Transaction Hash:
Block:
22551335 at May-24-2025 07:52:47 AM +UTC
Transaction Fee:
0.000166442949853984 ETH
$0.44
Gas Used:
270,274 Gas / 0.615830416 Gwei
Emitted Events:
204 |
AdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000040ec5b33f54e0e8a33a975908c5ba1c14e5bbbdf, 0x000000000000000000000000c4d306776aa91b3db685038d2188cc4e6ceaef63, 0000000000000000000000000000000000000000000000244369a552df4a1544 )
|
205 |
ERC20PredicateProxy.0xbb61bd1b26b3684c7c028ff1a8f6dabcac2fac8ac57b66fa6b1efb6edeab03c4( 0xbb61bd1b26b3684c7c028ff1a8f6dabcac2fac8ac57b66fa6b1efb6edeab03c4, 0x000000000000000000000000c4d306776aa91b3db685038d2188cc4e6ceaef63, 0x000000000000000000000000cc4304a31d09258b0029ea7fe63d032f52e44efe, 0000000000000000000000000000000000000000000000244369a552df4a1544 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 14.546782528779530275 Eth | 14.546808150754730275 Eth | 0.0000256219752 | |
0xA0c68C63...1bFc77C77 | (Polygon (Matic): Bridge) | ||||
0xc4d30677...E6CEAef63 |
0.046858757078116047 Eth
Nonce: 5279
|
0.046692314128262063 Eth
Nonce: 5280
| 0.000166442949853984 | ||
0xCC4304A3...f52e44EFe |
Execution Trace
RootChainManagerProxy.3805550f( )

RootChainManager.exit( inputData=0xF90AA78431015190B9016025298C4E1E4F3A05A130DD71E397A4A8549052DBD5A5379D461C0847C249217AF9B37CA561AFAB8EBA4BAA493EF5394E7D11B72CB2E905929C3DAF188237B2742DB10C523FBFCA28CC6FABA248A516777BB68C8984649C4D8AD5C693ED2B43407811190104421BE6E4B8013071113F2445295157280555CAFA97EA013628FD16EC8344C1F9E9374D0B8EA77F4D5E530F913588C3DE74A4F74D971EB4E9984545BD9AD68C99C68111BBE1F5C58E6648772BA431DD8E82B44751D31B8A6AE943905D84DBD7FEB467F956EC84C51C7188D1447AAF685044BD3DB6615575148E69CE18A2D7E7F22B9E09FCC973329B9E1EA9E925BBC2749C050EDFA9CB377756C57BE26B669CD03C2C3FAEDE14A36DB467DE70A4D79AB4F21F72E9B28CD0388B4C65E27FD24544DDC87F7146CE4A08329A718FE20D9E1425CE2A3479F34F9DA5AADB3907FCAD8214B7567123F69717DEC5D699922A75B8F6B4C15A8696897980A268840449189B846831705FA0C08D4B325339177C28B958EEFC89543EC0034EEFBCC359E2EFE9095C2CB71E6CA0B00B3E81535CE899DD0202196DFDFF1F11BF29AD11EB0411606BBAC8A06A0016B902EC02F902E80183719818B9010000000400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000008000000800000000000000000000100000000000000000000124000000000000000000800000000000000000080000010000000000040000000040000000000000000000000100000000000000000000010000000200000000000000000000000000000000000000000000000000000080000004000000002000000000001000000000000000000000000000000120000000020000000000000000000000000000000000000000000000000000000000000100000F901DDF89B943809DCDD5DDE24B37ABE64A5A339784C3323C44FF863A0DDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EFA0000000000000000000000000C4D306776AA91B3DB685038D2188CC4E6CEAEF63A00000000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000244369A552DF4A1544F9013D940000000000000000000000000000000000001010F884A04DFE1BBBCF077DDC3E01291EEA2D5C70C2B422B415D95645B9ADCFD678CB1D63A00000000000000000000000000000000000000000000000000000000000001010A0000000000000000000000000C4D306776AA91B3DB685038D2188CC4E6CEAEF63A00000000000000000000000009EAD03F7136FC6B4BDB0780B00A1C14AE5A8B6D0B8A0000000000000000000000000000000000000000000000000000454E3D8D4FBD00000000000000000000000000000000000000000000000014393534A19D3BF9000000000000000000000000000000000000000000000101A69DE753A079A9BBB000000000000000000000000000000000000000000000001438EFE6640FEC3C000000000000000000000000000000000000000000000101A69E2CA1DE06F978BB905FDF905FAF8F1A0D06AEF52803686F012C6A89EDC7A7C26642FE58951904EEC89DD59B918D3CA9DA05ADC064EDB4FE59ED671E266262E90EBF31F1656D6FA2D40A0BB016968A59210A07000DC1B4C820FB7DA85B8DEC72A8248CBE97F721EF83507352B8AB31D635DA4A0FB8EED283A1840A1F91FF917016A9FF82A888E36F7622DD49D059429CF13CD6FA0D51B26B6129A75F424BE26AA5FE6410097D173DEB4721C217EBE4D8833771E71A09B4A3ECF2FA3EB8BAFB63A21C1238E46B8612BC4DCCD680FACD2CB48F47798118080A01457337186BAEC6ED12B539B5C179EE79D977EE5A46A38D1DBDBDAA9CEC2F6128080808080808080F90211A0FB938C721F61599F332937971607041FC262CEF9315482745F12BE1918167610A0763A663CB991839CAFE55DE7F0294361E2601CF9A9F129D6594AF3119C7A84E3A0673E61DA3CBF4BED09F7ACFCE9A121FBDF303D7569CB8544EA30B1A923BD9877A075A0E61226FBCF281592EF709898FB98D90C8C4C197D65B7CE81E41DEF98CBB4A04F092581C4E8393F03A09B1208FFEB51950743AE824354B3A2AFEC9F9C1FF4D1A04405AE90B7C4C9D3A09B95C670786A6C2DAE08E66071EC9BC8286258DA19B9DEA0BF56CEAA363B6F679F343A2FD9C2B9B2391F7D9E6ACF130DCC545E243C51FFDDA0F6F869648F3AEEE2E4FE181E8C54A1E7F9D434CE7E223DF8D8D7D6CCAFFEB016A0CDEE5D223488B0FCCE519DD2227053717300A293FA743A769B67F4F8C1F6DBB5A0A169984849FA36281D907A77D7C8DD2EBD4816888D8835DA5A7393BE7B34392CA01C7F334E26D03D9B8DFD9167F122AC54E8E7D453061F0649D5FC4C7701E59C6EA0B22B58F58D20D5B964947338B6718AC125BC21E40C51F2A1D18AABD70AFBCC99A09A6D1DC3BE972A5271C009D8DBB2C2254A35AE902EFEB6B88095AD98F3209A4BA07B4B171952B278774741DF5C0B58D072225BB69D43802EAF6042BB433D048D54A0AA81BCE14A4B24C7B03687B098E159B39AD191E4B30E060D7AD04208F2C7AC50A0A1416937599C421DDC4D43B3944A6EDED45A04B90409E1FC43574E7D2E37C1D580F902F020B902EC02F902E80183719818B9010000000400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000008000000800000000000000000000100000000000000000000124000000000000000000800000000000000000080000010000000000040000000040000000000000000000000100000000000000000000010000000200000000000000000000000000000000000000000000000000000080000004000000002000000000001000000000000000000000000000000120000000020000000000000000000000000000000000000000000000000000000000000100000F901DDF89B943809DCDD5DDE24B37ABE64A5A339784C3323C44FF863A0DDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EFA0000000000000000000000000C4D306776AA91B3DB685038D2188CC4E6CEAEF63A00000000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000244369A552DF4A1544F9013D940000000000000000000000000000000000001010F884A04DFE1BBBCF077DDC3E01291EEA2D5C70C2B422B415D95645B9ADCFD678CB1D63A00000000000000000000000000000000000000000000000000000000000001010A0000000000000000000000000C4D306776AA91B3DB685038D2188CC4E6CEAEF63A00000000000000000000000009EAD03F7136FC6B4BDB0780B00A1C14AE5A8B6D0B8A0000000000000000000000000000000000000000000000000000454E3D8D4FBD00000000000000000000000000000000000000000000000014393534A19D3BF9000000000000000000000000000000000000000000000101A69DE753A079A9BBB000000000000000000000000000000000000000000000001438EFE6640FEC3C000000000000000000000000000000000000000000000101A69E2CA1DE06F978B82003480 )
-
RootChainProxy.headerBlocks( 822170000 ) => ( root=E326450F50B054D482CB5CD657F9196007AADDE1DA0F3526D209830E9DCA5F6A, start=71898278, end=71899557, createdAt=1748072519, proposer=0x1EFEcb61A2f80Aa34d3b9218B564a64D05946290 )
ERC20PredicateProxy.8274664f( )
ERC20Predicate.exitTokens( 0xc4d306776Aa91b3Db685038D2188CC4E6CEAef63, rootToken=0xCC4304A31d09258b0029eA7FE63d032f52e44EFe, log=0xF89B943809DCDD5DDE24B37ABE64A5A339784C3323C44FF863A0DDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EFA0000000000000000000000000C4D306776AA91B3DB685038D2188CC4E6CEAEF63A00000000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000244369A552DF4A1544 )
AdminUpgradeabilityProxy.a9059cbb( )
-
SwapToken.transfer( recipient=0xc4d306776Aa91b3Db685038D2188CC4E6CEAef63, amount=668940382101991724356 ) => ( True )
-
-
exit[RootChainManager (ln:313)]
toExitPayload[RootChainManager (ln:314)]
getBranchMaskAsBytes[RootChainManager (ln:315)]
getBlockNumber[RootChainManager (ln:320)]
_getNibbleArray[RootChainManager (ln:324)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1169)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1172)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1180)]
getReceiptLogIndex[RootChainManager (ln:325)]
getReceipt[RootChainManager (ln:333)]
getLog[RootChainManager (ln:334)]
getEmitter[RootChainManager (ln:336)]
getBranchMaskAsUint[RootChainManager (ln:346)]
verify[RootChainManager (ln:353)]
toRlpItem[MerklePatriciaProof (ln:1067)]
RLPItem[RLPReader (ln:664)]
toList[MerklePatriciaProof (ln:1068)]
isList[RLPReader (ln:703)]
numItems[RLPReader (ln:704)]
_payloadOffset[RLPReader (ln:831)]
_itemLength[RLPReader (ln:834)]
_payloadOffset[RLPReader (ln:706)]
_itemLength[RLPReader (ln:709)]
RLPItem[RLPReader (ln:710)]
_getNibbleArray[MerklePatriciaProof (ln:1073)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1169)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1172)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1180)]
toRlpBytes[MerklePatriciaProof (ln:1081)]
toList[MerklePatriciaProof (ln:1085)]
isList[RLPReader (ln:703)]
numItems[RLPReader (ln:704)]
_payloadOffset[RLPReader (ln:831)]
_itemLength[RLPReader (ln:834)]
_payloadOffset[RLPReader (ln:706)]
_itemLength[RLPReader (ln:709)]
RLPItem[RLPReader (ln:710)]
toBytes[MerklePatriciaProof (ln:1089)]
payloadLocation[RLPReader (ln:815)]
_payloadOffset[RLPReader (ln:687)]
copy[RLPReader (ln:821)]
toUintStrict[MerklePatriciaProof (ln:1102)]
toBytes[MerklePatriciaProof (ln:1106)]
payloadLocation[RLPReader (ln:815)]
_payloadOffset[RLPReader (ln:687)]
copy[RLPReader (ln:821)]
_nibblesToTraverse[MerklePatriciaProof (ln:1107)]
_getNibbleArray[MerklePatriciaProof (ln:1145)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1169)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1172)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1180)]
_getNthNibbleOfBytes[MerklePatriciaProof (ln:1113)]
toBytes[MerklePatriciaProof (ln:1117)]
payloadLocation[RLPReader (ln:815)]
_payloadOffset[RLPReader (ln:687)]
copy[RLPReader (ln:821)]
toUintStrict[MerklePatriciaProof (ln:1130)]
toBytes[RootChainManager (ln:354)]
getReceiptProof[RootChainManager (ln:356)]
getReceiptRoot[RootChainManager (ln:357)]
_checkBlockMembershipInCheckpoint[RootChainManager (ln:362)]
headerBlocks[RootChainManager (ln:389)]
checkMembership[RootChainManager (ln:391)]
sub[RootChainManager (ln:395)]
getBlockNumber[RootChainManager (ln:363)]
getBlockTime[RootChainManager (ln:364)]
getTxRoot[RootChainManager (ln:365)]
getReceiptRoot[RootChainManager (ln:366)]
getHeaderNumber[RootChainManager (ln:367)]
getBlockProof[RootChainManager (ln:368)]
exitTokens[RootChainManager (ln:370)]
_msgSender[RootChainManager (ln:371)]
msgSender[RootChainManager (ln:47)]
toRlpBytes[RootChainManager (ln:373)]
File 1 of 7: RootChainManagerProxy
File 2 of 7: AdminUpgradeabilityProxy
File 3 of 7: ERC20PredicateProxy
File 4 of 7: RootChainManager
File 5 of 7: RootChainProxy
File 6 of 7: ERC20Predicate
File 7 of 7: SwapToken
// File: contracts/common/Proxy/IERCProxy.sol pragma solidity 0.6.6; interface IERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/Proxy/Proxy.sol pragma solidity 0.6.6; abstract contract Proxy is IERCProxy { function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall( sub(gas(), 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0 ) let size := returndatasize() let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } function proxyType() external virtual override pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external virtual override view returns (address); } // File: contracts/common/Proxy/UpgradableProxy.sol pragma solidity 0.6.6; contract UpgradableProxy is Proxy { event ProxyUpdated(address indexed _new, address indexed _old); event ProxyOwnerUpdate(address _new, address _old); bytes32 constant IMPLEMENTATION_SLOT = keccak256("matic.network.proxy.implementation"); bytes32 constant OWNER_SLOT = keccak256("matic.network.proxy.owner"); constructor(address _proxyTo) public { setProxyOwner(msg.sender); setImplementation(_proxyTo); } fallback() external payable { delegatedFwd(loadImplementation(), msg.data); } receive() external payable { delegatedFwd(loadImplementation(), msg.data); } modifier onlyProxyOwner() { require(loadProxyOwner() == msg.sender, "NOT_OWNER"); _; } function proxyOwner() external view returns(address) { return loadProxyOwner(); } function loadProxyOwner() internal view returns(address) { address _owner; bytes32 position = OWNER_SLOT; assembly { _owner := sload(position) } return _owner; } function implementation() external override view returns (address) { return loadImplementation(); } function loadImplementation() internal view returns(address) { address _impl; bytes32 position = IMPLEMENTATION_SLOT; assembly { _impl := sload(position) } return _impl; } function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0), "ZERO_ADDRESS"); emit ProxyOwnerUpdate(newOwner, loadProxyOwner()); setProxyOwner(newOwner); } function setProxyOwner(address newOwner) private { bytes32 position = OWNER_SLOT; assembly { sstore(position, newOwner) } } function updateImplementation(address _newProxyTo) public onlyProxyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, loadImplementation()); setImplementation(_newProxyTo); } function updateAndCall(address _newProxyTo, bytes memory data) payable public onlyProxyOwner { updateImplementation(_newProxyTo); (bool success, bytes memory returnData) = address(this).call{value: msg.value}(data); require(success, string(returnData)); } function setImplementation(address _newProxyTo) private { bytes32 position = IMPLEMENTATION_SLOT; assembly { sstore(position, _newProxyTo) } } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/RootChainManager/RootChainManagerProxy.sol pragma solidity 0.6.6; contract RootChainManagerProxy is UpgradableProxy { constructor(address _proxyTo) public UpgradableProxy(_proxyTo) {} }
File 2 of 7: AdminUpgradeabilityProxy
// File: @openzeppelin/upgrades/contracts/upgradeability/Proxy.sol pragma solidity ^0.5.0; /** * @title Proxy * @dev Implements delegation of calls to other contracts, with proper * forwarding of return values and bubbling of failures. * It defines a fallback function that delegates all calls to the address * returned by the abstract _implementation() internal function. */ contract Proxy { /** * @dev Fallback function. * Implemented entirely in `_fallback`. */ function () payable external { _fallback(); } /** * @return The Address of the implementation. */ function _implementation() internal view returns (address); /** * @dev Delegates execution to an implementation contract. * This is a low level function that doesn't return to its internal call site. * It will return to the external caller whatever the implementation returns. * @param implementation Address to delegate. */ function _delegate(address implementation) internal { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize) } default { return(0, returndatasize) } } } /** * @dev Function that is run as the first thing in the fallback function. * Can be redefined in derived contracts to add functionality. * Redefinitions must call super._willFallback(). */ function _willFallback() internal { } /** * @dev fallback implementation. * Extracted to enable manual triggering. */ function _fallback() internal { _willFallback(); _delegate(_implementation()); } } // File: @openzeppelin/upgrades/contracts/utils/Address.sol pragma solidity ^0.5.0; /** * Utility library of inline functions on addresses * * Source https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.1.3/contracts/utils/Address.sol * This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts * when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the * build/artifacts folder) as well as the vanilla Address implementation from an openzeppelin version. */ library OpenZeppelinUpgradesAddress { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } // File: @openzeppelin/upgrades/contracts/upgradeability/BaseUpgradeabilityProxy.sol pragma solidity ^0.5.0; /** * @title BaseUpgradeabilityProxy * @dev This contract implements a proxy that allows to change the * implementation address to which it will delegate. * Such a change is called an implementation upgrade. */ contract BaseUpgradeabilityProxy is Proxy { /** * @dev Emitted when the implementation is upgraded. * @param implementation Address of the new implementation. */ event Upgraded(address indexed implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation. * @return Address of the current implementation */ function _implementation() internal view returns (address impl) { bytes32 slot = IMPLEMENTATION_SLOT; assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * @param newImplementation Address of the new implementation. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Sets the implementation address of the proxy. * @param newImplementation Address of the new implementation. */ function _setImplementation(address newImplementation) internal { require(OpenZeppelinUpgradesAddress.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address"); bytes32 slot = IMPLEMENTATION_SLOT; assembly { sstore(slot, newImplementation) } } } // File: @openzeppelin/upgrades/contracts/upgradeability/UpgradeabilityProxy.sol pragma solidity ^0.5.0; /** * @title UpgradeabilityProxy * @dev Extends BaseUpgradeabilityProxy with a constructor for initializing * implementation and init data. */ contract UpgradeabilityProxy is BaseUpgradeabilityProxy { /** * @dev Contract constructor. * @param _logic Address of the initial implementation. * @param _data Data to send as msg.data to the implementation to initialize the proxied contract. * It should include the signature and the parameters of the function to be called, as described in * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding. * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped. */ constructor(address _logic, bytes memory _data) public payable { assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)); _setImplementation(_logic); if(_data.length > 0) { (bool success,) = _logic.delegatecall(_data); require(success); } } } // File: @openzeppelin/upgrades/contracts/upgradeability/BaseAdminUpgradeabilityProxy.sol pragma solidity ^0.5.0; /** * @title BaseAdminUpgradeabilityProxy * @dev This contract combines an upgradeability proxy with an authorization * mechanism for administrative tasks. * All external functions in this contract must be guarded by the * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity * feature proposal that would enable this to be done automatically. */ contract BaseAdminUpgradeabilityProxy is BaseUpgradeabilityProxy { /** * @dev Emitted when the administration has been transferred. * @param previousAdmin Address of the previous admin. * @param newAdmin Address of the new admin. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Modifier to check whether the `msg.sender` is the admin. * If it is, it will run the function. Otherwise, it will delegate the call * to the implementation. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * @return The address of the proxy admin. */ function admin() external ifAdmin returns (address) { return _admin(); } /** * @return The address of the implementation. */ function implementation() external ifAdmin returns (address) { return _implementation(); } /** * @dev Changes the admin of the proxy. * Only the current admin can call this function. * @param newAdmin Address to transfer proxy administration to. */ function changeAdmin(address newAdmin) external ifAdmin { require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the backing implementation of the proxy. * Only the admin can call this function. * @param newImplementation Address of the new implementation. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the backing implementation of the proxy and call a function * on the new implementation. * This is useful to initialize the proxied contract. * @param newImplementation Address of the new implementation. * @param data Data to send as msg.data in the low level call. * It should include the signature and the parameters of the function to be called, as described in * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding. */ function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin { _upgradeTo(newImplementation); (bool success,) = newImplementation.delegatecall(data); require(success); } /** * @return The admin slot. */ function _admin() internal view returns (address adm) { bytes32 slot = ADMIN_SLOT; assembly { adm := sload(slot) } } /** * @dev Sets the address of the proxy admin. * @param newAdmin Address of the new proxy admin. */ function _setAdmin(address newAdmin) internal { bytes32 slot = ADMIN_SLOT; assembly { sstore(slot, newAdmin) } } /** * @dev Only fall back when the sender is not the admin. */ function _willFallback() internal { require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin"); super._willFallback(); } } // File: @openzeppelin/upgrades/contracts/upgradeability/AdminUpgradeabilityProxy.sol pragma solidity ^0.5.0; /** * @title AdminUpgradeabilityProxy * @dev Extends from BaseAdminUpgradeabilityProxy with a constructor for * initializing the implementation, admin, and init data. */ contract AdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, UpgradeabilityProxy { /** * Contract constructor. * @param _logic address of the initial implementation. * @param _admin Address of the proxy administrator. * @param _data Data to send as msg.data to the implementation to initialize the proxied contract. * It should include the signature and the parameters of the function to be called, as described in * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding. * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped. */ constructor(address _logic, address _admin, bytes memory _data) UpgradeabilityProxy(_logic, _data) public payable { assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)); _setAdmin(_admin); } }
File 3 of 7: ERC20PredicateProxy
// File: contracts/common/Proxy/IERCProxy.sol pragma solidity 0.6.6; interface IERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/Proxy/Proxy.sol pragma solidity 0.6.6; abstract contract Proxy is IERCProxy { function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall( sub(gas(), 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0 ) let size := returndatasize() let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } function proxyType() external virtual override pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external virtual override view returns (address); } // File: contracts/common/Proxy/UpgradableProxy.sol pragma solidity 0.6.6; contract UpgradableProxy is Proxy { event ProxyUpdated(address indexed _new, address indexed _old); event ProxyOwnerUpdate(address _new, address _old); bytes32 constant IMPLEMENTATION_SLOT = keccak256("matic.network.proxy.implementation"); bytes32 constant OWNER_SLOT = keccak256("matic.network.proxy.owner"); constructor(address _proxyTo) public { setProxyOwner(msg.sender); setImplementation(_proxyTo); } fallback() external payable { delegatedFwd(loadImplementation(), msg.data); } receive() external payable { delegatedFwd(loadImplementation(), msg.data); } modifier onlyProxyOwner() { require(loadProxyOwner() == msg.sender, "NOT_OWNER"); _; } function proxyOwner() external view returns(address) { return loadProxyOwner(); } function loadProxyOwner() internal view returns(address) { address _owner; bytes32 position = OWNER_SLOT; assembly { _owner := sload(position) } return _owner; } function implementation() external override view returns (address) { return loadImplementation(); } function loadImplementation() internal view returns(address) { address _impl; bytes32 position = IMPLEMENTATION_SLOT; assembly { _impl := sload(position) } return _impl; } function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0), "ZERO_ADDRESS"); emit ProxyOwnerUpdate(newOwner, loadProxyOwner()); setProxyOwner(newOwner); } function setProxyOwner(address newOwner) private { bytes32 position = OWNER_SLOT; assembly { sstore(position, newOwner) } } function updateImplementation(address _newProxyTo) public onlyProxyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, loadImplementation()); setImplementation(_newProxyTo); } function updateAndCall(address _newProxyTo, bytes memory data) payable public onlyProxyOwner { updateImplementation(_newProxyTo); (bool success, bytes memory returnData) = address(this).call{value: msg.value}(data); require(success, string(returnData)); } function setImplementation(address _newProxyTo) private { bytes32 position = IMPLEMENTATION_SLOT; assembly { sstore(position, _newProxyTo) } } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/TokenPredicates/ERC20PredicateProxy.sol pragma solidity 0.6.6; contract ERC20PredicateProxy is UpgradableProxy { constructor(address _proxyTo) public UpgradableProxy(_proxyTo) {} }
File 4 of 7: RootChainManager
pragma solidity 0.6.6; import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {IRootChainManager} from "./IRootChainManager.sol"; import {RootChainManagerStorage} from "./RootChainManagerStorage.sol"; import {IStateSender} from "../StateSender/IStateSender.sol"; import {ICheckpointManager} from "../ICheckpointManager.sol"; import {RLPReader} from "../../lib/RLPReader.sol"; import {ExitPayloadReader} from "../../lib/ExitPayloadReader.sol"; import {MerklePatriciaProof} from "../../lib/MerklePatriciaProof.sol"; import {Merkle} from "../../lib/Merkle.sol"; import {ITokenPredicate} from "../TokenPredicates/ITokenPredicate.sol"; import {Initializable} from "../../common/Initializable.sol"; import {NativeMetaTransaction} from "../../common/NativeMetaTransaction.sol"; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; import {AccessControlMixin} from "../../common/AccessControlMixin.sol"; import {ContextMixin} from "../../common/ContextMixin.sol"; contract RootChainManager is IRootChainManager, Initializable, AccessControl, // included to match old storage layout while upgrading RootChainManagerStorage, // created to match old storage layout while upgrading AccessControlMixin, NativeMetaTransaction, ContextMixin { using ExitPayloadReader for bytes; using ExitPayloadReader for ExitPayloadReader.ExitPayload; using ExitPayloadReader for ExitPayloadReader.Log; using ExitPayloadReader for ExitPayloadReader.Receipt; using Merkle for bytes32; using SafeMath for uint256; // maybe DEPOSIT and MAP_TOKEN can be reduced to bytes4 bytes32 public constant DEPOSIT = keccak256("DEPOSIT"); bytes32 public constant MAP_TOKEN = keccak256("MAP_TOKEN"); address public constant ETHER_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; bytes32 public constant MAPPER_ROLE = keccak256("MAPPER_ROLE"); constructor() public { // Disable initializer on implementation contract _disableInitializer(); } function _msgSender() internal override view returns (address payable sender) { return ContextMixin.msgSender(); } /** * @notice Deposit ether by directly sending to the contract * The account sending ether receives WETH on child chain */ receive() external payable { _depositEtherFor(_msgSender()); } /** * @notice Initialize the contract after it has been proxified * @dev meant to be called once immediately after deployment * @param _owner the account that should be granted admin role */ function initialize( address _owner ) external initializer { _initializeEIP712("RootChainManager"); _setupContractId("RootChainManager"); _setupRole(DEFAULT_ADMIN_ROLE, _owner); _setupRole(MAPPER_ROLE, _owner); } // adding seperate function setupContractId since initialize is already called with old implementation function setupContractId() external only(DEFAULT_ADMIN_ROLE) { _setupContractId("RootChainManager"); } // adding seperate function initializeEIP712 since initialize is already called with old implementation function initializeEIP712() external only(DEFAULT_ADMIN_ROLE) { _setDomainSeperator("RootChainManager"); } /** * @notice Set the state sender, callable only by admins * @dev This should be the state sender from plasma contracts * It is used to send bytes from root to child chain * @param newStateSender address of state sender contract */ function setStateSender(address newStateSender) external only(DEFAULT_ADMIN_ROLE) { require(newStateSender != address(0), "RootChainManager: BAD_NEW_STATE_SENDER"); _stateSender = IStateSender(newStateSender); } /** * @notice Get the address of contract set as state sender * @return The address of state sender contract */ function stateSenderAddress() external view returns (address) { return address(_stateSender); } /** * @notice Set the checkpoint manager, callable only by admins * @dev This should be the plasma contract responsible for keeping track of checkpoints * @param newCheckpointManager address of checkpoint manager contract */ function setCheckpointManager(address newCheckpointManager) external only(DEFAULT_ADMIN_ROLE) { require(newCheckpointManager != address(0), "RootChainManager: BAD_NEW_CHECKPOINT_MANAGER"); _checkpointManager = ICheckpointManager(newCheckpointManager); } /** * @notice Get the address of contract set as checkpoint manager * @return The address of checkpoint manager contract */ function checkpointManagerAddress() external view returns (address) { return address(_checkpointManager); } /** * @notice Set the child chain manager, callable only by admins * @dev This should be the contract responsible to receive deposit bytes on child chain * @param newChildChainManager address of child chain manager contract */ function setChildChainManagerAddress(address newChildChainManager) external only(DEFAULT_ADMIN_ROLE) { require(newChildChainManager != address(0x0), "RootChainManager: INVALID_CHILD_CHAIN_ADDRESS"); childChainManagerAddress = newChildChainManager; } /** * @notice Register a token predicate address against its type, callable only by ADMIN * @dev A predicate is a contract responsible to process the token specific logic while locking or exiting tokens * @param tokenType bytes32 unique identifier for the token type * @param predicateAddress address of token predicate address */ function registerPredicate(bytes32 tokenType, address predicateAddress) external override only(DEFAULT_ADMIN_ROLE) { typeToPredicate[tokenType] = predicateAddress; emit PredicateRegistered(tokenType, predicateAddress); } /** * @notice Map a token to enable its movement via the PoS Portal, callable only by mappers * @param rootToken address of token on root chain * @param childToken address of token on child chain * @param tokenType bytes32 unique identifier for the token type */ function mapToken( address rootToken, address childToken, bytes32 tokenType ) external override only(MAPPER_ROLE) { // explicit check if token is already mapped to avoid accidental remaps require( rootToChildToken[rootToken] == address(0) && childToRootToken[childToken] == address(0), "RootChainManager: ALREADY_MAPPED" ); _mapToken(rootToken, childToken, tokenType); } /** * @notice Clean polluted token mapping * @param rootToken address of token on root chain. Since rename token was introduced later stage, * clean method is used to clean pollulated mapping */ function cleanMapToken( address rootToken, address childToken ) external override only(DEFAULT_ADMIN_ROLE) { rootToChildToken[rootToken] = address(0); childToRootToken[childToken] = address(0); tokenToType[rootToken] = bytes32(0); emit TokenMapped(rootToken, childToken, tokenToType[rootToken]); } /** * @notice Remap a token that has already been mapped, properly cleans up old mapping * Callable only by ADMIN * @param rootToken address of token on root chain * @param childToken address of token on child chain * @param tokenType bytes32 unique identifier for the token type */ function remapToken( address rootToken, address childToken, bytes32 tokenType ) external override only(DEFAULT_ADMIN_ROLE) { // cleanup old mapping address oldChildToken = rootToChildToken[rootToken]; address oldRootToken = childToRootToken[childToken]; if (rootToChildToken[oldRootToken] != address(0)) { rootToChildToken[oldRootToken] = address(0); tokenToType[oldRootToken] = bytes32(0); } if (childToRootToken[oldChildToken] != address(0)) { childToRootToken[oldChildToken] = address(0); } _mapToken(rootToken, childToken, tokenType); } function _mapToken( address rootToken, address childToken, bytes32 tokenType ) private { require( typeToPredicate[tokenType] != address(0x0), "RootChainManager: TOKEN_TYPE_NOT_SUPPORTED" ); rootToChildToken[rootToken] = childToken; childToRootToken[childToken] = rootToken; tokenToType[rootToken] = tokenType; emit TokenMapped(rootToken, childToken, tokenType); bytes memory syncData = abi.encode(rootToken, childToken, tokenType); _stateSender.syncState( childChainManagerAddress, abi.encode(MAP_TOKEN, syncData) ); } /** * @notice Move ether from root to child chain, accepts ether transfer * Keep in mind this ether cannot be used to pay gas on child chain * Use Matic tokens deposited using plasma mechanism for that * @param user address of account that should receive WETH on child chain */ function depositEtherFor(address user) external override payable { _depositEtherFor(user); } /** * @notice Move tokens from root to child chain * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped * @param user address of account that should receive this deposit on child chain * @param rootToken address of token that is being deposited * @param depositData bytes data that is sent to predicate and child token contracts to handle deposit */ function depositFor( address user, address rootToken, bytes calldata depositData ) external override { require( rootToken != ETHER_ADDRESS, "RootChainManager: INVALID_ROOT_TOKEN" ); _depositFor(user, rootToken, depositData); } function _depositEtherFor(address user) private { bytes memory depositData = abi.encode(msg.value); _depositFor(user, ETHER_ADDRESS, depositData); // payable(typeToPredicate[tokenToType[ETHER_ADDRESS]]).transfer(msg.value); // transfer doesn't work as expected when receiving contract is proxified so using call (bool success, /* bytes memory data */) = typeToPredicate[tokenToType[ETHER_ADDRESS]].call{value: msg.value}(""); if (!success) { revert("RootChainManager: ETHER_TRANSFER_FAILED"); } } function _depositFor( address user, address rootToken, bytes memory depositData ) private { bytes32 tokenType = tokenToType[rootToken]; require( rootToChildToken[rootToken] != address(0x0) && tokenType != 0, "RootChainManager: TOKEN_NOT_MAPPED" ); address predicateAddress = typeToPredicate[tokenType]; require( predicateAddress != address(0), "RootChainManager: INVALID_TOKEN_TYPE" ); require( user != address(0), "RootChainManager: INVALID_USER" ); ITokenPredicate(predicateAddress).lockTokens( _msgSender(), user, rootToken, depositData ); bytes memory syncData = abi.encode(user, rootToken, depositData); _stateSender.syncState( childChainManagerAddress, abi.encode(DEPOSIT, syncData) ); } /** * @notice exit tokens by providing proof * @dev This function verifies if the transaction actually happened on child chain * the transaction log is then sent to token predicate to handle it accordingly * * @param inputData RLP encoded data of the reference tx containing following list of fields * 0 - headerNumber - Checkpoint header block number containing the reference tx * 1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root * 2 - blockNumber - Block number containing the reference tx on child chain * 3 - blockTime - Reference tx block time * 4 - txRoot - Transactions root of block * 5 - receiptRoot - Receipts root of block * 6 - receipt - Receipt of the reference transaction * 7 - receiptProof - Merkle proof of the reference receipt * 8 - branchMask - 32 bits denoting the path of receipt in merkle tree * 9 - receiptLogIndex - Log Index to read from the receipt */ function exit(bytes calldata inputData) external override { ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload(); bytes memory branchMaskBytes = payload.getBranchMaskAsBytes(); // checking if exit has already been processed // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex) bytes32 exitHash = keccak256( abi.encodePacked( payload.getBlockNumber(), // first 2 nibbles are dropped while generating nibble array // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only) // so converting to nibble array and then hashing it MerklePatriciaProof._getNibbleArray(branchMaskBytes), payload.getReceiptLogIndex() ) ); require( processedExits[exitHash] == false, "RootChainManager: EXIT_ALREADY_PROCESSED" ); processedExits[exitHash] = true; ExitPayloadReader.Receipt memory receipt = payload.getReceipt(); ExitPayloadReader.Log memory log = receipt.getLog(); // log should be emmited only by the child token address rootToken = childToRootToken[log.getEmitter()]; require( rootToken != address(0), "RootChainManager: TOKEN_NOT_MAPPED" ); address predicateAddress = typeToPredicate[ tokenToType[rootToken] ]; // branch mask can be maximum 32 bits require( payload.getBranchMaskAsUint() & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000 == 0, "RootChainManager: INVALID_BRANCH_MASK" ); // verify receipt inclusion require( MerklePatriciaProof.verify( receipt.toBytes(), branchMaskBytes, payload.getReceiptProof(), payload.getReceiptRoot() ), "RootChainManager: INVALID_PROOF" ); // verify checkpoint inclusion _checkBlockMembershipInCheckpoint( payload.getBlockNumber(), payload.getBlockTime(), payload.getTxRoot(), payload.getReceiptRoot(), payload.getHeaderNumber(), payload.getBlockProof() ); ITokenPredicate(predicateAddress).exitTokens( _msgSender(), rootToken, log.toRlpBytes() ); } function _checkBlockMembershipInCheckpoint( uint256 blockNumber, uint256 blockTime, bytes32 txRoot, bytes32 receiptRoot, uint256 headerNumber, bytes memory blockProof ) private view { ( bytes32 headerRoot, uint256 startBlock, , , ) = _checkpointManager.headerBlocks(headerNumber); require( keccak256( abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot) ) .checkMembership( blockNumber.sub(startBlock), headerRoot, blockProof ), "RootChainManager: INVALID_HEADER" ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } pragma solidity 0.6.6; interface IRootChainManager { event TokenMapped( address indexed rootToken, address indexed childToken, bytes32 indexed tokenType ); event PredicateRegistered( bytes32 indexed tokenType, address indexed predicateAddress ); function registerPredicate(bytes32 tokenType, address predicateAddress) external; function mapToken( address rootToken, address childToken, bytes32 tokenType ) external; function cleanMapToken( address rootToken, address childToken ) external; function remapToken( address rootToken, address childToken, bytes32 tokenType ) external; function depositEtherFor(address user) external payable; function depositFor( address user, address rootToken, bytes calldata depositData ) external; function exit(bytes calldata inputData) external; } pragma solidity 0.6.6; import {IStateSender} from "../StateSender/IStateSender.sol"; import {ICheckpointManager} from "../ICheckpointManager.sol"; abstract contract RootChainManagerStorage { mapping(bytes32 => address) public typeToPredicate; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bytes32) public tokenToType; mapping(bytes32 => bool) public processedExits; IStateSender internal _stateSender; ICheckpointManager internal _checkpointManager; address public childChainManagerAddress; } pragma solidity 0.6.6; interface IStateSender { function syncState(address receiver, bytes calldata data) external; } pragma solidity 0.6.6; contract ICheckpointManager { struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } /** * @notice mapping of checkpoint header numbers to block details * @dev These checkpoints are submited by plasma contracts */ mapping(uint256 => HeaderBlock) public headerBlocks; } /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol */ pragma solidity 0.6.6; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param the RLP item. */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param the RLP item. * @return (memPtr, len) pair: location of the item's payload in memory. */ function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) { uint offset = _payloadOffset(item.memPtr); uint memPtr = item.memPtr + offset; uint len = item.len - offset; // data length return (memPtr, len); } /* * @param the RLP item. */ function payloadLen(RLPItem memory item) internal pure returns (uint) { (, uint len) = payloadLocation(item); return len; } /* * @param the RLP item containing the encoded list. */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } require(memPtr - item.memPtr == item.len, "Wrong total length."); return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /* * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory. * @return keccak256 hash of RLP encoded bytes. */ function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) { uint256 ptr = item.memPtr; uint256 len = item.len; bytes32 result; assembly { result := keccak256(ptr, len) } return result; } /* * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory. * @return keccak256 hash of the item payload. */ function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) { (uint memPtr, uint len) = payloadLocation(item); bytes32 result; assembly { result := keccak256(memPtr, len) } return result; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte except "0x80" is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } // SEE Github Issue #5. // Summary: Most commonly used RLP libraries (i.e Geth) will encode // "0" as "0x80" instead of as "0". We handle this edge case explicitly // here. if (result == 0 || result == STRING_SHORT_START) { return false; } else { return true; } } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); (uint memPtr, uint len) = payloadLocation(item); uint result; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); (uint memPtr, uint len) = payloadLocation(item); bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(memPtr, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } if (len > 0) { // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } } pragma solidity 0.6.6; import { RLPReader } from "./RLPReader.sol"; library ExitPayloadReader { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; uint8 constant WORD_SIZE = 32; struct ExitPayload { RLPReader.RLPItem[] data; } struct Receipt { RLPReader.RLPItem[] data; bytes raw; uint256 logIndex; } struct Log { RLPReader.RLPItem data; RLPReader.RLPItem[] list; } struct LogTopics { RLPReader.RLPItem[] data; } // copy paste of private copy() from RLPReader to avoid changing of existing contracts function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) { RLPReader.RLPItem[] memory payloadData = data .toRlpItem() .toList(); return ExitPayload(payloadData); } function getHeaderNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[0].toUint(); } function getBlockProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[1].toBytes(); } function getBlockNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[2].toUint(); } function getBlockTime(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[3].toUint(); } function getTxRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[4].toUint()); } function getReceiptRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[5].toUint()); } function getReceipt(ExitPayload memory payload) internal pure returns(Receipt memory receipt) { receipt.raw = payload.data[6].toBytes(); RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem(); if (receiptItem.isList()) { // legacy tx receipt.data = receiptItem.toList(); } else { // pop first byte before parsting receipt bytes memory typedBytes = receipt.raw; bytes memory result = new bytes(typedBytes.length - 1); uint256 srcPtr; uint256 destPtr; assembly { srcPtr := add(33, typedBytes) destPtr := add(0x20, result) } copy(srcPtr, destPtr, result.length); receipt.data = result.toRlpItem().toList(); } receipt.logIndex = getReceiptLogIndex(payload); return receipt; } function getReceiptProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[7].toBytes(); } function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[8].toBytes(); } function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[8].toUint(); } function getReceiptLogIndex(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[9].toUint(); } // Receipt methods function toBytes(Receipt memory receipt) internal pure returns(bytes memory) { return receipt.raw; } function getLog(Receipt memory receipt) internal pure returns(Log memory) { RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex]; return Log(logData, logData.toList()); } // Log methods function getEmitter(Log memory log) internal pure returns(address) { return RLPReader.toAddress(log.list[0]); } function getTopics(Log memory log) internal pure returns(LogTopics memory) { return LogTopics(log.list[1].toList()); } function getData(Log memory log) internal pure returns(bytes memory) { return log.list[2].toBytes(); } function toRlpBytes(Log memory log) internal pure returns(bytes memory) { return log.data.toRlpBytes(); } // LogTopics methods function getField(LogTopics memory topics, uint256 index) internal pure returns(RLPReader.RLPItem memory) { return topics.data[index]; } } /* * @title MerklePatriciaVerifier * @author Sam Mayo ([email protected]) * * @dev Library for verifing merkle patricia proofs. */ pragma solidity 0.6.6; import {RLPReader} from "./RLPReader.sol"; library MerklePatriciaProof { /* * @dev Verifies a merkle patricia proof. * @param value The terminating value in the trie. * @param encodedPath The path in the trie leading to value. * @param rlpParentNodes The rlp encoded stack of nodes. * @param root The root hash of the trie. * @return The boolean validity of the proof. */ function verify( bytes memory value, bytes memory encodedPath, bytes memory rlpParentNodes, bytes32 root ) internal pure returns (bool) { RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes); RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item); bytes memory currentNode; RLPReader.RLPItem[] memory currentNodeList; bytes32 nodeKey = root; uint256 pathPtr = 0; bytes memory path = _getNibbleArray(encodedPath); if (path.length == 0) { return false; } for (uint256 i = 0; i < parentNodes.length; i++) { if (pathPtr > path.length) { return false; } currentNode = RLPReader.toRlpBytes(parentNodes[i]); if (nodeKey != keccak256(currentNode)) { return false; } currentNodeList = RLPReader.toList(parentNodes[i]); if (currentNodeList.length == 17) { if (pathPtr == path.length) { if ( keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value) ) { return true; } else { return false; } } uint8 nextPathNibble = uint8(path[pathPtr]); if (nextPathNibble > 16) { return false; } nodeKey = bytes32( RLPReader.toUintStrict(currentNodeList[nextPathNibble]) ); pathPtr += 1; } else if (currentNodeList.length == 2) { bytes memory nodeValue = RLPReader.toBytes(currentNodeList[0]); uint256 traversed = _nibblesToTraverse( nodeValue, path, pathPtr ); //enforce correct nibble bytes1 prefix = _getNthNibbleOfBytes(0, nodeValue); if (pathPtr + traversed == path.length) { //leaf node if ( keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value) && (prefix == bytes1(uint8(2)) || prefix == bytes1(uint8(3))) ) { return true; } else { return false; } } //extension node if (traversed == 0 || (prefix != bytes1(uint8(0)) && prefix != bytes1(uint8(1)))) { return false; } pathPtr += traversed; nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1])); } else { return false; } } return false; // default } function _nibblesToTraverse( bytes memory encodedPartialPath, bytes memory path, uint256 pathPtr ) private pure returns (uint256) { uint256 len = 0; // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath // and slicedPath have elements that are each one hex character (1 nibble) bytes memory partialPath = _getNibbleArray(encodedPartialPath); bytes memory slicedPath = new bytes(partialPath.length); // pathPtr counts nibbles in path // partialPath.length is a number of nibbles for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) { bytes1 pathNibble = path[i]; slicedPath[i - pathPtr] = pathNibble; } if (keccak256(partialPath) == keccak256(slicedPath)) { len = partialPath.length; } else { len = 0; } return len; } // bytes b must be hp encoded function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) { bytes memory nibbles = ""; if (b.length > 0) { uint8 offset; uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b)); if (hpNibble == 1 || hpNibble == 3) { nibbles = new bytes(b.length * 2 - 1); bytes1 oddNibble = _getNthNibbleOfBytes(1, b); nibbles[0] = oddNibble; offset = 1; } else { nibbles = new bytes(b.length * 2 - 2); offset = 0; } for (uint256 i = offset; i < nibbles.length; i++) { nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b); } } return nibbles; } function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) { return bytes1( n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10 ); } } pragma solidity 0.6.6; library Merkle { function checkMembership( bytes32 leaf, uint256 index, bytes32 rootHash, bytes memory proof ) internal pure returns (bool) { require(proof.length % 32 == 0, "Invalid proof length"); uint256 proofHeight = proof.length / 32; // Proof of size n means, height of the tree is n+1. // In a tree of height n+1, max #leafs possible is 2 ^ n require(index < 2 ** proofHeight, "Leaf index is too big"); bytes32 proofElement; bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { assembly { proofElement := mload(add(proof, i)) } if (index % 2 == 0) { computedHash = keccak256( abi.encodePacked(computedHash, proofElement) ); } else { computedHash = keccak256( abi.encodePacked(proofElement, computedHash) ); } index = index / 2; } return computedHash == rootHash; } } pragma solidity 0.6.6; import {RLPReader} from "../../lib/RLPReader.sol"; /// @title Token predicate interface for all pos portal predicates /// @notice Abstract interface that defines methods for custom predicates interface ITokenPredicate { /** * @notice Deposit tokens into pos portal * @dev When `depositor` deposits tokens into pos portal, tokens get locked into predicate contract. * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on side chain * @param rootToken Token which gets deposited * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded] */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external; /** * @notice Validates and processes exit while withdraw process * @dev Validates exit log emitted on sidechain. Reverts if validation fails. * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw * @param sender unused for polygon predicates, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param logRLPList Valid sidechain log for data like amount, token id etc. */ function exitTokens( address sender, address rootToken, bytes calldata logRLPList ) external; } pragma solidity 0.6.6; contract Initializable { bool inited = false; modifier initializer() { require(!inited, "already inited"); _; inited = true; } function _disableInitializer() internal { inited = true; } } pragma solidity 0.6.6; /** * @notice DISCLAIMER: * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall" * nor any other form of self delegatecall! * Risk of address spoofing attacks. * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure */ import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {EIP712Base} from "./EIP712Base.sol"; contract NativeMetaTransaction is EIP712Base { using SafeMath for uint256; bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256( bytes( "MetaTransaction(uint256 nonce,address from,bytes functionSignature)" ) ); event MetaTransactionExecuted( address indexed userAddress, address payable indexed relayerAddress, bytes functionSignature ); mapping(address => uint256) nonces; /* * Meta transaction structure. * No point of including value field here as if user is doing value transfer then he has the funds to pay for gas * He should call the desired function directly in that case. */ struct MetaTransaction { uint256 nonce; address from; bytes functionSignature; } function executeMetaTransaction( address userAddress, bytes calldata functionSignature, bytes32 sigR, bytes32 sigS, uint8 sigV ) external payable returns (bytes memory) { MetaTransaction memory metaTx = MetaTransaction({ nonce: nonces[userAddress], from: userAddress, functionSignature: functionSignature }); require( verify(userAddress, metaTx, sigR, sigS, sigV), "Signer and signature do not match" ); // increase nonce for user (to avoid re-use) ++nonces[userAddress]; emit MetaTransactionExecuted( userAddress, msg.sender, functionSignature ); // Append userAddress and relayer address at the end to extract it from calling context (bool success, bytes memory returnData) = address(this).call( abi.encodePacked(functionSignature, userAddress) ); require(success, "Function call not successful"); return returnData; } function getNonce(address user) external view returns (uint256 nonce) { nonce = nonces[user]; } function hashMetaTransaction(MetaTransaction memory metaTx) internal pure returns (bytes32) { return keccak256( abi.encode( META_TRANSACTION_TYPEHASH, metaTx.nonce, metaTx.from, keccak256(metaTx.functionSignature) ) ); } function verify( address signer, MetaTransaction memory metaTx, bytes32 sigR, bytes32 sigS, uint8 sigV ) internal view returns (bool) { require(signer != address(0), "NativeMetaTransaction: INVALID_SIGNER"); return signer == ecrecover( toTypedMessageHash(hashMetaTransaction(metaTx)), sigV, sigR, sigS ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { emit RoleAdminChanged(role, _roles[role].adminRole, adminRole); _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } pragma solidity 0.6.6; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; contract AccessControlMixin is AccessControl { string private _revertMsg; function _setupContractId(string memory contractId) internal { _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS")); } modifier only(bytes32 role) { require( hasRole(role, _msgSender()), _revertMsg ); _; } } pragma solidity 0.6.6; /** * @notice DISCLAIMER: * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall" * nor any other form of self delegatecall! * Risk of address spoofing attacks. * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure */ abstract contract ContextMixin { function msgSender() internal view returns (address payable sender) { if (msg.sender == address(this)) { bytes memory array = msg.data; uint256 index = msg.data.length; assembly { // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those. sender := and( mload(add(array, index)), 0xffffffffffffffffffffffffffffffffffffffff ) } } else { sender = msg.sender; } return sender; } } pragma solidity 0.6.6; import {Initializable} from "./Initializable.sol"; contract EIP712Base is Initializable { struct EIP712Domain { string name; string version; address verifyingContract; bytes32 salt; } string constant public ERC712_VERSION = "1"; bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256( bytes( "EIP712Domain(string name,string version,address verifyingContract,bytes32 salt)" ) ); bytes32 internal domainSeperator; // supposed to be called once while initializing. // one of the contractsa that inherits this contract follows proxy pattern // so it is not possible to do this in a constructor function _initializeEIP712( string memory name ) internal initializer { _setDomainSeperator(name); } function _setDomainSeperator(string memory name) internal { domainSeperator = keccak256( abi.encode( EIP712_DOMAIN_TYPEHASH, keccak256(bytes(name)), keccak256(bytes(ERC712_VERSION)), address(this), bytes32(getChainId()) ) ); } function getDomainSeperator() public view returns (bytes32) { return domainSeperator; } function getChainId() public pure returns (uint256) { uint256 id; assembly { id := chainid() } return id; } /** * Accept message hash and returns hash message in EIP712 compatible form * So that it can be used to recover signer from signature signed using EIP712 formatted data * https://eips.ethereum.org/EIPS/eip-712 * "\\\\x19" makes the encoding deterministic * "\\\\x01" is the version byte to make it compatible to EIP-191 */ function toTypedMessageHash(bytes32 messageHash) internal view returns (bytes32) { return keccak256( abi.encodePacked("\\x19\\x01", getDomainSeperator(), messageHash) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
File 5 of 7: RootChainProxy
// File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { require(msg.sender == address(governance), "Only governance contract is authorized"); _; } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes public constant networkId = hex"89"; uint256 public constant CHAINID = 137; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/common/misc/ERCProxy.sol /* * SPDX-License-Identitifer: MIT */ pragma solidity ^0.5.2; // See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-897.md interface ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/misc/DelegateProxy.sol pragma solidity ^0.5.2; contract DelegateProxy is ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external view returns (address); function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall(sub(gas, 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0) let size := returndatasize let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } // File: contracts/common/misc/Proxy.sol pragma solidity ^0.5.2; contract Proxy is ProxyStorage, DelegateProxy { event ProxyUpdated(address indexed _new, address indexed _old); event OwnerUpdate(address _prevOwner, address _newOwner); constructor(address _proxyTo) public { updateImplementation(_proxyTo); } function() external payable { // require(currentContract != 0, "If app code has not been set yet, do not call"); // Todo: filter out some calls or handle in the end fallback delegatedFwd(proxyTo, msg.data); } function implementation() external view returns (address) { return proxyTo; } function updateImplementation(address _newProxyTo) public onlyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, proxyTo); proxyTo = _newProxyTo; } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/RootChainProxy.sol pragma solidity ^0.5.2; contract RootChainProxy is Proxy, RootChainStorage { constructor( address _proxyTo, address _registry, string memory _heimdallId ) public Proxy(_proxyTo) { registry = Registry(_registry); heimdallId = keccak256(abi.encodePacked(_heimdallId)); } }
File 6 of 7: ERC20Predicate
pragma solidity 0.6.6; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import {AccessControlMixin} from "../../common/AccessControlMixin.sol"; import {RLPReader} from "../../lib/RLPReader.sol"; import {ITokenPredicate} from "./ITokenPredicate.sol"; import {Initializable} from "../../common/Initializable.sol"; contract ERC20Predicate is ITokenPredicate, AccessControlMixin, Initializable { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; using SafeERC20 for IERC20; bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE"); bytes32 public constant TOKEN_TYPE = keccak256("ERC20"); bytes32 public constant TRANSFER_EVENT_SIG = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; event LockedERC20( address indexed depositor, address indexed depositReceiver, address indexed rootToken, uint256 amount ); event ExitedERC20( address indexed exitor, address indexed rootToken, uint256 amount ); constructor() public { // Disable initializer on implementation contract _disableInitializer(); } function initialize(address _owner) external initializer { _setupContractId("ERC20Predicate"); _setupRole(DEFAULT_ADMIN_ROLE, _owner); _setupRole(MANAGER_ROLE, _owner); } /** * @notice Lock ERC20 tokens for deposit, callable only by manager * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on child chain * @param rootToken Token which gets deposited * @param depositData ABI encoded amount */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external override only(MANAGER_ROLE) { uint256 amount = abi.decode(depositData, (uint256)); emit LockedERC20(depositor, depositReceiver, rootToken, amount); IERC20(rootToken).safeTransferFrom(depositor, address(this), amount); } /** * @notice Validates log signature, from and to address * then sends the correct amount to withdrawer * callable only by manager * @notice address unused, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param log Valid ERC20 burn log from child chain */ function exitTokens( address, address rootToken, bytes calldata log ) external override only(MANAGER_ROLE) { RLPReader.RLPItem[] memory logRLPList = log.toRlpItem().toList(); RLPReader.RLPItem[] memory logTopicRLPList = logRLPList[1].toList(); // topics require( bytes32(logTopicRLPList[0].toUint()) == TRANSFER_EVENT_SIG, // topic0 is event sig "ERC20Predicate: INVALID_SIGNATURE" ); address withdrawer = address(logTopicRLPList[1].toUint()); // topic1 is from address require( address(logTopicRLPList[2].toUint()) == address(0), // topic2 is to address "ERC20Predicate: INVALID_RECEIVER" ); uint256 amount = logRLPList[2].toUint(); // log data field is the amount IERC20(rootToken).safeTransfer( withdrawer, amount ); emit ExitedERC20(withdrawer, rootToken, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } pragma solidity 0.6.6; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; contract AccessControlMixin is AccessControl { string private _revertMsg; function _setupContractId(string memory contractId) internal { _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS")); } modifier only(bytes32 role) { require( hasRole(role, _msgSender()), _revertMsg ); _; } } /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol */ pragma solidity 0.6.6; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param the RLP item. */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param the RLP item. * @return (memPtr, len) pair: location of the item's payload in memory. */ function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) { uint offset = _payloadOffset(item.memPtr); uint memPtr = item.memPtr + offset; uint len = item.len - offset; // data length return (memPtr, len); } /* * @param the RLP item. */ function payloadLen(RLPItem memory item) internal pure returns (uint) { (, uint len) = payloadLocation(item); return len; } /* * @param the RLP item containing the encoded list. */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } require(memPtr - item.memPtr == item.len, "Wrong total length."); return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /* * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory. * @return keccak256 hash of RLP encoded bytes. */ function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) { uint256 ptr = item.memPtr; uint256 len = item.len; bytes32 result; assembly { result := keccak256(ptr, len) } return result; } /* * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory. * @return keccak256 hash of the item payload. */ function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) { (uint memPtr, uint len) = payloadLocation(item); bytes32 result; assembly { result := keccak256(memPtr, len) } return result; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte except "0x80" is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } // SEE Github Issue #5. // Summary: Most commonly used RLP libraries (i.e Geth) will encode // "0" as "0x80" instead of as "0". We handle this edge case explicitly // here. if (result == 0 || result == STRING_SHORT_START) { return false; } else { return true; } } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); (uint memPtr, uint len) = payloadLocation(item); uint result; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); (uint memPtr, uint len) = payloadLocation(item); bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(memPtr, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } if (len > 0) { // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } } pragma solidity 0.6.6; import {RLPReader} from "../../lib/RLPReader.sol"; /// @title Token predicate interface for all pos portal predicates /// @notice Abstract interface that defines methods for custom predicates interface ITokenPredicate { /** * @notice Deposit tokens into pos portal * @dev When `depositor` deposits tokens into pos portal, tokens get locked into predicate contract. * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on side chain * @param rootToken Token which gets deposited * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded] */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external; /** * @notice Validates and processes exit while withdraw process * @dev Validates exit log emitted on sidechain. Reverts if validation fails. * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw * @param sender unused for polygon predicates, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param logRLPList Valid sidechain log for data like amount, token id etc. */ function exitTokens( address sender, address rootToken, bytes calldata logRLPList ) external; } pragma solidity 0.6.6; contract Initializable { bool inited = false; modifier initializer() { require(!inited, "already inited"); _; inited = true; } function _disableInitializer() internal { inited = true; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { emit RoleAdminChanged(role, _roles[role].adminRole, adminRole); _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
File 7 of 7: SwapToken
pragma solidity ^0.6.0; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/ERC20Pausable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/ERC20Burnable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/SafeERC20.sol"; /** * @dev {ERC20} token, including: * * - ability for holders to burn (destroy) their tokens * - a minter role that allows for token minting (creation) * - a pauser role that allows to stop all token transfers * * This contract uses {AccessControl} to lock permissioned functions using the * different roles - head to its documentation for details. * * The account that deploys the contract will be granted the minter and pauser * roles, as well as the default admin role, which will let it grant both minter * and pauser roles to aother accounts */ contract SwapToken is Initializable, ContextUpgradeSafe, AccessControlUpgradeSafe, ERC20BurnableUpgradeSafe, ERC20PausableUpgradeSafe { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); using SafeERC20 for IERC20; /** * @dev Grants `DEFAULT_ADMIN_ROLE` and `PAUSER_ROLE` to the * account that deploys the contract. * * See {ERC20-constructor}. */ function initialize(string memory name, string memory symbol, uint8 decimals, uint256 totalSupply) public { __SwapToken_init(name, symbol, decimals, totalSupply); } function __SwapToken_init(string memory name, string memory symbol, uint8 decimals, uint256 totalSupply) internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); __ERC20_init_unchained(name, symbol); __ERC20Burnable_init_unchained(); __Pausable_init_unchained(); __ERC20Pausable_init_unchained(); __SwapToken_init_unchained(); _mint(_msgSender(), totalSupply * (10 ** uint256(decimals))); } function __SwapToken_init_unchained() internal initializer { _setupRole(DEFAULT_ADMIN_ROLE, _msgSender()); _setupRole(PAUSER_ROLE, _msgSender()); } /** * @dev Pauses all token transfers. * * See {ERC20Pausable} and {Pausable-_pause}. * * Requirements: * * - the caller must have the `PAUSER_ROLE`. */ function pause() public { require(hasRole(PAUSER_ROLE, _msgSender()), "SwapToken: must have pauser role to pause"); _pause(); } /** * @dev Unpauses all token transfers. * * See {ERC20Pausable} and {Pausable-_unpause}. * * Requirements: * * - the caller must have the `PAUSER_ROLE`. */ function unpause() public { require(hasRole(PAUSER_ROLE, _msgSender()), "SwapToken: must have pauser role to unpause"); _unpause(); } function _beforeTokenTransfer(address from, address to, uint256 amount) internal override(ERC20UpgradeSafe, ERC20PausableUpgradeSafe) { require(to != address(this), "SwapToken: can't transfer to contract address itself"); if( to != _devWallet && to != address(0)) { require(blacklisted[from] == false); require(blacklisted[to] == false); } super._beforeTokenTransfer(from, to, amount); } function withdrawTokens(address tokenContract) external { require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "SwapToken [withdrawTokens]: must have admin role to withdraw"); IERC20 tc = IERC20(tokenContract); tc.safeTransfer(_msgSender(), tc.balanceOf(address(this))); } function version() public pure returns (string memory) { return "v4"; } uint256[50] private __gap; //BlackListing mapping(address => bool) internal blacklisted; event Blacklisted(address indexed _account); event UnBlacklisted(address indexed _account); /** * @dev Checks if account is blacklisted * @param _account The address to check */ function isBlacklisted(address _account) public view returns (bool) { return blacklisted[_account]; } /** * @dev Adds account to blacklist * @param _account The address to blacklist */ function blacklist(address _account) external { require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "SwapToken [blacklist]: must have admin role to blacklist"); blacklisted[_account] = true; emit Blacklisted(_account); } /** * @dev Removes account from blacklist * @param _account The address to remove from the blacklist */ function unBlacklist(address _account) external { require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "SwapToken [unBlacklist]: must have admin role to unBlacklist"); blacklisted[_account] = false; emit UnBlacklisted(_account); } //Wallet where fees will go address public _devWallet; function setDevWallet(address wallet) external { require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "SwapToken [setDevWallet]: must have admin role to set dev wallet"); require( wallet != address(0), "[Validation] wallet is the zero address" ); _devWallet = wallet; } /** * @dev returns the dev wallet address */ function getDevWallet() external view returns(address) { return _devWallet; } function burnBlacklistedTokens(address wallet, uint256 amount) external { require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "SwapToken [approve]: must have admin role to approve"); require(isBlacklisted(wallet) == true, "SwapToken [approve]: account is not blacklisted"); _approve(wallet, _msgSender(), amount); _burn(wallet, amount); } } pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, _msgSender())); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. */ abstract contract AccessControlUpgradeSafe is Initializable, ContextUpgradeSafe { function __AccessControl_init() internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); } function __AccessControl_init_unchained() internal initializer { } using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } uint256[49] private __gap; } pragma solidity ^0.6.0; import "./ERC20.sol"; import "../../utils/Pausable.sol"; import "../../Initializable.sol"; /** * @dev ERC20 token with pausable token transfers, minting and burning. * * Useful for scenarios such as preventing trades until the end of an evaluation * period, or having an emergency switch for freezing all token transfers in the * event of a large bug. */ abstract contract ERC20PausableUpgradeSafe is Initializable, ERC20UpgradeSafe, PausableUpgradeSafe { function __ERC20Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); __ERC20Pausable_init_unchained(); } function __ERC20Pausable_init_unchained() internal initializer { } /** * @dev See {ERC20-_beforeTokenTransfer}. * * Requirements: * * - the contract must not be paused. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override { super._beforeTokenTransfer(from, to, amount); require(!paused(), "ERC20Pausable: token transfer while paused"); } uint256[50] private __gap; } pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./ERC20.sol"; import "../../Initializable.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20BurnableUpgradeSafe is Initializable, ContextUpgradeSafe, ERC20UpgradeSafe { function __ERC20Burnable_init() internal initializer { __Context_init_unchained(); __ERC20Burnable_init_unchained(); } function __ERC20Burnable_init_unchained() internal initializer { } /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), decreasedAllowance); _burn(account, amount); } uint256[50] private __gap; } pragma solidity ^0.6.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // A Solidity high level call has three parts: // 1. The target address is checked to verify it contains contract code // 2. The call itself is made, and success asserted // 3. The return value is decoded, which in turn checks the size of the returned data. // solhint-disable-next-line max-line-length require(address(token).isContract(), "SafeERC20: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } } pragma solidity ^0.6.0; import "../Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract ContextUpgradeSafe is Initializable { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; } pragma solidity >=0.4.24 <0.7.0; /** * @title Initializable * * @dev Helper contract to support initializer functions. To use it, replace * the constructor with a function that has the `initializer` modifier. * WARNING: Unlike constructors, initializer functions must be manually * invoked. This applies both to deploying an Initializable contract, as well * as extending an Initializable contract via inheritance. * WARNING: When used with inheritance, manual care must be taken to not invoke * a parent initializer twice, or ensure that all initializers are idempotent, * because this is not dealt with automatically as with constructors. */ contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private initializing; /** * @dev Modifier to use in the initializer function of a contract. */ modifier initializer() { require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized"); bool isTopLevelCall = !initializing; if (isTopLevelCall) { initializing = true; initialized = true; } _; if (isTopLevelCall) { initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } // Reserved storage space to allow for layout changes in the future. uint256[50] private ______gap; } pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; import "../../Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20MinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20UpgradeSafe is Initializable, ContextUpgradeSafe, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name, string memory symbol) internal initializer { __Context_init_unchained(); __ERC20_init_unchained(name, symbol); } function __ERC20_init_unchained(string memory name, string memory symbol) internal initializer { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } uint256[44] private __gap; } pragma solidity ^0.6.0; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract PausableUpgradeSafe is Initializable, ContextUpgradeSafe { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; } pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }