldAddress ); /************* * Variables * *************/ mapping (bytes32 => address) private addresses; /******************** * Public Functions * ********************/ /** * Changes the address associated with a particular name. * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress( string memory _name, address _address ) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet( _name, _address, oldAddress ); } /** * Retrieves the address associated with a given name. * @param _name Name to retrieve an address for. * @return Address associated with the given name. */ function getAddress( string memory _name ) external view returns ( address ) { return addresses[_getNameHash(_name)]; } /********************** * Internal Functions * **********************/ /** * Computes the hash of a name. * @param _name Name to compute a hash for. * @return Hash of the given name. */ function _getNameHash( string memory _name ) internal pure returns ( bytes32 ) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.8.0; /* Library Imports */ import { Lib_AddressManager } from "./Lib_AddressManager.sol"; /** * @title Lib_ResolvedDelegateProxy */ contract Lib_ResolvedDelegateProxy { /************* * Variables * *************/ // Using mappings to store fields to avoid overwriting storage slots in the // implementation contract. For example, instead of storing these fields at // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`. // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html // NOTE: Do not use this code in your own contract system. // There is a known flaw in this contract, and we will remove it from the repository // in the near future. Due to the very limited way that we are using it, this flaw is // not an issue in our system. mapping (address => string) private implementationName; mapping (address => Lib_AddressManager) private addressManager; /*************** * Constructor * ***************/ /** * @param _libAddressManager Address of the Lib_AddressManager. * @param _implementationName implementationName of the contract to proxy to. */ constructor( address _libAddressManager, string memory _implementationName ) { addressManager[address(this)] = Lib_AddressManager(_libAddressManager); implementationName[address(this)] = _implementationName; } /********************* * Fallback Function * *********************/ fallback() external payable { address target = addressManager[address(this)].getAddress( (implementationName[address(this)]) ); require( target != address(0), "Target address must be initialized." ); (bool success, bytes memory returndata) = target.delegatecall(msg.data); if (success == true) { assembly { return(add(returndata, 0x20), mload(returndata)) } } else { assembly { revert(add(returndata, 0x20), mload(returndata)) } } } }
File 4 of 9: Proxy
pragma solidity ^0.5.3; /// @title Proxy - Generic proxy contract allows to execute all transactions applying the code of a master contract. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract Proxy { // masterCopy always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated. // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt` address internal masterCopy; /// @dev Constructor function sets address of master copy contract. /// @param _masterCopy Master copy address. constructor(address _masterCopy) public { require(_masterCopy != address(0), "Invalid master copy address provided"); masterCopy = _masterCopy; } /// @dev Fallback function forwards all transactions and returns all received return data. function () external payable { // solium-disable-next-line security/no-inline-assembly assembly { let masterCopy := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff) // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) { mstore(0, masterCopy) return(0, 0x20) } calldatacopy(0, 0, calldatasize()) let success := delegatecall(gas, masterCopy, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) if eq(success, 0) { revert(0, returndatasize()) } return(0, returndatasize()) } } }
File 5 of 9: GnosisSafe
pragma solidity >=0.5.0 <0.7.0; /// @title SelfAuthorized - authorizes current contract to perform actions /// @author Richard Meissner - <[email protected]> contract SelfAuthorized { modifier authorized() { require(msg.sender == address(this), "Method can only be called from this contract"); _; } } /// @title MasterCopy - Base for master copy contracts (should always be first super contract) /// This contract is tightly coupled to our proxy contract (see `proxies/Proxy.sol`) /// @author Richard Meissner - <[email protected]> contract MasterCopy is SelfAuthorized { event ChangedMasterCopy(address masterCopy); // masterCopy always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract. // It should also always be ensured that the address is stored alone (uses a full word) address private masterCopy; /// @dev Allows to upgrade the contract. This can only be done via a Safe transaction. /// @param _masterCopy New contract address. function changeMasterCopy(address _masterCopy) public authorized { // Master copy address cannot be null. require(_masterCopy != address(0), "Invalid master copy address provided"); masterCopy = _masterCopy; emit ChangedMasterCopy(_masterCopy); } } /// @title Module - Base class for modules. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract Module is MasterCopy { ModuleManager public manager; modifier authorized() { require(msg.sender == address(manager), "Method can only be called from manager"); _; } function setManager() internal { // manager can only be 0 at initalization of contract. // Check ensures that setup function can only be called once. require(address(manager) == address(0), "Manager has already been set"); manager = ModuleManager(msg.sender); } } /// @title Enum - Collection of enums /// @author Richard Meissner - <[email protected]> contract Enum { enum Operation { Call, DelegateCall } } /// @title Executor - A contract that can execute transactions /// @author Richard Meissner - <[email protected]> contract Executor { function execute(address to, uint256 value, bytes memory data, Enum.Operation operation, uint256 txGas) internal returns (bool success) { if (operation == Enum.Operation.Call) success = executeCall(to, value, data, txGas); else if (operation == Enum.Operation.DelegateCall) success = executeDelegateCall(to, data, txGas); else success = false; } function executeCall(address to, uint256 value, bytes memory data, uint256 txGas) internal returns (bool success) { // solium-disable-next-line security/no-inline-assembly assembly { success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0) } } function executeDelegateCall(address to, bytes memory data, uint256 txGas) internal returns (bool success) { // solium-disable-next-line security/no-inline-assembly assembly { success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } } /// @title SecuredTokenTransfer - Secure token transfer /// @author Richard Meissner - <[email protected]> contract SecuredTokenTransfer { /// @dev Transfers a token and returns if it was a success /// @param token Token that should be transferred /// @param receiver Receiver to whom the token should be transferred /// @param amount The amount of tokens that should be transferred function transferToken ( address token, address receiver, uint256 amount ) internal returns (bool transferred) { bytes memory data = abi.encodeWithSignature("transfer(address,uint256)", receiver, amount); // solium-disable-next-line security/no-inline-assembly assembly { let success := call(sub(gas, 10000), token, 0, add(data, 0x20), mload(data), 0, 0) let ptr := mload(0x40) mstore(0x40, add(ptr, returndatasize())) returndatacopy(ptr, 0, returndatasize()) switch returndatasize() case 0 { transferred := success } case 0x20 { transferred := iszero(or(iszero(success), iszero(mload(ptr)))) } default { transferred := 0 } } } } /// @title Module Manager - A contract that manages modules that can execute transactions via this contract /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract ModuleManager is SelfAuthorized, Executor { event EnabledModule(Module module); event DisabledModule(Module module); event ExecutionFromModuleSuccess(address indexed module); event ExecutionFromModuleFailure(address indexed module); address internal constant SENTINEL_MODULES = address(0x1); mapping (address => address) internal modules; function setupModules(address to, bytes memory data) internal { require(modules[SENTINEL_MODULES] == address(0), "Modules have already been initialized"); modules[SENTINEL_MODULES] = SENTINEL_MODULES; if (to != address(0)) // Setup has to complete successfully or transaction fails. require(executeDelegateCall(to, data, gasleft()), "Could not finish initialization"); } /// @dev Allows to add a module to the whitelist. /// This can only be done via a Safe transaction. /// @param module Module to be whitelisted. function enableModule(Module module) public authorized { // Module address cannot be null or sentinel. require(address(module) != address(0) && address(module) != SENTINEL_MODULES, "Invalid module address provided"); // Module cannot be added twice. require(modules[address(module)] == address(0), "Module has already been added"); modules[address(module)] = modules[SENTINEL_MODULES]; modules[SENTINEL_MODULES] = address(module); emit EnabledModule(module); } /// @dev Allows to remove a module from the whitelist. /// This can only be done via a Safe transaction. /// @param prevModule Module that pointed to the module to be removed in the linked list /// @param module Module to be removed. function disableModule(Module prevModule, Module module) public authorized { // Validate module address and check that it corresponds to module index. require(address(module) != address(0) && address(module) != SENTINEL_MODULES, "Invalid module address provided"); require(modules[address(prevModule)] == address(module), "Invalid prevModule, module pair provided"); modules[address(prevModule)] = modules[address(module)]; modules[address(module)] = address(0); emit DisabledModule(module); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations. /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModule(address to, uint256 value, bytes memory data, Enum.Operation operation) public returns (bool success) { // Only whitelisted modules are allowed. require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "Method can only be called from an enabled module"); // Execute transaction without further confirmations. success = execute(to, value, data, operation, gasleft()); if (success) emit ExecutionFromModuleSuccess(msg.sender); else emit ExecutionFromModuleFailure(msg.sender); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModuleReturnData(address to, uint256 value, bytes memory data, Enum.Operation operation) public returns (bool success, bytes memory returnData) { success = execTransactionFromModule(to, value, data, operation); // solium-disable-next-line security/no-inline-assembly assembly { // Load free memory location let ptr := mload(0x40) // We allocate memory for the return data by setting the free memory location to // current free memory location + data size + 32 bytes for data size value mstore(0x40, add(ptr, add(returndatasize(), 0x20))) // Store the size mstore(ptr, returndatasize()) // Store the data returndatacopy(add(ptr, 0x20), 0, returndatasize()) // Point the return data to the correct memory location returnData := ptr } } /// @dev Returns array of first 10 modules. /// @return Array of modules. function getModules() public view returns (address[] memory) { (address[] memory array,) = getModulesPaginated(SENTINEL_MODULES, 10); return array; } /// @dev Returns array of modules. /// @param start Start of the page. /// @param pageSize Maximum number of modules that should be returned. /// @return Array of modules. function getModulesPaginated(address start, uint256 pageSize) public view returns (address[] memory array, address next) { // Init array with max page size array = new address[](pageSize); // Populate return array uint256 moduleCount = 0; address currentModule = modules[start]; while(currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) { array[moduleCount] = currentModule; currentModule = modules[currentModule]; moduleCount++; } next = currentModule; // Set correct size of returned array // solium-disable-next-line security/no-inline-assembly assembly { mstore(array, moduleCount) } } } /// @title OwnerManager - Manages a set of owners and a threshold to perform actions. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract OwnerManager is SelfAuthorized { event AddedOwner(address owner); event RemovedOwner(address owner); event ChangedThreshold(uint256 threshold); address internal constant SENTINEL_OWNERS = address(0x1); mapping(address => address) internal owners; uint256 ownerCount; uint256 internal threshold; /// @dev Setup function sets initial storage of contract. /// @param _owners List of Safe owners. /// @param _threshold Number of required confirmations for a Safe transaction. function setupOwners(address[] memory _owners, uint256 _threshold) internal { // Threshold can only be 0 at initialization. // Check ensures that setup function can only be called once. require(threshold == 0, "Owners have already been setup"); // Validate that threshold is smaller than number of added owners. require(_threshold <= _owners.length, "Threshold cannot exceed owner count"); // There has to be at least one Safe owner. require(_threshold >= 1, "Threshold needs to be greater than 0"); // Initializing Safe owners. address currentOwner = SENTINEL_OWNERS; for (uint256 i = 0; i < _owners.length; i++) { // Owner address cannot be null. address owner = _owners[i]; require(owner != address(0) && owner != SENTINEL_OWNERS, "Invalid owner address provided"); // No duplicate owners allowed. require(owners[owner] == address(0), "Duplicate owner address provided"); owners[currentOwner] = owner; currentOwner = owner; } owners[currentOwner] = SENTINEL_OWNERS; ownerCount = _owners.length; threshold = _threshold; } /// @dev Allows to add a new owner to the Safe and update the threshold at the same time. /// This can only be done via a Safe transaction. /// @param owner New owner address. /// @param _threshold New threshold. function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized { // Owner address cannot be null. require(owner != address(0) && owner != SENTINEL_OWNERS, "Invalid owner address provided"); // No duplicate owners allowed. require(owners[owner] == address(0), "Address is already an owner"); owners[owner] = owners[SENTINEL_OWNERS]; owners[SENTINEL_OWNERS] = owner; ownerCount++; emit AddedOwner(owner); // Change threshold if threshold was changed. if (threshold != _threshold) changeThreshold(_threshold); } /// @dev Allows to remove an owner from the Safe and update the threshold at the same time. /// This can only be done via a Safe transaction. /// @param prevOwner Owner that pointed to the owner to be removed in the linked list /// @param owner Owner address to be removed. /// @param _threshold New threshold. function removeOwner(address prevOwner, address owner, uint256 _threshold) public authorized { // Only allow to remove an owner, if threshold can still be reached. require(ownerCount - 1 >= _threshold, "New owner count needs to be larger than new threshold"); // Validate owner address and check that it corresponds to owner index. require(owner != address(0) && owner != SENTINEL_OWNERS, "Invalid owner address provided"); require(owners[prevOwner] == owner, "Invalid prevOwner, owner pair provided"); owners[prevOwner] = owners[owner]; owners[owner] = address(0); ownerCount--; emit RemovedOwner(owner); // Change threshold if threshold was changed. if (threshold != _threshold) changeThreshold(_threshold); } /// @dev Allows to swap/replace an owner from the Safe with another address. /// This can only be done via a Safe transaction. /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list /// @param oldOwner Owner address to be replaced. /// @param newOwner New owner address. function swapOwner(address prevOwner, address oldOwner, address newOwner) public authorized { // Owner address cannot be null. require(newOwner != address(0) && newOwner != SENTINEL_OWNERS, "Invalid owner address provided"); // No duplicate owners allowed. require(owners[newOwner] == address(0), "Address is already an owner"); // Validate oldOwner address and check that it corresponds to owner index. require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "Invalid owner address provided"); require(owners[prevOwner] == oldOwner, "Invalid prevOwner, owner pair provided"); owners[newOwner] = owners[oldOwner]; owners[prevOwner] = newOwner; owners[oldOwner] = address(0); emit RemovedOwner(oldOwner); emit AddedOwner(newOwner); } /// @dev Allows to update the number of required confirmations by Safe owners. /// This can only be done via a Safe transaction. /// @param _threshold New threshold. function changeThreshold(uint256 _threshold) public authorized { // Validate that threshold is smaller than number of owners. require(_threshold <= ownerCount, "Threshold cannot exceed owner count"); // There has to be at least one Safe owner. require(_threshold >= 1, "Threshold needs to be greater than 0"); threshold = _threshold; emit ChangedThreshold(threshold); } function getThreshold() public view returns (uint256) { return threshold; } function isOwner(address owner) public view returns (bool) { return owner != SENTINEL_OWNERS && owners[owner] != address(0); } /// @dev Returns array of owners. /// @return Array of Safe owners. function getOwners() public view returns (address[] memory) { address[] memory array = new address[](ownerCount); // populate return array uint256 index = 0; address currentOwner = owners[SENTINEL_OWNERS]; while(currentOwner != SENTINEL_OWNERS) { array[index] = currentOwner; currentOwner = owners[currentOwner]; index ++; } return array; } } /// @title Fallback Manager - A contract that manages fallback calls made to this contract /// @author Richard Meissner - <[email protected]> contract FallbackManager is SelfAuthorized { // keccak256("fallback_manager.handler.address") bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5; function internalSetFallbackHandler(address handler) internal { bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solium-disable-next-line security/no-inline-assembly assembly { sstore(slot, handler) } } /// @dev Allows to add a contract to handle fallback calls. /// Only fallback calls without value and with data will be forwarded. /// This can only be done via a Safe transaction. /// @param handler contract to handle fallbacks calls. function setFallbackHandler(address handler) public authorized { internalSetFallbackHandler(handler); } function () external payable { // Only calls without value and with data will be forwarded if (msg.value > 0 || msg.data.length == 0) { return; } bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; address handler; // solium-disable-next-line security/no-inline-assembly assembly { handler := sload(slot) } if (handler != address(0)) { // solium-disable-next-line security/no-inline-assembly assembly { calldatacopy(0, 0, calldatasize()) let success := call(gas, handler, 0, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) if eq(success, 0) { revert(0, returndatasize()) } return(0, returndatasize()) } } } } /// @title SignatureDecoder - Decodes signatures that a encoded as bytes /// @author Ricardo Guilherme Schmidt (Status Research & Development GmbH) /// @author Richard Meissner - <[email protected]> contract SignatureDecoder { /// @dev Recovers address who signed the message /// @param messageHash operation ethereum signed message hash /// @param messageSignature message `txHash` signature /// @param pos which signature to read function recoverKey ( bytes32 messageHash, bytes memory messageSignature, uint256 pos ) internal pure returns (address) { uint8 v; bytes32 r; bytes32 s; (v, r, s) = signatureSplit(messageSignature, pos); return ecrecover(messageHash, v, r, s); } /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`. /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access /// @param signatures concatenated rsv signatures function signatureSplit(bytes memory signatures, uint256 pos) internal pure returns (uint8 v, bytes32 r, bytes32 s) { // The signature format is a compact form of: // {bytes32 r}{bytes32 s}{uint8 v} // Compact means, uint8 is not padded to 32 bytes. // solium-disable-next-line security/no-inline-assembly assembly { let signaturePos := mul(0x41, pos) r := mload(add(signatures, add(signaturePos, 0x20))) s := mload(add(signatures, add(signaturePos, 0x40))) // Here we are loading the last 32 bytes, including 31 bytes // of 's'. There is no 'mload8' to do this. // // 'byte' is not working due to the Solidity parser, so lets // use the second best option, 'and' v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff) } } } contract ISignatureValidatorConstants { // bytes4(keccak256("isValidSignature(bytes,bytes)") bytes4 constant internal EIP1271_MAGIC_VALUE = 0x20c13b0b; } contract ISignatureValidator is ISignatureValidatorConstants { /** * @dev Should return whether the signature provided is valid for the provided data * @param _data Arbitrary length data signed on the behalf of address(this) * @param _signature Signature byte array associated with _data * * MUST return the bytes4 magic value 0x20c13b0b when function passes. * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5) * MUST allow external calls */ function isValidSignature( bytes memory _data, bytes memory _signature) public view returns (bytes4); } /** * @title SafeMath * @dev Math operations with safety checks that revert on error * TODO: remove once open zeppelin update to solc 0.5.0 */ library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> /// @author Ricardo Guilherme Schmidt - (Status Research & Development GmbH) - Gas Token Payment contract GnosisSafe is MasterCopy, ModuleManager, OwnerManager, SignatureDecoder, SecuredTokenTransfer, ISignatureValidatorConstants, FallbackManager { using SafeMath for uint256; string public constant NAME = "Gnosis Safe"; string public constant VERSION = "1.1.1"; //keccak256( // "EIP712Domain(address verifyingContract)" //); bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x035aff83d86937d35b32e04f0ddc6ff469290eef2f1b692d8a815c89404d4749; //keccak256( // "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)" //); bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8; //keccak256( // "SafeMessage(bytes message)" //); bytes32 private constant SAFE_MSG_TYPEHASH = 0x60b3cbf8b4a223d68d641b3b6ddf9a298e7f33710cf3d3a9d1146b5a6150fbca; event ApproveHash( bytes32 indexed approvedHash, address indexed owner ); event SignMsg( bytes32 indexed msgHash ); event ExecutionFailure( bytes32 txHash, uint256 payment ); event ExecutionSuccess( bytes32 txHash, uint256 payment ); uint256 public nonce; bytes32 public domainSeparator; // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners mapping(bytes32 => uint256) public signedMessages; // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners mapping(address => mapping(bytes32 => uint256)) public approvedHashes; // This constructor ensures that this contract can only be used as a master copy for Proxy contracts constructor() public { // By setting the threshold it is not possible to call setup anymore, // so we create a Safe with 0 owners and threshold 1. // This is an unusable Safe, perfect for the mastercopy threshold = 1; } /// @dev Setup function sets initial storage of contract. /// @param _owners List of Safe owners. /// @param _threshold Number of required confirmations for a Safe transaction. /// @param to Contract address for optional delegate call. /// @param data Data payload for optional delegate call. /// @param fallbackHandler Handler for fallback calls to this contract /// @param paymentToken Token that should be used for the payment (0 is ETH) /// @param payment Value that should be paid /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin) function setup( address[] calldata _owners, uint256 _threshold, address to, bytes calldata data, address fallbackHandler, address paymentToken, uint256 payment, address payable paymentReceiver ) external { require(domainSeparator == 0, "Domain Separator already set!"); domainSeparator = keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, this)); setupOwners(_owners, _threshold); if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler); // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules setupModules(to, data); if (payment > 0) { // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself) // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment handlePayment(payment, 0, 1, paymentToken, paymentReceiver); } } /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction. /// Note: The fees are always transfered, even if the user transaction fails. /// @param to Destination address of Safe transaction. /// @param value Ether value of Safe transaction. /// @param data Data payload of Safe transaction. /// @param operation Operation type of Safe transaction. /// @param safeTxGas Gas that should be used for the Safe transaction. /// @param baseGas Gas costs for that are indipendent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund) /// @param gasPrice Gas price that should be used for the payment calculation. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v}) function execTransaction( address to, uint256 value, bytes calldata data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address payable refundReceiver, bytes calldata signatures ) external returns (bool success) { bytes32 txHash; // Use scope here to limit variable lifetime and prevent `stack too deep` errors { bytes memory txHashData = encodeTransactionData( to, value, data, operation, // Transaction info safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, // Payment info nonce ); // Increase nonce and execute transaction. nonce++; txHash = keccak256(txHashData); checkSignatures(txHash, txHashData, signatures, true); } require(gasleft() >= safeTxGas, "Not enough gas to execute safe transaction"); // Use scope here to limit variable lifetime and prevent `stack too deep` errors { uint256 gasUsed = gasleft(); // If no safeTxGas has been set and the gasPrice is 0 we assume that all available gas can be used success = execute(to, value, data, operation, safeTxGas == 0 && gasPrice == 0 ? gasleft() : safeTxGas); gasUsed = gasUsed.sub(gasleft()); // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls uint256 payment = 0; if (gasPrice > 0) { payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver); } if (success) emit ExecutionSuccess(txHash, payment); else emit ExecutionFailure(txHash, payment); } } function handlePayment( uint256 gasUsed, uint256 baseGas, uint256 gasPrice, address gasToken, address payable refundReceiver ) private returns (uint256 payment) { // solium-disable-next-line security/no-tx-origin address payable receiver = refundReceiver == address(0) ? tx.origin : refundReceiver; if (gasToken == address(0)) { // For ETH we will only adjust the gas price to not be higher than the actual used gas price payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice); // solium-disable-next-line security/no-send require(receiver.send(payment), "Could not pay gas costs with ether"); } else { payment = gasUsed.add(baseGas).mul(gasPrice); require(transferToken(gasToken, receiver, payment), "Could not pay gas costs with token"); } } /** * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise. * @param dataHash Hash of the data (could be either a message hash or transaction hash) * @param data That should be signed (this is passed to an external validator contract) * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash. * @param consumeHash Indicates that in case of an approved hash the storage can be freed to save gas */ function checkSignatures(bytes32 dataHash, bytes memory data, bytes memory signatures, bool consumeHash) internal { // Load threshold to avoid multiple storage loads uint256 _threshold = threshold; // Check that a threshold is set require(_threshold > 0, "Threshold needs to be defined!"); // Check that the provided signature data is not too short require(signatures.length >= _threshold.mul(65), "Signatures data too short"); // There cannot be an owner with address 0. address lastOwner = address(0); address currentOwner; uint8 v; bytes32 r; bytes32 s; uint256 i; for (i = 0; i < _threshold; i++) { (v, r, s) = signatureSplit(signatures, i); // If v is 0 then it is a contract signature if (v == 0) { // When handling contract signatures the address of the contract is encoded into r currentOwner = address(uint256(r)); // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes // This check is not completely accurate, since it is possible that more signatures than the threshold are send. // Here we only check that the pointer is not pointing inside the part that is being processed require(uint256(s) >= _threshold.mul(65), "Invalid contract signature location: inside static part"); // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes) require(uint256(s).add(32) <= signatures.length, "Invalid contract signature location: length not present"); // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length uint256 contractSignatureLen; // solium-disable-next-line security/no-inline-assembly assembly { contractSignatureLen := mload(add(add(signatures, s), 0x20)) } require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "Invalid contract signature location: data not complete"); // Check signature bytes memory contractSignature; // solium-disable-next-line security/no-inline-assembly assembly { // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s contractSignature := add(add(signatures, s), 0x20) } require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "Invalid contract signature provided"); // If v is 1 then it is an approved hash } else if (v == 1) { // When handling approved hashes the address of the approver is encoded into r currentOwner = address(uint256(r)); // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "Hash has not been approved"); // Hash has been marked for consumption. If this hash was pre-approved free storage if (consumeHash && msg.sender != currentOwner) { approvedHashes[currentOwner][dataHash] = 0; } } else if (v > 30) { // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover currentOwner = ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", dataHash)), v - 4, r, s); } else { // Use ecrecover with the messageHash for EOA signatures currentOwner = ecrecover(dataHash, v, r, s); } require ( currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "Invalid owner provided" ); lastOwner = currentOwner; } } /// @dev Allows to estimate a Safe transaction. /// This method is only meant for estimation purpose, therefore two different protection mechanism against execution in a transaction have been made: /// 1.) The method can only be called from the safe itself /// 2.) The response is returned with a revert /// When estimating set `from` to the address of the safe. /// Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction` /// @param to Destination address of Safe transaction. /// @param value Ether value of Safe transaction. /// @param data Data payload of Safe transaction. /// @param operation Operation type of Safe transaction. /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs). function requiredTxGas(address to, uint256 value, bytes calldata data, Enum.Operation operation) external authorized returns (uint256) { uint256 startGas = gasleft(); // We don't provide an error message here, as we use it to return the estimate // solium-disable-next-line error-reason require(execute(to, value, data, operation, gasleft())); uint256 requiredGas = startGas - gasleft(); // Convert response to string and return via error message revert(string(abi.encodePacked(requiredGas))); } /** * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature. * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract. */ function approveHash(bytes32 hashToApprove) external { require(owners[msg.sender] != address(0), "Only owners can approve a hash"); approvedHashes[msg.sender][hashToApprove] = 1; emit ApproveHash(hashToApprove, msg.sender); } /** * @dev Marks a message as signed * @param _data Arbitrary length data that should be marked as signed on the behalf of address(this) */ function signMessage(bytes calldata _data) external authorized { bytes32 msgHash = getMessageHash(_data); signedMessages[msgHash] = 1; emit SignMsg(msgHash); } /** * Implementation of ISignatureValidator (see `interfaces/ISignatureValidator.sol`) * @dev Should return whether the signature provided is valid for the provided data. * The save does not implement the interface since `checkSignatures` is not a view method. * The method will not perform any state changes (see parameters of `checkSignatures`) * @param _data Arbitrary length data signed on the behalf of address(this) * @param _signature Signature byte array associated with _data * @return a bool upon valid or invalid signature with corresponding _data */ function isValidSignature(bytes calldata _data, bytes calldata _signature) external returns (bytes4) { bytes32 messageHash = getMessageHash(_data); if (_signature.length == 0) { require(signedMessages[messageHash] != 0, "Hash not approved"); } else { // consumeHash needs to be false, as the state should not be changed checkSignatures(messageHash, _data, _signature, false); } return EIP1271_MAGIC_VALUE; } /// @dev Returns hash of a message that can be signed by owners. /// @param message Message that should be hashed /// @return Message hash. function getMessageHash( bytes memory message ) public view returns (bytes32) { bytes32 safeMessageHash = keccak256( abi.encode(SAFE_MSG_TYPEHASH, keccak256(message)) ); return keccak256( abi.encodePacked(byte(0x19), byte(0x01), domainSeparator, safeMessageHash) ); } /// @dev Returns the bytes that are hashed to be signed by owners. /// @param to Destination address. /// @param value Ether value. /// @param data Data payload. /// @param operation Operation type. /// @param safeTxGas Fas that should be used for the safe transaction. /// @param baseGas Gas costs for data used to trigger the safe transaction. /// @param gasPrice Maximum gas price that should be used for this transaction. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param _nonce Transaction nonce. /// @return Transaction hash bytes. function encodeTransactionData( address to, uint256 value, bytes memory data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address refundReceiver, uint256 _nonce ) public view returns (bytes memory) { bytes32 safeTxHash = keccak256( abi.encode(SAFE_TX_TYPEHASH, to, value, keccak256(data), operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce) ); return abi.encodePacked(byte(0x19), byte(0x01), domainSeparator, safeTxHash); } /// @dev Returns hash to be signed by owners. /// @param to Destination address. /// @param value Ether value. /// @param data Data payload. /// @param operation Operation type. /// @param safeTxGas Fas that should be used for the safe transaction. /// @param baseGas Gas costs for data used to trigger the safe transaction. /// @param gasPrice Maximum gas price that should be used for this transaction. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param _nonce Transaction nonce. /// @return Transaction hash. function getTransactionHash( address to, uint256 value, bytes memory data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address refundReceiver, uint256 _nonce ) public view returns (bytes32) { return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce)); } }
File 6 of 9: DefaultCallbackHandler
pragma solidity >=0.5.0 <0.7.0; interface ERC777TokensRecipient { function tokensReceived( address operator, address from, address to, uint256 amount, bytes calldata data, bytes calldata operatorData ) external; } /** Note: The ERC-165 identifier for this interface is 0x4e2312e0. */ interface ERC1155TokenReceiver { /** @notice Handle the receipt of a single ERC1155 token type. @dev An ERC1155-compliant smart contract MUST call this function on the token recipient contract, at the end of a `safeTransferFrom` after the balance has been updated. This function MUST return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` (i.e. 0xf23a6e61) if it accepts the transfer. This function MUST revert if it rejects the transfer. Return of any other value than the prescribed keccak256 generated value MUST result in the transaction being reverted by the caller. @param _operator The address which initiated the transfer (i.e. msg.sender) @param _from The address which previously owned the token @param _id The ID of the token being transferred @param _value The amount of tokens being transferred @param _data Additional data with no specified format @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` */ function onERC1155Received(address _operator, address _from, uint256 _id, uint256 _value, bytes calldata _data) external returns(bytes4); /** @notice Handle the receipt of multiple ERC1155 token types. @dev An ERC1155-compliant smart contract MUST call this function on the token recipient contract, at the end of a `safeBatchTransferFrom` after the balances have been updated. This function MUST return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` (i.e. 0xbc197c81) if it accepts the transfer(s). This function MUST revert if it rejects the transfer(s). Return of any other value than the prescribed keccak256 generated value MUST result in the transaction being reverted by the caller. @param _operator The address which initiated the batch transfer (i.e. msg.sender) @param _from The address which previously owned the token @param _ids An array containing ids of each token being transferred (order and length must match _values array) @param _values An array containing amounts of each token being transferred (order and length must match _ids array) @param _data Additional data with no specified format @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` */ function onERC1155BatchReceived(address _operator, address _from, uint256[] calldata _ids, uint256[] calldata _values, bytes calldata _data) external returns(bytes4); } /// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02. interface ERC721TokenReceiver { /// @notice Handle the receipt of an NFT /// @dev The ERC721 smart contract calls this function on the recipient /// after a `transfer`. This function MAY throw to revert and reject the /// transfer. Return of other than the magic value MUST result in the /// transaction being reverted. /// Note: the contract address is always the message sender. /// @param _operator The address which called `safeTransferFrom` function /// @param _from The address which previously owned the token /// @param _tokenId The NFT identifier which is being transferred /// @param _data Additional data with no specified format /// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` /// unless throwing function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data) external returns(bytes4); } /// @title Default Callback Handler - returns true for known token callbacks /// @author Richard Meissner - <[email protected]> contract DefaultCallbackHandler is ERC1155TokenReceiver, ERC777TokensRecipient, ERC721TokenReceiver { string public constant NAME = "Default Callback Handler"; string public constant VERSION = "1.0.0"; function onERC1155Received(address, address, uint256, uint256, bytes calldata) external returns(bytes4) { return 0xf23a6e61; } function onERC1155BatchReceived(address, address, uint256[] calldata, uint256[] calldata, bytes calldata) external returns(bytes4) { return 0xbc197c81; } function onERC721Received(address, address, uint256, bytes calldata) external returns(bytes4) { return 0x150b7a02; } // solium-disable-next-line no-empty-blocks function tokensReceived(address, address, address, uint256, bytes calldata, bytes calldata) external { // We implement this for completeness, doesn't really have any value } }
File 7 of 9: L1StandardBridge
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Interface Imports */ import { IL1StandardBridge } from "./IL1StandardBridge.sol"; import { IL1ERC20Bridge } from "./IL1ERC20Bridge.sol"; import { IL2ERC20Bridge } from "../../L2/messaging/IL2ERC20Bridge.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /* Library Imports */ import { CrossDomainEnabled } from "../../libraries/bridge/CrossDomainEnabled.sol"; import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; /** * @title L1StandardBridge * @dev The L1 ETH and ERC20 Bridge is a contract which stores deposited L1 funds and standard * tokens that are in use on L2. It synchronizes a corresponding L2 Bridge, informing it of deposits * and listening to it for newly finalized withdrawals. * * Runtime target: EVM */ contract L1StandardBridge is IL1StandardBridge, CrossDomainEnabled { using SafeERC20 for IERC20; /******************************** * External Contract References * ********************************/ address public l2TokenBridge; // Maps L1 token to L2 token to balance of the L1 token deposited mapping(address => mapping(address => uint256)) public deposits; /*************** * Constructor * ***************/ // This contract lives behind a proxy, so the constructor parameters will go unused. constructor() CrossDomainEnabled(address(0)) {} /****************** * Initialization * ******************/ /** * @param _l1messenger L1 Messenger address being used for cross-chain communications. * @param _l2TokenBridge L2 standard bridge address. */ function initialize(address _l1messenger, address _l2TokenBridge) public { require(messenger == address(0), "Contract has already been initialized."); messenger = _l1messenger; l2TokenBridge = _l2TokenBridge; } /************** * Depositing * **************/ /** @dev Modifier requiring sender to be EOA. This check could be bypassed by a malicious * contract via initcode, but it takes care of the user error we want to avoid. */ modifier onlyEOA() { // Used to stop deposits from contracts (avoid accidentally lost tokens) require(!Address.isContract(msg.sender), "Account not EOA"); _; } /** * @dev This function can be called with no data * to deposit an amount of ETH to the caller's balance on L2. * Since the receive function doesn't take data, a conservative * default amount is forwarded to L2. */ receive() external payable onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, 200_000, bytes("")); } /** * @inheritdoc IL1StandardBridge */ function depositETH(uint32 _l2Gas, bytes calldata _data) external payable onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, _l2Gas, _data); } /** * @inheritdoc IL1StandardBridge */ function depositETHTo( address _to, uint32 _l2Gas, bytes calldata _data ) external payable { _initiateETHDeposit(msg.sender, _to, _l2Gas, _data); } /** * @dev Performs the logic for deposits by storing the ETH and informing the L2 ETH Gateway of * the deposit. * @param _from Account to pull the deposit from on L1. * @param _to Account to give the deposit to on L2. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function _initiateETHDeposit( address _from, address _to, uint32 _l2Gas, bytes memory _data ) internal { // Construct calldata for finalizeDeposit call bytes memory message = abi.encodeWithSelector( IL2ERC20Bridge.finalizeDeposit.selector, address(0), Lib_PredeployAddresses.OVM_ETH, _from, _to, msg.value, _data ); // Send calldata into L2 sendCrossDomainMessage(l2TokenBridge, _l2Gas, message); emit ETHDepositInitiated(_from, _to, msg.value, _data); } /** * @inheritdoc IL1ERC20Bridge */ function depositERC20( address _l1Token, address _l2Token, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external virtual onlyEOA { _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _l2Gas, _data); } /** * @inheritdoc IL1ERC20Bridge */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external virtual { _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _l2Gas, _data); } /** * @dev Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _from Account to pull the deposit from on L1 * @param _to Account to give the deposit to on L2 * @param _amount Amount of the ERC20 to deposit. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function _initiateERC20Deposit( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) internal { // When a deposit is initiated on L1, the L1 Bridge transfers the funds to itself for future // withdrawals. safeTransferFrom also checks if the contract has code, so this will fail if // _from is an EOA or address(0). IERC20(_l1Token).safeTransferFrom(_from, address(this), _amount); // Construct calldata for _l2Token.finalizeDeposit(_to, _amount) bytes memory message = abi.encodeWithSelector( IL2ERC20Bridge.finalizeDeposit.selector, _l1Token, _l2Token, _from, _to, _amount, _data ); // Send calldata into L2 sendCrossDomainMessage(l2TokenBridge, _l2Gas, message); deposits[_l1Token][_l2Token] = deposits[_l1Token][_l2Token] + _amount; emit ERC20DepositInitiated(_l1Token, _l2Token, _from, _to, _amount, _data); } /************************* * Cross-chain Functions * *************************/ /** * @inheritdoc IL1StandardBridge */ function finalizeETHWithdrawal( address _from, address _to, uint256 _amount, bytes calldata _data ) external onlyFromCrossDomainAccount(l2TokenBridge) { (bool success, ) = _to.call{ value: _amount }(new bytes(0)); require(success, "TransferHelper::safeTransferETH: ETH transfer failed"); emit ETHWithdrawalFinalized(_from, _to, _amount, _data); } /** * @inheritdoc IL1ERC20Bridge */ function finalizeERC20Withdrawal( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _data ) external onlyFromCrossDomainAccount(l2TokenBridge) { deposits[_l1Token][_l2Token] = deposits[_l1Token][_l2Token] - _amount; // When a withdrawal is finalized on L1, the L1 Bridge transfers the funds to the withdrawer IERC20(_l1Token).safeTransfer(_to, _amount); emit ERC20WithdrawalFinalized(_l1Token, _l2Token, _from, _to, _amount, _data); } /***************************** * Temporary - Migrating ETH * *****************************/ /** * @dev Adds ETH balance to the account. This is meant to allow for ETH * to be migrated from an old gateway to a new gateway. * NOTE: This is left for one upgrade only so we are able to receive the migrated ETH from the * old contract */ function donateETH() external payable {} } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; import "./IL1ERC20Bridge.sol"; /** * @title IL1StandardBridge */ interface IL1StandardBridge is IL1ERC20Bridge { /********** * Events * **********/ event ETHDepositInitiated( address indexed _from, address indexed _to, uint256 _amount, bytes _data ); event ETHWithdrawalFinalized( address indexed _from, address indexed _to, uint256 _amount, bytes _data ); /******************** * Public Functions * ********************/ /** * @dev Deposit an amount of the ETH to the caller's balance on L2. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositETH(uint32 _l2Gas, bytes calldata _data) external payable; /** * @dev Deposit an amount of ETH to a recipient's balance on L2. * @param _to L2 address to credit the withdrawal to. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositETHTo( address _to, uint32 _l2Gas, bytes calldata _data ) external payable; /************************* * Cross-chain Functions * *************************/ /** * @dev Complete a withdrawal from L2 to L1, and credit funds to the recipient's balance of the * L1 ETH token. Since only the xDomainMessenger can call this function, it will never be called * before the withdrawal is finalized. * @param _from L2 address initiating the transfer. * @param _to L1 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function finalizeETHWithdrawal( address _from, address _to, uint256 _amount, bytes calldata _data ) external; } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /** * @title IL1ERC20Bridge */ interface IL1ERC20Bridge { /********** * Events * **********/ event ERC20DepositInitiated( address indexed _l1Token, address indexed _l2Token, address indexed _from, address _to, uint256 _amount, bytes _data ); event ERC20WithdrawalFinalized( address indexed _l1Token, address indexed _l2Token, address indexed _from, address _to, uint256 _amount, bytes _data ); /******************** * Public Functions * ********************/ /** * @dev get the address of the corresponding L2 bridge contract. * @return Address of the corresponding L2 bridge contract. */ function l2TokenBridge() external returns (address); /** * @dev deposit an amount of the ERC20 to the caller's balance on L2. * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _amount Amount of the ERC20 to deposit * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositERC20( address _l1Token, address _l2Token, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external; /** * @dev deposit an amount of ERC20 to a recipient's balance on L2. * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _to L2 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external; /************************* * Cross-chain Functions * *************************/ /** * @dev Complete a withdrawal from L2 to L1, and credit funds to the recipient's balance of the * L1 ERC20 token. * This call will fail if the initialized withdrawal from L2 has not been finalized. * * @param _l1Token Address of L1 token to finalizeWithdrawal for. * @param _l2Token Address of L2 token where withdrawal was initiated. * @param _from L2 address initiating the transfer. * @param _to L1 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _data Data provided by the sender on L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function finalizeERC20Withdrawal( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _data ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title IL2ERC20Bridge */ interface IL2ERC20Bridge { /********** * Events * **********/ event WithdrawalInitiated( address indexed _l1Token, address indexed _l2Token, address indexed _from, address _to, uint256 _amount, bytes _data ); event DepositFinalized( address indexed _l1Token, address indexed _l2Token, address indexed _from, address _to, uint256 _amount, bytes _data ); event DepositFailed( address indexed _l1Token, address indexed _l2Token, address indexed _from, address _to, uint256 _amount, bytes _data ); /******************** * Public Functions * ********************/ /** * @dev get the address of the corresponding L1 bridge contract. * @return Address of the corresponding L1 bridge contract. */ function l1TokenBridge() external returns (address); /** * @dev initiate a withdraw of some tokens to the caller's account on L1 * @param _l2Token Address of L2 token where withdrawal was initiated. * @param _amount Amount of the token to withdraw. * param _l1Gas Unused, but included for potential forward compatibility considerations. * @param _data Optional data to forward to L1. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function withdraw( address _l2Token, uint256 _amount, uint32 _l1Gas, bytes calldata _data ) external; /** * @dev initiate a withdraw of some token to a recipient's account on L1. * @param _l2Token Address of L2 token where withdrawal is initiated. * @param _to L1 adress to credit the withdrawal to. * @param _amount Amount of the token to withdraw. * param _l1Gas Unused, but included for potential forward compatibility considerations. * @param _data Optional data to forward to L1. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function withdrawTo( address _l2Token, address _to, uint256 _amount, uint32 _l1Gas, bytes calldata _data ) external; /************************* * Cross-chain Functions * *************************/ /** * @dev Complete a deposit from L1 to L2, and credits funds to the recipient's balance of this * L2 token. This call will fail if it did not originate from a corresponding deposit in * L1StandardTokenBridge. * @param _l1Token Address for the l1 token this is called with * @param _l2Token Address for the l2 token this is called with * @param _from Account to pull the deposit from on L2. * @param _to Address to receive the withdrawal at * @param _amount Amount of the token to withdraw * @param _data Data provider by the sender on L1. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function finalizeDeposit( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _data ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /* Interface Imports */ import { ICrossDomainMessenger } from "./ICrossDomainMessenger.sol"; /** * @title CrossDomainEnabled * @dev Helper contract for contracts performing cross-domain communications * * Compiler used: defined by inheriting contract * Runtime target: defined by inheriting contract */ contract CrossDomainEnabled { /************* * Variables * *************/ // Messenger contract used to send and recieve messages from the other domain. address public messenger; /*************** * Constructor * ***************/ /** * @param _messenger Address of the CrossDomainMessenger on the current layer. */ constructor(address _messenger) { messenger = _messenger; } /********************** * Function Modifiers * **********************/ /** * Enforces that the modified function is only callable by a specific cross-domain account. * @param _sourceDomainAccount The only account on the originating domain which is * authenticated to call this function. */ modifier onlyFromCrossDomainAccount(address _sourceDomainAccount) { require( msg.sender == address(getCrossDomainMessenger()), "OVM_XCHAIN: messenger contract unauthenticated" ); require( getCrossDomainMessenger().xDomainMessageSender() == _sourceDomainAccount, "OVM_XCHAIN: wrong sender of cross-domain message" ); _; } /********************** * Internal Functions * **********************/ /** * Gets the messenger, usually from storage. This function is exposed in case a child contract * needs to override. * @return The address of the cross-domain messenger contract which should be used. */ function getCrossDomainMessenger() internal virtual returns (ICrossDomainMessenger) { return ICrossDomainMessenger(messenger); } /**q * Sends a message to an account on another domain * @param _crossDomainTarget The intended recipient on the destination domain * @param _message The data to send to the target (usually calldata to a function with * `onlyFromCrossDomainAccount()`) * @param _gasLimit The gasLimit for the receipt of the message on the target domain. */ function sendCrossDomainMessage( address _crossDomainTarget, uint32 _gasLimit, bytes memory _message ) internal { getCrossDomainMessenger().sendMessage(_crossDomainTarget, _message, _gasLimit); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_PredeployAddresses */ library Lib_PredeployAddresses { address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; address payable internal constant OVM_ETH = payable(0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000); address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; address internal constant LIB_ADDRESS_MANAGER = 0x4200000000000000000000000000000000000008; address internal constant PROXY_EOA = 0x4200000000000000000000000000000000000009; address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; address internal constant L2_STANDARD_TOKEN_FACTORY = 0x4200000000000000000000000000000000000012; address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /** * @title ICrossDomainMessenger */ interface ICrossDomainMessenger { /********** * Events * **********/ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); event RelayedMessage(bytes32 indexed msgHash); event FailedRelayedMessage(bytes32 indexed msgHash); /************* * Variables * *************/ function xDomainMessageSender() external view returns (address); /******************** * Public Functions * ********************/ /** * Sends a cross domain message to the target messenger. * @param _target Target contract address. * @param _message Message to send to the target. * @param _gasLimit Gas limit for the provided message. */ function sendMessage( address _target, bytes calldata _message, uint32 _gasLimit ) external; }
File 8 of 9: Lib_AddressManager
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.8.0; /* External Imports */ import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Lib_AddressManager */ contract Lib_AddressManager is Ownable { /********** * Events * **********/ event AddressSet( string indexed _name, address _newAddress, address _oldAddress ); /************* * Variables * *************/ mapping (bytes32 => address) private addresses; /******************** * Public Functions * ********************/ /** * Changes the address associated with a particular name. * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress( string memory _name, address _address ) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet( _name, _address, oldAddress ); } /** * Retrieves the address associated with a given name. * @param _name Name to retrieve an address for. * @return Address associated with the given name. */ function getAddress( string memory _name ) external view returns ( address ) { return addresses[_getNameHash(_name)]; } /********************** * Internal Functions * **********************/ /** * Computes the hash of a name. * @param _name Name to compute a hash for. * @return Hash of the given name. */ function _getNameHash( string memory _name ) internal pure returns ( bytes32 ) { return keccak256(abi.encodePacked(_name)); } }
File 9 of 9: L1CrossDomainMessenger
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; /* Interface Imports */ import { ICrossDomainMessenger } from "../../libraries/bridge/ICrossDomainMessenger.sol"; /** * @title IL1CrossDomainMessenger */ interface IL1CrossDomainMessenger is ICrossDomainMessenger { /******************* * Data Structures * *******************/ struct L2MessageInclusionProof { bytes32 stateRoot; Lib_OVMCodec.ChainBatchHeader stateRootBatchHeader; Lib_OVMCodec.ChainInclusionProof stateRootProof; bytes stateTrieWitness; bytes storageTrieWitness; } /******************** * Public Functions * ********************/ /** * Relays a cross domain message to a contract. * @param _target Target contract address. * @param _sender Message sender address. * @param _message Message to send to the target. * @param _messageNonce Nonce for the provided message. * @param _proof Inclusion proof for the given message. */ function relayMessage( address _target, address _sender, bytes memory _message, uint256 _messageNonce, L2MessageInclusionProof memory _proof ) external; /** * Replays a cross domain message to the target messenger. * @param _target Target contract address. * @param _sender Original sender address. * @param _message Message to send to the target. * @param _queueIndex CTC Queue index for the message to replay. * @param _oldGasLimit Original gas limit used to send the message. * @param _newGasLimit New gas limit to be used for this message. */ function replayMessage( address _target, address _sender, bytes memory _message, uint256 _queueIndex, uint32 _oldGasLimit, uint32 _newGasLimit ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { AddressAliasHelper } from "../../standards/AddressAliasHelper.sol"; import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol"; import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; import { Lib_AddressManager } from "../../libraries/resolver/Lib_AddressManager.sol"; import { Lib_SecureMerkleTrie } from "../../libraries/trie/Lib_SecureMerkleTrie.sol"; import { Lib_DefaultValues } from "../../libraries/constants/Lib_DefaultValues.sol"; import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol"; import { Lib_CrossDomainUtils } from "../../libraries/bridge/Lib_CrossDomainUtils.sol"; /* Interface Imports */ import { IL1CrossDomainMessenger } from "./IL1CrossDomainMessenger.sol"; import { ICanonicalTransactionChain } from "../rollup/ICanonicalTransactionChain.sol"; import { IStateCommitmentChain } from "../rollup/IStateCommitmentChain.sol"; /* External Imports */ import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol"; /** * @title L1CrossDomainMessenger * @dev The L1 Cross Domain Messenger contract sends messages from L1 to L2, and relays messages * from L2 onto L1. In the event that a message sent from L1 to L2 is rejected for exceeding the L2 * epoch gas limit, it can be resubmitted via this contract's replay function. * * Runtime target: EVM */ contract L1CrossDomainMessenger is IL1CrossDomainMessenger, Lib_AddressResolver, OwnableUpgradeable, PausableUpgradeable, ReentrancyGuardUpgradeable { /********** * Events * **********/ event MessageBlocked(bytes32 indexed _xDomainCalldataHash); event MessageAllowed(bytes32 indexed _xDomainCalldataHash); /********************** * Contract Variables * **********************/ mapping(bytes32 => bool) public blockedMessages; mapping(bytes32 => bool) public relayedMessages; mapping(bytes32 => bool) public successfulMessages; address internal xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER; /*************** * Constructor * ***************/ /** * This contract is intended to be behind a delegate proxy. * We pass the zero address to the address resolver just to satisfy the constructor. * We still need to set this value in initialize(). */ constructor() Lib_AddressResolver(address(0)) {} /******************** * Public Functions * ********************/ /** * @param _libAddressManager Address of the Address Manager. */ function initialize(address _libAddressManager) public initializer { require( address(libAddressManager) == address(0), "L1CrossDomainMessenger already intialized." ); libAddressManager = Lib_AddressManager(_libAddressManager); xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER; // Initialize upgradable OZ contracts __Context_init_unchained(); // Context is a dependency for both Ownable and Pausable __Ownable_init_unchained(); __Pausable_init_unchained(); __ReentrancyGuard_init_unchained(); } /** * Pause relaying. */ function pause() external onlyOwner { _pause(); } /** * Block a message. * @param _xDomainCalldataHash Hash of the message to block. */ function blockMessage(bytes32 _xDomainCalldataHash) external onlyOwner { blockedMessages[_xDomainCalldataHash] = true; emit MessageBlocked(_xDomainCalldataHash); } /** * Allow a message. * @param _xDomainCalldataHash Hash of the message to block. */ function allowMessage(bytes32 _xDomainCalldataHash) external onlyOwner { blockedMessages[_xDomainCalldataHash] = false; emit MessageAllowed(_xDomainCalldataHash); } function xDomainMessageSender() public view returns (address) { require( xDomainMsgSender != Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER, "xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * Sends a cross domain message to the target messenger. * @param _target Target contract address. * @param _message Message to send to the target. * @param _gasLimit Gas limit for the provided message. */ function sendMessage( address _target, bytes memory _message, uint32 _gasLimit ) public { address ovmCanonicalTransactionChain = resolve("CanonicalTransactionChain"); // Use the CTC queue length as nonce uint40 nonce = ICanonicalTransactionChain(ovmCanonicalTransactionChain).getQueueLength(); bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata( _target, msg.sender, _message, nonce ); _sendXDomainMessage(ovmCanonicalTransactionChain, xDomainCalldata, _gasLimit); emit SentMessage(_target, msg.sender, _message, nonce, _gasLimit); } /** * Relays a cross domain message to a contract. * @inheritdoc IL1CrossDomainMessenger */ function relayMessage( address _target, address _sender, bytes memory _message, uint256 _messageNonce, L2MessageInclusionProof memory _proof ) public nonReentrant whenNotPaused { bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata( _target, _sender, _message, _messageNonce ); require( _verifyXDomainMessage(xDomainCalldata, _proof) == true, "Provided message could not be verified." ); bytes32 xDomainCalldataHash = keccak256(xDomainCalldata); require( successfulMessages[xDomainCalldataHash] == false, "Provided message has already been received." ); require( blockedMessages[xDomainCalldataHash] == false, "Provided message has been blocked." ); require( _target != resolve("CanonicalTransactionChain"), "Cannot send L2->L1 messages to L1 system contracts." ); xDomainMsgSender = _sender; (bool success, ) = _target.call(_message); xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER; // Mark the message as received if the call was successful. Ensures that a message can be // relayed multiple times in the case that the call reverted. if (success == true) { successfulMessages[xDomainCalldataHash] = true; emit RelayedMessage(xDomainCalldataHash); } else { emit FailedRelayedMessage(xDomainCalldataHash); } // Store an identifier that can be used to prove that the given message was relayed by some // user. Gives us an easy way to pay relayers for their work. bytes32 relayId = keccak256(abi.encodePacked(xDomainCalldata, msg.sender, block.number)); relayedMessages[relayId] = true; } /** * Replays a cross domain message to the target messenger. * @inheritdoc IL1CrossDomainMessenger */ function replayMessage( address _target, address _sender, bytes memory _message, uint256 _queueIndex, uint32 _oldGasLimit, uint32 _newGasLimit ) public { // Verify that the message is in the queue: address canonicalTransactionChain = resolve("CanonicalTransactionChain"); Lib_OVMCodec.QueueElement memory element = ICanonicalTransactionChain( canonicalTransactionChain ).getQueueElement(_queueIndex); // Compute the calldata that was originally used to send the message. bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata( _target, _sender, _message, _queueIndex ); // Compute the transactionHash bytes32 transactionHash = keccak256( abi.encode( AddressAliasHelper.applyL1ToL2Alias(address(this)), Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER, _oldGasLimit, xDomainCalldata ) ); // Now check that the provided message data matches the one in the queue element. require( transactionHash == element.transactionHash, "Provided message has not been enqueued." ); // Send the same message but with the new gas limit. _sendXDomainMessage(canonicalTransactionChain, xDomainCalldata, _newGasLimit); } /********************** * Internal Functions * **********************/ /** * Verifies that the given message is valid. * @param _xDomainCalldata Calldata to verify. * @param _proof Inclusion proof for the message. * @return Whether or not the provided message is valid. */ function _verifyXDomainMessage( bytes memory _xDomainCalldata, L2MessageInclusionProof memory _proof ) internal view returns (bool) { return (_verifyStateRootProof(_proof) && _verifyStorageProof(_xDomainCalldata, _proof)); } /** * Verifies that the state root within an inclusion proof is valid. * @param _proof Message inclusion proof. * @return Whether or not the provided proof is valid. */ function _verifyStateRootProof(L2MessageInclusionProof memory _proof) internal view returns (bool) { IStateCommitmentChain ovmStateCommitmentChain = IStateCommitmentChain( resolve("StateCommitmentChain") ); return (ovmStateCommitmentChain.insideFraudProofWindow(_proof.stateRootBatchHeader) == false && ovmStateCommitmentChain.verifyStateCommitment( _proof.stateRoot, _proof.stateRootBatchHeader, _proof.stateRootProof )); } /** * Verifies that the storage proof within an inclusion proof is valid. * @param _xDomainCalldata Encoded message calldata. * @param _proof Message inclusion proof. * @return Whether or not the provided proof is valid. */ function _verifyStorageProof( bytes memory _xDomainCalldata, L2MessageInclusionProof memory _proof ) internal view returns (bool) { bytes32 storageKey = keccak256( abi.encodePacked( keccak256( abi.encodePacked( _xDomainCalldata, Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER ) ), uint256(0) ) ); (bool exists, bytes memory encodedMessagePassingAccount) = Lib_SecureMerkleTrie.get( abi.encodePacked(Lib_PredeployAddresses.L2_TO_L1_MESSAGE_PASSER), _proof.stateTrieWitness, _proof.stateRoot ); require( exists == true, "Message passing predeploy has not been initialized or invalid proof provided." ); Lib_OVMCodec.EVMAccount memory account = Lib_OVMCodec.decodeEVMAccount( encodedMessagePassingAccount ); return Lib_SecureMerkleTrie.verifyInclusionProof( abi.encodePacked(storageKey), abi.encodePacked(uint8(1)), _proof.storageTrieWitness, account.storageRoot ); } /** * Sends a cross domain message. * @param _canonicalTransactionChain Address of the CanonicalTransactionChain instance. * @param _message Message to send. * @param _gasLimit OVM gas limit for the message. */ function _sendXDomainMessage( address _canonicalTransactionChain, bytes memory _message, uint256 _gasLimit ) internal { ICanonicalTransactionChain(_canonicalTransactionChain).enqueue( Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER, _gasLimit, _message ); } } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /* Library Imports */ import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; /* Interface Imports */ import { IChainStorageContainer } from "./IChainStorageContainer.sol"; /** * @title ICanonicalTransactionChain */ interface ICanonicalTransactionChain { /********** * Events * **********/ event L2GasParamsUpdated( uint256 l2GasDiscountDivisor, uint256 enqueueGasCost, uint256 enqueueL2GasPrepaid ); event TransactionEnqueued( address indexed _l1TxOrigin, address indexed _target, uint256 _gasLimit, bytes _data, uint256 indexed _queueIndex, uint256 _timestamp ); event QueueBatchAppended( uint256 _startingQueueIndex, uint256 _numQueueElements, uint256 _totalElements ); event SequencerBatchAppended( uint256 _startingQueueIndex, uint256 _numQueueElements, uint256 _totalElements ); event TransactionBatchAppended( uint256 indexed _batchIndex, bytes32 _batchRoot, uint256 _batchSize, uint256 _prevTotalElements, bytes _extraData ); /*********** * Structs * ***********/ struct BatchContext { uint256 numSequencedTransactions; uint256 numSubsequentQueueTransactions; uint256 timestamp; uint256 blockNumber; } /******************************* * Authorized Setter Functions * *******************************/ /** * Allows the Burn Admin to update the parameters which determine the amount of gas to burn. * The value of enqueueL2GasPrepaid is immediately updated as well. */ function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost) external; /******************** * Public Functions * ********************/ /** * Accesses the batch storage container. * @return Reference to the batch storage container. */ function batches() external view returns (IChainStorageContainer); /** * Retrieves the total number of elements submitted. * @return _totalElements Total submitted elements. */ function getTotalElements() external view returns (uint256 _totalElements); /** * Retrieves the total number of batches submitted. * @return _totalBatches Total submitted batches. */ function getTotalBatches() external view returns (uint256 _totalBatches); /** * Returns the index of the next element to be enqueued. * @return Index for the next queue element. */ function getNextQueueIndex() external view returns (uint40); /** * Gets the queue element at a particular index. * @param _index Index of the queue element to access. * @return _element Queue element at the given index. */ function getQueueElement(uint256 _index) external view returns (Lib_OVMCodec.QueueElement memory _element); /** * Returns the timestamp of the last transaction. * @return Timestamp for the last transaction. */ function getLastTimestamp() external view returns (uint40); /** * Returns the blocknumber of the last transaction. * @return Blocknumber for the last transaction. */ function getLastBlockNumber() external view returns (uint40); /** * Get the number of queue elements which have not yet been included. * @return Number of pending queue elements. */ function getNumPendingQueueElements() external view returns (uint40); /** * Retrieves the length of the queue, including * both pending and canonical transactions. * @return Length of the queue. */ function getQueueLength() external view returns (uint40); /** * Adds a transaction to the queue. * @param _target Target contract to send the transaction to. * @param _gasLimit Gas limit for the given transaction. * @param _data Transaction data. */ function enqueue( address _target, uint256 _gasLimit, bytes memory _data ) external; /** * Allows the sequencer to append a batch of transactions. * @dev This function uses a custom encoding scheme for efficiency reasons. * .param _shouldStartAtElement Specific batch we expect to start appending to. * .param _totalElementsToAppend Total number of batch elements we expect to append. * .param _contexts Array of batch contexts. * .param _transactionDataFields Array of raw transaction data. */ function appendSequencerBatch( // uint40 _shouldStartAtElement, // uint24 _totalElementsToAppend, // BatchContext[] _contexts, // bytes[] _transactionDataFields ) external; } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /** * @title IChainStorageContainer */ interface IChainStorageContainer { /******************** * Public Functions * ********************/ /** * Sets the container's global metadata field. We're using `bytes27` here because we use five * bytes to maintain the length of the underlying data structure, meaning we have an extra * 27 bytes to store arbitrary data. * @param _globalMetadata New global metadata to set. */ function setGlobalMetadata(bytes27 _globalMetadata) external; /** * Retrieves the container's global metadata field. * @return Container global metadata field. */ function getGlobalMetadata() external view returns (bytes27); /** * Retrieves the number of objects stored in the container. * @return Number of objects in the container. */ function length() external view returns (uint256); /** * Pushes an object into the container. * @param _object A 32 byte value to insert into the container. */ function push(bytes32 _object) external; /** * Pushes an object into the container. Function allows setting the global metadata since * we'll need to touch the "length" storage slot anyway, which also contains the global * metadata (it's an optimization). * @param _object A 32 byte value to insert into the container. * @param _globalMetadata New global metadata for the container. */ function push(bytes32 _object, bytes27 _globalMetadata) external; /** * Retrieves an object from the container. * @param _index Index of the particular object to access. * @return 32 byte object value. */ function get(uint256 _index) external view returns (bytes32); /** * Removes all objects after and including a given index. * @param _index Object index to delete from. */ function deleteElementsAfterInclusive(uint256 _index) external; /** * Removes all objects after and including a given index. Also allows setting the global * metadata field. * @param _index Object index to delete from. * @param _globalMetadata New global metadata for the container. */ function deleteElementsAfterInclusive(uint256 _index, bytes27 _globalMetadata) external; } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /* Library Imports */ import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol"; /** * @title IStateCommitmentChain */ interface IStateCommitmentChain { /********** * Events * **********/ event StateBatchAppended( uint256 indexed _batchIndex, bytes32 _batchRoot, uint256 _batchSize, uint256 _prevTotalElements, bytes _extraData ); event StateBatchDeleted(uint256 indexed _batchIndex, bytes32 _batchRoot); /******************** * Public Functions * ********************/ /** * Retrieves the total number of elements submitted. * @return _totalElements Total submitted elements. */ function getTotalElements() external view returns (uint256 _totalElements); /** * Retrieves the total number of batches submitted. * @return _totalBatches Total submitted batches. */ function getTotalBatches() external view returns (uint256 _totalBatches); /** * Retrieves the timestamp of the last batch submitted by the sequencer. * @return _lastSequencerTimestamp Last sequencer batch timestamp. */ function getLastSequencerTimestamp() external view returns (uint256 _lastSequencerTimestamp); /** * Appends a batch of state roots to the chain. * @param _batch Batch of state roots. * @param _shouldStartAtElement Index of the element at which this batch should start. */ function appendStateBatch(bytes32[] calldata _batch, uint256 _shouldStartAtElement) external; /** * Deletes all state roots after (and including) a given batch. * @param _batchHeader Header of the batch to start deleting from. */ function deleteStateBatch(Lib_OVMCodec.ChainBatchHeader memory _batchHeader) external; /** * Verifies a batch inclusion proof. * @param _element Hash of the element to verify a proof for. * @param _batchHeader Header of the batch in which the element was included. * @param _proof Merkle inclusion proof for the element. */ function verifyStateCommitment( bytes32 _element, Lib_OVMCodec.ChainBatchHeader memory _batchHeader, Lib_OVMCodec.ChainInclusionProof memory _proof ) external view returns (bool _verified); /** * Checks whether a given batch is still inside its fraud proof window. * @param _batchHeader Header of the batch to check. * @return _inside Whether or not the batch is inside the fraud proof window. */ function insideFraudProofWindow(Lib_OVMCodec.ChainBatchHeader memory _batchHeader) external view returns (bool _inside); } // SPDX-License-Identifier: MIT pragma solidity >0.5.0 <0.9.0; /** * @title ICrossDomainMessenger */ interface ICrossDomainMessenger { /********** * Events * **********/ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); event RelayedMessage(bytes32 indexed msgHash); event FailedRelayedMessage(bytes32 indexed msgHash); /************* * Variables * *************/ function xDomainMessageSender() external view returns (address); /******************** * Public Functions * ********************/ /** * Sends a cross domain message to the target messenger. * @param _target Target contract address. * @param _message Message to send to the target. * @param _gasLimit Gas limit for the provided message. */ function sendMessage( address _target, bytes calldata _message, uint32 _gasLimit ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol"; /** * @title Lib_CrossDomainUtils */ library Lib_CrossDomainUtils { /** * Generates the correct cross domain calldata for a message. * @param _target Target contract address. * @param _sender Message sender address. * @param _message Message to send to the target. * @param _messageNonce Nonce for the provided message. * @return ABI encoded cross domain calldata. */ function encodeXDomainCalldata( address _target, address _sender, bytes memory _message, uint256 _messageNonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(address,address,bytes,uint256)", _target, _sender, _message, _messageNonce ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol"; import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol"; import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol"; import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol"; /** * @title Lib_OVMCodec */ library Lib_OVMCodec { /********* * Enums * *********/ enum QueueOrigin { SEQUENCER_QUEUE, L1TOL2_QUEUE } /*********** * Structs * ***********/ struct EVMAccount { uint256 nonce; uint256 balance; bytes32 storageRoot; bytes32 codeHash; } struct ChainBatchHeader { uint256 batchIndex; bytes32 batchRoot; uint256 batchSize; uint256 prevTotalElements; bytes extraData; } struct ChainInclusionProof { uint256 index; bytes32[] siblings; } struct Transaction { uint256 timestamp; uint256 blockNumber; QueueOrigin l1QueueOrigin; address l1TxOrigin; address entrypoint; uint256 gasLimit; bytes data; } struct TransactionChainElement { bool isSequenced; uint256 queueIndex; // QUEUED TX ONLY uint256 timestamp; // SEQUENCER TX ONLY uint256 blockNumber; // SEQUENCER TX ONLY bytes txData; // SEQUENCER TX ONLY } struct QueueElement { bytes32 transactionHash; uint40 timestamp; uint40 blockNumber; } /********************** * Internal Functions * **********************/ /** * Encodes a standard OVM transaction. * @param _transaction OVM transaction to encode. * @return Encoded transaction bytes. */ function encodeTransaction(Transaction memory _transaction) internal pure returns (bytes memory) { return abi.encodePacked( _transaction.timestamp, _transaction.blockNumber, _transaction.l1QueueOrigin, _transaction.l1TxOrigin, _transaction.entrypoint, _transaction.gasLimit, _transaction.data ); } /** * Hashes a standard OVM transaction. * @param _transaction OVM transaction to encode. * @return Hashed transaction */ function hashTransaction(Transaction memory _transaction) internal pure returns (bytes32) { return keccak256(encodeTransaction(_transaction)); } /** * @notice Decodes an RLP-encoded account state into a useful struct. * @param _encoded RLP-encoded account state. * @return Account state struct. */ function decodeEVMAccount(bytes memory _encoded) internal pure returns (EVMAccount memory) { Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(_encoded); return EVMAccount({ nonce: Lib_RLPReader.readUint256(accountState[0]), balance: Lib_RLPReader.readUint256(accountState[1]), storageRoot: Lib_RLPReader.readBytes32(accountState[2]), codeHash: Lib_RLPReader.readBytes32(accountState[3]) }); } /** * Calculates a hash for a given batch header. * @param _batchHeader Header to hash. * @return Hash of the header. */ function hashBatchHeader(Lib_OVMCodec.ChainBatchHeader memory _batchHeader) internal pure returns (bytes32) { return keccak256( abi.encode( _batchHeader.batchRoot, _batchHeader.batchSize, _batchHeader.prevTotalElements, _batchHeader.extraData ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_DefaultValues */ library Lib_DefaultValues { // The default x-domain message sender being set to a non-zero value makes // deployment a bit more expensive, but in exchange the refund on every call to // `relayMessage` by the L1 and L2 messengers will be higher. address internal constant DEFAULT_XDOMAIN_SENDER = 0x000000000000000000000000000000000000dEaD; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_PredeployAddresses */ library Lib_PredeployAddresses { address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; address payable internal constant OVM_ETH = payable(0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000); address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; address internal constant LIB_ADDRESS_MANAGER = 0x4200000000000000000000000000000000000008; address internal constant PROXY_EOA = 0x4200000000000000000000000000000000000009; address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; address internal constant L2_STANDARD_TOKEN_FACTORY = 0x4200000000000000000000000000000000000012; address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* External Imports */ import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Lib_AddressManager */ contract Lib_AddressManager is Ownable { /********** * Events * **********/ event AddressSet(string indexed _name, address _newAddress, address _oldAddress); /************* * Variables * *************/ mapping(bytes32 => address) private addresses; /******************** * Public Functions * ********************/ /** * Changes the address associated with a particular name. * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * Retrieves the address associated with a given name. * @param _name Name to retrieve an address for. * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /********************** * Internal Functions * **********************/ /** * Computes the hash of a name. * @param _name Name to compute a hash for. * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_AddressManager } from "./Lib_AddressManager.sol"; /** * @title Lib_AddressResolver */ abstract contract Lib_AddressResolver { /************* * Variables * *************/ Lib_AddressManager public libAddressManager; /*************** * Constructor * ***************/ /** * @param _libAddressManager Address of the Lib_AddressManager. */ constructor(address _libAddressManager) { libAddressManager = Lib_AddressManager(_libAddressManager); } /******************** * Public Functions * ********************/ /** * Resolves the address associated with a given name. * @param _name Name to resolve an address for. * @return Address associated with the given name. */ function resolve(string memory _name) public view returns (address) { return libAddressManager.getAddress(_name); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_RLPReader * @dev Adapted from "RLPReader" by Hamdi Allam ([email protected]). */ library Lib_RLPReader { /************* * Constants * *************/ uint256 internal constant MAX_LIST_LENGTH = 32; /********* * Enums * *********/ enum RLPItemType { DATA_ITEM, LIST_ITEM } /*********** * Structs * ***********/ struct RLPItem { uint256 length; uint256 ptr; } /********************** * Internal Functions * **********************/ /** * Converts bytes to a reference to memory position and length. * @param _in Input bytes to convert. * @return Output memory reference. */ function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) { uint256 ptr; assembly { ptr := add(_in, 32) } return RLPItem({ length: _in.length, ptr: ptr }); } /** * Reads an RLP list value into a list of RLP items. * @param _in RLP list value. * @return Decoded RLP list items. */ function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) { (uint256 listOffset, , RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.LIST_ITEM, "Invalid RLP list value."); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { require(itemCount < MAX_LIST_LENGTH, "Provided RLP list exceeds max list length."); (uint256 itemOffset, uint256 itemLength, ) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: _in.ptr + offset }) ); out[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: _in.ptr + offset }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out, itemCount) } return out; } /** * Reads an RLP list value into a list of RLP items. * @param _in RLP list value. * @return Decoded RLP list items. */ function readList(bytes memory _in) internal pure returns (RLPItem[] memory) { return readList(toRLPItem(_in)); } /** * Reads an RLP bytes value into bytes. * @param _in RLP bytes value. * @return Decoded bytes. */ function readBytes(RLPItem memory _in) internal pure returns (bytes memory) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes value."); return _copy(_in.ptr, itemOffset, itemLength); } /** * Reads an RLP bytes value into bytes. * @param _in RLP bytes value. * @return Decoded bytes. */ function readBytes(bytes memory _in) internal pure returns (bytes memory) { return readBytes(toRLPItem(_in)); } /** * Reads an RLP string value into a string. * @param _in RLP string value. * @return Decoded string. */ function readString(RLPItem memory _in) internal pure returns (string memory) { return string(readBytes(_in)); } /** * Reads an RLP string value into a string. * @param _in RLP string value. * @return Decoded string. */ function readString(bytes memory _in) internal pure returns (string memory) { return readString(toRLPItem(_in)); } /** * Reads an RLP bytes32 value into a bytes32. * @param _in RLP bytes32 value. * @return Decoded bytes32. */ function readBytes32(RLPItem memory _in) internal pure returns (bytes32) { require(_in.length <= 33, "Invalid RLP bytes32 value."); (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes32 value."); uint256 ptr = _in.ptr + itemOffset; bytes32 out; assembly { out := mload(ptr) // Shift the bytes over to match the item size. if lt(itemLength, 32) { out := div(out, exp(256, sub(32, itemLength))) } } return out; } /** * Reads an RLP bytes32 value into a bytes32. * @param _in RLP bytes32 value. * @return Decoded bytes32. */ function readBytes32(bytes memory _in) internal pure returns (bytes32) { return readBytes32(toRLPItem(_in)); } /** * Reads an RLP uint256 value into a uint256. * @param _in RLP uint256 value. * @return Decoded uint256. */ function readUint256(RLPItem memory _in) internal pure returns (uint256) { return uint256(readBytes32(_in)); } /** * Reads an RLP uint256 value into a uint256. * @param _in RLP uint256 value. * @return Decoded uint256. */ function readUint256(bytes memory _in) internal pure returns (uint256) { return readUint256(toRLPItem(_in)); } /** * Reads an RLP bool value into a bool. * @param _in RLP bool value. * @return Decoded bool. */ function readBool(RLPItem memory _in) internal pure returns (bool) { require(_in.length == 1, "Invalid RLP boolean value."); uint256 ptr = _in.ptr; uint256 out; assembly { out := byte(0, mload(ptr)) } require(out == 0 || out == 1, "Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1"); return out != 0; } /** * Reads an RLP bool value into a bool. * @param _in RLP bool value. * @return Decoded bool. */ function readBool(bytes memory _in) internal pure returns (bool) { return readBool(toRLPItem(_in)); } /** * Reads an RLP address value into a address. * @param _in RLP address value. * @return Decoded address. */ function readAddress(RLPItem memory _in) internal pure returns (address) { if (_in.length == 1) { return address(0); } require(_in.length == 21, "Invalid RLP address value."); return address(uint160(readUint256(_in))); } /** * Reads an RLP address value into a address. * @param _in RLP address value. * @return Decoded address. */ function readAddress(bytes memory _in) internal pure returns (address) { return readAddress(toRLPItem(_in)); } /** * Reads the raw bytes of an RLP item. * @param _in RLP item to read. * @return Raw RLP bytes. */ function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) { return _copy(_in); } /********************* * Private Functions * *********************/ /** * Decodes the length of an RLP item. * @param _in RLP item to decode. * @return Offset of the encoded data. * @return Length of the encoded data. * @return RLP item type (LIST_ITEM or DATA_ITEM). */ function _decodeLength(RLPItem memory _in) private pure returns ( uint256, uint256, RLPItemType ) { require(_in.length > 0, "RLP item cannot be null."); uint256 ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. uint256 strLen = prefix - 0x80; require(_in.length > strLen, "Invalid RLP short string."); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; require(_in.length > lenOfStrLen, "Invalid RLP long string length."); uint256 strLen; assembly { // Pick out the string length. strLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfStrLen))) } require(_in.length > lenOfStrLen + strLen, "Invalid RLP long string."); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. uint256 listLen = prefix - 0xc0; require(_in.length > listLen, "Invalid RLP short list."); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; require(_in.length > lenOfListLen, "Invalid RLP long list length."); uint256 listLen; assembly { // Pick out the list length. listLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfListLen))) } require(_in.length > lenOfListLen + listLen, "Invalid RLP long list."); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /** * Copies the bytes from a memory location. * @param _src Pointer to the location to read from. * @param _offset Offset to start reading from. * @param _length Number of bytes to read. * @return Copied bytes. */ function _copy( uint256 _src, uint256 _offset, uint256 _length ) private pure returns (bytes memory) { bytes memory out = new bytes(_length); if (out.length == 0) { return out; } uint256 src = _src + _offset; uint256 dest; assembly { dest := add(out, 32) } // Copy over as many complete words as we can. for (uint256 i = 0; i < _length / 32; i++) { assembly { mstore(dest, mload(src)) } src += 32; dest += 32; } // Pick out the remaining bytes. uint256 mask; unchecked { mask = 256**(32 - (_length % 32)) - 1; } assembly { mstore(dest, or(and(mload(src), not(mask)), and(mload(dest), mask))) } return out; } /** * Copies an RLP item into bytes. * @param _in RLP item to copy. * @return Copied bytes. */ function _copy(RLPItem memory _in) private pure returns (bytes memory) { return _copy(_in.ptr, 0, _in.length); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_RLPWriter * @author Bakaoh (with modifications) */ library Lib_RLPWriter { /********************** * Internal Functions * **********************/ /** * RLP encodes a byte string. * @param _in The byte string to encode. * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * RLP encodes a list of RLP encoded byte byte strings. * @param _in The list of RLP encoded byte strings. * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * RLP encodes a string. * @param _in The string to encode. * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * RLP encodes an address. * @param _in The address to encode. * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * RLP encodes a uint. * @param _in The uint256 to encode. * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * RLP encodes a bool. * @param _in The bool to encode. * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /********************* * Private Functions * *********************/ /** * Encode the first byte, followed by the `len` in binary form if `length` is more than 55. * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * Encode integer in big endian binary form with no leading zeroes. * @notice TODO: This should be optimized with assembly to save gas costs. * @param _x The integer to encode. * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * Copies a piece of memory to another location. * @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol. * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * Flattens a list of byte strings into one byte string. * @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol. * @param _list List of byte strings to flatten. * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol"; import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol"; import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol"; /** * @title Lib_MerkleTrie */ library Lib_MerkleTrie { /******************* * Data Structures * *******************/ enum NodeType { BranchNode, ExtensionNode, LeafNode } struct TrieNode { bytes encoded; Lib_RLPReader.RLPItem[] decoded; } /********************** * Contract Constants * **********************/ // TREE_RADIX determines the number of elements per branch node. uint256 constant TREE_RADIX = 16; // Branch nodes have TREE_RADIX elements plus an additional `value` slot. uint256 constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; // Leaf nodes and extension nodes always have two elements, a `path` and a `value`. uint256 constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; // Prefixes are prepended to the `path` within a leaf or extension node and // allow us to differentiate between the two node types. `ODD` or `EVEN` is // determined by the number of nibbles within the unprefixed `path`. If the // number of nibbles if even, we need to insert an extra padding nibble so // the resulting prefixed `path` has an even number of nibbles. uint8 constant PREFIX_EXTENSION_EVEN = 0; uint8 constant PREFIX_EXTENSION_ODD = 1; uint8 constant PREFIX_LEAF_EVEN = 2; uint8 constant PREFIX_LEAF_ODD = 3; // Just a utility constant. RLP represents `NULL` as 0x80. bytes1 constant RLP_NULL = bytes1(0x80); bytes constant RLP_NULL_BYTES = hex"80"; bytes32 internal constant KECCAK256_RLP_NULL_BYTES = keccak256(RLP_NULL_BYTES); /********************** * Internal Functions * **********************/ /** * @notice Verifies a proof that a given key/value pair is present in the * Merkle trie. * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proof Merkle trie inclusion proof for the desired node. Unlike * traditional Merkle trees, this proof is executed top-down and consists * of a list of RLP-encoded nodes that make a path down to the target node. * @param _root Known root of the Merkle trie. Used to verify that the * included proof is correctly constructed. * @return _verified `true` if the k/v pair exists in the trie, `false` otherwise. */ function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes memory _proof, bytes32 _root ) internal pure returns (bool _verified) { (bool exists, bytes memory value) = get(_key, _proof, _root); return (exists && Lib_BytesUtils.equal(_value, value)); } /** * @notice Updates a Merkle trie and returns a new root hash. * @param _key Key of the node to update, as a hex string. * @param _value Value of the node to update, as a hex string. * @param _proof Merkle trie inclusion proof for the node *nearest* the * target node. If the key exists, we can simply update the value. * Otherwise, we need to modify the trie to handle the new k/v pair. * @param _root Known root of the Merkle trie. Used to verify that the * included proof is correctly constructed. * @return _updatedRoot Root hash of the newly constructed trie. */ function update( bytes memory _key, bytes memory _value, bytes memory _proof, bytes32 _root ) internal pure returns (bytes32 _updatedRoot) { // Special case when inserting the very first node. if (_root == KECCAK256_RLP_NULL_BYTES) { return getSingleNodeRootHash(_key, _value); } TrieNode[] memory proof = _parseProof(_proof); (uint256 pathLength, bytes memory keyRemainder, ) = _walkNodePath(proof, _key, _root); TrieNode[] memory newPath = _getNewPath(proof, pathLength, _key, keyRemainder, _value); return _getUpdatedTrieRoot(newPath, _key); } /** * @notice Retrieves the value associated with a given key. * @param _key Key to search for, as hex bytes. * @param _proof Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * @return _exists Whether or not the key exists. * @return _value Value of the key if it exists. */ function get( bytes memory _key, bytes memory _proof, bytes32 _root ) internal pure returns (bool _exists, bytes memory _value) { TrieNode[] memory proof = _parseProof(_proof); (uint256 pathLength, bytes memory keyRemainder, bool isFinalNode) = _walkNodePath( proof, _key, _root ); bool exists = keyRemainder.length == 0; require(exists || isFinalNode, "Provided proof is invalid."); bytes memory value = exists ? _getNodeValue(proof[pathLength - 1]) : bytes(""); return (exists, value); } /** * Computes the root hash for a trie with a single node. * @param _key Key for the single node. * @param _value Value for the single node. * @return _updatedRoot Hash of the trie. */ function getSingleNodeRootHash(bytes memory _key, bytes memory _value) internal pure returns (bytes32 _updatedRoot) { return keccak256(_makeLeafNode(Lib_BytesUtils.toNibbles(_key), _value).encoded); } /********************* * Private Functions * *********************/ /** * @notice Walks through a proof using a provided key. * @param _proof Inclusion proof to walk through. * @param _key Key to use for the walk. * @param _root Known root of the trie. * @return _pathLength Length of the final path * @return _keyRemainder Portion of the key remaining after the walk. * @return _isFinalNode Whether or not we've hit a dead end. */ function _walkNodePath( TrieNode[] memory _proof, bytes memory _key, bytes32 _root ) private pure returns ( uint256 _pathLength, bytes memory _keyRemainder, bool _isFinalNode ) { uint256 pathLength = 0; bytes memory key = Lib_BytesUtils.toNibbles(_key); bytes32 currentNodeID = _root; uint256 currentKeyIndex = 0; uint256 currentKeyIncrement = 0; TrieNode memory currentNode; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < _proof.length; i++) { currentNode = _proof[i]; currentKeyIndex += currentKeyIncrement; // Keep track of the proof elements we actually need. // It's expensive to resize arrays, so this simply reduces gas costs. pathLength += 1; if (currentKeyIndex == 0) { // First proof element is always the root node. require(keccak256(currentNode.encoded) == currentNodeID, "Invalid root hash"); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( keccak256(currentNode.encoded) == currentNodeID, "Invalid large internal hash" ); } else { // Nodes smaller than 31 bytes aren't hashed. require( Lib_BytesUtils.toBytes32(currentNode.encoded) == currentNodeID, "Invalid internal node hash" ); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // We've hit the end of the key // meaning the value should be within this branch node. break; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); Lib_RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIncrement = 1; continue; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Lib_BytesUtils.slice(path, offset); bytes memory keyRemainder = Lib_BytesUtils.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { if ( pathRemainder.length == sharedNibbleLength && keyRemainder.length == sharedNibbleLength ) { // The key within this leaf matches our key exactly. // Increment the key index to reflect that we have no remainder. currentKeyIndex += sharedNibbleLength; } // We've hit a leaf node, so our next node should be NULL. currentNodeID = bytes32(RLP_NULL); break; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { if (sharedNibbleLength != pathRemainder.length) { // Our extension node is not identical to the remainder. // We've hit the end of this path // updates will need to modify this extension. currentNodeID = bytes32(RLP_NULL); break; } else { // Our extension shares some nibbles. // Carry on to the next node. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIncrement = sharedNibbleLength; continue; } } else { revert("Received a node with an unknown prefix"); } } else { revert("Received an unparseable node."); } } // If our node ID is NULL, then we're at a dead end. bool isFinalNode = currentNodeID == bytes32(RLP_NULL); return (pathLength, Lib_BytesUtils.slice(key, currentKeyIndex), isFinalNode); } /** * @notice Creates new nodes to support a k/v pair insertion into a given Merkle trie path. * @param _path Path to the node nearest the k/v pair. * @param _pathLength Length of the path. Necessary because the provided path may include * additional nodes (e.g., it comes directly from a proof) and we can't resize in-memory * arrays without costly duplication. * @param _key Full original key. * @param _keyRemainder Portion of the initial key that must be inserted into the trie. * @param _value Value to insert at the given key. * @return _newPath A new path with the inserted k/v pair and extra supporting nodes. */ function _getNewPath( TrieNode[] memory _path, uint256 _pathLength, bytes memory _key, bytes memory _keyRemainder, bytes memory _value ) private pure returns (TrieNode[] memory _newPath) { bytes memory keyRemainder = _keyRemainder; // Most of our logic depends on the status of the last node in the path. TrieNode memory lastNode = _path[_pathLength - 1]; NodeType lastNodeType = _getNodeType(lastNode); // Create an array for newly created nodes. // We need up to three new nodes, depending on the contents of the last node. // Since array resizing is expensive, we'll keep track of the size manually. // We're using an explicit `totalNewNodes += 1` after insertions for clarity. TrieNode[] memory newNodes = new TrieNode[](3); uint256 totalNewNodes = 0; // solhint-disable-next-line max-line-length // Reference: https://github.com/ethereumjs/merkle-patricia-tree/blob/c0a10395aab37d42c175a47114ebfcbd7efcf059/src/baseTrie.ts#L294-L313 bool matchLeaf = false; if (lastNodeType == NodeType.LeafNode) { uint256 l = 0; if (_path.length > 0) { for (uint256 i = 0; i < _path.length - 1; i++) { if (_getNodeType(_path[i]) == NodeType.BranchNode) { l++; } else { l += _getNodeKey(_path[i]).length; } } } if ( _getSharedNibbleLength( _getNodeKey(lastNode), Lib_BytesUtils.slice(Lib_BytesUtils.toNibbles(_key), l) ) == _getNodeKey(lastNode).length && keyRemainder.length == 0 ) { matchLeaf = true; } } if (matchLeaf) { // We've found a leaf node with the given key. // Simply need to update the value of the node to match. newNodes[totalNewNodes] = _makeLeafNode(_getNodeKey(lastNode), _value); totalNewNodes += 1; } else if (lastNodeType == NodeType.BranchNode) { if (keyRemainder.length == 0) { // We've found a branch node with the given key. // Simply need to update the value of the node to match. newNodes[totalNewNodes] = _editBranchValue(lastNode, _value); totalNewNodes += 1; } else { // We've found a branch node, but it doesn't contain our key. // Reinsert the old branch for now. newNodes[totalNewNodes] = lastNode; totalNewNodes += 1; // Create a new leaf node, slicing our remainder since the first byte points // to our branch node. newNodes[totalNewNodes] = _makeLeafNode( Lib_BytesUtils.slice(keyRemainder, 1), _value ); totalNewNodes += 1; } } else { // Our last node is either an extension node or a leaf node with a different key. bytes memory lastNodeKey = _getNodeKey(lastNode); uint256 sharedNibbleLength = _getSharedNibbleLength(lastNodeKey, keyRemainder); if (sharedNibbleLength != 0) { // We've got some shared nibbles between the last node and our key remainder. // We'll need to insert an extension node that covers these shared nibbles. bytes memory nextNodeKey = Lib_BytesUtils.slice(lastNodeKey, 0, sharedNibbleLength); newNodes[totalNewNodes] = _makeExtensionNode(nextNodeKey, _getNodeHash(_value)); totalNewNodes += 1; // Cut down the keys since we've just covered these shared nibbles. lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, sharedNibbleLength); keyRemainder = Lib_BytesUtils.slice(keyRemainder, sharedNibbleLength); } // Create an empty branch to fill in. TrieNode memory newBranch = _makeEmptyBranchNode(); if (lastNodeKey.length == 0) { // Key remainder was larger than the key for our last node. // The value within our last node is therefore going to be shifted into // a branch value slot. newBranch = _editBranchValue(newBranch, _getNodeValue(lastNode)); } else { // Last node key was larger than the key remainder. // We're going to modify some index of our branch. uint8 branchKey = uint8(lastNodeKey[0]); // Move on to the next nibble. lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, 1); if (lastNodeType == NodeType.LeafNode) { // We're dealing with a leaf node. // We'll modify the key and insert the old leaf node into the branch index. TrieNode memory modifiedLastNode = _makeLeafNode( lastNodeKey, _getNodeValue(lastNode) ); newBranch = _editBranchIndex( newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded) ); } else if (lastNodeKey.length != 0) { // We're dealing with a shrinking extension node. // We need to modify the node to decrease the size of the key. TrieNode memory modifiedLastNode = _makeExtensionNode( lastNodeKey, _getNodeValue(lastNode) ); newBranch = _editBranchIndex( newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded) ); } else { // We're dealing with an unnecessary extension node. // We're going to delete the node entirely. // Simply insert its current value into the branch index. newBranch = _editBranchIndex(newBranch, branchKey, _getNodeValue(lastNode)); } } if (keyRemainder.length == 0) { // We've got nothing left in the key remainder. // Simply insert the value into the branch value slot. newBranch = _editBranchValue(newBranch, _value); // Push the branch into the list of new nodes. newNodes[totalNewNodes] = newBranch; totalNewNodes += 1; } else { // We've got some key remainder to work with. // We'll be inserting a leaf node into the trie. // First, move on to the next nibble. keyRemainder = Lib_BytesUtils.slice(keyRemainder, 1); // Push the branch into the list of new nodes. newNodes[totalNewNodes] = newBranch; totalNewNodes += 1; // Push a new leaf node for our k/v pair. newNodes[totalNewNodes] = _makeLeafNode(keyRemainder, _value); totalNewNodes += 1; } } // Finally, join the old path with our newly created nodes. // Since we're overwriting the last node in the path, we use `_pathLength - 1`. return _joinNodeArrays(_path, _pathLength - 1, newNodes, totalNewNodes); } /** * @notice Computes the trie root from a given path. * @param _nodes Path to some k/v pair. * @param _key Key for the k/v pair. * @return _updatedRoot Root hash for the updated trie. */ function _getUpdatedTrieRoot(TrieNode[] memory _nodes, bytes memory _key) private pure returns (bytes32 _updatedRoot) { bytes memory key = Lib_BytesUtils.toNibbles(_key); // Some variables to keep track of during iteration. TrieNode memory currentNode; NodeType currentNodeType; bytes memory previousNodeHash; // Run through the path backwards to rebuild our root hash. for (uint256 i = _nodes.length; i > 0; i--) { // Pick out the current node. currentNode = _nodes[i - 1]; currentNodeType = _getNodeType(currentNode); if (currentNodeType == NodeType.LeafNode) { // Leaf nodes are already correctly encoded. // Shift the key over to account for the nodes key. bytes memory nodeKey = _getNodeKey(currentNode); key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length); } else if (currentNodeType == NodeType.ExtensionNode) { // Shift the key over to account for the nodes key. bytes memory nodeKey = _getNodeKey(currentNode); key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length); // If this node is the last element in the path, it'll be correctly encoded // and we can skip this part. if (previousNodeHash.length > 0) { // Re-encode the node based on the previous node. currentNode = _editExtensionNodeValue(currentNode, previousNodeHash); } } else if (currentNodeType == NodeType.BranchNode) { // If this node is the last element in the path, it'll be correctly encoded // and we can skip this part. if (previousNodeHash.length > 0) { // Re-encode the node based on the previous node. uint8 branchKey = uint8(key[key.length - 1]); key = Lib_BytesUtils.slice(key, 0, key.length - 1); currentNode = _editBranchIndex(currentNode, branchKey, previousNodeHash); } } // Compute the node hash for the next iteration. previousNodeHash = _getNodeHash(currentNode.encoded); } // Current node should be the root at this point. // Simply return the hash of its encoding. return keccak256(currentNode.encoded); } /** * @notice Parses an RLP-encoded proof into something more useful. * @param _proof RLP-encoded proof to parse. * @return _parsed Proof parsed into easily accessible structs. */ function _parseProof(bytes memory _proof) private pure returns (TrieNode[] memory _parsed) { Lib_RLPReader.RLPItem[] memory nodes = Lib_RLPReader.readList(_proof); TrieNode[] memory proof = new TrieNode[](nodes.length); for (uint256 i = 0; i < nodes.length; i++) { bytes memory encoded = Lib_RLPReader.readBytes(nodes[i]); proof[i] = TrieNode({ encoded: encoded, decoded: Lib_RLPReader.readList(encoded) }); } return proof; } /** * @notice Picks out the ID for a node. Node ID is referred to as the * "hash" within the specification, but nodes < 32 bytes are not actually * hashed. * @param _node Node to pull an ID for. * @return _nodeID ID for the node, depending on the size of its contents. */ function _getNodeID(Lib_RLPReader.RLPItem memory _node) private pure returns (bytes32 _nodeID) { bytes memory nodeID; if (_node.length < 32) { // Nodes smaller than 32 bytes are RLP encoded. nodeID = Lib_RLPReader.readRawBytes(_node); } else { // Nodes 32 bytes or larger are hashed. nodeID = Lib_RLPReader.readBytes(_node); } return Lib_BytesUtils.toBytes32(nodeID); } /** * @notice Gets the path for a leaf or extension node. * @param _node Node to get a path for. * @return _path Node path, converted to an array of nibbles. */ function _getNodePath(TrieNode memory _node) private pure returns (bytes memory _path) { return Lib_BytesUtils.toNibbles(Lib_RLPReader.readBytes(_node.decoded[0])); } /** * @notice Gets the key for a leaf or extension node. Keys are essentially * just paths without any prefix. * @param _node Node to get a key for. * @return _key Node key, converted to an array of nibbles. */ function _getNodeKey(TrieNode memory _node) private pure returns (bytes memory _key) { return _removeHexPrefix(_getNodePath(_node)); } /** * @notice Gets the path for a node. * @param _node Node to get a value for. * @return _value Node value, as hex bytes. */ function _getNodeValue(TrieNode memory _node) private pure returns (bytes memory _value) { return Lib_RLPReader.readBytes(_node.decoded[_node.decoded.length - 1]); } /** * @notice Computes the node hash for an encoded node. Nodes < 32 bytes * are not hashed, all others are keccak256 hashed. * @param _encoded Encoded node to hash. * @return _hash Hash of the encoded node. Simply the input if < 32 bytes. */ function _getNodeHash(bytes memory _encoded) private pure returns (bytes memory _hash) { if (_encoded.length < 32) { return _encoded; } else { return abi.encodePacked(keccak256(_encoded)); } } /** * @notice Determines the type for a given node. * @param _node Node to determine a type for. * @return _type Type of the node; BranchNode/ExtensionNode/LeafNode. */ function _getNodeType(TrieNode memory _node) private pure returns (NodeType _type) { if (_node.decoded.length == BRANCH_NODE_LENGTH) { return NodeType.BranchNode; } else if (_node.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(_node); uint8 prefix = uint8(path[0]); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { return NodeType.LeafNode; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { return NodeType.ExtensionNode; } } revert("Invalid node type"); } /** * @notice Utility; determines the number of nibbles shared between two * nibble arrays. * @param _a First nibble array. * @param _b Second nibble array. * @return _shared Number of shared nibbles. */ function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 _shared) { uint256 i = 0; while (_a.length > i && _b.length > i && _a[i] == _b[i]) { i++; } return i; } /** * @notice Utility; converts an RLP-encoded node into our nice struct. * @param _raw RLP-encoded node to convert. * @return _node Node as a TrieNode struct. */ function _makeNode(bytes[] memory _raw) private pure returns (TrieNode memory _node) { bytes memory encoded = Lib_RLPWriter.writeList(_raw); return TrieNode({ encoded: encoded, decoded: Lib_RLPReader.readList(encoded) }); } /** * @notice Utility; converts an RLP-decoded node into our nice struct. * @param _items RLP-decoded node to convert. * @return _node Node as a TrieNode struct. */ function _makeNode(Lib_RLPReader.RLPItem[] memory _items) private pure returns (TrieNode memory _node) { bytes[] memory raw = new bytes[](_items.length); for (uint256 i = 0; i < _items.length; i++) { raw[i] = Lib_RLPReader.readRawBytes(_items[i]); } return _makeNode(raw); } /** * @notice Creates a new extension node. * @param _key Key for the extension node, unprefixed. * @param _value Value for the extension node. * @return _node New extension node with the given k/v pair. */ function _makeExtensionNode(bytes memory _key, bytes memory _value) private pure returns (TrieNode memory _node) { bytes[] memory raw = new bytes[](2); bytes memory key = _addHexPrefix(_key, false); raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key)); raw[1] = Lib_RLPWriter.writeBytes(_value); return _makeNode(raw); } /** * Creates a new extension node with the same key but a different value. * @param _node Extension node to copy and modify. * @param _value New value for the extension node. * @return New node with the same key and different value. */ function _editExtensionNodeValue(TrieNode memory _node, bytes memory _value) private pure returns (TrieNode memory) { bytes[] memory raw = new bytes[](2); bytes memory key = _addHexPrefix(_getNodeKey(_node), false); raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key)); if (_value.length < 32) { raw[1] = _value; } else { raw[1] = Lib_RLPWriter.writeBytes(_value); } return _makeNode(raw); } /** * @notice Creates a new leaf node. * @dev This function is essentially identical to `_makeExtensionNode`. * Although we could route both to a single method with a flag, it's * more gas efficient to keep them separate and duplicate the logic. * @param _key Key for the leaf node, unprefixed. * @param _value Value for the leaf node. * @return _node New leaf node with the given k/v pair. */ function _makeLeafNode(bytes memory _key, bytes memory _value) private pure returns (TrieNode memory _node) { bytes[] memory raw = new bytes[](2); bytes memory key = _addHexPrefix(_key, true); raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key)); raw[1] = Lib_RLPWriter.writeBytes(_value); return _makeNode(raw); } /** * @notice Creates an empty branch node. * @return _node Empty branch node as a TrieNode struct. */ function _makeEmptyBranchNode() private pure returns (TrieNode memory _node) { bytes[] memory raw = new bytes[](BRANCH_NODE_LENGTH); for (uint256 i = 0; i < raw.length; i++) { raw[i] = RLP_NULL_BYTES; } return _makeNode(raw); } /** * @notice Modifies the value slot for a given branch. * @param _branch Branch node to modify. * @param _value Value to insert into the branch. * @return _updatedNode Modified branch node. */ function _editBranchValue(TrieNode memory _branch, bytes memory _value) private pure returns (TrieNode memory _updatedNode) { bytes memory encoded = Lib_RLPWriter.writeBytes(_value); _branch.decoded[_branch.decoded.length - 1] = Lib_RLPReader.toRLPItem(encoded); return _makeNode(_branch.decoded); } /** * @notice Modifies a slot at an index for a given branch. * @param _branch Branch node to modify. * @param _index Slot index to modify. * @param _value Value to insert into the slot. * @return _updatedNode Modified branch node. */ function _editBranchIndex( TrieNode memory _branch, uint8 _index, bytes memory _value ) private pure returns (TrieNode memory _updatedNode) { bytes memory encoded = _value.length < 32 ? _value : Lib_RLPWriter.writeBytes(_value); _branch.decoded[_index] = Lib_RLPReader.toRLPItem(encoded); return _makeNode(_branch.decoded); } /** * @notice Utility; adds a prefix to a key. * @param _key Key to prefix. * @param _isLeaf Whether or not the key belongs to a leaf. * @return _prefixedKey Prefixed key. */ function _addHexPrefix(bytes memory _key, bool _isLeaf) private pure returns (bytes memory _prefixedKey) { uint8 prefix = _isLeaf ? uint8(0x02) : uint8(0x00); uint8 offset = uint8(_key.length % 2); bytes memory prefixed = new bytes(2 - offset); prefixed[0] = bytes1(prefix + offset); return abi.encodePacked(prefixed, _key); } /** * @notice Utility; removes a prefix from a path. * @param _path Path to remove the prefix from. * @return _unprefixedKey Unprefixed key. */ function _removeHexPrefix(bytes memory _path) private pure returns (bytes memory _unprefixedKey) { if (uint8(_path[0]) % 2 == 0) { return Lib_BytesUtils.slice(_path, 2); } else { return Lib_BytesUtils.slice(_path, 1); } } /** * @notice Utility; combines two node arrays. Array lengths are required * because the actual lengths may be longer than the filled lengths. * Array resizing is extremely costly and should be avoided. * @param _a First array to join. * @param _aLength Length of the first array. * @param _b Second array to join. * @param _bLength Length of the second array. * @return _joined Combined node array. */ function _joinNodeArrays( TrieNode[] memory _a, uint256 _aLength, TrieNode[] memory _b, uint256 _bLength ) private pure returns (TrieNode[] memory _joined) { TrieNode[] memory ret = new TrieNode[](_aLength + _bLength); // Copy elements from the first array. for (uint256 i = 0; i < _aLength; i++) { ret[i] = _a[i]; } // Copy elements from the second array. for (uint256 i = 0; i < _bLength; i++) { ret[i + _aLength] = _b[i]; } return ret; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /* Library Imports */ import { Lib_MerkleTrie } from "./Lib_MerkleTrie.sol"; /** * @title Lib_SecureMerkleTrie */ library Lib_SecureMerkleTrie { /********************** * Internal Functions * **********************/ /** * @notice Verifies a proof that a given key/value pair is present in the * Merkle trie. * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proof Merkle trie inclusion proof for the desired node. Unlike * traditional Merkle trees, this proof is executed top-down and consists * of a list of RLP-encoded nodes that make a path down to the target node. * @param _root Known root of the Merkle trie. Used to verify that the * included proof is correctly constructed. * @return _verified `true` if the k/v pair exists in the trie, `false` otherwise. */ function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes memory _proof, bytes32 _root ) internal pure returns (bool _verified) { bytes memory key = _getSecureKey(_key); return Lib_MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /** * @notice Updates a Merkle trie and returns a new root hash. * @param _key Key of the node to update, as a hex string. * @param _value Value of the node to update, as a hex string. * @param _proof Merkle trie inclusion proof for the node *nearest* the * target node. If the key exists, we can simply update the value. * Otherwise, we need to modify the trie to handle the new k/v pair. * @param _root Known root of the Merkle trie. Used to verify that the * included proof is correctly constructed. * @return _updatedRoot Root hash of the newly constructed trie. */ function update( bytes memory _key, bytes memory _value, bytes memory _proof, bytes32 _root ) internal pure returns (bytes32 _updatedRoot) { bytes memory key = _getSecureKey(_key); return Lib_MerkleTrie.update(key, _value, _proof, _root); } /** * @notice Retrieves the value associated with a given key. * @param _key Key to search for, as hex bytes. * @param _proof Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * @return _exists Whether or not the key exists. * @return _value Value of the key if it exists. */ function get( bytes memory _key, bytes memory _proof, bytes32 _root ) internal pure returns (bool _exists, bytes memory _value) { bytes memory key = _getSecureKey(_key); return Lib_MerkleTrie.get(key, _proof, _root); } /** * Computes the root hash for a trie with a single node. * @param _key Key for the single node. * @param _value Value for the single node. * @return _updatedRoot Hash of the trie. */ function getSingleNodeRootHash(bytes memory _key, bytes memory _value) internal pure returns (bytes32 _updatedRoot) { bytes memory key = _getSecureKey(_key); return Lib_MerkleTrie.getSingleNodeRootHash(key, _value); } /********************* * Private Functions * *********************/ /** * Computes the secure counterpart to a key. * @param _key Key to get a secure key from. * @return _secureKey Secure version of the key. */ function _getSecureKey(bytes memory _key) private pure returns (bytes memory _secureKey) { return abi.encodePacked(keccak256(_key)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_Byte32Utils */ library Lib_Bytes32Utils { /********************** * Internal Functions * **********************/ /** * Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true." * @param _in Input bytes32 value. * @return Bytes32 as a boolean. */ function toBool(bytes32 _in) internal pure returns (bool) { return _in != 0; } /** * Converts a boolean to a bytes32 value. * @param _in Input boolean value. * @return Boolean as a bytes32. */ function fromBool(bool _in) internal pure returns (bytes32) { return bytes32(uint256(_in ? 1 : 0)); } /** * Converts a bytes32 value to an address. Takes the *last* 20 bytes. * @param _in Input bytes32 value. * @return Bytes32 as an address. */ function toAddress(bytes32 _in) internal pure returns (address) { return address(uint160(uint256(_in))); } /** * Converts an address to a bytes32. * @param _in Input address value. * @return Address as a bytes32. */ function fromAddress(address _in) internal pure returns (bytes32) { return bytes32(uint256(uint160(_in))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Lib_BytesUtils */ library Lib_BytesUtils { /********************** * Internal Functions * **********************/ function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } function toBytes32(bytes memory _bytes) internal pure returns (bytes32) { if (_bytes.length < 32) { bytes32 ret; assembly { ret := mload(add(_bytes, 32)) } return ret; } return abi.decode(_bytes, (bytes32)); // will truncate if input length > 32 bytes } function toUint256(bytes memory _bytes) internal pure returns (uint256) { return uint256(toBytes32(_bytes)); } function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory nibbles = new bytes(_bytes.length * 2); for (uint256 i = 0; i < _bytes.length; i++) { nibbles[i * 2] = _bytes[i] >> 4; nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16); } return nibbles; } function fromNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory ret = new bytes(_bytes.length / 2); for (uint256 i = 0; i < ret.length; i++) { ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]); } return ret; } function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.7; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }