Transaction Hash:
Block:
12389338 at May-07-2021 08:26:55 PM +UTC
Transaction Fee:
0.002858684532 ETH
$10.99
Gas Used:
48,813 Gas / 58.564 Gwei
Emitted Events:
288 |
StormXToken.Approval( owner=[Sender] 0xab19acf854872651d0ff2fa118dfdcd5fdc6a8d5, spender=0x7a250d56...659F2488D, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0xab19acF8...5Fdc6a8d5 |
0.03819274 Eth
Nonce: 13
|
0.035334055468 Eth
Nonce: 14
| 0.002858684532 | ||
0xbE9375C6...A5b722803 | |||||
0xF20b3387...902360704
Miner
| (F2Pool) | 3,959.829146851091570273 Eth | 3,959.832005535623570273 Eth | 0.002858684532 |
Execution Trace
StormXToken.approve( spender=0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
approve[ERC20 (ln:406)]
_approve[ERC20 (ln:407)]
Approval[ERC20 (ln:542)]
_msgSender[ERC20 (ln:407)]
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol pragma solidity ^0.5.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/token/ERC20/ERC20Detailed.sol pragma solidity ^0.5.0; /** * @dev Optional functions from the ERC20 standard. */ contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of * these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } } // File: @openzeppelin/contracts/GSN/Context.sol pragma solidity ^0.5.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } // solhint-disable-previous-line no-empty-blocks function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/math/SafeMath.sol pragma solidity ^0.5.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/token/ERC20/ERC20.sol pragma solidity ^0.5.0; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20Mintable}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Destroys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See {_burn} and {_approve}. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance")); } } // File: @openzeppelin/contracts/GSN/IRelayRecipient.sol pragma solidity ^0.5.0; /** * @dev Base interface for a contract that will be called via the GSN from {IRelayHub}. * * TIP: You don't need to write an implementation yourself! Inherit from {GSNRecipient} instead. */ interface IRelayRecipient { /** * @dev Returns the address of the {IRelayHub} instance this recipient interacts with. */ function getHubAddr() external view returns (address); /** * @dev Called by {IRelayHub} to validate if this recipient accepts being charged for a relayed call. Note that the * recipient will be charged regardless of the execution result of the relayed call (i.e. if it reverts or not). * * The relay request was originated by `from` and will be served by `relay`. `encodedFunction` is the relayed call * calldata, so its first four bytes are the function selector. The relayed call will be forwarded `gasLimit` gas, * and the transaction executed with a gas price of at least `gasPrice`. `relay`'s fee is `transactionFee`, and the * recipient will be charged at most `maxPossibleCharge` (in wei). `nonce` is the sender's (`from`) nonce for * replay attack protection in {IRelayHub}, and `approvalData` is a optional parameter that can be used to hold a signature * over all or some of the previous values. * * Returns a tuple, where the first value is used to indicate approval (0) or rejection (custom non-zero error code, * values 1 to 10 are reserved) and the second one is data to be passed to the other {IRelayRecipient} functions. * * {acceptRelayedCall} is called with 50k gas: if it runs out during execution, the request will be considered * rejected. A regular revert will also trigger a rejection. */ function acceptRelayedCall( address relay, address from, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata approvalData, uint256 maxPossibleCharge ) external view returns (uint256, bytes memory); /** * @dev Called by {IRelayHub} on approved relay call requests, before the relayed call is executed. This allows to e.g. * pre-charge the sender of the transaction. * * `context` is the second value returned in the tuple by {acceptRelayedCall}. * * Returns a value to be passed to {postRelayedCall}. * * {preRelayedCall} is called with 100k gas: if it runs out during exection or otherwise reverts, the relayed call * will not be executed, but the recipient will still be charged for the transaction's cost. */ function preRelayedCall(bytes calldata context) external returns (bytes32); /** * @dev Called by {IRelayHub} on approved relay call requests, after the relayed call is executed. This allows to e.g. * charge the user for the relayed call costs, return any overcharges from {preRelayedCall}, or perform * contract-specific bookkeeping. * * `context` is the second value returned in the tuple by {acceptRelayedCall}. `success` is the execution status of * the relayed call. `actualCharge` is an estimate of how much the recipient will be charged for the transaction, * not including any gas used by {postRelayedCall} itself. `preRetVal` is {preRelayedCall}'s return value. * * * {postRelayedCall} is called with 100k gas: if it runs out during execution or otherwise reverts, the relayed call * and the call to {preRelayedCall} will be reverted retroactively, but the recipient will still be charged for the * transaction's cost. */ function postRelayedCall(bytes calldata context, bool success, uint256 actualCharge, bytes32 preRetVal) external; } // File: @openzeppelin/contracts/GSN/IRelayHub.sol pragma solidity ^0.5.0; /** * @dev Interface for `RelayHub`, the core contract of the GSN. Users should not need to interact with this contract * directly. * * See the https://github.com/OpenZeppelin/openzeppelin-gsn-helpers[OpenZeppelin GSN helpers] for more information on * how to deploy an instance of `RelayHub` on your local test network. */ interface IRelayHub { // Relay management /** * @dev Adds stake to a relay and sets its `unstakeDelay`. If the relay does not exist, it is created, and the caller * of this function becomes its owner. If the relay already exists, only the owner can call this function. A relay * cannot be its own owner. * * All Ether in this function call will be added to the relay's stake. * Its unstake delay will be assigned to `unstakeDelay`, but the new value must be greater or equal to the current one. * * Emits a {Staked} event. */ function stake(address relayaddr, uint256 unstakeDelay) external payable; /** * @dev Emitted when a relay's stake or unstakeDelay are increased */ event Staked(address indexed relay, uint256 stake, uint256 unstakeDelay); /** * @dev Registers the caller as a relay. * The relay must be staked for, and not be a contract (i.e. this function must be called directly from an EOA). * * This function can be called multiple times, emitting new {RelayAdded} events. Note that the received * `transactionFee` is not enforced by {relayCall}. * * Emits a {RelayAdded} event. */ function registerRelay(uint256 transactionFee, string calldata url) external; /** * @dev Emitted when a relay is registered or re-registerd. Looking at these events (and filtering out * {RelayRemoved} events) lets a client discover the list of available relays. */ event RelayAdded(address indexed relay, address indexed owner, uint256 transactionFee, uint256 stake, uint256 unstakeDelay, string url); /** * @dev Removes (deregisters) a relay. Unregistered (but staked for) relays can also be removed. * * Can only be called by the owner of the relay. After the relay's `unstakeDelay` has elapsed, {unstake} will be * callable. * * Emits a {RelayRemoved} event. */ function removeRelayByOwner(address relay) external; /** * @dev Emitted when a relay is removed (deregistered). `unstakeTime` is the time when unstake will be callable. */ event RelayRemoved(address indexed relay, uint256 unstakeTime); /** Deletes the relay from the system, and gives back its stake to the owner. * * Can only be called by the relay owner, after `unstakeDelay` has elapsed since {removeRelayByOwner} was called. * * Emits an {Unstaked} event. */ function unstake(address relay) external; /** * @dev Emitted when a relay is unstaked for, including the returned stake. */ event Unstaked(address indexed relay, uint256 stake); // States a relay can be in enum RelayState { Unknown, // The relay is unknown to the system: it has never been staked for Staked, // The relay has been staked for, but it is not yet active Registered, // The relay has registered itself, and is active (can relay calls) Removed // The relay has been removed by its owner and can no longer relay calls. It must wait for its unstakeDelay to elapse before it can unstake } /** * @dev Returns a relay's status. Note that relays can be deleted when unstaked or penalized, causing this function * to return an empty entry. */ function getRelay(address relay) external view returns (uint256 totalStake, uint256 unstakeDelay, uint256 unstakeTime, address payable owner, RelayState state); // Balance management /** * @dev Deposits Ether for a contract, so that it can receive (and pay for) relayed transactions. * * Unused balance can only be withdrawn by the contract itself, by calling {withdraw}. * * Emits a {Deposited} event. */ function depositFor(address target) external payable; /** * @dev Emitted when {depositFor} is called, including the amount and account that was funded. */ event Deposited(address indexed recipient, address indexed from, uint256 amount); /** * @dev Returns an account's deposits. These can be either a contracts's funds, or a relay owner's revenue. */ function balanceOf(address target) external view returns (uint256); /** * Withdraws from an account's balance, sending it back to it. Relay owners call this to retrieve their revenue, and * contracts can use it to reduce their funding. * * Emits a {Withdrawn} event. */ function withdraw(uint256 amount, address payable dest) external; /** * @dev Emitted when an account withdraws funds from `RelayHub`. */ event Withdrawn(address indexed account, address indexed dest, uint256 amount); // Relaying /** * @dev Checks if the `RelayHub` will accept a relayed operation. * Multiple things must be true for this to happen: * - all arguments must be signed for by the sender (`from`) * - the sender's nonce must be the current one * - the recipient must accept this transaction (via {acceptRelayedCall}) * * Returns a `PreconditionCheck` value (`OK` when the transaction can be relayed), or a recipient-specific error * code if it returns one in {acceptRelayedCall}. */ function canRelay( address relay, address from, address to, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata signature, bytes calldata approvalData ) external view returns (uint256 status, bytes memory recipientContext); // Preconditions for relaying, checked by canRelay and returned as the corresponding numeric values. enum PreconditionCheck { OK, // All checks passed, the call can be relayed WrongSignature, // The transaction to relay is not signed by requested sender WrongNonce, // The provided nonce has already been used by the sender AcceptRelayedCallReverted, // The recipient rejected this call via acceptRelayedCall InvalidRecipientStatusCode // The recipient returned an invalid (reserved) status code } /** * @dev Relays a transaction. * * For this to succeed, multiple conditions must be met: * - {canRelay} must `return PreconditionCheck.OK` * - the sender must be a registered relay * - the transaction's gas price must be larger or equal to the one that was requested by the sender * - the transaction must have enough gas to not run out of gas if all internal transactions (calls to the * recipient) use all gas available to them * - the recipient must have enough balance to pay the relay for the worst-case scenario (i.e. when all gas is * spent) * * If all conditions are met, the call will be relayed and the recipient charged. {preRelayedCall}, the encoded * function and {postRelayedCall} will be called in that order. * * Parameters: * - `from`: the client originating the request * - `to`: the target {IRelayRecipient} contract * - `encodedFunction`: the function call to relay, including data * - `transactionFee`: fee (%) the relay takes over actual gas cost * - `gasPrice`: gas price the client is willing to pay * - `gasLimit`: gas to forward when calling the encoded function * - `nonce`: client's nonce * - `signature`: client's signature over all previous params, plus the relay and RelayHub addresses * - `approvalData`: dapp-specific data forwared to {acceptRelayedCall}. This value is *not* verified by the * `RelayHub`, but it still can be used for e.g. a signature. * * Emits a {TransactionRelayed} event. */ function relayCall( address from, address to, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata signature, bytes calldata approvalData ) external; /** * @dev Emitted when an attempt to relay a call failed. * * This can happen due to incorrect {relayCall} arguments, or the recipient not accepting the relayed call. The * actual relayed call was not executed, and the recipient not charged. * * The `reason` parameter contains an error code: values 1-10 correspond to `PreconditionCheck` entries, and values * over 10 are custom recipient error codes returned from {acceptRelayedCall}. */ event CanRelayFailed(address indexed relay, address indexed from, address indexed to, bytes4 selector, uint256 reason); /** * @dev Emitted when a transaction is relayed. * Useful when monitoring a relay's operation and relayed calls to a contract * * Note that the actual encoded function might be reverted: this is indicated in the `status` parameter. * * `charge` is the Ether value deducted from the recipient's balance, paid to the relay's owner. */ event TransactionRelayed(address indexed relay, address indexed from, address indexed to, bytes4 selector, RelayCallStatus status, uint256 charge); // Reason error codes for the TransactionRelayed event enum RelayCallStatus { OK, // The transaction was successfully relayed and execution successful - never included in the event RelayedCallFailed, // The transaction was relayed, but the relayed call failed PreRelayedFailed, // The transaction was not relayed due to preRelatedCall reverting PostRelayedFailed, // The transaction was relayed and reverted due to postRelatedCall reverting RecipientBalanceChanged // The transaction was relayed and reverted due to the recipient's balance changing } /** * @dev Returns how much gas should be forwarded to a call to {relayCall}, in order to relay a transaction that will * spend up to `relayedCallStipend` gas. */ function requiredGas(uint256 relayedCallStipend) external view returns (uint256); /** * @dev Returns the maximum recipient charge, given the amount of gas forwarded, gas price and relay fee. */ function maxPossibleCharge(uint256 relayedCallStipend, uint256 gasPrice, uint256 transactionFee) external view returns (uint256); // Relay penalization. // Any account can penalize relays, removing them from the system immediately, and rewarding the // reporter with half of the relay's stake. The other half is burned so that, even if the relay penalizes itself, it // still loses half of its stake. /** * @dev Penalize a relay that signed two transactions using the same nonce (making only the first one valid) and * different data (gas price, gas limit, etc. may be different). * * The (unsigned) transaction data and signature for both transactions must be provided. */ function penalizeRepeatedNonce(bytes calldata unsignedTx1, bytes calldata signature1, bytes calldata unsignedTx2, bytes calldata signature2) external; /** * @dev Penalize a relay that sent a transaction that didn't target `RelayHub`'s {registerRelay} or {relayCall}. */ function penalizeIllegalTransaction(bytes calldata unsignedTx, bytes calldata signature) external; /** * @dev Emitted when a relay is penalized. */ event Penalized(address indexed relay, address sender, uint256 amount); /** * @dev Returns an account's nonce in `RelayHub`. */ function getNonce(address from) external view returns (uint256); } // File: @openzeppelin/contracts/GSN/GSNRecipient.sol pragma solidity ^0.5.0; /** * @dev Base GSN recipient contract: includes the {IRelayRecipient} interface * and enables GSN support on all contracts in the inheritance tree. * * TIP: This contract is abstract. The functions {IRelayRecipient-acceptRelayedCall}, * {_preRelayedCall}, and {_postRelayedCall} are not implemented and must be * provided by derived contracts. See the * xref:ROOT:gsn-strategies.adoc#gsn-strategies[GSN strategies] for more * information on how to use the pre-built {GSNRecipientSignature} and * {GSNRecipientERC20Fee}, or how to write your own. */ contract GSNRecipient is IRelayRecipient, Context { // Default RelayHub address, deployed on mainnet and all testnets at the same address address private _relayHub = 0xD216153c06E857cD7f72665E0aF1d7D82172F494; uint256 constant private RELAYED_CALL_ACCEPTED = 0; uint256 constant private RELAYED_CALL_REJECTED = 11; // How much gas is forwarded to postRelayedCall uint256 constant internal POST_RELAYED_CALL_MAX_GAS = 100000; /** * @dev Emitted when a contract changes its {IRelayHub} contract to a new one. */ event RelayHubChanged(address indexed oldRelayHub, address indexed newRelayHub); /** * @dev Returns the address of the {IRelayHub} contract for this recipient. */ function getHubAddr() public view returns (address) { return _relayHub; } /** * @dev Switches to a new {IRelayHub} instance. This method is added for future-proofing: there's no reason to not * use the default instance. * * IMPORTANT: After upgrading, the {GSNRecipient} will no longer be able to receive relayed calls from the old * {IRelayHub} instance. Additionally, all funds should be previously withdrawn via {_withdrawDeposits}. */ function _upgradeRelayHub(address newRelayHub) internal { address currentRelayHub = _relayHub; require(newRelayHub != address(0), "GSNRecipient: new RelayHub is the zero address"); require(newRelayHub != currentRelayHub, "GSNRecipient: new RelayHub is the current one"); emit RelayHubChanged(currentRelayHub, newRelayHub); _relayHub = newRelayHub; } /** * @dev Returns the version string of the {IRelayHub} for which this recipient implementation was built. If * {_upgradeRelayHub} is used, the new {IRelayHub} instance should be compatible with this version. */ // This function is view for future-proofing, it may require reading from // storage in the future. function relayHubVersion() public view returns (string memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return "1.0.0"; } /** * @dev Withdraws the recipient's deposits in `RelayHub`. * * Derived contracts should expose this in an external interface with proper access control. */ function _withdrawDeposits(uint256 amount, address payable payee) internal { IRelayHub(_relayHub).withdraw(amount, payee); } // Overrides for Context's functions: when called from RelayHub, sender and // data require some pre-processing: the actual sender is stored at the end // of the call data, which in turns means it needs to be removed from it // when handling said data. /** * @dev Replacement for msg.sender. Returns the actual sender of a transaction: msg.sender for regular transactions, * and the end-user for GSN relayed calls (where msg.sender is actually `RelayHub`). * * IMPORTANT: Contracts derived from {GSNRecipient} should never use `msg.sender`, and use {_msgSender} instead. */ function _msgSender() internal view returns (address payable) { if (msg.sender != _relayHub) { return msg.sender; } else { return _getRelayedCallSender(); } } /** * @dev Replacement for msg.data. Returns the actual calldata of a transaction: msg.data for regular transactions, * and a reduced version for GSN relayed calls (where msg.data contains additional information). * * IMPORTANT: Contracts derived from {GSNRecipient} should never use `msg.data`, and use {_msgData} instead. */ function _msgData() internal view returns (bytes memory) { if (msg.sender != _relayHub) { return msg.data; } else { return _getRelayedCallData(); } } // Base implementations for pre and post relayedCall: only RelayHub can invoke them, and data is forwarded to the // internal hook. /** * @dev See `IRelayRecipient.preRelayedCall`. * * This function should not be overriden directly, use `_preRelayedCall` instead. * * * Requirements: * * - the caller must be the `RelayHub` contract. */ function preRelayedCall(bytes calldata context) external returns (bytes32) { require(msg.sender == getHubAddr(), "GSNRecipient: caller is not RelayHub"); return _preRelayedCall(context); } /** * @dev See `IRelayRecipient.preRelayedCall`. * * Called by `GSNRecipient.preRelayedCall`, which asserts the caller is the `RelayHub` contract. Derived contracts * must implement this function with any relayed-call preprocessing they may wish to do. * */ function _preRelayedCall(bytes memory context) internal returns (bytes32); /** * @dev See `IRelayRecipient.postRelayedCall`. * * This function should not be overriden directly, use `_postRelayedCall` instead. * * * Requirements: * * - the caller must be the `RelayHub` contract. */ function postRelayedCall(bytes calldata context, bool success, uint256 actualCharge, bytes32 preRetVal) external { require(msg.sender == getHubAddr(), "GSNRecipient: caller is not RelayHub"); _postRelayedCall(context, success, actualCharge, preRetVal); } /** * @dev See `IRelayRecipient.postRelayedCall`. * * Called by `GSNRecipient.postRelayedCall`, which asserts the caller is the `RelayHub` contract. Derived contracts * must implement this function with any relayed-call postprocessing they may wish to do. * */ function _postRelayedCall(bytes memory context, bool success, uint256 actualCharge, bytes32 preRetVal) internal; /** * @dev Return this in acceptRelayedCall to proceed with the execution of a relayed call. Note that this contract * will be charged a fee by RelayHub */ function _approveRelayedCall() internal pure returns (uint256, bytes memory) { return _approveRelayedCall(""); } /** * @dev See `GSNRecipient._approveRelayedCall`. * * This overload forwards `context` to _preRelayedCall and _postRelayedCall. */ function _approveRelayedCall(bytes memory context) internal pure returns (uint256, bytes memory) { return (RELAYED_CALL_ACCEPTED, context); } /** * @dev Return this in acceptRelayedCall to impede execution of a relayed call. No fees will be charged. */ function _rejectRelayedCall(uint256 errorCode) internal pure returns (uint256, bytes memory) { return (RELAYED_CALL_REJECTED + errorCode, ""); } /* * @dev Calculates how much RelayHub will charge a recipient for using `gas` at a `gasPrice`, given a relayer's * `serviceFee`. */ function _computeCharge(uint256 gas, uint256 gasPrice, uint256 serviceFee) internal pure returns (uint256) { // The fee is expressed as a percentage. E.g. a value of 40 stands for a 40% fee, so the recipient will be // charged for 1.4 times the spent amount. return (gas * gasPrice * (100 + serviceFee)) / 100; } function _getRelayedCallSender() private pure returns (address payable result) { // We need to read 20 bytes (an address) located at array index msg.data.length - 20. In memory, the array // is prefixed with a 32-byte length value, so we first add 32 to get the memory read index. However, doing // so would leave the address in the upper 20 bytes of the 32-byte word, which is inconvenient and would // require bit shifting. We therefore subtract 12 from the read index so the address lands on the lower 20 // bytes. This can always be done due to the 32-byte prefix. // The final memory read index is msg.data.length - 20 + 32 - 12 = msg.data.length. Using inline assembly is the // easiest/most-efficient way to perform this operation. // These fields are not accessible from assembly bytes memory array = msg.data; uint256 index = msg.data.length; // solhint-disable-next-line no-inline-assembly assembly { // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those. result := and(mload(add(array, index)), 0xffffffffffffffffffffffffffffffffffffffff) } return result; } function _getRelayedCallData() private pure returns (bytes memory) { // RelayHub appends the sender address at the end of the calldata, so in order to retrieve the actual msg.data, // we must strip the last 20 bytes (length of an address type) from it. uint256 actualDataLength = msg.data.length - 20; bytes memory actualData = new bytes(actualDataLength); for (uint256 i = 0; i < actualDataLength; ++i) { actualData[i] = msg.data[i]; } return actualData; } } // File: @openzeppelin/contracts/ownership/Ownable.sol pragma solidity ^0.5.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner(), "Ownable: caller is not the owner"); _; } /** * @dev Returns true if the caller is the current owner. */ function isOwner() public view returns (bool) { return _msgSender() == _owner; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: interface/IStormXToken.sol pragma solidity 0.5.16; contract IStormXToken is ERC20 { function unlockedBalanceOf(address account) public view returns (uint256); } // File: contracts/StormXGSNRecipient.sol pragma solidity 0.5.16; contract StormXGSNRecipient is GSNRecipient, Ownable { using SafeMath for uint256; // Variables and constants for supporting GSN uint256 constant INSUFFICIENT_BALANCE = 11; uint256 public chargeFee; address public stormXReserve; // importing ``StormXToken.sol`` results in infinite loop // using only an interface IStormXToken public token; event StormXReserveSet(address newAddress); event ChargeFeeSet(uint256 newFee); /** * @param tokenAddress address of `StormXToken.sol` * @param reserve address that receives GSN charge fee */ constructor(address tokenAddress, address reserve) public { require(tokenAddress != address(0), "Invalid token address"); require(reserve != address(0), "Invalid reserve address"); token = IStormXToken(tokenAddress); stormXReserve = reserve; // decimals of StormXToken is 18 chargeFee = 10 * (10 ** 18); } /** * Note: the documentation is copied from * `openzeppelin-contracts/contracts/GSN/IRelayRecipient.sol` * @dev Called by {IRelayHub} to validate * if this recipient accepts being charged for a relayed call. * Note that the recipient will be charged regardless of the execution result of the relayed call * (i.e. if it reverts or not). * * The relay request was originated by `from` and will be served by `relay`. * `encodedFunction` is the relayed call calldata, * so its first four bytes are the function selector. * The relayed call will be forwarded `gasLimit` gas, * and the transaction executed with a gas price of at least `gasPrice`. * `relay`'s fee is `transactionFee`, * and the recipient will be charged at most `maxPossibleCharge` (in wei). * `nonce` is the sender's (`from`) nonce for replay attack protection in {IRelayHub}, * and `approvalData` is a optional parameter that can be used to hold a signature * over all or some of the previous values. * * Returns a tuple, where the first value is used to indicate approval (0) * or rejection (custom non-zero error code, values 1 to 10 are reserved) * and the second one is data to be passed to the other {IRelayRecipient} functions. * * {acceptRelayedCall} is called with 50k gas: if it runs out during execution, * the request will be considered * rejected. A regular revert will also trigger a rejection. */ function acceptRelayedCall( address relay, address from, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata approvalData, uint256 maxPossibleCharge ) external view returns (uint256, bytes memory) { (bool accept, bool chargeBefore) = _acceptRelayedCall(from, encodedFunction); if (accept) { return _approveRelayedCall(abi.encode(from, chargeBefore)); } else { return _rejectRelayedCall(INSUFFICIENT_BALANCE); } } /** * @dev Sets the address of StormX's reserve * @param newReserve the new address of StormX's reserve * @return success status of the setting */ function setStormXReserve(address newReserve) public onlyOwner returns (bool) { require(newReserve != address(0), "Invalid reserve address"); stormXReserve = newReserve; emit StormXReserveSet(newReserve); return true; } /** * @dev Sets the charge fee for GSN calls * @param newFee the new charge fee * @return success status of the setting */ function setChargeFee(uint256 newFee) public onlyOwner returns (bool) { chargeFee = newFee; emit ChargeFeeSet(newFee); return true; } /** * @dev Checks whether to accept a GSN relayed call * @param from the user originating the GSN relayed call * @param encodedFunction the function call to relay, including data * @return ``accept`` indicates whether to accept the relayed call * ``chargeBefore`` indicates whether to charge before executing encoded function */ function _acceptRelayedCall( address from, bytes memory encodedFunction ) internal view returns (bool accept, bool chargeBefore); function _preRelayedCall(bytes memory context) internal returns (bytes32) { (address user, bool chargeBefore) = abi.decode(context, (address, bool)); // charge the user with specified amount of fee // if the user is not calling ``convert()`` if (chargeBefore) { require( token.transferFrom(user, stormXReserve, chargeFee), "Charging fails before executing the function" ); } return ""; } function _postRelayedCall( bytes memory context, bool success, uint256 actualCharge, bytes32 preRetVal ) internal { (address user, bool chargeBefore) = abi.decode(context, (address, bool)); if (!chargeBefore) { require( token.transferFrom(user, stormXReserve, chargeFee), "Charging fails after executing the function" ); } } /** * @dev Reads a bytes4 value from a position in a byte array. * Note: for reference, see source code * https://etherscan.io/address/0xD216153c06E857cD7f72665E0aF1d7D82172F494#code * @param b Byte array containing a bytes4 value. * @param index Index in byte array of bytes4 value. * @return bytes4 value from byte array. */ function readBytes4( bytes memory b, uint256 index ) internal pure returns (bytes4 result) { require( b.length >= index + 4, "GREATER_OR_EQUAL_TO_4_LENGTH_REQUIRED" ); // Arrays are prefixed by a 32 byte length field index += 32; // Read the bytes4 from array memory assembly { result := mload(add(b, index)) // Solidity does not require us to clean the trailing bytes. // We do it anyway result := and(result, 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000) } return result; } /** * @dev Reads a bytes32 value from a position in a byte array. * Note: for reference, see source code * https://etherscan.io/address/0xD216153c06E857cD7f72665E0aF1d7D82172F494#code * @param b Byte array containing a bytes32 value. * @param index Index in byte array of bytes32 value. * @return bytes32 value from byte array. */ function readBytes32( bytes memory b, uint256 index ) internal pure returns (bytes32 result) { require( b.length >= index + 32, "GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED" ); // Arrays are prefixed by a 256 bit length parameter index += 32; // Read the bytes32 from array memory assembly { result := mload(add(b, index)) } return result; } /** * @dev Reads a uint256 value from a position in a byte array. * Note: for reference, see source code * https://etherscan.io/address/0xD216153c06E857cD7f72665E0aF1d7D82172F494#code * @param b Byte array containing a uint256 value. * @param index Index in byte array of uint256 value. * @return uint256 value from byte array. */ function readUint256( bytes memory b, uint256 index ) internal pure returns (uint256 result) { result = uint256(readBytes32(b, index)); return result; } /** * @dev extract parameter from encoded-function block. * Note: for reference, see source code * https://etherscan.io/address/0xD216153c06E857cD7f72665E0aF1d7D82172F494#code * https://solidity.readthedocs.io/en/develop/abi-spec.html#formal-specification-of-the-encoding * note that the type of the parameter must be static. * the return value should be casted to the right type. * @param msgData encoded calldata * @param index in byte array of bytes memory * @return the parameter extracted from call data */ function getParam(bytes memory msgData, uint index) internal pure returns (uint256) { return readUint256(msgData, 4 + index * 32); } } // File: contracts/StormXToken.sol pragma solidity 0.5.16; contract StormXToken is StormXGSNRecipient, ERC20, ERC20Detailed("StormX", "STMX", 18) { using SafeMath for uint256; bool public transfersEnabled; mapping(address => bool) public autoStakingDisabled; bool public initialized = false; address public swap; address public rewardRole; // Variables for staking feature mapping(address => uint256) public lockedBalanceOf; event TokenLocked(address indexed account, uint256 amount); event TokenUnlocked(address indexed account, uint256 amount); event TransfersEnabled(bool newStatus); event SwapAddressAdded(address swap); event RewardRoleAssigned(address rewardRole); event AutoStakingSet(address indexed account, bool status); modifier transfersAllowed { require(transfersEnabled, "Transfers not available"); _; } modifier onlyAuthorized { require(_msgSender() == owner() || _msgSender() == rewardRole, "Not authorized"); _; } /** * @param reserve address of the StormX's reserve that receives GSN charge fee * GSN charged fees and remaining tokens * after the token migration is closed */ constructor(address reserve) // solhint-disable-next-line visibility-modifier-order StormXGSNRecipient(address(this), reserve) public { } /** * @param account address of the user this function queries unlocked balance for * @return the amount of unlocked tokens of the given address * i.e. the amount of manipulable tokens of the given address */ function unlockedBalanceOf(address account) public view returns (uint256) { return balanceOf(account).sub(lockedBalanceOf[account]); } /** * @dev Locks specified amount of tokens for the user * Locked tokens are not manipulable until being unlocked * Locked tokens are still reported as owned by the user * when ``balanceOf()`` is called * @param amount specified amount of tokens to be locked * @return success status of the locking */ function lock(uint256 amount) public returns (bool) { address account = _msgSender(); require(unlockedBalanceOf(account) >= amount, "Not enough unlocked tokens"); lockedBalanceOf[account] = lockedBalanceOf[account].add(amount); emit TokenLocked(account, amount); return true; } /** * @dev Unlocks specified amount of tokens for the user * Unlocked tokens are manipulable until being locked * @param amount specified amount of tokens to be unlocked * @return success status of the unlocking */ function unlock(uint256 amount) public returns (bool) { address account = _msgSender(); require(lockedBalanceOf[account] >= amount, "Not enough locked tokens"); lockedBalanceOf[account] = lockedBalanceOf[account].sub(amount); emit TokenUnlocked(account, amount); return true; } /** * @dev The only difference from standard ERC20 ``transferFrom()`` is that * it only succeeds if the sender has enough unlocked tokens * Note: this function is also used by every StormXGSNRecipient * when charging. * @param sender address of the sender * @param recipient address of the recipient * @param amount specified amount of tokens to be transferred * @return success status of the transferring */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { require(unlockedBalanceOf(sender) >= amount, "Not enough unlocked token balance of sender"); // if the msg.sender is charging ``sender`` for a GSN fee // allowance does not apply // so that no user approval is required for GSN calls if (_msgSender() == address(this) || _msgSender() == swap) { _transfer(sender, recipient, amount); return true; } else { return super.transferFrom(sender, recipient, amount); } } /** * @dev The only difference from standard ERC20 ``transfer()`` is that * it only succeeds if the user has enough unlocked tokens * @param recipient address of the recipient * @param amount specified amount of tokens to be transferred * @return success status of the transferring */ function transfer(address recipient, uint256 amount) public returns (bool) { require(unlockedBalanceOf(_msgSender()) >= amount, "Not enough unlocked token balance"); return super.transfer(recipient, amount); } /** * @dev Transfers tokens in batch * @param recipients an array of recipient addresses * @param values an array of specified amount of tokens to be transferred * @return success status of the batch transferring */ function transfers( address[] memory recipients, uint256[] memory values ) public transfersAllowed returns (bool) { require(recipients.length == values.length, "Input lengths do not match"); for (uint256 i = 0; i < recipients.length; i++) { transfer(recipients[i], values[i]); } return true; } /** * @dev Enables the method ``transfers()`` if ``enable=true``, * and disables ``transfers()`` otherwise * @param enable the expected new availability of the method ``transfers()`` */ function enableTransfers(bool enable) public onlyOwner returns (bool) { transfersEnabled = enable; emit TransfersEnabled(enable); return true; } function mint(address account, uint256 amount) public { require(initialized, "The contract is not initialized yet"); require(_msgSender() == swap, "not authorized to mint"); _mint(account, amount); } /** * @dev Initializes this contract * Sets address ``swap`` as the only valid minter for this token * Note: must be called before token migration opens in ``Swap.sol`` * @param _swap address of the deployed contract ``Swap.sol`` */ function initialize(address _swap) public onlyOwner { require(!initialized, "cannot initialize twice"); require(_swap != address(0), "invalid swap address"); swap = _swap; transfersEnabled = true; emit TransfersEnabled(true); initialized = true; emit SwapAddressAdded(_swap); } /** * @dev Assigns `rewardRole` to the specified address * @param account address to be assigned as the `rewardRole` */ function assignRewardRole(address account) public onlyOwner { rewardRole = account; emit RewardRoleAssigned(account); } /** * @dev Transfers tokens to users as rewards * @param recipient address that receives the rewarded tokens * @param amount amount of rewarded tokens */ function reward(address recipient, uint256 amount) public onlyAuthorized { require(recipient != address(0), "Invalid recipient address provided"); require(transfer(recipient, amount), "Transfer fails when rewarding a user"); // If `autoStakingDisabled[user] == false`, // auto staking is enabled for current user if (!autoStakingDisabled[recipient]) { lockedBalanceOf[recipient] = lockedBalanceOf[recipient].add(amount); emit TokenLocked(recipient, amount); } } /** * @dev Rewards users in batch * @param recipients an array of recipient address * @param values an array of specified amount of tokens to be rewarded */ function rewards(address[] memory recipients, uint256[] memory values) public onlyAuthorized { require(recipients.length == values.length, "Input lengths do not match"); for (uint256 i = 0; i < recipients.length; i++) { reward(recipients[i], values[i]); } } /** * @dev Sets auto-staking feature status for users * If `enabled = true`, rewarded tokens will be automatically staked for the message sender * Else, rewarded tokens will not be automatically staked for the message sender. * @param enabled expected status of the user's auto-staking feature status */ function setAutoStaking(bool enabled) public { // If `enabled == false`, set `autoStakingDisabled[user] = true` autoStakingDisabled[_msgSender()] = !enabled; emit AutoStakingSet(_msgSender(), enabled); } /** * @dev Checks whether to accept a GSN relayed call * @param from the user originating the GSN relayed call * @param encodedFunction the function call to relay, including data * @return ``accept`` indicates whether to accept the relayed call * ``chargeBefore`` indicates whether to charge before executing encoded function */ function _acceptRelayedCall( address from, bytes memory encodedFunction ) internal view returns (bool accept, bool chargeBefore) { bool chargeBefore = true; uint256 unlockedBalance = unlockedBalanceOf(from); if (unlockedBalance < chargeFee) { // charge users after executing the encoded function chargeBefore = false; bytes4 selector = readBytes4(encodedFunction, 0); if (selector == bytes4(keccak256("unlock(uint256)"))) { // unlocked token balance for the user if transaction succeeds uint256 amount = uint256(getParam(encodedFunction, 0)).add(unlockedBalance); return (amount >= chargeFee, chargeBefore); } else if (selector == bytes4(keccak256("transferFrom(address,address,uint256)"))) { address sender = address(getParam(encodedFunction, 0)); address recipient = address(getParam(encodedFunction, 1)); uint256 amount = getParam(encodedFunction, 2); bool accept = recipient == from && // no real effect of `transferfrom()` if `sender == recipient` sender != recipient && // `from` can have enough unlocked token balance after the transaction amount.add(unlockedBalance) >= chargeFee && // check `transferFrom()` can be executed successfully unlockedBalanceOf(sender) >= amount && allowance(sender, from) >= amount; return (accept, chargeBefore); } else { // if rejects the call, the value of chargeBefore does not matter return (false, chargeBefore); } } else { return (true, chargeBefore); } } }