Transaction Hash:
Block:
22689880 at Jun-12-2025 05:08:47 PM +UTC
Transaction Fee:
0.000978377083032591 ETH
$2.37
Gas Used:
261,267 Gas / 3.744740373 Gwei
Emitted Events:
499 |
WETH9.Deposit( dst=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, wad=3600000000000000000 )
|
500 |
WETH9.Approval( src=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, guy=HashflowRouter, wad=3600000000000000000 )
|
501 |
WETH9.Transfer( src=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, dst=0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, wad=3600000000000000000 )
|
502 |
HashflowPool.Trade( trader=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, effectiveTrader=[Sender] 0xd6a36c45a32ef04ef385e4938510ac4d235eaaae, txid=104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000, baseToken=WETH9, quoteToken=TetherToken, baseTokenAmount=3600000000000000000, quoteTokenAmount=9892188246 )
|
503 |
TetherToken.Transfer( from=0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, to=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, value=9892188246 )
|
504 |
TetherToken.Transfer( from=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, to=0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef, value=9892188 )
|
505 |
TetherToken.Transfer( from=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, to=[Sender] 0xd6a36c45a32ef04ef385e4938510ac4d235eaaae, value=9882296058 )
|
506 |
OpenOceanExchangeProxy.0x76af224a143865a50b41496e1a73622698692c565c1214bc862f18e22d829c5e( 0x76af224a143865a50b41496e1a73622698692c565c1214bc862f18e22d829c5e, 0x000000000000000000000000d6a36c45a32ef04ef385e4938510ac4d235eaaae, 0x000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0x000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 000000000000000000000000d6a36c45a32ef04ef385e4938510ac4d235eaaae, 00000000000000000000000000000000000000000000000031f5c4ed27680000, 00000000000000000000000000000000000000000000000031f5c4ed27680000, 000000000000000000000000000000000000000000000000000000024d07defa, 00000000000000000000000000000000000000000000000000000002475f343f, 000000000000000000000000000000000000000000000000000000024d453f21, 0000000000000000000000003487ef9f9b36547e43268b8f0e2349a226c70b53 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x5d885302...1E9456B44 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 6.344414902352533016 Eth | 6.344635176860951333 Eth | 0.000220274508418317 | |
0xC02aaA39...83C756Cc2 | 2,616,781.668453177423187056 Eth | 2,616,785.268453177423187056 Eth | 3.6 | ||
0xD6A36c45...D235eAaAe |
4.561458988412094672 Eth
Nonce: 42
|
0.960480611329062081 Eth
Nonce: 43
| 3.600978377083032591 | ||
0xdAC17F95...13D831ec7 |
Execution Trace
ETH 3.6
OpenOceanExchangeProxy.90411a32( )
ETH 3.6
OpenOceanExchange.swap( caller=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, desc=[{name:srcToken, type:address, order:1, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:dstToken, type:address, order:2, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:srcReceiver, type:address, order:3, indexed:false, value:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, valueString:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121}, {name:dstReceiver, type:address, order:4, indexed:false, value:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe, valueString:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe}, {name:amount, type:uint256, order:5, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:minReturnAmount, type:uint256, order:6, indexed:false, value:9787356223, valueString:9787356223}, {name:guaranteedAmount, type:uint256, order:7, indexed:false, value:9886318369, valueString:9886318369}, {name:flags, type:uint256, order:8, indexed:false, value:0, valueString:0}, {name:referrer, type:address, order:9, indexed:false, value:0x3487Ef9f9B36547e43268B8f0E2349a226c70b53, valueString:0x3487Ef9f9B36547e43268B8f0E2349a226c70b53}, {name:permit, type:bytes, order:10, indexed:false, value:0x, valueString:0x}], calls= ) => ( returnAmount=9882296058 )
-
TetherToken.balanceOf( who=0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe ) => ( 0 )
ETH 3.6
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.a8920d2b( )
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.0c7e1209( )
- ETH 3.6
WETH9.CALL( )
- ETH 3.6
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.0c7e1209( )
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.eb5625d9( )
-
WETH9.allowance( 0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, 0x55084eE0fEf03f14a305cd24286359A35D735151 ) => ( 0 )
-
WETH9.allowance( 0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, 0x55084eE0fEf03f14a305cd24286359A35D735151 ) => ( 0 )
-
WETH9.approve( guy=0x55084eE0fEf03f14a305cd24286359A35D735151, wad=3600000000000000000 ) => ( True )
-
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.0c7e1209( )
HashflowRouter.tradeRFQT( quote=[{name:pool, type:address, order:1, indexed:false, value:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44, valueString:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44}, {name:externalAccount, type:address, order:2, indexed:false, value:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, valueString:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31}, {name:trader, type:address, order:3, indexed:false, value:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, valueString:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121}, {name:effectiveTrader, type:address, order:4, indexed:false, value:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe, valueString:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe}, {name:baseToken, type:address, order:5, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:quoteToken, type:address, order:6, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:effectiveBaseTokenAmount, type:uint256, order:7, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:baseTokenAmount, type:uint256, order:8, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:quoteTokenAmount, type:uint256, order:9, indexed:false, value:9892188246, valueString:9892188246}, {name:quoteExpiry, type:uint256, order:10, indexed:false, value:1749748128, valueString:1749748128}, {name:nonce, type:uint256, order:11, indexed:false, value:1749748087641, valueString:1749748087641}, {name:txid, type:bytes32, order:12, indexed:false, value:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000, valueString:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000}, {name:signature, type:bytes, order:13, indexed:false, value:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C, valueString:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C}] )
-
WETH9.transferFrom( src=0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, dst=0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, wad=3600000000000000000 ) => ( True )
HashflowPool.tradeRFQT( quote=[{name:pool, type:address, order:1, indexed:false, value:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44, valueString:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44}, {name:externalAccount, type:address, order:2, indexed:false, value:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, valueString:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31}, {name:trader, type:address, order:3, indexed:false, value:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, valueString:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121}, {name:effectiveTrader, type:address, order:4, indexed:false, value:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe, valueString:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe}, {name:baseToken, type:address, order:5, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:quoteToken, type:address, order:6, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:effectiveBaseTokenAmount, type:uint256, order:7, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:baseTokenAmount, type:uint256, order:8, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:quoteTokenAmount, type:uint256, order:9, indexed:false, value:9892188246, valueString:9892188246}, {name:quoteExpiry, type:uint256, order:10, indexed:false, value:1749748128, valueString:1749748128}, {name:nonce, type:uint256, order:11, indexed:false, value:1749748087641, valueString:1749748087641}, {name:txid, type:bytes32, order:12, indexed:false, value:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000, valueString:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000}, {name:signature, type:bytes, order:13, indexed:false, value:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C, valueString:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C}] )
-
HashflowPool.tradeRFQT( quote=[{name:pool, type:address, order:1, indexed:false, value:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44, valueString:0x5d8853028fbF6a2da43c7A828cc5f691E9456B44}, {name:externalAccount, type:address, order:2, indexed:false, value:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31, valueString:0x9bA0CF1588E1DFA905eC948F7FE5104dD40EDa31}, {name:trader, type:address, order:3, indexed:false, value:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121, valueString:0x55877bD7F2EE37BDe55cA4B271A3631f3A7ef121}, {name:effectiveTrader, type:address, order:4, indexed:false, value:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe, valueString:0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe}, {name:baseToken, type:address, order:5, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:quoteToken, type:address, order:6, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:effectiveBaseTokenAmount, type:uint256, order:7, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:baseTokenAmount, type:uint256, order:8, indexed:false, value:3600000000000000000, valueString:3600000000000000000}, {name:quoteTokenAmount, type:uint256, order:9, indexed:false, value:9892188246, valueString:9892188246}, {name:quoteExpiry, type:uint256, order:10, indexed:false, value:1749748128, valueString:1749748128}, {name:nonce, type:uint256, order:11, indexed:false, value:1749748087641, valueString:1749748087641}, {name:txid, type:bytes32, order:12, indexed:false, value:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000, valueString:104000064000640000FA293B919600FFFFFFFFFFFFFF002806B615130BF70000}, {name:signature, type:bytes, order:13, indexed:false, value:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C, valueString:0x9FF4BD452A85D2897ACE51E5EC4A12F6536DF5679B2AC8022385254B841A312341B19A7B3DFFE91788BFC220FF64B091BFBEC3778E1D880260F03258E0EB57431C}] )
-
-
0x55877bd7f2ee37bde55ca4b271a3631f3a7ef121.0c7e1209( )
-
TetherToken.balanceOf( who=0xD6A36c45A32eF04EF385e4938510AC4D235eAaAe ) => ( 9882296058 )
-
swap[OpenOceanExchange (ln:3689)]
isETH[OpenOceanExchange (ln:3701)]
isETH[OpenOceanExchange (ln:3704)]
_claim[OpenOceanExchange (ln:3705)]
_permit[OpenOceanExchange (ln:3750)]
safeTransferFrom[OpenOceanExchange (ln:3751)]
universalBalanceOf[OpenOceanExchange (ln:3709)]
universalBalanceOf[OpenOceanExchange (ln:3710)]
makeCalls[OpenOceanExchange (ln:3712)]
sub[OpenOceanExchange (ln:3715)]
universalBalanceOf[OpenOceanExchange (ln:3715)]
sub[OpenOceanExchange (ln:3718)]
add[OpenOceanExchange (ln:3718)]
universalBalanceOf[OpenOceanExchange (ln:3718)]
mul[OpenOceanExchange (ln:3719)]
mul[OpenOceanExchange (ln:3719)]
_emitSwapped[OpenOceanExchange (ln:3724)]
File 1 of 7: OpenOceanExchangeProxy
File 2 of 7: WETH9
File 3 of 7: HashflowPool
File 4 of 7: TetherToken
File 5 of 7: OpenOceanExchange
File 6 of 7: HashflowRouter
File 7 of 7: HashflowPool
// File: @openzeppelin/contracts/proxy/Proxy.sol // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: value}(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) private pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/proxy/UpgradeableProxy.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. * * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see * {TransparentUpgradeableProxy}. */ contract UpgradeableProxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) public payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _setImplementation(_logic); if (_data.length > 0) { Address.functionDelegateCall(_logic, _data); } } /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { bytes32 slot = _IMPLEMENTATION_SLOT; // solhint-disable-next-line no-inline-assembly assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal virtual { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract"); bytes32 slot = _IMPLEMENTATION_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, newImplementation) } } } // File: @openzeppelin/contracts/proxy/TransparentUpgradeableProxy.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is UpgradeableProxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}. */ constructor( address _logic, address admin_, bytes memory _data ) public payable UpgradeableProxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _setAdmin(admin_); } /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _admin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external virtual ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable virtual ifAdmin { _upgradeTo(newImplementation); Address.functionDelegateCall(newImplementation, data); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address adm) { bytes32 slot = _ADMIN_SLOT; // solhint-disable-next-line no-inline-assembly assembly { adm := sload(slot) } } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { bytes32 slot = _ADMIN_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, newAdmin) } } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // File: contracts/OpenOceanExchangeProxy.sol pragma solidity ^0.6.12; contract OpenOceanExchangeProxy is TransparentUpgradeableProxy { constructor( address logic, address admin, bytes memory data ) public TransparentUpgradeableProxy(logic, admin, data) {} }
File 2 of 7: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 3 of 7: HashflowPool
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; interface IWETH { function deposit() external payable; function transfer(address to, uint256 value) external returns (bool); function withdraw(uint256) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import '@openzeppelin/contracts/interfaces/IERC1271.sol'; import './IQuote.sol'; /// @title IHashflowPool /// @author Victor Ionescu /** * Pool contract used for trading. The Pool can either hold funds or * rely on external accounts. External accounts are used in order to preserve * Capital Efficiency on the Market Maker side. This way, a Market Maker can * make markets using funds that are also used on other venues. */ interface IHashflowPool is IQuote, IERC1271 { /// @notice Specifies a HashflowPool on a foreign chain. struct AuthorizedXChainPool { uint16 chainId; bytes32 pool; } /// @notice Contains a signer verification address, and whether trading is enabled. struct SignerConfiguration { address signer; bool enabled; } /// @notice Emitted when the authorization status of a withdrawal account changes. /// @param account The account for which the status changes. /// @param authorized The new authorization status. event UpdateWithdrawalAccount(address account, bool authorized); /// @notice Emitted when the signer key used for the pool has changed. /// @param signer The new signer key. /// @param prevSigner The old signer key. event UpdateSigner(address signer, address prevSigner); /// @notice Emitted when liquidity is withdrawn from the pool. /// @param token Token being withdrawn. /// @param recipient Address receiving the token. /// @param withdrawAmount Amount being withdrawn. event RemoveLiquidity( address token, address recipient, uint256 withdrawAmount ); /// @notice Emitted when an intra-chain trade happens. /// @param trader The trader. /// @param effectiveTrader The effective Trader. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event Trade( address trader, address effectiveTrader, bytes32 txid, address baseToken, address quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade happens. /// @param dstChainId The Hashflow Chain ID for the destination chain. /// @param dstPool The pool address on the destination chain. /// @param trader The trader address. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event XChainTrade( uint16 dstChainId, bytes32 dstPool, address trader, bytes32 dstTrader, bytes32 txid, address baseToken, bytes32 quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade is filled. /// @param txid The txid identified the quote that was filled. event XChainTradeFill(bytes32 txid); /// @notice Main initializer. /// @param name Name of the pool. /// @param signer Signer key used for quote / deposit verification. /// @param operations Operations key that governs the pool. /// @param router Address of the HashflowRouter contract. function initialize( string calldata name, address signer, address operations, address router ) external; /// @notice Returns the pool name. function name() external view returns (string memory); /// @notice Returns the signer address and whether the pool is enabled. function signerConfiguration() external view returns (address, bool); /// @notice Returns the Operations address of this pool. function operations() external view returns (address); /// @notice Returns the Router contract address. function router() external view returns (address); /// @notice Returns the current nonce for a trader. function nonces(address trader) external view returns (uint256); /// @notice Removes liquidity from the pool. /// @param token Token to withdraw. /// @param recipient Address to send token to. /// @param amount Amount to withdraw. function removeLiquidity( address token, address recipient, uint256 amount ) external; /// @notice Execute an RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Execute an RFQ-M trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Execute a cross-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param trader The account that sends baseToken on this chain. function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader) external payable; /// @notice Execute a cross-chain RFQ-M trade. /// @param quote The quote to be executed. function tradeXChainRFQM(XChainRFQMQuote memory quote) external; /// @notice Changes authorization for a set of pools to send X-Chain messages. /// @param pools The pools to change authorization status for. /// @param authorized The new authorization status. function updateXChainPoolAuthorization( AuthorizedXChainPool[] calldata pools, bool authorized ) external; /// @notice Changes authorization for an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger app. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Fills an x-chain order that completed on the source chain. /// @param externalAccount The external account to fill from, if any. /// @param txid The txid of the quote. /// @param trader The trader to receive the funds. /// @param quoteToken The token to be sent. /// @param quoteTokenAmount The amount of quoteToken to be sent. function fillXChain( address externalAccount, bytes32 txid, address trader, address quoteToken, uint256 quoteTokenAmount ) external; /// @notice Updates withdrawal account authorization. /// @param withdrawalAccounts the accounts for which to update authorization status. /// @param authorized The new authorization status. function updateWithdrawalAccount( address[] memory withdrawalAccounts, bool authorized ) external; /// @notice Updates the signer key. /// @param signer The new signer key. function updateSigner(address signer) external; /// @notice Used by the router to disable pool actions (Trade, Withdraw, Deposit) function killswitchOperations(bool enabled) external; /// @notice Returns the token reserves for this pool. /// @param token The token to check reserves for. function getReserves(address token) external view returns (uint256); /// @notice Approves a token for spend. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function approveToken( address token, address spender, uint256 amount ) external; /// @notice Increases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router). /// @param amount The approval amount. function increaseTokenAllowance( address token, address spender, uint256 amount ) external; /// @notice Decreases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function decreaseTokenAllowance( address token, address spender, uint256 amount ) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import './IQuote.sol'; /// @title IHashflowRouter /// @author Victor Ionescu /** * @notice In terms of user-facing functionality, the Router is responsible for: * - orchestrating trades * - managing cross-chain permissions * * Every trade requires consent from two parties: the Trader and the Market Maker. * However, there are two models to establish consent: * - RFQ-T: in this model, the Market Maker provides an EIP-191 signature for the quote, * while the Trader signs the transaction and submits it on-chain * - RFQ-M: in this model, the Trader provides an EIP-712 signature for the quote, * the Market Maker provides an EIP-191 signature, and a 3rd party relays the trade. * The 3rd party can be the Market Maker itself. * * In terms of Hashflow internals, the Router maintains a set of authorized pool * contracts that are allowed to be used for trading. This allowlist creates * guarantees against malicious behavior, as documented in specific places. * * The Router contract is not upgradeable. In order to change functionality, a new * Router has to be deployed, and new HashflowPool contracts have to be deployed * by the Market Makers. */ /// @dev Trade / liquidity events are emitted at the HashflowPool level, rather than the router. interface IHashflowRouter is IQuote { /** * @notice X-Chain message received from an X-Chain Messenger. This is used by the * Router to communicate a fill to a HashflowPool. */ struct XChainFillMessage { /// @notice The Hashflow Chain ID of the source chain. uint16 srcHashflowChainId; /// @notice The address of the HashflowPool on the source chain. bytes32 srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. address dstPool; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ address dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. address dstTrader; /// @notice The token that the trader buys on the destination chain. address quoteToken; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice The caller of the trade function on the source chain. bytes32 srcCaller; /// @notice The contract to call, if any. address dstContract; /// @notice The calldata for the contract. bytes dstContractCalldata; } /// @notice Emitted when the authorization status of a pool changes. /// @param pool The pool whose status changed. /// @param authorized The new auth status. event UpdatePoolAuthorizaton(address pool, bool authorized); /// @notice Emitted when a sender pool authorization changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param otherChainPool Pool address on the other chain. /// @param authorized Whether the pool is authorized. event UpdateXChainPoolAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 otherChainPool, bool authorized ); /// @notice Emitted when the authorization of an x-caller changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param caller Caller address on the other chain. /// @param authorized Whether the caller is authorized. event UpdateXChainCallerAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 caller, bool authorized ); /// @notice Emitted when the authorization status of an X-Chain Messenger changes for a pool. /// @param pool Pool address for which the Messenger authorization changes. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerAuthorization( address indexed pool, address xChainMessenger, bool authorized ); /// @notice Emitted when the authorized status of an X-Chain Messenger changes for a callee. /// @param callee Address of the callee. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerCallerAuthorization( address indexed callee, address xChainMessenger, bool authorized ); /// @notice Emitted when the Limit Order Guardian address is updated. /// @param guardian The new Guardian address. event UpdateLimitOrderGuardian(address guardian); /// @notice Initializes the Router. Called one time. /// @param factory The address of the HashflowFactory contract. function initialize(address factory) external; /// @notice Returns the address of the associated HashflowFactor contract. function factory() external view returns (address); function authorizedXChainPools( bytes32 dstPool, uint16 srcHChainId, bytes32 srcPool ) external view returns (bool); function authorizedXChainCallers( address dstContract, uint16 srcHashflowChainId, bytes32 caller ) external view returns (bool); function authorizedXChainMessengersByPool(address pool, address messenger) external view returns (bool); function authorizedXChainMessengersByCallee( address callee, address messenger ) external view returns (bool); /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote data to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote data to be executed. /// @dev Does not support native tokens for the baseToken. function tradeRFQTWithPermit( RFQTQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMWithPermit( RFQMQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. function tradeRFQMLimitOrder( RFQMQuote memory quote, bytes memory guardianSignature ) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMLimitOrderWithPermit( RFQMQuote memory quote, bytes memory guardianSignature, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an RFQ-T cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQT( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Executes an RFQ-T cross-chain trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeXChainRFQTWithPermit( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Executes an RFQ-M cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQM( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Similar to tradeXChainRFQm, but includes a spend permit for the baseToken. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount to approve. function tradeXChainRFQMWithPermit( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Completes the second leg of a cross-chain trade. /// @param fillMessage Payload containing information necessary to complete the trade. function fillXChain(XChainFillMessage memory fillMessage) external; /// @notice Returns whether the pool is authorized for trading. /// @param pool The address of the HashflowPool. function authorizedPools(address pool) external view returns (bool); /// @notice Allows the owner to unauthorize a potentially compromised pool. Cannot be reverted. /// @param pool The address of the HashflowPool. function forceUnauthorizePool(address pool) external; /// @notice Authorizes a HashflowPool for trading. /// @dev Can only be called by the HashflowFactory or the admin. function updatePoolAuthorization(address pool, bool authorized) external; /// @notice Updates the authorization status of an X-Chain pool pair. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param otherPool The 32-byte representation of the Pool address on the peer chain. /// @param authorized Whether the pool is authorized to communicate with the sender pool. function updateXChainPoolAuthorization( uint16 otherHashflowChainId, bytes32 otherPool, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain caller. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param caller The caller address. /// @param authorized Whether the caller is authorized to send an x-call to the sender pool. function updateXChainCallerAuthorization( uint16 otherHashflowChainId, bytes32 caller, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerCallerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Used to stop all operations on a pool, in case of an emergency. /// @param pool The address of the HashflowPool. /// @param enabled Whether the pool is enabled. function killswitchPool(address pool, bool enabled) external; /// @notice Used to update the Limit Order Guardian. /// @param guardian The address of the new Guardian. function updateLimitOrderGuardian(address guardian) external; /// @notice Allows the owner to withdraw excess funds from the Router. /// @dev Under normal operations, the Router should not have excess funds. function withdrawFunds(address token) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; /// @title IQuote /// @author Victor Ionescu /** * @notice Interface for quote structs used for trading. There are two major types of trades: * - intra-chain: atomic transactions within one chain * - cross-chain: multi-leg transactions between two chains, which utilize interoperability protocols * such as Wormhole. * * Separately, there are two trading modes: * - RFQ-T: the trader signs the transaction, the market maker signs the quote * - RFQ-M: both the trader and Market Maker sign the quote, any relayer can sign the transaction */ interface IQuote { /// @notice Used for intra-chain RFQ-T trades. struct RFQTQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The recipient of the quoteToken at the end of the trade. address trader; /** * @notice The account "effectively" making the trade (ultimately receiving the funds). * This is commonly used by aggregators, where a proxy contract (the 'trader') * receives the quoteToken, and the effective trader is the user initiating the call. * * This field DOES NOT influence movement of funds. However, it is used to check against * quote replay. */ address effectiveTrader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The max amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought when baseTokenAmount is sold. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this effectiveTrader. Nonces are used to protect against replay. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for intra-chain RFQ-M trades. struct RFQMQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The account that will be debited baseToken / credited quoteToken. address trader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } /// @notice Used for cross-chain RFQ-T trades. struct XChainRFQTQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this trader. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for Cross-Chain RFQ-M trades. struct XChainRFQMQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The account that will be debited baseToken on the source chain. address trader; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity 0.8.18; import '@openzeppelin/contracts/proxy/utils/Initializable.sol'; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol'; import '@openzeppelin/contracts/utils/Context.sol'; import '../interfaces/external/IWETH.sol'; import '../interfaces/IHashflowPool.sol'; import '../interfaces/IHashflowRouter.sol'; interface IERC20AllowanceExtension { function increaseAllowance(address spender, uint256 addedValue) external returns (bool); function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool); } contract HashflowPool is IHashflowPool, Initializable, Context { using Address for address payable; using SafeERC20 for IERC20; using ECDSA for bytes32; string public name; SignerConfiguration public signerConfiguration; address public operations; address public router; mapping(address => uint256) public nonces; mapping(bytes32 => uint256) public xChainNonces; mapping(address => bool) internal _withrawalAccountAuth; mapping(bytes32 => bool) internal _filledXChainTxids; address public immutable _WETH; constructor(address weth) { require( weth != address(0), 'HashflowPool::constructor WETH cannot be 0 address.' ); _WETH = weth; } /// @dev Fallback function to receive native token. receive() external payable {} /// @inheritdoc IHashflowPool function initialize( string memory _name, address _signer, address _operations, address _router ) public override initializer { require( _signer != address(0), 'HashflowPool::initialize Signer cannot be 0 address.' ); require( _operations != address(0), 'HashflowPool::initialize Operations cannot be 0 address.' ); require( _router != address(0), 'HashflowPool::initialize Router cannot be 0 address.' ); require( bytes(_name).length > 0, 'HashflowPool::initialize Name cannot be empty' ); name = _name; SignerConfiguration memory signerConfig; signerConfig.enabled = true; signerConfig.signer = _signer; emit UpdateSigner(_signer, address(0)); signerConfiguration = signerConfig; operations = _operations; router = _router; } modifier authorizedOperations() { require( _msgSender() == operations, 'HashflowPool:authorizedOperations Sender must be operator.' ); _; } modifier authorizedRouter() { require( _msgSender() == router, 'HashflowPool::authorizedRouter Sender must be Router.' ); _; } /// @inheritdoc IHashflowPool function tradeRFQT(RFQTQuote memory quote) external payable override authorizedRouter { /// Trust assumption: the Router has transferred baseToken. require( quote.baseToken != address(0) || quote.externalAccount != address(0) || msg.value == quote.effectiveBaseTokenAmount, 'HashflowPool::tradeRFQT msg.value must equal effectiveBaseTokenAmount' ); bytes32 quoteHash = _hashQuoteRFQT(quote); SignerConfiguration memory signerConfig = signerConfiguration; require(signerConfig.enabled, 'HashflowPool::tradeRFQT Disabled.'); require( quoteHash.recover(quote.signature) == signerConfig.signer, 'HashflowPool::tradeRFQT Invalid signer.' ); _updateNonce(quote.effectiveTrader, quote.nonce); uint256 quoteTokenAmount = quote.quoteTokenAmount; if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) { quoteTokenAmount = (quote.effectiveBaseTokenAmount * quote.quoteTokenAmount) / quote.baseTokenAmount; } emit Trade( quote.trader, quote.effectiveTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.effectiveBaseTokenAmount, quoteTokenAmount ); if (quote.externalAccount == address(0)) { _transferFromPool(quote.quoteToken, quote.trader, quoteTokenAmount); } else { _transferFromExternalAccount( quote.externalAccount, quote.quoteToken, quote.trader, quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeRFQM(RFQMQuote memory quote) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; require(signerConfig.enabled, 'HashflowPool::tradeRFQM Disabled.'); bytes32 quoteHash = _hashQuoteRFQM(quote); require( quoteHash.recover(quote.makerSignature) == signerConfig.signer, 'HashflowPool::tradeRFQM Invalid signer.' ); emit Trade( quote.trader, quote.trader, quote.txid, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount ); if (quote.externalAccount == address(0)) { _transferFromPool( quote.quoteToken, quote.trader, quote.quoteTokenAmount ); } else { _transferFromExternalAccount( quote.externalAccount, quote.quoteToken, quote.trader, quote.quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader) external payable override authorizedRouter { require( quote.srcExternalAccount != address(0) || quote.baseToken != address(0) || msg.value == quote.effectiveBaseTokenAmount, 'HashflowPool::tradeXChainRFQT msg.value must = amount' ); SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::tradeXChainRFQT Disabled.' ); _updateNonceXChain(quote.dstTrader, quote.nonce); bytes32 quoteHash = _hashXChainQuoteRFQT(quote); require( quoteHash.recover(quote.signature) == signerConfig.signer, 'HashflowPool::tradeXChainRFQT Invalid signer' ); uint256 effectiveQuoteTokenAmount = quote.quoteTokenAmount; if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) { effectiveQuoteTokenAmount = (quote.quoteTokenAmount * quote.effectiveBaseTokenAmount) / quote.baseTokenAmount; } emit XChainTrade( quote.dstChainId, quote.dstPool, trader, quote.dstTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.effectiveBaseTokenAmount, effectiveQuoteTokenAmount ); } /// @inheritdoc IHashflowPool function fillXChain( address externalAccount, bytes32 txid, address trader, address quoteToken, uint256 quoteTokenAmount ) external override authorizedRouter { require( !_filledXChainTxids[txid], 'HashflowPool::fillXChain Quote has been executed previously.' ); _filledXChainTxids[txid] = true; emit XChainTradeFill(txid); if (externalAccount == address(0)) { _transferFromPool(quoteToken, trader, quoteTokenAmount); } else { _transferFromExternalAccount( externalAccount, quoteToken, trader, quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeXChainRFQM(XChainRFQMQuote memory quote) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::tradeXChainRFQM Disabled.' ); bytes32 quoteHash = _hashXChainQuoteRFQM(quote); require( quoteHash.recover(quote.makerSignature) == signerConfig.signer, 'HashflowPool::tradeXChainRFQM Invalid signer' ); emit XChainTrade( quote.dstChainId, quote.dstPool, quote.trader, quote.dstTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount ); } /// @inheritdoc IHashflowPool function updateXChainPoolAuthorization( AuthorizedXChainPool[] calldata pools, bool status ) external override authorizedOperations { for (uint256 i = 0; i < pools.length; i++) { require(pools[i].pool != bytes32(0)); IHashflowRouter(router).updateXChainPoolAuthorization( pools[i].chainId, pools[i].pool, status ); } } /// @inheritdoc IHashflowPool function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external override authorizedOperations { require( xChainMessenger != address(0), 'HashflowPool::updateXChainMessengerAuthorization Invalid messenger address.' ); IHashflowRouter(router).updateXChainMessengerAuthorization( xChainMessenger, authorized ); } /// @dev ERC1271 implementation. function isValidSignature(bytes32 hash, bytes memory signature) external view override returns (bytes4 magicValue) { if (hash.recover(signature) == signerConfiguration.signer) { magicValue = 0x1626ba7e; } } /// @inheritdoc IHashflowPool function approveToken( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).forceApprove(spender, amount); } /// @inheritdoc IHashflowPool function increaseTokenAllowance( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).safeIncreaseAllowance(spender, amount); } /// @inheritdoc IHashflowPool function decreaseTokenAllowance( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).safeDecreaseAllowance(spender, amount); } /// @inheritdoc IHashflowPool function removeLiquidity( address token, address recipient, uint256 amount ) external override authorizedOperations { SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::removeLiquidity Disabled.' ); require(amount > 0, 'HashflowPool::removeLiquidity Invalid amount'); address _recipient; if (recipient != address(0)) { require( _withrawalAccountAuth[recipient], 'HashflowPool::removeLiquidity Recipient must be hedging account' ); _recipient = recipient; } else { _recipient = _msgSender(); } emit RemoveLiquidity(token, _recipient, amount); _transferFromPool(token, _recipient, amount); } /// @inheritdoc IHashflowPool function updateWithdrawalAccount( address[] memory withdrawalAccounts, bool authorized ) external override authorizedOperations { for (uint256 i = 0; i < withdrawalAccounts.length; i++) { require(withdrawalAccounts[i] != address(0)); _withrawalAccountAuth[withdrawalAccounts[i]] = authorized; emit UpdateWithdrawalAccount(withdrawalAccounts[i], authorized); } } /// @inheritdoc IHashflowPool function updateSigner(address newSigner) external override authorizedOperations { require(newSigner != address(0)); SignerConfiguration memory signerConfig = signerConfiguration; emit UpdateSigner(newSigner, signerConfig.signer); signerConfig.signer = newSigner; signerConfiguration = signerConfig; } /// @inheritdoc IHashflowPool function killswitchOperations(bool enabled) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; signerConfig.enabled = enabled; signerConfiguration = signerConfig; } function getReserves(address token) external view override returns (uint256) { return _getReserves(token); } /** * @dev Prevents against replay for RFQ-T. Checks that nonces are strictly increasing. */ function _updateNonce(address trader, uint256 nonce) internal { require( nonce > nonces[trader], 'HashflowPool::_updateNonce Invalid nonce.' ); nonces[trader] = nonce; } /** * @dev Prevents against replay for X-Chain RFQ-T. Checks that nonces are strictly increasing. */ function _updateNonceXChain(bytes32 trader, uint256 nonce) internal { require( nonce > xChainNonces[trader], 'HashflowPool::_updateNonceXChain Invalid nonce.' ); xChainNonces[trader] = nonce; } function _transferFromPool( address token, address recipient, uint256 value ) internal { if (token == address(0)) { payable(recipient).sendValue(value); } else { IERC20(token).safeTransfer(recipient, value); } } /// @dev Helper function to transfer quoteToken from external account. function _transferFromExternalAccount( address externalAccount, address token, address receiver, uint256 value ) private { if (token == address(0)) { IERC20(_WETH).safeTransferFrom( externalAccount, address(this), value ); IWETH(_WETH).withdraw(value); payable(receiver).sendValue(value); } else { IERC20(token).safeTransferFrom(externalAccount, receiver, value); } } function _getReserves(address token) internal view returns (uint256) { return token == address(0) ? address(this).balance : IERC20(token).balanceOf(address(this)); } /** * @dev Generates a quote hash for RFQ-t. */ function _hashQuoteRFQT(RFQTQuote memory quote) private view returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( address(this), quote.trader, quote.effectiveTrader, quote.externalAccount, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.nonce, quote.quoteExpiry, quote.txid, block.chainid ) ) ) ); } function _hashQuoteRFQM(RFQMQuote memory quote) private view returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( quote.pool, quote.externalAccount, quote.trader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.txid, block.chainid ) ) ) ); } function _hashXChainQuoteRFQT(XChainRFQTQuote memory quote) private pure returns (bytes32) { bytes32 digest = keccak256( abi.encodePacked( keccak256( abi.encodePacked( quote.srcChainId, quote.dstChainId, quote.srcPool, quote.dstPool, quote.srcExternalAccount, quote.dstExternalAccount ) ), quote.dstTrader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.nonce, quote.txid, quote.xChainMessenger ) ); return keccak256( abi.encodePacked('\\x19Ethereum Signed Message:\ 32', digest) ); } function _hashXChainQuoteRFQM(XChainRFQMQuote memory quote) private pure returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( keccak256( abi.encodePacked( quote.srcChainId, quote.dstChainId, quote.srcPool, quote.dstPool, quote.srcExternalAccount, quote.dstExternalAccount ) ), quote.trader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.txid, quote.xChainMessenger ) ) ) ); } }
File 4 of 7: TetherToken
pragma solidity ^0.4.17; /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20Basic { uint public _totalSupply; function totalSupply() public constant returns (uint); function balanceOf(address who) public constant returns (uint); function transfer(address to, uint value) public; event Transfer(address indexed from, address indexed to, uint value); } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint); function transferFrom(address from, address to, uint value) public; function approve(address spender, uint value) public; event Approval(address indexed owner, address indexed spender, uint value); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); } contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; } contract TetherToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
File 5 of 7: OpenOceanExchange
// File: @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // File: @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // File: @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // File: @openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // File: @openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File: @openzeppelin/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: @openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File: contracts/interfaces/IOpenOceanCaller.sol pragma solidity ^0.8.0; interface IOpenOceanCaller { struct CallDescription { uint256 target; uint256 gasLimit; uint256 value; bytes data; } function makeCall(CallDescription memory desc) external; function makeCalls(CallDescription[] memory desc) external payable; } // File: contracts/libraries/RevertReasonParser.sol pragma solidity ^0.8.0; library RevertReasonParser { function parse(bytes memory data, string memory prefix) internal pure returns (string memory) { // https://solidity.readthedocs.io/en/latest/control-structures.html#revert // We assume that revert reason is abi-encoded as Error(string) // 68 = 4-byte selector 0x08c379a0 + 32 bytes offset + 32 bytes length if (data.length >= 68 && data[0] == "\x08" && data[1] == "\xc3" && data[2] == "\x79" && data[3] == "\xa0") { string memory reason; // solhint-disable no-inline-assembly assembly { // 68 = 32 bytes data length + 4-byte selector + 32 bytes offset reason := add(data, 68) } /* revert reason is padded up to 32 bytes with ABI encoder: Error(string) also sometimes there is extra 32 bytes of zeros padded in the end: https://github.com/ethereum/solidity/issues/10170 because of that we can't check for equality and instead check that string length + extra 68 bytes is less than overall data length */ require(data.length >= 68 + bytes(reason).length, "Invalid revert reason"); return string(abi.encodePacked(prefix, "Error(", reason, ")")); } // 36 = 4-byte selector 0x4e487b71 + 32 bytes integer else if (data.length == 36 && data[0] == "\x4e" && data[1] == "\x48" && data[2] == "\x7b" && data[3] == "\x71") { uint256 code; // solhint-disable no-inline-assembly assembly { // 36 = 32 bytes data length + 4-byte selector code := mload(add(data, 36)) } return string(abi.encodePacked(prefix, "Panic(", _toHex(code), ")")); } return string(abi.encodePacked(prefix, "Unknown()")); } function _toHex(uint256 value) private pure returns (string memory) { return _toHex(abi.encodePacked(value)); } function _toHex(bytes memory data) private pure returns (string memory) { bytes memory alphabet = "0123456789abcdef"; bytes memory str = new bytes(2 + data.length * 2); str[0] = "0"; str[1] = "x"; for (uint256 i = 0; i < data.length; i++) { str[2 * i + 2] = alphabet[uint8(data[i] >> 4)]; str[2 * i + 3] = alphabet[uint8(data[i] & 0x0f)]; } return string(str); } } // File: @openzeppelin/contracts/utils/math/SafeMath.sol // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } // File: contracts/libraries/UniversalERC20.sol pragma solidity ^0.8.0; library UniversalERC20 { using SafeMath for uint256; using SafeERC20 for IERC20; IERC20 internal constant ZERO_ADDRESS = IERC20(0x0000000000000000000000000000000000000000); IERC20 internal constant ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); IERC20 internal constant MATIC_ADDRESS = IERC20(0x0000000000000000000000000000000000001010); function universalTransfer( IERC20 token, address payable to, uint256 amount ) internal { if (amount > 0) { if (isETH(token)) { (bool result, ) = to.call{value: amount}(""); require(result, "Failed to transfer ETH"); } else { token.safeTransfer(to, amount); } } } function universalApprove( IERC20 token, address to, uint256 amount ) internal { require(!isETH(token), "Approve called on ETH"); if (amount == 0) { token.safeApprove(to, 0); } else { uint256 allowance = token.allowance(address(this), to); if (allowance < amount) { if (allowance > 0) { token.safeApprove(to, 0); } token.safeApprove(to, amount); } } } function universalBalanceOf(IERC20 token, address account) internal view returns (uint256) { if (isETH(token)) { return account.balance; } else { return token.balanceOf(account); } } function isETH(IERC20 token) internal pure returns (bool) { return address(token) == address(ETH_ADDRESS) || address(token) == address(MATIC_ADDRESS) || address(token) == address(ZERO_ADDRESS); } } // File: contracts/libraries/Permitable.sol pragma solidity ^0.8.0; /// @title Interface for DAI-style permits interface IDaiLikePermit { function permit( address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s ) external; } /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface IPermit2 { /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Returns the domain separator for the current chain. /// @dev Uses cached version if chainid and address are unchanged from construction. function DOMAIN_SEPARATOR() external view returns (bytes32); } /// @title Base contract with common permit handling logics contract Permitable { address public permit2; function permit2DomainSeperator() external view returns (bytes32) { return IPermit2(permit2).DOMAIN_SEPARATOR(); } function _permit(address token, bytes calldata permit, bool claim) internal returns (bool) { if (permit.length > 0) { if (permit.length == 32 * 7 || permit.length == 32 * 8) { _permit(token, permit); return false; } else if (claim) { _permit2(permit); return true; } } return false; } function _isPermit2(bytes calldata permit) internal pure returns (bool) { return permit.length == 32 * 11 || permit.length == 32 * 12; } function _permit(address token, bytes calldata permit) private returns (bool success, bytes memory result) { if (permit.length == 32 * 7) { // solhint-disable-next-line avoid-low-level-calls (success, result) = token.call(abi.encodePacked(IERC20Permit.permit.selector, permit)); } else if (permit.length == 32 * 8) { // solhint-disable-next-line avoid-low-level-calls (success, result) = token.call(abi.encodePacked(IDaiLikePermit.permit.selector, permit)); } if (!success) { revert(RevertReasonParser.parse(result, "Permit failed: ")); } } function _permit2(bytes calldata permit) internal returns (bool success, bytes memory result) { // solhint-disable-next-line avoid-low-level-calls (success, result) = permit2.call(abi.encodePacked(IPermit2.permitTransferFrom.selector, permit)); // TODO support batch permit if (!success) { revert(RevertReasonParser.parse(result, "Permit2 failed: ")); } } /// @notice Finds the next valid nonce for a user, starting from 0. /// @param owner The owner of the nonces /// @return nonce The first valid nonce starting from 0 function permit2NextNonce(address owner) external view returns (uint256 nonce) { nonce = _permit2NextNonce(owner, 0, 0); } /// @notice Finds the next valid nonce for a user, after from a given nonce. /// @dev This can be helpful if you're signing multiple nonces in a row and need the next nonce to sign but the start one is still valid. /// @param owner The owner of the nonces /// @param start The nonce to start from /// @return nonce The first valid nonce after the given nonce function permit2NextNonceAfter(address owner, uint256 start) external view returns (uint256 nonce) { uint248 word = uint248(start >> 8); uint8 pos = uint8(start); if (pos == type(uint8).max) { // If the position is 255, we need to move to the next word word++; pos = 0; } else { // Otherwise, we just move to the next position pos++; } nonce = _permit2NextNonce(owner, word, pos); } /// @notice Finds the next valid nonce for a user, starting from a given word and position. /// @param owner The owner of the nonces /// @param word Word to start looking from /// @param pos Position inside the word to start looking from function _permit2NextNonce(address owner, uint248 word, uint8 pos) internal view returns (uint256 nonce) { while (true) { uint256 bitmap = IPermit2(permit2).nonceBitmap(owner, word); // Check if the bitmap is completely full if (bitmap == type(uint256).max) { // If so, move to the next word ++word; pos = 0; continue; } if (pos != 0) { // If the position is not 0, we need to shift the bitmap to ignore the bits before position bitmap = bitmap >> pos; } // Find the first zero bit in the bitmap while (bitmap & 1 == 1) { bitmap = bitmap >> 1; ++pos; } return _permit2NonceFromWordAndPos(word, pos); } } /// @notice Constructs a nonce from a word and a position inside the word /// @param word The word containing the nonce /// @param pos The position of the nonce inside the word /// @return nonce The nonce constructed from the word and position function _permit2NonceFromWordAndPos(uint248 word, uint8 pos) internal pure returns (uint256 nonce) { // The last 248 bits of the word are the nonce bits nonce = uint256(word) << 8; // The first 8 bits of the word are the position inside the word nonce |= pos; } } // File: contracts/libraries/EthRejector.sol pragma solidity ^0.8.0; abstract contract EthRejector { receive() external payable { // require(msg.sender != tx.origin, "ETH deposit rejected"); } } // File: contracts/UniswapV2Exchange.sol pragma solidity ^0.8.0; contract UniswapV2Exchange is EthRejector, Permitable { uint256 private constant TRANSFER_FROM_CALL_SELECTOR_32 = 0x23b872dd00000000000000000000000000000000000000000000000000000000; uint256 private constant WETH_DEPOSIT_CALL_SELECTOR_32 = 0xd0e30db000000000000000000000000000000000000000000000000000000000; uint256 private constant WETH_WITHDRAW_CALL_SELECTOR_32 = 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000; uint256 private constant ERC20_TRANSFER_CALL_SELECTOR_32 = 0xa9059cbb00000000000000000000000000000000000000000000000000000000; uint256 private constant ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff; uint256 private constant REVERSE_MASK = 0x8000000000000000000000000000000000000000000000000000000000000000; uint256 private constant WETH_MASK = 0x4000000000000000000000000000000000000000000000000000000000000000; uint256 private constant NUMERATOR_MASK = 0x0000000000000000ffffffff0000000000000000000000000000000000000000; uint256 private constant WETH = 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; uint256 private constant UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32 = 0x0902f1ac00000000000000000000000000000000000000000000000000000000; uint256 private constant UNISWAP_PAIR_SWAP_CALL_SELECTOR_32 = 0x022c0d9f00000000000000000000000000000000000000000000000000000000; uint256 private constant DENOMINATOR = 1000000000; uint256 private constant NUMERATOR_OFFSET = 160; function callUniswapToWithPermit( IERC20 srcToken, uint256 amount, uint256 minReturn, bytes32[] calldata pools, bytes calldata permit, address payable recipient ) external returns (uint256 returnAmount) { bool claimed = _permit(address(srcToken), permit, true); return _callUniswap(srcToken, amount, minReturn, pools, recipient, claimed); } function callUniswapWithPermit( IERC20 srcToken, uint256 amount, uint256 minReturn, bytes32[] calldata pools, bytes calldata permit ) external returns (uint256 returnAmount) { bool claimed = _permit(address(srcToken), permit, true); return _callUniswap(srcToken, amount, minReturn, pools, payable(msg.sender), claimed); } function callUniswapTo( IERC20 srcToken, uint256 amount, uint256 minReturn, bytes32[] calldata pools, address payable recipient ) external payable returns (uint256 returnAmount) { return _callUniswap(srcToken, amount, minReturn, pools, recipient, false); } function callUniswap( IERC20 srcToken, uint256 amount, uint256 minReturn, bytes32[] calldata pools ) external payable returns (uint256 returnAmount) { return _callUniswap(srcToken, amount, minReturn, pools, payable(msg.sender), false); } function _callUniswap( IERC20 srcToken, uint256 amount, uint256 minReturn, bytes32[] calldata /* pools */, address payable recipient, bool claimed ) internal returns (uint256 returnAmount) { assembly { // solhint-disable-line no-inline-assembly function reRevert() { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } function revertWithReason(m, len) { mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000) mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000) mstore(0x40, m) revert(0, len) } function swap(emptyPtr, swapAmount, pair, reversed, numerator, dst) -> ret { mstore(emptyPtr, UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32) if iszero(staticcall(gas(), pair, emptyPtr, 0x4, emptyPtr, 0x40)) { reRevert() } let reserve0 := mload(emptyPtr) let reserve1 := mload(add(emptyPtr, 0x20)) if reversed { let tmp := reserve0 reserve0 := reserve1 reserve1 := tmp } ret := mul(swapAmount, numerator) ret := div(mul(ret, reserve1), add(ret, mul(reserve0, DENOMINATOR))) mstore(emptyPtr, UNISWAP_PAIR_SWAP_CALL_SELECTOR_32) switch reversed case 0 { mstore(add(emptyPtr, 0x04), 0) mstore(add(emptyPtr, 0x24), ret) } default { mstore(add(emptyPtr, 0x04), ret) mstore(add(emptyPtr, 0x24), 0) } mstore(add(emptyPtr, 0x44), dst) mstore(add(emptyPtr, 0x64), 0x80) mstore(add(emptyPtr, 0x84), 0) if iszero(call(gas(), pair, 0, emptyPtr, 0xa4, 0, 0)) { reRevert() } } function callSwap(emptyPtr, token, srcAmount, swapCaller, receiver, min, claim) -> ret { let poolsOffset := add(calldataload(0x64), 0x4) let poolsEndOffset := calldataload(poolsOffset) poolsOffset := add(poolsOffset, 0x20) poolsEndOffset := add(poolsOffset, mul(0x20, poolsEndOffset)) let rawPair := calldataload(poolsOffset) switch token case 0 { if iszero(eq(srcAmount, callvalue())) { revertWithReason(0x00000011696e76616c6964206d73672e76616c75650000000000000000000000, 0x55) // "invalid msg.value" } mstore(emptyPtr, WETH_DEPOSIT_CALL_SELECTOR_32) if iszero(call(gas(), WETH, srcAmount, emptyPtr, 0x4, 0, 0)) { reRevert() } mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x4), and(rawPair, ADDRESS_MASK)) mstore(add(emptyPtr, 0x24), srcAmount) if iszero(call(gas(), WETH, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } } default { if callvalue() { revertWithReason(0x00000011696e76616c6964206d73672e76616c75650000000000000000000000, 0x55) // "invalid msg.value" } if claim { mstore(emptyPtr, TRANSFER_FROM_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x4), swapCaller) mstore(add(emptyPtr, 0x24), and(rawPair, ADDRESS_MASK)) mstore(add(emptyPtr, 0x44), srcAmount) if iszero(call(gas(), token, 0, emptyPtr, 0x64, 0, 0)) { reRevert() } } } ret := srcAmount for { let i := add(poolsOffset, 0x20) } lt(i, poolsEndOffset) { i := add(i, 0x20) } { let nextRawPair := calldataload(i) ret := swap( emptyPtr, ret, and(rawPair, ADDRESS_MASK), and(rawPair, REVERSE_MASK), shr(NUMERATOR_OFFSET, and(rawPair, NUMERATOR_MASK)), and(nextRawPair, ADDRESS_MASK) ) rawPair := nextRawPair } ret := swap( emptyPtr, ret, and(rawPair, ADDRESS_MASK), and(rawPair, REVERSE_MASK), shr(NUMERATOR_OFFSET, and(rawPair, NUMERATOR_MASK)), address() ) if lt(ret, min) { revertWithReason(0x000000164d696e2072657475726e206e6f742072656163686564000000000000, 0x5a) // "Min return not reached" } mstore(emptyPtr, 0xd21220a700000000000000000000000000000000000000000000000000000000) if and(rawPair, REVERSE_MASK) { mstore(emptyPtr, 0x0dfe168100000000000000000000000000000000000000000000000000000000) } if iszero(staticcall(gas(), and(rawPair, ADDRESS_MASK), emptyPtr, 0x4, emptyPtr, 0x40)) { reRevert() } let dstToken := mload(emptyPtr) let finalAmount := div( mul(calldataload(0x44), 0x2710), sub( 10000, shr( 232, and( calldataload(add(add(calldataload(0x64), 0x4), 0x20)), 0x00ffff0000000000000000000000000000000000000000000000000000000000 ) ) ) ) switch gt(ret, finalAmount) case 1 { switch and(rawPair, WETH_MASK) case 0 { mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x4), receiver) mstore(add(emptyPtr, 0x24), finalAmount) if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } mstore(add(emptyPtr, 0x4), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef) mstore(add(emptyPtr, 0x24), sub(ret, finalAmount)) if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } } default { mstore(emptyPtr, WETH_WITHDRAW_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x04), ret) if iszero(call(gas(), WETH, 0, emptyPtr, 0x24, 0, 0)) { reRevert() } if iszero(call(gas(), receiver, finalAmount, 0, 0, 0, 0)) { reRevert() } if iszero(call(gas(), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef, sub(ret, finalAmount), 0, 0, 0, 0)) { reRevert() } } } default { switch and(rawPair, WETH_MASK) case 0 { mstore(emptyPtr, ERC20_TRANSFER_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x4), receiver) mstore(add(emptyPtr, 0x24), ret) if iszero(call(gas(), dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } } default { mstore(emptyPtr, WETH_WITHDRAW_CALL_SELECTOR_32) mstore(add(emptyPtr, 0x04), ret) if iszero(call(gas(), WETH, 0, emptyPtr, 0x24, 0, 0)) { reRevert() } if iszero(call(gas(), receiver, ret, 0, 0, 0, 0)) { reRevert() } } } } let emptyPtr := mload(0x40) mstore(0x40, add(emptyPtr, 0xc0)) returnAmount := callSwap(emptyPtr, srcToken, amount, caller(), recipient, minReturn, eq(claimed, 0)) } } } // File: @openzeppelin/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } } // File: contracts/interfaces/IUniswapV3.sol pragma solidity ^0.8.0; pragma experimental ABIEncoderV2; interface IUniswapV3Pool { /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); } /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IAlgebraPoolActions#swap /// @notice Any contract that calls IAlgebraPoolActions#swap must implement this interface /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraSwapCallback { /// @notice Called to `msg.sender` after executing a swap via IAlgebraPool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a AlgebraPool deployed by the canonical AlgebraFactory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IAlgebraPoolActions#swap call function algebraSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IPancakeV3PoolActions#swap /// @notice Any contract that calls IPancakeV3PoolActions#swap must implement this interface interface IPancakeV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IPancakeV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a PancakeV3Pool deployed by the canonical PancakeV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IPancakeV3PoolActions#swap call function pancakeV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IRamsesV2PoolActions#swap /// @notice Any contract that calls IRamsesV2PoolActions#swap must implement this interface interface IRamsesV2SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IRamsesV2Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a RamsesV2Pool deployed by the canonical RamsesV2Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IRamsesV2PoolActions#swap call function ramsesV2SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IAgniPoolActions#swap /// @notice Any contract that calls IAgniPoolActions#swap must implement this interface interface IAgniSwapCallback { /// @notice Called to `msg.sender` after executing a swap via IAgniPool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a AgniPool deployed by the canonical AgniFactory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IAgniPoolActions#swap call function agniSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IFusionXV3PoolActions#swap /// @notice Any contract that calls IFusionXV3PoolActions#swap must implement this interface interface IFusionXV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IFusionXV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a FusionXV3Pool deployed by the canonical FusionXV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IFusionXV3PoolActions#swap call function fusionXV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for ISupV3PoolActions#swap /// @notice Any contract that calls ISupV3PoolActions#swap must implement this interface interface ISupV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via ISupV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a SUPV3Pool deployed by the canonical SupV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the ISupV3PoolActions#swap call function supV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IZebraV3PoolActions#swap /// @notice Any contract that calls IZebraV3PoolActions#swap must implement this interface interface IZebraV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IZebraV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a ZebraV3Pool deployed by the canonical ZebraV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IZebraV3PoolActions#swap call function zebraV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } /// @title Callback for IKellerPoolActions#swap /// @notice Any contract that calls IKellerPoolActions#swap must implement this interface interface IKellerSwapCallback { /// @notice Called to `msg.sender` after executing a swap via IKellerPool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a KellerPool deployed by the canonical KellerFactory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IKellerPoolActions#swap call function KellerSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // File: contracts/interfaces/IWETH.sol pragma solidity ^0.8.0; /// @title Interface for WETH tokens interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; } // File: contracts/UniswapV3Exchange.sol pragma solidity ^0.8.0; contract UniswapV3Exchange is EthRejector, Permitable, IUniswapV3SwapCallback { using Address for address payable; using SafeERC20 for IERC20; using SafeMath for uint256; uint256 private constant _ONE_FOR_ZERO_MASK = 1 << 255; uint256 private constant _WETH_WRAP_MASK = 1 << 254; uint256 private constant _WETH_UNWRAP_MASK = 1 << 253; bytes32 private constant _POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54; bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000; bytes32 private constant _SELECTORS = 0x0dfe1681d21220a7ddca3f430000000000000000000000000000000000000000; uint256 private constant _ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 private constant _MIN_SQRT_RATIO = 4295128739 + 1; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 private constant _MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342 - 1; /// @dev Change for different chains address private constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /// @notice Same as `uniswapV3SwapTo` but calls permit first, /// allowing to approve token spending and make a swap in one transaction. /// @param recipient Address that will receive swap funds /// @param amount Amount of source tokens to swap /// @param minReturn Minimal allowed returnAmount to make transaction commit /// @param pools Pools chain used for swaps. Pools src and dst tokens should match to make swap happen /// @param permit Should contain valid permit that can be used in `IERC20Permit.permit` calls. /// @param srcToken Source token /// See tests for examples function uniswapV3SwapToWithPermit( address payable recipient, uint256 amount, uint256 minReturn, uint256[] calldata pools, bytes calldata permit, IERC20 srcToken ) external returns (uint256 returnAmount) { _permit(address(srcToken), permit, false); return _uniswapV3Swap(recipient, amount, minReturn, pools, permit); } /// @notice Performs swap using Uniswap V3 exchange. Wraps and unwraps ETH if required. /// Sending non-zero `msg.value` for anything but ETH swaps is prohibited /// @param recipient Address that will receive swap funds /// @param amount Amount of source tokens to swap /// @param minReturn Minimal allowed returnAmount to make transaction commit /// @param pools Pools chain used for swaps. Pools src and dst tokens should match to make swap happen function uniswapV3SwapTo( address payable recipient, uint256 amount, uint256 minReturn, uint256[] calldata pools ) external payable returns (uint256 returnAmount) { return _uniswapV3Swap(recipient, amount, minReturn, pools, new bytes(0)); } function _uniswapV3Swap( address payable recipient, uint256 amount, uint256 minReturn, uint256[] calldata pools, bytes memory permit ) internal returns (uint256 returnAmount) { uint256 len = pools.length; address dstToken; require(len > 0, "UniswapV3: empty pools"); uint256 lastIndex = len - 1; returnAmount = amount; bool wrapWeth = pools[0] & _WETH_WRAP_MASK > 0; bool unwrapWeth = pools[lastIndex] & _WETH_UNWRAP_MASK > 0; if (wrapWeth) { require(msg.value == amount, "UniswapV3: wrong msg.value"); IWETH(_WETH).deposit{value: amount}(); } else { require(msg.value == 0, "UniswapV3: msg.value should be 0"); } if (len > 1) { (returnAmount, ) = _makeSwap(address(this), wrapWeth ? address(this) : msg.sender, pools[0], returnAmount, permit); for (uint256 i = 1; i < lastIndex; i++) { (returnAmount, ) = _makeSwap(address(this), address(this), pools[i], returnAmount, permit); } (returnAmount, dstToken) = _makeSwap(address(this), address(this), pools[lastIndex], returnAmount, permit); } else { (returnAmount, dstToken) = _makeSwap( address(this), wrapWeth ? address(this) : msg.sender, pools[0], returnAmount, permit ); } require(returnAmount >= minReturn, "UniswapV3: min return"); assembly { function reRevert() { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } function run(_returnAmount, _recipient, _unwrapWeth, _dstToken) { let slp := shr( 232, and( calldataload(add(add(calldataload(0x64), 0x4), 0x20)), 0x00ffff0000000000000000000000000000000000000000000000000000000000 ) ) let finalAmount := div(mul(calldataload(0x44), 0x2710), sub(10000, slp)) let emptyPtr := mload(0x40) switch gt(_returnAmount, finalAmount) case 1 { switch _unwrapWeth case 0 { mstore(emptyPtr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(emptyPtr, 0x4), _recipient) mstore(add(emptyPtr, 0x24), finalAmount) if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } mstore(add(emptyPtr, 0x4), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef) mstore(add(emptyPtr, 0x24), sub(_returnAmount, finalAmount)) if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } } default { mstore(emptyPtr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000) mstore(add(emptyPtr, 0x04), _returnAmount) if iszero( call(gas(), 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 0, emptyPtr, 0x24, 0, 0) ) { reRevert() } if iszero(call(gas(), _recipient, finalAmount, 0, 0, 0, 0)) { reRevert() } if iszero( call(gas(), 0x922164BBBd36Acf9E854AcBbF32faCC949fCAEef, sub(_returnAmount, finalAmount), 0, 0, 0, 0) ) { reRevert() } } } default { switch _unwrapWeth case 0 { mstore(emptyPtr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(emptyPtr, 0x4), _recipient) mstore(add(emptyPtr, 0x24), _returnAmount) if iszero(call(gas(), _dstToken, 0, emptyPtr, 0x44, 0, 0)) { reRevert() } } default { mstore(emptyPtr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000) mstore(add(emptyPtr, 0x04), _returnAmount) if iszero( call(gas(), 0x000000000000000000000000C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 0, emptyPtr, 0x24, 0, 0) ) { reRevert() } if iszero(call(gas(), _recipient, _returnAmount, 0, 0, 0, 0)) { reRevert() } } } } run(returnAmount, recipient, unwrapWeth, dstToken) } } /// @inheritdoc IUniswapV3SwapCallback function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata /*data*/) external override { IERC20 token0; IERC20 token1; bytes32 ffFactoryAddress = _FF_FACTORY; bytes32 poolInitCodeHash = _POOL_INIT_CODE_HASH; address payer; bytes calldata permit; assembly { // solhint-disable-line no-inline-assembly function reRevert() { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } function revertWithReason(m, len) { mstore(0x00, 0x08c379a000000000000000000000000000000000000000000000000000000000) mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000) mstore(0x40, m) revert(0, len) } let emptyPtr := mload(0x40) let resultPtr := add(emptyPtr, 0x20) mstore(emptyPtr, _SELECTORS) if iszero(staticcall(gas(), caller(), emptyPtr, 0x4, resultPtr, 0x20)) { reRevert() } token0 := mload(resultPtr) if iszero(staticcall(gas(), caller(), add(emptyPtr, 0x4), 0x4, resultPtr, 0x20)) { reRevert() } token1 := mload(resultPtr) if iszero(staticcall(gas(), caller(), add(emptyPtr, 0x8), 0x4, resultPtr, 0x20)) { reRevert() } let fee := mload(resultPtr) let p := emptyPtr mstore(p, ffFactoryAddress) p := add(p, 21) // Compute the inner hash in-place mstore(p, token0) mstore(add(p, 32), token1) mstore(add(p, 64), fee) mstore(p, keccak256(p, 96)) p := add(p, 32) mstore(p, poolInitCodeHash) let pool := and(keccak256(emptyPtr, 85), _ADDRESS_MASK) if iszero(eq(pool, caller())) { revertWithReason(0x00000010554e495633523a2062616420706f6f6c000000000000000000000000, 0x54) // UniswapV3: bad pool } // calldatacopy(emptyPtr, 0x84, 0x20) payer := and(calldataload(0x84), _ADDRESS_MASK) permit.length := sub(calldatasize(), 0xa4) permit.offset := 0xa4 } if (amount0Delta > 0) { if (payer == address(this)) { token0.safeTransfer(msg.sender, uint256(amount0Delta)); } else { if (_isPermit2(permit)) { _permit2(permit); } else { token0.safeTransferFrom(payer, msg.sender, uint256(amount0Delta)); } } } if (amount1Delta > 0) { if (payer == address(this)) { token1.safeTransfer(msg.sender, uint256(amount1Delta)); } else { if (_isPermit2(permit)) { _permit2(permit); } else { token1.safeTransferFrom(payer, msg.sender, uint256(amount1Delta)); } } } } function _makeSwap( address recipient, address payer, uint256 pool, uint256 amount, bytes memory permit ) private returns (uint256, address) { bool zeroForOne = pool & _ONE_FOR_ZERO_MASK == 0; if (zeroForOne) { (, int256 amount1) = IUniswapV3Pool(address(uint160(pool))).swap( recipient, zeroForOne, SafeCast.toInt256(amount), _MIN_SQRT_RATIO, abi.encodePacked(abi.encode(payer), permit) // for bytes alignment ); return (SafeCast.toUint256(-amount1), IUniswapV3Pool(address(uint160(pool))).token1()); } else { (int256 amount0, ) = IUniswapV3Pool(address(uint160(pool))).swap( recipient, zeroForOne, SafeCast.toInt256(amount), _MAX_SQRT_RATIO, abi.encodePacked(abi.encode(payer), permit) // for bytes alignment ); return (SafeCast.toUint256(-amount0), IUniswapV3Pool(address(uint160(pool))).token0()); } } } // File: contracts/OpenOceanExchange.sol pragma solidity ^0.8.0; contract OpenOceanExchange is OwnableUpgradeable, PausableUpgradeable, Permitable, UniswapV2Exchange, UniswapV3Exchange { using SafeMath for uint256; using SafeERC20 for IERC20; using UniversalERC20 for IERC20; uint256 private constant _PARTIAL_FILL = 0x01; uint256 private constant _SHOULD_CLAIM = 0x02; struct SwapDescription { IERC20 srcToken; IERC20 dstToken; address srcReceiver; address dstReceiver; uint256 amount; uint256 minReturnAmount; uint256 guaranteedAmount; uint256 flags; address referrer; bytes permit; } event Swapped( address indexed sender, IERC20 indexed srcToken, IERC20 indexed dstToken, address dstReceiver, uint256 amount, uint256 spentAmount, uint256 returnAmount, uint256 minReturnAmount, uint256 guaranteedAmount, address referrer ); function initialize() public initializer { OwnableUpgradeable.__Ownable_init(); PausableUpgradeable.__Pausable_init(); } function swap( IOpenOceanCaller caller, SwapDescription calldata desc, IOpenOceanCaller.CallDescription[] calldata calls ) external payable whenNotPaused returns (uint256 returnAmount) { require(desc.minReturnAmount > 0, "Min return should not be 0"); require(calls.length > 0, "Call data should exist"); uint256 flags = desc.flags; IERC20 srcToken = desc.srcToken; IERC20 dstToken = desc.dstToken; require(msg.value == (srcToken.isETH() ? desc.amount : 0), "Invalid msg.value"); if (flags & _SHOULD_CLAIM != 0) { require(!srcToken.isETH(), "Claim token is ETH"); _claim(srcToken, desc.srcReceiver, desc.amount, desc.permit); } address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver; uint256 initialSrcBalance = (flags & _PARTIAL_FILL != 0) ? srcToken.universalBalanceOf(msg.sender) : 0; uint256 initialDstBalance = dstToken.universalBalanceOf(dstReceiver); caller.makeCalls{value: msg.value}(calls); uint256 spentAmount = desc.amount; returnAmount = dstToken.universalBalanceOf(dstReceiver).sub(initialDstBalance); if (flags & _PARTIAL_FILL != 0) { spentAmount = initialSrcBalance.add(desc.amount).sub(srcToken.universalBalanceOf(msg.sender)); require(returnAmount.mul(desc.amount) >= desc.minReturnAmount.mul(spentAmount), "Return amount is not enough"); } else { require(returnAmount >= desc.minReturnAmount, "Return amount is not enough"); } _emitSwapped(desc, srcToken, dstToken, dstReceiver, spentAmount, returnAmount); } function _emitSwapped( SwapDescription calldata desc, IERC20 srcToken, IERC20 dstToken, address dstReceiver, uint256 spentAmount, uint256 returnAmount ) private { emit Swapped( msg.sender, srcToken, dstToken, dstReceiver, desc.amount, spentAmount, returnAmount, desc.minReturnAmount, desc.guaranteedAmount, desc.referrer ); } function _claim(IERC20 token, address dst, uint256 amount, bytes calldata permit) private { if (!_permit(address(token), permit, true)) { token.safeTransferFrom(msg.sender, dst, amount); } } function rescueFunds(IERC20 token, uint256 amount) external onlyOwner { token.universalTransfer(payable(msg.sender), amount); } function pause() external onlyOwner { _pause(); } function setPermit2(address _permit2) external onlyOwner { permit2 = _permit2; } }
File 6 of 7: HashflowRouter
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol) pragma solidity ^0.8.0; import "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner"); _transferOwnership(sender); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; // EIP-2612 is Final as of 2022-11-01. This file is deprecated. import "./IERC20Permit.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/draft-EIP712.sol) pragma solidity ^0.8.0; // EIP-712 is Final as of 2022-08-11. This file is deprecated. import "./EIP712.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; import "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Gnosis Safe. * * _Available since v4.1._ */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity 0.8.18; import '@openzeppelin/contracts/access/Ownable2Step.sol'; import '@openzeppelin/contracts/security/ReentrancyGuard.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol'; import '@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol'; import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol'; import '@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol'; import '@openzeppelin/contracts/proxy/utils/Initializable.sol'; import './interfaces/IHashflowPool.sol'; import './interfaces/IHashflowRouter.sol'; import './interfaces/external/IWETH.sol'; import './interfaces/xchain/IHashflowXChainMessenger.sol'; /// @title HashflowRouter /// @author Victor Ionescu /// @notice Implementation of IHashflowRouter. contract HashflowRouter is IHashflowRouter, EIP712, ReentrancyGuard, Ownable2Step, Initializable { using Address for address payable; using Address for address; using ECDSA for bytes32; using SafeERC20 for IERC20; using SafeERC20 for IERC20Permit; mapping(address => bool) public authorizedPools; mapping(bytes32 => mapping(uint16 => mapping(bytes32 => bool))) public authorizedXChainPools; mapping(address => mapping(uint16 => mapping(bytes32 => bool))) public authorizedXChainCallers; mapping(address => mapping(address => bool)) public authorizedXChainMessengersByPool; mapping(address => mapping(address => bool)) public authorizedXChainMessengersByCallee; /// @dev This is used to interact with external accounts, where native token needs to be wrapped. address public immutable _WETH; address public factory; address public limitOrderGuardian; /// @dev To be used for RFQ-m trades, verified by the router. bytes32 internal constant QUOTE_TYPEHASH = keccak256( 'Quote(bytes32 txid,address trader,address pool,address externalAccount,address baseToken,address quoteToken,uint256 baseTokenAmount,uint256 quoteTokenAmount,uint256 quoteExpiry)' ); /// @dev To be used for RFQ-m trades, verified by the router. bytes32 internal constant QUOTE_LIMIT_ORDER_TYPEHASH = keccak256( 'Quote(bytes32 txid,address baseToken,address quoteToken,uint256 baseTokenAmount,uint256 quoteTokenAmount,uint256 quoteExpiry)' ); /// @dev To be used for cross-chain RFQ-m trades, verified by the router. bytes32 internal constant XCHAIN_QUOTE_TYPEHASH = keccak256( 'XChainQuote(bytes32 txid,uint256 srcChainId,uint256 dstChainId,bytes32 dstTrader,address srcPool,address srcExternalAccount,bytes32 dstPool,bytes32 dstExternalAccount,address baseToken,bytes32 quoteToken,uint256 baseTokenAmount,uint256 quoteTokenAmount,uint256 quoteExpiry)' ); mapping(bytes32 => bool) private _usedTxids; constructor(address weth) EIP712('Hashflow - Router', '1.0') { require(weth != address(0), 'HashflowRouter: WETH is 0 address.'); _WETH = weth; } /// @inheritdoc IHashflowRouter function initialize(address _factory) external override initializer onlyOwner { require( _factory != address(0), 'HashflowRouter::initialize Factory cannot be 0 address.' ); factory = _factory; } /// @inheritdoc IHashflowRouter function tradeRFQT(RFQTQuote memory quote) external payable override { _validateRFQTQuote(quote); if (quote.baseToken == address(0)) { require( msg.value == quote.effectiveBaseTokenAmount, 'HashflowRouter::tradeRFQT msg.value should equal effectiveBaseTokenAmount.' ); } else { require( msg.value == 0, 'HashflowRouter::tradeRFQT msg.value should be 0.' ); } _executeRFQTTrade(quote, false); } /// @inheritdoc IHashflowRouter function tradeRFQTWithPermit( RFQTQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external override { _validateRFQTQuote(quote); require( quote.baseToken != address(0), 'HashflowRouter::tradeRFQTWithPermit baseToken cannot be the native token.' ); require( amountToApprove >= quote.effectiveBaseTokenAmount, 'HashflowRouter::tradeRFQTWithPermit Insufficient amount to approve.' ); _permitERC20( quote.baseToken, _msgSender(), amountToApprove, deadline, v, r, s ); _executeRFQTTrade(quote, false); } /// @inheritdoc IHashflowRouter function tradeRFQM(RFQMQuote memory quote) external override { _validateRFQMQuote(quote); _validateRFQMSignature(quote); _executeRFQMTrade(quote); } /// @inheritdoc IHashflowRouter function tradeRFQMWithPermit( RFQMQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external override { _validateRFQMQuote(quote); _validateRFQMSignature(quote); require( amountToApprove >= quote.baseTokenAmount, 'HashflowRouter::tradeRFQMWithPermit Insufficient amount to approve.' ); _permitERC20( quote.baseToken, quote.trader, amountToApprove, deadline, v, r, s ); _executeRFQMTrade(quote); } /// @inheritdoc IHashflowRouter function tradeRFQMLimitOrder( RFQMQuote memory quote, bytes memory guardianSignature ) external override { _validateRFQMQuote(quote); _validateRFQMLimitOrderSignature(quote, guardianSignature); _executeRFQMTrade(quote); } /// @inheritdoc IHashflowRouter function tradeRFQMLimitOrderWithPermit( RFQMQuote memory quote, bytes memory guardianSignature, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external override { _validateRFQMQuote(quote); _validateRFQMLimitOrderSignature(quote, guardianSignature); require( amountToApprove >= quote.baseTokenAmount, 'HashflowRouter::tradeRFQMLimitOrderWithPermit Insufficient amount to approve.' ); _permitERC20( quote.baseToken, quote.trader, amountToApprove, deadline, v, r, s ); _executeRFQMTrade(quote); } /// @inheritdoc IHashflowRouter function tradeXChainRFQT( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable override nonReentrant { _validateXChainRFQTQuote(quote); _executeXChainRFQTTrade(quote, dstContract, dstCalldata); } /// @inheritdoc IHashflowRouter function tradeXChainRFQTWithPermit( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable override nonReentrant { _validateXChainRFQTQuote(quote); require( quote.baseToken != address(0), 'HashflowRouter::tradeXChainRFQTWithPermit baseToken cannot be the native token.' ); require( amountToApprove >= quote.effectiveBaseTokenAmount, 'HashflowRouter::tradeXChainRFQTWithPermit Insufficient amount to approve.' ); _permitERC20( quote.baseToken, _msgSender(), amountToApprove, deadline, v, r, s ); _executeXChainRFQTTrade(quote, dstContract, dstCalldata); } function tradeXChainRFQM( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable override { _validateXChainRFQMQuote(quote); _executeXChainRFQMTrade(quote, dstContract, dstCalldata); } /// @inheritdoc IHashflowRouter function tradeXChainRFQMWithPermit( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable override { _validateXChainRFQMQuote(quote); require( amountToApprove >= quote.baseTokenAmount, 'HashflowRouter::tradeXChainRFQmWithPermit Insufficient amount to approve.' ); _permitERC20( quote.baseToken, quote.trader, amountToApprove, deadline, v, r, s ); _executeXChainRFQMTrade(quote, dstContract, dstCalldata); } /// @inheritdoc IHashflowRouter function fillXChain(XChainFillMessage memory fillMessage) external override { require( authorizedXChainMessengersByPool[fillMessage.dstPool][_msgSender()], 'HashflowRouter::fillXChain Unauthorized messenger.' ); require( authorizedXChainPools[ bytes32(uint256(uint160(fillMessage.dstPool))) ][fillMessage.srcHashflowChainId][fillMessage.srcPool], 'HashflowRouter::fillXChain Unauthorized peer pool.' ); if (fillMessage.dstContract != address(0)) { require( authorizedXChainCallers[fillMessage.dstContract][ fillMessage.srcHashflowChainId ][fillMessage.srcCaller], 'HashflowRouter::fillXChain Unauthorized x-caller.' ); require( authorizedXChainMessengersByCallee[fillMessage.dstContract][ _msgSender() ], 'HashflowRouter::fillXChain Unauthorized messenger for x-call.' ); } IHashflowPool(fillMessage.dstPool).fillXChain( fillMessage.dstExternalAccount, fillMessage.txid, fillMessage.dstTrader, fillMessage.quoteToken, fillMessage.quoteTokenAmount ); if (fillMessage.dstContract != address(0)) { fillMessage.dstContract.functionCall( fillMessage.dstContractCalldata ); } } /// @inheritdoc IHashflowRouter function updateXChainPoolAuthorization( uint16 otherHashflowChainId, bytes32 otherPool, bool authorized ) external override { require( authorizedPools[_msgSender()], 'HashflowRouter::updateXChainPoolAuthorization Pool not authorized.' ); bytes32 evmAgnosticSender = bytes32(uint256(uint160(_msgSender()))); authorizedXChainPools[evmAgnosticSender][otherHashflowChainId][ otherPool ] = authorized; emit UpdateXChainPoolAuthorization( _msgSender(), otherHashflowChainId, otherPool, authorized ); } function updateXChainCallerAuthorization( uint16 otherHashflowChainId, bytes32 caller, bool authorized ) external override { require( msg.sender.isContract(), 'HashflowRouter::updateXChainCallerAuthorization Sender must be a contract.' ); require( caller != bytes32(0), 'HashflowRouter::updateXChainCallerAuthorization Caller is empty.' ); authorizedXChainCallers[msg.sender][otherHashflowChainId][ caller ] = authorized; emit UpdateXChainCallerAuthorization( msg.sender, otherHashflowChainId, caller, authorized ); } /// @inheritdoc IHashflowRouter function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external override { require( authorizedPools[_msgSender()], 'HashflowRouter::updateXChainMessengerAuthorization Pool not authorized.' ); authorizedXChainMessengersByPool[_msgSender()][ xChainMessenger ] = authorized; emit UpdateXChainMessengerAuthorization( _msgSender(), xChainMessenger, authorized ); } function updateXChainMessengerCallerAuthorization( address xChainMessenger, bool authorized ) external override { authorizedXChainMessengersByCallee[msg.sender][ xChainMessenger ] = authorized; emit UpdateXChainMessengerCallerAuthorization( msg.sender, xChainMessenger, authorized ); } /// @inheritdoc IHashflowRouter function forceUnauthorizePool(address pool) external override onlyOwner { require( authorizedPools[pool], 'HashflowRouter::forceUnauthorizePool Pool is not authorized.' ); authorizedPools[pool] = false; emit UpdatePoolAuthorizaton(pool, false); } /// @inheritdoc IHashflowRouter function updatePoolAuthorization(address pool, bool authorized) external override { require( _msgSender() == factory, 'HashflowRouter: msg.sender should be the Factory.' ); authorizedPools[pool] = authorized; emit UpdatePoolAuthorizaton(pool, authorized); } /// @inheritdoc IHashflowRouter function killswitchPool(address pool, bool enabled) external override onlyOwner { IHashflowPool(pool).killswitchOperations(enabled); } /// @inheritdoc IHashflowRouter function withdrawFunds(address token) external override onlyOwner { if (token == address(0)) { payable(_msgSender()).sendValue(address(this).balance); } else { IERC20(token).safeTransfer( _msgSender(), IERC20(token).balanceOf(address(this)) ); } } /// @inheritdoc IHashflowRouter function updateLimitOrderGuardian(address guardian) external override onlyOwner { require( guardian != address(0), 'HashflowRouter::updateLimitOrderGuardian Guardian cannot be 0 address.' ); limitOrderGuardian = guardian; emit UpdateLimitOrderGuardian(guardian); } /// @dev We do not allow the owner to renounce ownership. function renounceOwnership() public view override onlyOwner { revert('HashflowRouter: Renouncing ownership not allowed.'); } // Section: Intra-chain RFQ-T. function _validateRFQTQuote(RFQTQuote memory quote) private view { require( quote.effectiveBaseTokenAmount <= quote.baseTokenAmount, 'HashflowRouter::_validateRFQTQuote effectiveBaseTokenAmount too high.' ); require( quote.quoteExpiry >= block.timestamp, 'HashflowRouter::_validateRFQTQuote Quote has expired.' ); require( quote.nonce <= (block.timestamp + 180) * 1000, 'HashflowRouter::_validateRFQTQuote Nonce too high.' ); require( authorizedPools[quote.pool], 'HashflowRouter::_validateRFQTQuote Pool not authorized.' ); } function _executeRFQTTrade(RFQTQuote memory quote, bool multihop) private { uint256 msgValue; if (quote.baseToken == address(0)) { if (quote.externalAccount == address(0)) { msgValue = quote.effectiveBaseTokenAmount; } else { // Instead of transferring native token to an external account, we transfer // wrapped native token. IWETH(_WETH).deposit{value: quote.effectiveBaseTokenAmount}(); IERC20(_WETH).safeTransfer( quote.externalAccount, quote.effectiveBaseTokenAmount ); } } else { // If the external account is present we transfer to it. Otherwise we transfer // to the pool. address accountToTransferTo = quote.externalAccount != address(0) ? quote.externalAccount : quote.pool; if (multihop) { IERC20(quote.baseToken).safeTransfer( accountToTransferTo, quote.effectiveBaseTokenAmount ); } else { IERC20(quote.baseToken).safeTransferFrom( _msgSender(), accountToTransferTo, quote.effectiveBaseTokenAmount ); } } IHashflowPool(quote.pool).tradeRFQT{value: msgValue}(quote); } // Section: Intra-chain RFQ-M. function _validateRFQMQuote(RFQMQuote memory quote) private { require( quote.quoteExpiry >= block.timestamp, 'HashflowRouter::_validateRFQMQuote Quote has expired.' ); require( authorizedPools[quote.pool], 'HashflowRouter::_validateRFQMQuote Pool not authorized.' ); require( quote.baseToken != address(0), 'HashflowRouter::_validateRFQMQuote RFQ-M does not support native tokens.' ); require( !_usedTxids[quote.txid], 'HashflowRouter::_validateRFQMQuote txid has already been used.' ); _usedTxids[quote.txid] = true; } function _validateRFQMSignature(RFQMQuote memory quote) private view { bytes32 quoteHash = _hashQuoteRFQM(quote); require( SignatureChecker.isValidSignatureNow( quote.trader, quoteHash, quote.takerSignature ), 'HashflowRouter::_validateRFQMSignature Invalid signer.' ); } function _executeRFQMTrade(RFQMQuote memory quote) private { IERC20(quote.baseToken).safeTransferFrom( quote.trader, quote.externalAccount != address(0) ? quote.externalAccount : quote.pool, quote.baseTokenAmount ); IHashflowPool(quote.pool).tradeRFQM(quote); } // Section: Limit orders. function _validateRFQMLimitOrderSignature( RFQMQuote memory quote, bytes memory guardianSignature ) private view { bytes32 traderHash = _hashQuoteLimitOrderRFQM(quote); require( SignatureChecker.isValidSignatureNow( quote.trader, traderHash, quote.takerSignature ), 'HashflowRouter::_validateRFQMLimitOrderSignature Invalid trader signer.' ); bytes32 guardianHash = _hashGuardianQuoteRFQM(quote); require( guardianHash.recover(guardianSignature) == limitOrderGuardian, 'HashflowRouter::_validateRFQMLimitOrderSignature Invalid guardian signer.' ); } // Section: X-Chain RFQ-T. function _validateXChainRFQTQuote(XChainRFQTQuote memory quote) private view { require( quote.effectiveBaseTokenAmount <= quote.baseTokenAmount, 'HashflowRouter::_validateXChainRFQTQuote effectiveBaseTokenAmount too high.' ); require( quote.quoteExpiry >= block.timestamp, 'HashflowRouter::_validateXChainRFQTQuote Quote has expired.' ); require( authorizedPools[quote.srcPool], 'HashflowRouter::_validateXChainRFQTQuote Pool not authorized.' ); require( quote.nonce <= (block.timestamp + 180) * 1000, 'HashflowRouter::_validateXChainRFQTQuote Nonce too high.' ); require( authorizedXChainMessengersByPool[quote.srcPool][ quote.xChainMessenger ], 'HashflowRouter::_validateXChainRFQTQuote Unauthorized messenger for pool.' ); require( authorizedXChainPools[bytes32(uint256(uint160(quote.srcPool)))][ quote.dstChainId ][quote.dstPool], 'HashflowRouter::_validateXChainRFQTQuote Unauthorized x-chain peer pool.' ); } function _executeXChainRFQTTrade( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) private { uint256 xChainFees = msg.value; if (quote.baseToken == address(0)) { require( msg.value >= quote.effectiveBaseTokenAmount, 'HashflowRouter::tradeXChainRFQT msg.value should be >= effectiveBaseTokenAmount.' ); xChainFees = msg.value - quote.effectiveBaseTokenAmount; } uint256 effectiveQuoteTokenAmount = quote.quoteTokenAmount; if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) { effectiveQuoteTokenAmount = (quote.quoteTokenAmount * quote.effectiveBaseTokenAmount) / quote.baseTokenAmount; } uint256 msgValue = 0; if (quote.baseToken == address(0)) { if (quote.srcExternalAccount == address(0)) { msgValue = quote.effectiveBaseTokenAmount; } else { IWETH(_WETH).deposit{value: quote.effectiveBaseTokenAmount}(); IERC20(_WETH).safeTransfer( quote.srcExternalAccount, quote.effectiveBaseTokenAmount ); } } else { IERC20(quote.baseToken).safeTransferFrom( _msgSender(), quote.srcExternalAccount != address(0) ? quote.srcExternalAccount : quote.srcPool, quote.effectiveBaseTokenAmount ); } IHashflowPool(quote.srcPool).tradeXChainRFQT{value: msgValue}( quote, _msgSender() ); IHashflowXChainMessenger.XChainQuote memory uaQuote; uaQuote.srcChainId = quote.srcChainId; uaQuote.dstChainId = quote.dstChainId; uaQuote.srcPool = quote.srcPool; uaQuote.dstPool = quote.dstPool; uaQuote.srcExternalAccount = quote.srcExternalAccount; uaQuote.dstExternalAccount = quote.dstExternalAccount; uaQuote.trader = _msgSender(); uaQuote.dstTrader = quote.dstTrader; uaQuote.baseToken = quote.baseToken; uaQuote.quoteToken = quote.quoteToken; uaQuote.baseTokenAmount = quote.effectiveBaseTokenAmount; uaQuote.quoteTokenAmount = effectiveQuoteTokenAmount; uaQuote.txid = quote.txid; IHashflowXChainMessenger(quote.xChainMessenger).tradeXChain{ value: xChainFees }(uaQuote, _msgSender(), dstContract, dstCalldata); } // Section: X-Chain RFQ-M. function _validateXChainRFQMQuote(XChainRFQMQuote memory quote) private { require( quote.quoteExpiry >= block.timestamp, 'HashflowRouter::_validateXChainRFQMQuote Quote has expired.' ); require( authorizedPools[quote.srcPool], 'HashflowRouter::_validateXChainRFQMQuote Pool not authorized.' ); require( authorizedXChainMessengersByPool[quote.srcPool][ quote.xChainMessenger ], 'HashflowRouter::_validateXChainRFQMQuote Unauthorized messenger for pool.' ); require( authorizedXChainPools[bytes32(uint256(uint160(quote.srcPool)))][ quote.dstChainId ][quote.dstPool], 'HashflowRouter::_validateXChainRFQMQuote Unauthorized x-chain peer pool.' ); require( quote.baseToken != address(0), 'HashflowRouter::_validateXChainRFQMQuote RFQ-M does not support native tokens.' ); require( !_usedTxids[quote.txid], 'HashflowRouter::_validateXChainRFQMQuote txid has already been used.' ); _usedTxids[quote.txid] = true; bytes32 quoteHash = _hashXChainQuoteRFQM(quote); require( SignatureChecker.isValidSignatureNow( quote.trader, quoteHash, quote.takerSignature ), 'HashflowRouter::_validateXChainRFQMQuote Invalid signer.' ); } function _executeXChainRFQMTrade( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) private { IERC20(quote.baseToken).safeTransferFrom( quote.trader, quote.srcExternalAccount != address(0) ? quote.srcExternalAccount : quote.srcPool, quote.baseTokenAmount ); IHashflowPool(quote.srcPool).tradeXChainRFQM(quote); IHashflowXChainMessenger.XChainQuote memory uaQuote; uaQuote.srcChainId = quote.srcChainId; uaQuote.dstChainId = quote.dstChainId; uaQuote.srcPool = quote.srcPool; uaQuote.dstPool = quote.dstPool; uaQuote.srcExternalAccount = quote.srcExternalAccount; uaQuote.dstExternalAccount = quote.dstExternalAccount; uaQuote.trader = quote.trader; uaQuote.dstTrader = quote.dstTrader; uaQuote.baseToken = quote.baseToken; uaQuote.quoteToken = quote.quoteToken; uaQuote.baseTokenAmount = quote.baseTokenAmount; uaQuote.quoteTokenAmount = quote.quoteTokenAmount; uaQuote.txid = quote.txid; IHashflowXChainMessenger(quote.xChainMessenger).tradeXChain{ value: msg.value }(uaQuote, _msgSender(), dstContract, dstCalldata); } function _permitERC20( address erc20Permit, address trader, uint256 amountToApprove, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { IERC20Permit(erc20Permit).safePermit( trader, address(this), amountToApprove, deadline, v, r, s ); } function _hashQuoteLimitOrderRFQM(RFQMQuote memory quote) private view returns (bytes32) { return _hashTypedDataV4( keccak256( abi.encode( QUOTE_LIMIT_ORDER_TYPEHASH, quote.txid, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry ) ) ); } /// @dev Helper for EIP-712 Quote hash generation. function _hashQuoteRFQM(RFQMQuote memory quote) private view returns (bytes32) { return _hashTypedDataV4( keccak256( abi.encode( QUOTE_TYPEHASH, quote.txid, quote.trader, quote.pool, quote.externalAccount, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry ) ) ); } /// @dev Helper for EIP-712 Quote hash generation. function _hashXChainQuoteRFQM(XChainRFQMQuote memory quote) private view returns (bytes32) { return _hashTypedDataV4( keccak256( abi.encode( XCHAIN_QUOTE_TYPEHASH, quote.txid, uint256(quote.srcChainId), uint256(quote.dstChainId), quote.dstTrader, quote.srcPool, quote.srcExternalAccount, quote.dstPool, quote.dstExternalAccount, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry ) ) ); } function _hashGuardianQuoteRFQM(RFQMQuote memory quote) private view returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( quote.pool, quote.externalAccount, quote.trader, quote.txid, block.chainid ) ) ) ); } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; interface IWETH { function deposit() external payable; function transfer(address to, uint256 value) external returns (bool); function withdraw(uint256) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import '@openzeppelin/contracts/interfaces/IERC1271.sol'; import './IQuote.sol'; /// @title IHashflowPool /// @author Victor Ionescu /** * Pool contract used for trading. The Pool can either hold funds or * rely on external accounts. External accounts are used in order to preserve * Capital Efficiency on the Market Maker side. This way, a Market Maker can * make markets using funds that are also used on other venues. */ interface IHashflowPool is IQuote, IERC1271 { /// @notice Specifies a HashflowPool on a foreign chain. struct AuthorizedXChainPool { uint16 chainId; bytes32 pool; } /// @notice Contains a signer verification address, and whether trading is enabled. struct SignerConfiguration { address signer; bool enabled; } /// @notice Emitted when the authorization status of a withdrawal account changes. /// @param account The account for which the status changes. /// @param authorized The new authorization status. event UpdateWithdrawalAccount(address account, bool authorized); /// @notice Emitted when the signer key used for the pool has changed. /// @param signer The new signer key. /// @param prevSigner The old signer key. event UpdateSigner(address signer, address prevSigner); /// @notice Emitted when liquidity is withdrawn from the pool. /// @param token Token being withdrawn. /// @param recipient Address receiving the token. /// @param withdrawAmount Amount being withdrawn. event RemoveLiquidity( address token, address recipient, uint256 withdrawAmount ); /// @notice Emitted when an intra-chain trade happens. /// @param trader The trader. /// @param effectiveTrader The effective Trader. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event Trade( address trader, address effectiveTrader, bytes32 txid, address baseToken, address quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade happens. /// @param dstChainId The Hashflow Chain ID for the destination chain. /// @param dstPool The pool address on the destination chain. /// @param trader The trader address. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event XChainTrade( uint16 dstChainId, bytes32 dstPool, address trader, bytes32 dstTrader, bytes32 txid, address baseToken, bytes32 quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade is filled. /// @param txid The txid identified the quote that was filled. event XChainTradeFill(bytes32 txid); /// @notice Main initializer. /// @param name Name of the pool. /// @param signer Signer key used for quote / deposit verification. /// @param operations Operations key that governs the pool. /// @param router Address of the HashflowRouter contract. function initialize( string calldata name, address signer, address operations, address router ) external; /// @notice Returns the pool name. function name() external view returns (string memory); /// @notice Returns the signer address and whether the pool is enabled. function signerConfiguration() external view returns (address, bool); /// @notice Returns the Operations address of this pool. function operations() external view returns (address); /// @notice Returns the Router contract address. function router() external view returns (address); /// @notice Returns the current nonce for a trader. function nonces(address trader) external view returns (uint256); /// @notice Removes liquidity from the pool. /// @param token Token to withdraw. /// @param recipient Address to send token to. /// @param amount Amount to withdraw. function removeLiquidity( address token, address recipient, uint256 amount ) external; /// @notice Execute an RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Execute an RFQ-M trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Execute a cross-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param trader The account that sends baseToken on this chain. function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader) external payable; /// @notice Execute a cross-chain RFQ-M trade. /// @param quote The quote to be executed. function tradeXChainRFQM(XChainRFQMQuote memory quote) external; /// @notice Changes authorization for a set of pools to send X-Chain messages. /// @param pools The pools to change authorization status for. /// @param authorized The new authorization status. function updateXChainPoolAuthorization( AuthorizedXChainPool[] calldata pools, bool authorized ) external; /// @notice Changes authorization for an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger app. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Fills an x-chain order that completed on the source chain. /// @param externalAccount The external account to fill from, if any. /// @param txid The txid of the quote. /// @param trader The trader to receive the funds. /// @param quoteToken The token to be sent. /// @param quoteTokenAmount The amount of quoteToken to be sent. function fillXChain( address externalAccount, bytes32 txid, address trader, address quoteToken, uint256 quoteTokenAmount ) external; /// @notice Updates withdrawal account authorization. /// @param withdrawalAccounts the accounts for which to update authorization status. /// @param authorized The new authorization status. function updateWithdrawalAccount( address[] memory withdrawalAccounts, bool authorized ) external; /// @notice Updates the signer key. /// @param signer The new signer key. function updateSigner(address signer) external; /// @notice Used by the router to disable pool actions (Trade, Withdraw, Deposit) function killswitchOperations(bool enabled) external; /// @notice Returns the token reserves for this pool. /// @param token The token to check reserves for. function getReserves(address token) external view returns (uint256); /// @notice Approves a token for spend. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function approveToken( address token, address spender, uint256 amount ) external; /// @notice Increases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router). /// @param amount The approval amount. function increaseTokenAllowance( address token, address spender, uint256 amount ) external; /// @notice Decreases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function decreaseTokenAllowance( address token, address spender, uint256 amount ) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import './IQuote.sol'; /// @title IHashflowRouter /// @author Victor Ionescu /** * @notice In terms of user-facing functionality, the Router is responsible for: * - orchestrating trades * - managing cross-chain permissions * * Every trade requires consent from two parties: the Trader and the Market Maker. * However, there are two models to establish consent: * - RFQ-T: in this model, the Market Maker provides an EIP-191 signature for the quote, * while the Trader signs the transaction and submits it on-chain * - RFQ-M: in this model, the Trader provides an EIP-712 signature for the quote, * the Market Maker provides an EIP-191 signature, and a 3rd party relays the trade. * The 3rd party can be the Market Maker itself. * * In terms of Hashflow internals, the Router maintains a set of authorized pool * contracts that are allowed to be used for trading. This allowlist creates * guarantees against malicious behavior, as documented in specific places. * * The Router contract is not upgradeable. In order to change functionality, a new * Router has to be deployed, and new HashflowPool contracts have to be deployed * by the Market Makers. */ /// @dev Trade / liquidity events are emitted at the HashflowPool level, rather than the router. interface IHashflowRouter is IQuote { /** * @notice X-Chain message received from an X-Chain Messenger. This is used by the * Router to communicate a fill to a HashflowPool. */ struct XChainFillMessage { /// @notice The Hashflow Chain ID of the source chain. uint16 srcHashflowChainId; /// @notice The address of the HashflowPool on the source chain. bytes32 srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. address dstPool; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ address dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. address dstTrader; /// @notice The token that the trader buys on the destination chain. address quoteToken; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice The caller of the trade function on the source chain. bytes32 srcCaller; /// @notice The contract to call, if any. address dstContract; /// @notice The calldata for the contract. bytes dstContractCalldata; } /// @notice Emitted when the authorization status of a pool changes. /// @param pool The pool whose status changed. /// @param authorized The new auth status. event UpdatePoolAuthorizaton(address pool, bool authorized); /// @notice Emitted when a sender pool authorization changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param otherChainPool Pool address on the other chain. /// @param authorized Whether the pool is authorized. event UpdateXChainPoolAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 otherChainPool, bool authorized ); /// @notice Emitted when the authorization of an x-caller changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param caller Caller address on the other chain. /// @param authorized Whether the caller is authorized. event UpdateXChainCallerAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 caller, bool authorized ); /// @notice Emitted when the authorization status of an X-Chain Messenger changes for a pool. /// @param pool Pool address for which the Messenger authorization changes. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerAuthorization( address indexed pool, address xChainMessenger, bool authorized ); /// @notice Emitted when the authorized status of an X-Chain Messenger changes for a callee. /// @param callee Address of the callee. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerCallerAuthorization( address indexed callee, address xChainMessenger, bool authorized ); /// @notice Emitted when the Limit Order Guardian address is updated. /// @param guardian The new Guardian address. event UpdateLimitOrderGuardian(address guardian); /// @notice Initializes the Router. Called one time. /// @param factory The address of the HashflowFactory contract. function initialize(address factory) external; /// @notice Returns the address of the associated HashflowFactor contract. function factory() external view returns (address); function authorizedXChainPools( bytes32 dstPool, uint16 srcHChainId, bytes32 srcPool ) external view returns (bool); function authorizedXChainCallers( address dstContract, uint16 srcHashflowChainId, bytes32 caller ) external view returns (bool); function authorizedXChainMessengersByPool(address pool, address messenger) external view returns (bool); function authorizedXChainMessengersByCallee( address callee, address messenger ) external view returns (bool); /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote data to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote data to be executed. /// @dev Does not support native tokens for the baseToken. function tradeRFQTWithPermit( RFQTQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMWithPermit( RFQMQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. function tradeRFQMLimitOrder( RFQMQuote memory quote, bytes memory guardianSignature ) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMLimitOrderWithPermit( RFQMQuote memory quote, bytes memory guardianSignature, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an RFQ-T cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQT( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Executes an RFQ-T cross-chain trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeXChainRFQTWithPermit( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Executes an RFQ-M cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQM( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Similar to tradeXChainRFQm, but includes a spend permit for the baseToken. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount to approve. function tradeXChainRFQMWithPermit( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Completes the second leg of a cross-chain trade. /// @param fillMessage Payload containing information necessary to complete the trade. function fillXChain(XChainFillMessage memory fillMessage) external; /// @notice Returns whether the pool is authorized for trading. /// @param pool The address of the HashflowPool. function authorizedPools(address pool) external view returns (bool); /// @notice Allows the owner to unauthorize a potentially compromised pool. Cannot be reverted. /// @param pool The address of the HashflowPool. function forceUnauthorizePool(address pool) external; /// @notice Authorizes a HashflowPool for trading. /// @dev Can only be called by the HashflowFactory or the admin. function updatePoolAuthorization(address pool, bool authorized) external; /// @notice Updates the authorization status of an X-Chain pool pair. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param otherPool The 32-byte representation of the Pool address on the peer chain. /// @param authorized Whether the pool is authorized to communicate with the sender pool. function updateXChainPoolAuthorization( uint16 otherHashflowChainId, bytes32 otherPool, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain caller. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param caller The caller address. /// @param authorized Whether the caller is authorized to send an x-call to the sender pool. function updateXChainCallerAuthorization( uint16 otherHashflowChainId, bytes32 caller, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerCallerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Used to stop all operations on a pool, in case of an emergency. /// @param pool The address of the HashflowPool. /// @param enabled Whether the pool is enabled. function killswitchPool(address pool, bool enabled) external; /// @notice Used to update the Limit Order Guardian. /// @param guardian The address of the new Guardian. function updateLimitOrderGuardian(address guardian) external; /// @notice Allows the owner to withdraw excess funds from the Router. /// @dev Under normal operations, the Router should not have excess funds. function withdrawFunds(address token) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; /// @title IQuote /// @author Victor Ionescu /** * @notice Interface for quote structs used for trading. There are two major types of trades: * - intra-chain: atomic transactions within one chain * - cross-chain: multi-leg transactions between two chains, which utilize interoperability protocols * such as Wormhole. * * Separately, there are two trading modes: * - RFQ-T: the trader signs the transaction, the market maker signs the quote * - RFQ-M: both the trader and Market Maker sign the quote, any relayer can sign the transaction */ interface IQuote { /// @notice Used for intra-chain RFQ-T trades. struct RFQTQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The recipient of the quoteToken at the end of the trade. address trader; /** * @notice The account "effectively" making the trade (ultimately receiving the funds). * This is commonly used by aggregators, where a proxy contract (the 'trader') * receives the quoteToken, and the effective trader is the user initiating the call. * * This field DOES NOT influence movement of funds. However, it is used to check against * quote replay. */ address effectiveTrader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The max amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought when baseTokenAmount is sold. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this effectiveTrader. Nonces are used to protect against replay. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for intra-chain RFQ-M trades. struct RFQMQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The account that will be debited baseToken / credited quoteToken. address trader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } /// @notice Used for cross-chain RFQ-T trades. struct XChainRFQTQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this trader. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for Cross-Chain RFQ-M trades. struct XChainRFQMQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The account that will be debited baseToken on the source chain. address trader; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; /// @title IHashflowMessenger /// @author Victor Ionescu /** * @notice This interface should be implemented by any contract * that is to be used for X-Chain Message passing. */ interface IHashflowXChainMessenger { struct XChainQuote { uint16 srcChainId; uint16 dstChainId; address srcPool; bytes32 dstPool; address srcExternalAccount; bytes32 dstExternalAccount; address trader; bytes32 dstTrader; address baseToken; bytes32 quoteToken; uint256 baseTokenAmount; uint256 quoteTokenAmount; bytes32 txid; } struct XChainTradePayload { uint16 dstChainId; bytes32 txid; bytes32 srcPool; bytes32 dstPool; bytes32 dstExternalAccount; bytes32 quoteToken; bytes32 dstTrader; uint256 quoteTokenAmount; bytes32 permissionedRelayer; bytes32 srcCaller; bytes32 dstContract; bytes dstContractCalldata; } /// @notice Emitted when an associated IHashflowMessenger on a source chain changes. /// @param chainId The Hashflow Chain ID. /// @param remoteAddress The address of the remote, pre-padded to 32 bytes. event UpdateXChainRemoteAddress(uint16 chainId, bytes remoteAddress); /// @notice The Hashflow Chain ID for this chain. function hChainId() external view returns (uint16); /// @notice Returns the Hashflow Router. function router() external view returns (address); /// @notice Returns the registered remote for a Hashflow Chain ID. /// @param hChainId The foreign Hashflow Chain ID. function xChainRemotes(uint16 hChainId) external view returns (bytes memory); /// @notice Send X-Chain trade fill message. /// @param xChainQuote Quote object. /// @param caller The caller of the X-Chain trade. /// @param dstContract The contract to call on the destination chain. /// @param dstCalldata The calldata to pass to the contract. function tradeXChain( XChainQuote memory xChainQuote, address caller, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Updates the associated IHashflowMessenger address on a different chain. /// @param hChainId The Hashflow Chain ID of the peer chain. /// @param remoteAddress The address of the IHashflowMessenger on the peer chain. function updateXChainRemoteAddress( uint16 hChainId, bytes calldata remoteAddress ) external; /// @notice Withdraws excess fees to the owner. function withdrawFunds() external; }
File 7 of 7: HashflowPool
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; interface IWETH { function deposit() external payable; function transfer(address to, uint256 value) external returns (bool); function withdraw(uint256) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import '@openzeppelin/contracts/interfaces/IERC1271.sol'; import './IQuote.sol'; /// @title IHashflowPool /// @author Victor Ionescu /** * Pool contract used for trading. The Pool can either hold funds or * rely on external accounts. External accounts are used in order to preserve * Capital Efficiency on the Market Maker side. This way, a Market Maker can * make markets using funds that are also used on other venues. */ interface IHashflowPool is IQuote, IERC1271 { /// @notice Specifies a HashflowPool on a foreign chain. struct AuthorizedXChainPool { uint16 chainId; bytes32 pool; } /// @notice Contains a signer verification address, and whether trading is enabled. struct SignerConfiguration { address signer; bool enabled; } /// @notice Emitted when the authorization status of a withdrawal account changes. /// @param account The account for which the status changes. /// @param authorized The new authorization status. event UpdateWithdrawalAccount(address account, bool authorized); /// @notice Emitted when the signer key used for the pool has changed. /// @param signer The new signer key. /// @param prevSigner The old signer key. event UpdateSigner(address signer, address prevSigner); /// @notice Emitted when liquidity is withdrawn from the pool. /// @param token Token being withdrawn. /// @param recipient Address receiving the token. /// @param withdrawAmount Amount being withdrawn. event RemoveLiquidity( address token, address recipient, uint256 withdrawAmount ); /// @notice Emitted when an intra-chain trade happens. /// @param trader The trader. /// @param effectiveTrader The effective Trader. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event Trade( address trader, address effectiveTrader, bytes32 txid, address baseToken, address quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade happens. /// @param dstChainId The Hashflow Chain ID for the destination chain. /// @param dstPool The pool address on the destination chain. /// @param trader The trader address. /// @param txid The txid of the quote. /// @param baseToken The token the trader sold. /// @param quoteToken The token the trader bought. /// @param baseTokenAmount The amount of baseToken sold. /// @param quoteTokenAmount The amount of quoteToken bought. event XChainTrade( uint16 dstChainId, bytes32 dstPool, address trader, bytes32 dstTrader, bytes32 txid, address baseToken, bytes32 quoteToken, uint256 baseTokenAmount, uint256 quoteTokenAmount ); /// @notice Emitted when a cross-chain trade is filled. /// @param txid The txid identified the quote that was filled. event XChainTradeFill(bytes32 txid); /// @notice Main initializer. /// @param name Name of the pool. /// @param signer Signer key used for quote / deposit verification. /// @param operations Operations key that governs the pool. /// @param router Address of the HashflowRouter contract. function initialize( string calldata name, address signer, address operations, address router ) external; /// @notice Returns the pool name. function name() external view returns (string memory); /// @notice Returns the signer address and whether the pool is enabled. function signerConfiguration() external view returns (address, bool); /// @notice Returns the Operations address of this pool. function operations() external view returns (address); /// @notice Returns the Router contract address. function router() external view returns (address); /// @notice Returns the current nonce for a trader. function nonces(address trader) external view returns (uint256); /// @notice Removes liquidity from the pool. /// @param token Token to withdraw. /// @param recipient Address to send token to. /// @param amount Amount to withdraw. function removeLiquidity( address token, address recipient, uint256 amount ) external; /// @notice Execute an RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Execute an RFQ-M trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Execute a cross-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param trader The account that sends baseToken on this chain. function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader) external payable; /// @notice Execute a cross-chain RFQ-M trade. /// @param quote The quote to be executed. function tradeXChainRFQM(XChainRFQMQuote memory quote) external; /// @notice Changes authorization for a set of pools to send X-Chain messages. /// @param pools The pools to change authorization status for. /// @param authorized The new authorization status. function updateXChainPoolAuthorization( AuthorizedXChainPool[] calldata pools, bool authorized ) external; /// @notice Changes authorization for an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger app. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Fills an x-chain order that completed on the source chain. /// @param externalAccount The external account to fill from, if any. /// @param txid The txid of the quote. /// @param trader The trader to receive the funds. /// @param quoteToken The token to be sent. /// @param quoteTokenAmount The amount of quoteToken to be sent. function fillXChain( address externalAccount, bytes32 txid, address trader, address quoteToken, uint256 quoteTokenAmount ) external; /// @notice Updates withdrawal account authorization. /// @param withdrawalAccounts the accounts for which to update authorization status. /// @param authorized The new authorization status. function updateWithdrawalAccount( address[] memory withdrawalAccounts, bool authorized ) external; /// @notice Updates the signer key. /// @param signer The new signer key. function updateSigner(address signer) external; /// @notice Used by the router to disable pool actions (Trade, Withdraw, Deposit) function killswitchOperations(bool enabled) external; /// @notice Returns the token reserves for this pool. /// @param token The token to check reserves for. function getReserves(address token) external view returns (uint256); /// @notice Approves a token for spend. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function approveToken( address token, address spender, uint256 amount ) external; /// @notice Increases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router). /// @param amount The approval amount. function increaseTokenAllowance( address token, address spender, uint256 amount ) external; /// @notice Decreases allowance for a token. Used for 1inch RFQ protocol. /// @param token The address of the ERC-20 token. /// @param spender The spender address (typically the 1inch RFQ order router) /// @param amount The approval amount. function decreaseTokenAllowance( address token, address spender, uint256 amount ) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; import './IQuote.sol'; /// @title IHashflowRouter /// @author Victor Ionescu /** * @notice In terms of user-facing functionality, the Router is responsible for: * - orchestrating trades * - managing cross-chain permissions * * Every trade requires consent from two parties: the Trader and the Market Maker. * However, there are two models to establish consent: * - RFQ-T: in this model, the Market Maker provides an EIP-191 signature for the quote, * while the Trader signs the transaction and submits it on-chain * - RFQ-M: in this model, the Trader provides an EIP-712 signature for the quote, * the Market Maker provides an EIP-191 signature, and a 3rd party relays the trade. * The 3rd party can be the Market Maker itself. * * In terms of Hashflow internals, the Router maintains a set of authorized pool * contracts that are allowed to be used for trading. This allowlist creates * guarantees against malicious behavior, as documented in specific places. * * The Router contract is not upgradeable. In order to change functionality, a new * Router has to be deployed, and new HashflowPool contracts have to be deployed * by the Market Makers. */ /// @dev Trade / liquidity events are emitted at the HashflowPool level, rather than the router. interface IHashflowRouter is IQuote { /** * @notice X-Chain message received from an X-Chain Messenger. This is used by the * Router to communicate a fill to a HashflowPool. */ struct XChainFillMessage { /// @notice The Hashflow Chain ID of the source chain. uint16 srcHashflowChainId; /// @notice The address of the HashflowPool on the source chain. bytes32 srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. address dstPool; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ address dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. address dstTrader; /// @notice The token that the trader buys on the destination chain. address quoteToken; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice The caller of the trade function on the source chain. bytes32 srcCaller; /// @notice The contract to call, if any. address dstContract; /// @notice The calldata for the contract. bytes dstContractCalldata; } /// @notice Emitted when the authorization status of a pool changes. /// @param pool The pool whose status changed. /// @param authorized The new auth status. event UpdatePoolAuthorizaton(address pool, bool authorized); /// @notice Emitted when a sender pool authorization changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param otherChainPool Pool address on the other chain. /// @param authorized Whether the pool is authorized. event UpdateXChainPoolAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 otherChainPool, bool authorized ); /// @notice Emitted when the authorization of an x-caller changes. /// @param pool Pool address on this chain. /// @param otherHashflowChainId Hashflow Chain ID of the other chain. /// @param caller Caller address on the other chain. /// @param authorized Whether the caller is authorized. event UpdateXChainCallerAuthorization( address indexed pool, uint16 otherHashflowChainId, bytes32 caller, bool authorized ); /// @notice Emitted when the authorization status of an X-Chain Messenger changes for a pool. /// @param pool Pool address for which the Messenger authorization changes. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerAuthorization( address indexed pool, address xChainMessenger, bool authorized ); /// @notice Emitted when the authorized status of an X-Chain Messenger changes for a callee. /// @param callee Address of the callee. /// @param xChainMessenger Address of the Messenger. /// @param authorized Whether the X-Chain Messenger is authorized. event UpdateXChainMessengerCallerAuthorization( address indexed callee, address xChainMessenger, bool authorized ); /// @notice Emitted when the Limit Order Guardian address is updated. /// @param guardian The new Guardian address. event UpdateLimitOrderGuardian(address guardian); /// @notice Initializes the Router. Called one time. /// @param factory The address of the HashflowFactory contract. function initialize(address factory) external; /// @notice Returns the address of the associated HashflowFactor contract. function factory() external view returns (address); function authorizedXChainPools( bytes32 dstPool, uint16 srcHChainId, bytes32 srcPool ) external view returns (bool); function authorizedXChainCallers( address dstContract, uint16 srcHashflowChainId, bytes32 caller ) external view returns (bool); function authorizedXChainMessengersByPool(address pool, address messenger) external view returns (bool); function authorizedXChainMessengersByCallee( address callee, address messenger ) external view returns (bool); /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote data to be executed. function tradeRFQT(RFQTQuote memory quote) external payable; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote data to be executed. /// @dev Does not support native tokens for the baseToken. function tradeRFQTWithPermit( RFQTQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. function tradeRFQM(RFQMQuote memory quote) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMWithPermit( RFQMQuote memory quote, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an intra-chain RFQ-T trade. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. function tradeRFQMLimitOrder( RFQMQuote memory quote, bytes memory guardianSignature ) external; /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param guardianSignature A signature issued by the Limit Order Guardian. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeRFQMLimitOrderWithPermit( RFQMQuote memory quote, bytes memory guardianSignature, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external; /// @notice Executes an RFQ-T cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQT( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Executes an RFQ-T cross-chain trade, leveraging an ERC-20 permit. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount being approved. function tradeXChainRFQTWithPermit( XChainRFQTQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Executes an RFQ-M cross-chain trade. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. function tradeXChainRFQM( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata ) external payable; /// @notice Similar to tradeXChainRFQm, but includes a spend permit for the baseToken. /// @param quote The quote to be executed. /// @param dstContract The address of the contract to be called on the destination chain. /// @param dstCalldata The calldata for the smart contract call. /// @param deadline The deadline of the ERC-20 permit. /// @param v v-part of the signature. /// @param r r-part of the signature. /// @param s s-part of the signature. /// @param amountToApprove The amount to approve. function tradeXChainRFQMWithPermit( XChainRFQMQuote memory quote, bytes32 dstContract, bytes memory dstCalldata, uint256 deadline, uint8 v, bytes32 r, bytes32 s, uint256 amountToApprove ) external payable; /// @notice Completes the second leg of a cross-chain trade. /// @param fillMessage Payload containing information necessary to complete the trade. function fillXChain(XChainFillMessage memory fillMessage) external; /// @notice Returns whether the pool is authorized for trading. /// @param pool The address of the HashflowPool. function authorizedPools(address pool) external view returns (bool); /// @notice Allows the owner to unauthorize a potentially compromised pool. Cannot be reverted. /// @param pool The address of the HashflowPool. function forceUnauthorizePool(address pool) external; /// @notice Authorizes a HashflowPool for trading. /// @dev Can only be called by the HashflowFactory or the admin. function updatePoolAuthorization(address pool, bool authorized) external; /// @notice Updates the authorization status of an X-Chain pool pair. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param otherPool The 32-byte representation of the Pool address on the peer chain. /// @param authorized Whether the pool is authorized to communicate with the sender pool. function updateXChainPoolAuthorization( uint16 otherHashflowChainId, bytes32 otherPool, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain caller. /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain. /// @param caller The caller address. /// @param authorized Whether the caller is authorized to send an x-call to the sender pool. function updateXChainCallerAuthorization( uint16 otherHashflowChainId, bytes32 caller, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Updates the authorization status of an X-Chain Messenger app. /// @param xChainMessenger The address of the Messenger App. /// @param authorized The new authorization status. function updateXChainMessengerCallerAuthorization( address xChainMessenger, bool authorized ) external; /// @notice Used to stop all operations on a pool, in case of an emergency. /// @param pool The address of the HashflowPool. /// @param enabled Whether the pool is enabled. function killswitchPool(address pool, bool enabled) external; /// @notice Used to update the Limit Order Guardian. /// @param guardian The address of the new Guardian. function updateLimitOrderGuardian(address guardian) external; /// @notice Allows the owner to withdraw excess funds from the Router. /// @dev Under normal operations, the Router should not have excess funds. function withdrawFunds(address token) external; } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity >=0.8.0; /// @title IQuote /// @author Victor Ionescu /** * @notice Interface for quote structs used for trading. There are two major types of trades: * - intra-chain: atomic transactions within one chain * - cross-chain: multi-leg transactions between two chains, which utilize interoperability protocols * such as Wormhole. * * Separately, there are two trading modes: * - RFQ-T: the trader signs the transaction, the market maker signs the quote * - RFQ-M: both the trader and Market Maker sign the quote, any relayer can sign the transaction */ interface IQuote { /// @notice Used for intra-chain RFQ-T trades. struct RFQTQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The recipient of the quoteToken at the end of the trade. address trader; /** * @notice The account "effectively" making the trade (ultimately receiving the funds). * This is commonly used by aggregators, where a proxy contract (the 'trader') * receives the quoteToken, and the effective trader is the user initiating the call. * * This field DOES NOT influence movement of funds. However, it is used to check against * quote replay. */ address effectiveTrader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The max amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought when baseTokenAmount is sold. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this effectiveTrader. Nonces are used to protect against replay. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for intra-chain RFQ-M trades. struct RFQMQuote { /// @notice The address of the HashflowPool to trade against. address pool; /** * @notice The external account linked to the HashflowPool. * If the HashflowPool holds funds, this should be address(0). */ address externalAccount; /// @notice The account that will be debited baseToken / credited quoteToken. address trader; /// @notice The token that the trader sells. address baseToken; /// @notice The token that the trader buys. address quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /// @notice The Unix timestamp (in seconds) when the quote expires. /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } /// @notice Used for cross-chain RFQ-T trades. struct XChainRFQTQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /** * @notice The amount of baseToken sold in this trade. The exchange rate * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio. * * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount. */ uint256 effectiveBaseTokenAmount; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice The nonce used by this trader. uint256 nonce; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the market maker (EIP-191). bytes signature; } /// @notice Used for Cross-Chain RFQ-M trades. struct XChainRFQMQuote { /// @notice The Hashflow Chain ID of the source chain. uint16 srcChainId; /// @notice The Hashflow Chain ID of the destination chain. uint16 dstChainId; /// @notice The address of the HashflowPool to trade against on the source chain. address srcPool; /// @notice The HashflowPool to disburse funds on the destination chain. /// @dev This is bytes32 in order to anticipate non-EVM chains. bytes32 dstPool; /** * @notice The external account linked to the HashflowPool on the source chain. * If the HashflowPool holds funds, this should be address(0). */ address srcExternalAccount; /** * @notice The external account linked to the HashflowPool on the destination chain. * If the HashflowPool holds funds, this should be bytes32(0). */ bytes32 dstExternalAccount; /// @notice The account that will be debited baseToken on the source chain. address trader; /// @notice The recipient of the quoteToken on the destination chain. bytes32 dstTrader; /// @notice The token that the trader sells on the source chain. address baseToken; /// @notice The token that the trader buys on the destination chain. bytes32 quoteToken; /// @notice The amount of baseToken sold. uint256 baseTokenAmount; /// @notice The amount of quoteToken bought. uint256 quoteTokenAmount; /** * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced * on the source chain. */ /// @dev This gets checked against block.timestamp. uint256 quoteExpiry; /// @notice Unique identifier for the quote. /// @dev Generated off-chain via a distributed UUID generator. bytes32 txid; /** * @notice The address of the IHashflowXChainMessenger contract used for * cross-chain communication. */ address xChainMessenger; /// @notice Signature provided by the trader (EIP-712). bytes takerSignature; /// @notice Signature provided by the market maker (EIP-191). bytes makerSignature; } } /** * SPDX-License-Identifier: UNLICENSED */ pragma solidity 0.8.18; import '@openzeppelin/contracts/proxy/utils/Initializable.sol'; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol'; import '@openzeppelin/contracts/utils/Context.sol'; import '../interfaces/external/IWETH.sol'; import '../interfaces/IHashflowPool.sol'; import '../interfaces/IHashflowRouter.sol'; interface IERC20AllowanceExtension { function increaseAllowance(address spender, uint256 addedValue) external returns (bool); function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool); } contract HashflowPool is IHashflowPool, Initializable, Context { using Address for address payable; using SafeERC20 for IERC20; using ECDSA for bytes32; string public name; SignerConfiguration public signerConfiguration; address public operations; address public router; mapping(address => uint256) public nonces; mapping(bytes32 => uint256) public xChainNonces; mapping(address => bool) internal _withrawalAccountAuth; mapping(bytes32 => bool) internal _filledXChainTxids; address public immutable _WETH; constructor(address weth) { require( weth != address(0), 'HashflowPool::constructor WETH cannot be 0 address.' ); _WETH = weth; } /// @dev Fallback function to receive native token. receive() external payable {} /// @inheritdoc IHashflowPool function initialize( string memory _name, address _signer, address _operations, address _router ) public override initializer { require( _signer != address(0), 'HashflowPool::initialize Signer cannot be 0 address.' ); require( _operations != address(0), 'HashflowPool::initialize Operations cannot be 0 address.' ); require( _router != address(0), 'HashflowPool::initialize Router cannot be 0 address.' ); require( bytes(_name).length > 0, 'HashflowPool::initialize Name cannot be empty' ); name = _name; SignerConfiguration memory signerConfig; signerConfig.enabled = true; signerConfig.signer = _signer; emit UpdateSigner(_signer, address(0)); signerConfiguration = signerConfig; operations = _operations; router = _router; } modifier authorizedOperations() { require( _msgSender() == operations, 'HashflowPool:authorizedOperations Sender must be operator.' ); _; } modifier authorizedRouter() { require( _msgSender() == router, 'HashflowPool::authorizedRouter Sender must be Router.' ); _; } /// @inheritdoc IHashflowPool function tradeRFQT(RFQTQuote memory quote) external payable override authorizedRouter { /// Trust assumption: the Router has transferred baseToken. require( quote.baseToken != address(0) || quote.externalAccount != address(0) || msg.value == quote.effectiveBaseTokenAmount, 'HashflowPool::tradeRFQT msg.value must equal effectiveBaseTokenAmount' ); bytes32 quoteHash = _hashQuoteRFQT(quote); SignerConfiguration memory signerConfig = signerConfiguration; require(signerConfig.enabled, 'HashflowPool::tradeRFQT Disabled.'); require( quoteHash.recover(quote.signature) == signerConfig.signer, 'HashflowPool::tradeRFQT Invalid signer.' ); _updateNonce(quote.effectiveTrader, quote.nonce); uint256 quoteTokenAmount = quote.quoteTokenAmount; if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) { quoteTokenAmount = (quote.effectiveBaseTokenAmount * quote.quoteTokenAmount) / quote.baseTokenAmount; } emit Trade( quote.trader, quote.effectiveTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.effectiveBaseTokenAmount, quoteTokenAmount ); if (quote.externalAccount == address(0)) { _transferFromPool(quote.quoteToken, quote.trader, quoteTokenAmount); } else { _transferFromExternalAccount( quote.externalAccount, quote.quoteToken, quote.trader, quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeRFQM(RFQMQuote memory quote) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; require(signerConfig.enabled, 'HashflowPool::tradeRFQM Disabled.'); bytes32 quoteHash = _hashQuoteRFQM(quote); require( quoteHash.recover(quote.makerSignature) == signerConfig.signer, 'HashflowPool::tradeRFQM Invalid signer.' ); emit Trade( quote.trader, quote.trader, quote.txid, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount ); if (quote.externalAccount == address(0)) { _transferFromPool( quote.quoteToken, quote.trader, quote.quoteTokenAmount ); } else { _transferFromExternalAccount( quote.externalAccount, quote.quoteToken, quote.trader, quote.quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader) external payable override authorizedRouter { require( quote.srcExternalAccount != address(0) || quote.baseToken != address(0) || msg.value == quote.effectiveBaseTokenAmount, 'HashflowPool::tradeXChainRFQT msg.value must = amount' ); SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::tradeXChainRFQT Disabled.' ); _updateNonceXChain(quote.dstTrader, quote.nonce); bytes32 quoteHash = _hashXChainQuoteRFQT(quote); require( quoteHash.recover(quote.signature) == signerConfig.signer, 'HashflowPool::tradeXChainRFQT Invalid signer' ); uint256 effectiveQuoteTokenAmount = quote.quoteTokenAmount; if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) { effectiveQuoteTokenAmount = (quote.quoteTokenAmount * quote.effectiveBaseTokenAmount) / quote.baseTokenAmount; } emit XChainTrade( quote.dstChainId, quote.dstPool, trader, quote.dstTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.effectiveBaseTokenAmount, effectiveQuoteTokenAmount ); } /// @inheritdoc IHashflowPool function fillXChain( address externalAccount, bytes32 txid, address trader, address quoteToken, uint256 quoteTokenAmount ) external override authorizedRouter { require( !_filledXChainTxids[txid], 'HashflowPool::fillXChain Quote has been executed previously.' ); _filledXChainTxids[txid] = true; emit XChainTradeFill(txid); if (externalAccount == address(0)) { _transferFromPool(quoteToken, trader, quoteTokenAmount); } else { _transferFromExternalAccount( externalAccount, quoteToken, trader, quoteTokenAmount ); } } /// @inheritdoc IHashflowPool function tradeXChainRFQM(XChainRFQMQuote memory quote) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::tradeXChainRFQM Disabled.' ); bytes32 quoteHash = _hashXChainQuoteRFQM(quote); require( quoteHash.recover(quote.makerSignature) == signerConfig.signer, 'HashflowPool::tradeXChainRFQM Invalid signer' ); emit XChainTrade( quote.dstChainId, quote.dstPool, quote.trader, quote.dstTrader, quote.txid, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount ); } /// @inheritdoc IHashflowPool function updateXChainPoolAuthorization( AuthorizedXChainPool[] calldata pools, bool status ) external override authorizedOperations { for (uint256 i = 0; i < pools.length; i++) { require(pools[i].pool != bytes32(0)); IHashflowRouter(router).updateXChainPoolAuthorization( pools[i].chainId, pools[i].pool, status ); } } /// @inheritdoc IHashflowPool function updateXChainMessengerAuthorization( address xChainMessenger, bool authorized ) external override authorizedOperations { require( xChainMessenger != address(0), 'HashflowPool::updateXChainMessengerAuthorization Invalid messenger address.' ); IHashflowRouter(router).updateXChainMessengerAuthorization( xChainMessenger, authorized ); } /// @dev ERC1271 implementation. function isValidSignature(bytes32 hash, bytes memory signature) external view override returns (bytes4 magicValue) { if (hash.recover(signature) == signerConfiguration.signer) { magicValue = 0x1626ba7e; } } /// @inheritdoc IHashflowPool function approveToken( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).forceApprove(spender, amount); } /// @inheritdoc IHashflowPool function increaseTokenAllowance( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).safeIncreaseAllowance(spender, amount); } /// @inheritdoc IHashflowPool function decreaseTokenAllowance( address token, address spender, uint256 amount ) external override authorizedOperations { IERC20(token).safeDecreaseAllowance(spender, amount); } /// @inheritdoc IHashflowPool function removeLiquidity( address token, address recipient, uint256 amount ) external override authorizedOperations { SignerConfiguration memory signerConfig = signerConfiguration; require( signerConfig.enabled, 'HashflowPool::removeLiquidity Disabled.' ); require(amount > 0, 'HashflowPool::removeLiquidity Invalid amount'); address _recipient; if (recipient != address(0)) { require( _withrawalAccountAuth[recipient], 'HashflowPool::removeLiquidity Recipient must be hedging account' ); _recipient = recipient; } else { _recipient = _msgSender(); } emit RemoveLiquidity(token, _recipient, amount); _transferFromPool(token, _recipient, amount); } /// @inheritdoc IHashflowPool function updateWithdrawalAccount( address[] memory withdrawalAccounts, bool authorized ) external override authorizedOperations { for (uint256 i = 0; i < withdrawalAccounts.length; i++) { require(withdrawalAccounts[i] != address(0)); _withrawalAccountAuth[withdrawalAccounts[i]] = authorized; emit UpdateWithdrawalAccount(withdrawalAccounts[i], authorized); } } /// @inheritdoc IHashflowPool function updateSigner(address newSigner) external override authorizedOperations { require(newSigner != address(0)); SignerConfiguration memory signerConfig = signerConfiguration; emit UpdateSigner(newSigner, signerConfig.signer); signerConfig.signer = newSigner; signerConfiguration = signerConfig; } /// @inheritdoc IHashflowPool function killswitchOperations(bool enabled) external override authorizedRouter { SignerConfiguration memory signerConfig = signerConfiguration; signerConfig.enabled = enabled; signerConfiguration = signerConfig; } function getReserves(address token) external view override returns (uint256) { return _getReserves(token); } /** * @dev Prevents against replay for RFQ-T. Checks that nonces are strictly increasing. */ function _updateNonce(address trader, uint256 nonce) internal { require( nonce > nonces[trader], 'HashflowPool::_updateNonce Invalid nonce.' ); nonces[trader] = nonce; } /** * @dev Prevents against replay for X-Chain RFQ-T. Checks that nonces are strictly increasing. */ function _updateNonceXChain(bytes32 trader, uint256 nonce) internal { require( nonce > xChainNonces[trader], 'HashflowPool::_updateNonceXChain Invalid nonce.' ); xChainNonces[trader] = nonce; } function _transferFromPool( address token, address recipient, uint256 value ) internal { if (token == address(0)) { payable(recipient).sendValue(value); } else { IERC20(token).safeTransfer(recipient, value); } } /// @dev Helper function to transfer quoteToken from external account. function _transferFromExternalAccount( address externalAccount, address token, address receiver, uint256 value ) private { if (token == address(0)) { IERC20(_WETH).safeTransferFrom( externalAccount, address(this), value ); IWETH(_WETH).withdraw(value); payable(receiver).sendValue(value); } else { IERC20(token).safeTransferFrom(externalAccount, receiver, value); } } function _getReserves(address token) internal view returns (uint256) { return token == address(0) ? address(this).balance : IERC20(token).balanceOf(address(this)); } /** * @dev Generates a quote hash for RFQ-t. */ function _hashQuoteRFQT(RFQTQuote memory quote) private view returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( address(this), quote.trader, quote.effectiveTrader, quote.externalAccount, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.nonce, quote.quoteExpiry, quote.txid, block.chainid ) ) ) ); } function _hashQuoteRFQM(RFQMQuote memory quote) private view returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( quote.pool, quote.externalAccount, quote.trader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.txid, block.chainid ) ) ) ); } function _hashXChainQuoteRFQT(XChainRFQTQuote memory quote) private pure returns (bytes32) { bytes32 digest = keccak256( abi.encodePacked( keccak256( abi.encodePacked( quote.srcChainId, quote.dstChainId, quote.srcPool, quote.dstPool, quote.srcExternalAccount, quote.dstExternalAccount ) ), quote.dstTrader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.nonce, quote.txid, quote.xChainMessenger ) ); return keccak256( abi.encodePacked('\\x19Ethereum Signed Message:\ 32', digest) ); } function _hashXChainQuoteRFQM(XChainRFQMQuote memory quote) private pure returns (bytes32) { return keccak256( abi.encodePacked( '\\x19Ethereum Signed Message:\ 32', keccak256( abi.encodePacked( keccak256( abi.encodePacked( quote.srcChainId, quote.dstChainId, quote.srcPool, quote.dstPool, quote.srcExternalAccount, quote.dstExternalAccount ) ), quote.trader, quote.baseToken, quote.quoteToken, quote.baseTokenAmount, quote.quoteTokenAmount, quote.quoteExpiry, quote.txid, quote.xChainMessenger ) ) ) ); } }