Transaction Hash:
Block:
20134314 at Jun-20-2024 05:05:35 PM +UTC
Transaction Fee:
0.00053726030527062 ETH
$1.36
Gas Used:
33,116 Gas / 16.223586945 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1f9090aa...8e676c326
Miner
| 4.744310671703665506 Eth | 4.744312327503665506 Eth | 0.0000016558 | ||
0x229df921...9Cd176643 |
0.842142246010013321 Eth
Nonce: 281
|
0.841604985704742701 Eth
Nonce: 282
| 0.00053726030527062 |
Execution Trace
TransparentUpgradeableProxy.CALL( )
-
EigenPodManager.DELEGATECALL( )
File 1 of 2: TransparentUpgradeableProxy
File 2 of 2: EigenPodManager
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/transparent/TransparentUpgradeableProxy.sol) pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor( address _logic, address admin_, bytes memory _data ) payable ERC1967Proxy(_logic, _data) { _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializing the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../interfaces/draft-IERC1822.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } }
File 2 of 2: EigenPodManager
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.8.12; import "@openzeppelin/contracts/utils/Create2.sol"; import "@openzeppelin-upgrades/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin-upgrades/contracts/access/OwnableUpgradeable.sol"; import "@openzeppelin-upgrades/contracts/security/ReentrancyGuardUpgradeable.sol"; import "../interfaces/IBeaconChainOracle.sol"; import "../permissions/Pausable.sol"; import "./EigenPodPausingConstants.sol"; import "./EigenPodManagerStorage.sol"; /** * @title The contract used for creating and managing EigenPods * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice The main functionalities are: * - creating EigenPods * - staking for new validators on EigenPods * - keeping track of the restaked balances of all EigenPod owners * - withdrawing eth when withdrawals are completed */ contract EigenPodManager is Initializable, OwnableUpgradeable, Pausable, EigenPodPausingConstants, EigenPodManagerStorage, ReentrancyGuardUpgradeable { modifier onlyEigenPod(address podOwner) { require(address(ownerToPod[podOwner]) == msg.sender, "EigenPodManager.onlyEigenPod: not a pod"); _; } modifier onlyDelegationManager() { require( msg.sender == address(delegationManager), "EigenPodManager.onlyDelegationManager: not the DelegationManager" ); _; } constructor( IETHPOSDeposit _ethPOS, IBeacon _eigenPodBeacon, IStrategyManager _strategyManager, ISlasher _slasher, IDelegationManager _delegationManager ) EigenPodManagerStorage(_ethPOS, _eigenPodBeacon, _strategyManager, _slasher, _delegationManager) { _disableInitializers(); } function initialize( IBeaconChainOracle _beaconChainOracle, address initialOwner, IPauserRegistry _pauserRegistry, uint256 _initPausedStatus ) external initializer { _updateBeaconChainOracle(_beaconChainOracle); _transferOwnership(initialOwner); _initializePauser(_pauserRegistry, _initPausedStatus); } /** * @notice Creates an EigenPod for the sender. * @dev Function will revert if the `msg.sender` already has an EigenPod. * @dev Returns EigenPod address */ function createPod() external onlyWhenNotPaused(PAUSED_NEW_EIGENPODS) returns (address) { require(!hasPod(msg.sender), "EigenPodManager.createPod: Sender already has a pod"); // deploy a pod if the sender doesn't have one already IEigenPod pod = _deployPod(); return address(pod); } /** * @notice Stakes for a new beacon chain validator on the sender's EigenPod. * Also creates an EigenPod for the sender if they don't have one already. * @param pubkey The 48 bytes public key of the beacon chain validator. * @param signature The validator's signature of the deposit data. * @param depositDataRoot The root/hash of the deposit data for the validator's deposit. */ function stake( bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot ) external payable onlyWhenNotPaused(PAUSED_NEW_EIGENPODS) { IEigenPod pod = ownerToPod[msg.sender]; if (address(pod) == address(0)) { //deploy a pod if the sender doesn't have one already pod = _deployPod(); } pod.stake{value: msg.value}(pubkey, signature, depositDataRoot); } /** * @notice Changes the `podOwner`'s shares by `sharesDelta` and performs a call to the DelegationManager * to ensure that delegated shares are also tracked correctly * @param podOwner is the pod owner whose balance is being updated. * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares * @dev Callable only by the podOwner's EigenPod contract. * @dev Reverts if `sharesDelta` is not a whole Gwei amount */ function recordBeaconChainETHBalanceUpdate( address podOwner, int256 sharesDelta ) external onlyEigenPod(podOwner) nonReentrant { require(podOwner != address(0), "EigenPodManager.recordBeaconChainETHBalanceUpdate: podOwner cannot be zero address"); require(sharesDelta % int256(GWEI_TO_WEI) == 0, "EigenPodManager.recordBeaconChainETHBalanceUpdate: sharesDelta must be a whole Gwei amount"); int256 currentPodOwnerShares = podOwnerShares[podOwner]; int256 updatedPodOwnerShares = currentPodOwnerShares + sharesDelta; podOwnerShares[podOwner] = updatedPodOwnerShares; // inform the DelegationManager of the change in delegateable shares int256 changeInDelegatableShares = _calculateChangeInDelegatableShares({ sharesBefore: currentPodOwnerShares, sharesAfter: updatedPodOwnerShares }); // skip making a call to the DelegationManager if there is no change in delegateable shares if (changeInDelegatableShares != 0) { if (changeInDelegatableShares < 0) { delegationManager.decreaseDelegatedShares({ staker: podOwner, strategy: beaconChainETHStrategy, shares: uint256(-changeInDelegatableShares) }); } else { delegationManager.increaseDelegatedShares({ staker: podOwner, strategy: beaconChainETHStrategy, shares: uint256(changeInDelegatableShares) }); } } emit PodSharesUpdated(podOwner, sharesDelta); } /** * @notice Used by the DelegationManager to remove a pod owner's shares while they're in the withdrawal queue. * Simply decreases the `podOwner`'s shares by `shares`, down to a minimum of zero. * @dev This function reverts if it would result in `podOwnerShares[podOwner]` being less than zero, i.e. it is forbidden for this function to * result in the `podOwner` incurring a "share deficit". This behavior prevents a Staker from queuing a withdrawal which improperly removes excessive * shares from the operator to whom the staker is delegated. * @dev Reverts if `shares` is not a whole Gwei amount * @dev The delegation manager validates that the podOwner is not address(0) */ function removeShares( address podOwner, uint256 shares ) external onlyDelegationManager { require(int256(shares) >= 0, "EigenPodManager.removeShares: shares cannot be negative"); require(shares % GWEI_TO_WEI == 0, "EigenPodManager.removeShares: shares must be a whole Gwei amount"); int256 updatedPodOwnerShares = podOwnerShares[podOwner] - int256(shares); require(updatedPodOwnerShares >= 0, "EigenPodManager.removeShares: cannot result in pod owner having negative shares"); podOwnerShares[podOwner] = updatedPodOwnerShares; } /** * @notice Increases the `podOwner`'s shares by `shares`, paying off deficit if possible. * Used by the DelegationManager to award a pod owner shares on exiting the withdrawal queue * @dev Returns the number of shares added to `podOwnerShares[podOwner]` above zero, which will be less than the `shares` input * in the event that the podOwner has an existing shares deficit (i.e. `podOwnerShares[podOwner]` starts below zero) * @dev Reverts if `shares` is not a whole Gwei amount */ function addShares( address podOwner, uint256 shares ) external onlyDelegationManager returns (uint256) { require(podOwner != address(0), "EigenPodManager.addShares: podOwner cannot be zero address"); require(int256(shares) >= 0, "EigenPodManager.addShares: shares cannot be negative"); require(shares % GWEI_TO_WEI == 0, "EigenPodManager.addShares: shares must be a whole Gwei amount"); int256 currentPodOwnerShares = podOwnerShares[podOwner]; int256 updatedPodOwnerShares = currentPodOwnerShares + int256(shares); podOwnerShares[podOwner] = updatedPodOwnerShares; emit PodSharesUpdated(podOwner, int256(shares)); return uint256(_calculateChangeInDelegatableShares({sharesBefore: currentPodOwnerShares, sharesAfter: updatedPodOwnerShares})); } /** * @notice Used by the DelegationManager to complete a withdrawal, sending tokens to some destination address * @dev Prioritizes decreasing the podOwner's share deficit, if they have one * @dev Reverts if `shares` is not a whole Gwei amount * @dev This function assumes that `removeShares` has already been called by the delegationManager, hence why * we do not need to update the podOwnerShares if `currentPodOwnerShares` is positive */ function withdrawSharesAsTokens( address podOwner, address destination, uint256 shares ) external onlyDelegationManager { require(podOwner != address(0), "EigenPodManager.withdrawSharesAsTokens: podOwner cannot be zero address"); require(destination != address(0), "EigenPodManager.withdrawSharesAsTokens: destination cannot be zero address"); require(int256(shares) >= 0, "EigenPodManager.withdrawSharesAsTokens: shares cannot be negative"); require(shares % GWEI_TO_WEI == 0, "EigenPodManager.withdrawSharesAsTokens: shares must be a whole Gwei amount"); int256 currentPodOwnerShares = podOwnerShares[podOwner]; // if there is an existing shares deficit, prioritize decreasing the deficit first if (currentPodOwnerShares < 0) { uint256 currentShareDeficit = uint256(-currentPodOwnerShares); // get rid of the whole deficit if possible, and pass any remaining shares onto destination if (shares > currentShareDeficit) { podOwnerShares[podOwner] = 0; shares -= currentShareDeficit; emit PodSharesUpdated(podOwner, int256(currentShareDeficit)); // otherwise get rid of as much deficit as possible, and return early, since there is nothing left over to forward on } else { podOwnerShares[podOwner] += int256(shares); emit PodSharesUpdated(podOwner, int256(shares)); return; } } // Actually withdraw to the destination ownerToPod[podOwner].withdrawRestakedBeaconChainETH(destination, shares); } /** * @notice Updates the oracle contract that provides the beacon chain state root * @param newBeaconChainOracle is the new oracle contract being pointed to * @dev Callable only by the owner of this contract (i.e. governance) */ function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external onlyOwner { _updateBeaconChainOracle(newBeaconChainOracle); } /** * @notice Sets the timestamp of the Deneb fork. * @param newDenebForkTimestamp is the new timestamp of the Deneb fork */ function setDenebForkTimestamp(uint64 newDenebForkTimestamp) external onlyOwner { require(newDenebForkTimestamp != 0, "EigenPodManager.setDenebForkTimestamp: cannot set newDenebForkTimestamp to 0"); require(_denebForkTimestamp == 0, "EigenPodManager.setDenebForkTimestamp: cannot set denebForkTimestamp more than once"); _denebForkTimestamp = newDenebForkTimestamp; emit DenebForkTimestampUpdated(newDenebForkTimestamp); } // INTERNAL FUNCTIONS function _deployPod() internal returns (IEigenPod) { ++numPods; // create the pod IEigenPod pod = IEigenPod( Create2.deploy( 0, bytes32(uint256(uint160(msg.sender))), // set the beacon address to the eigenPodBeacon and initialize it abi.encodePacked(beaconProxyBytecode, abi.encode(eigenPodBeacon, "")) ) ); pod.initialize(msg.sender); // store the pod in the mapping ownerToPod[msg.sender] = pod; emit PodDeployed(address(pod), msg.sender); return pod; } /// @notice Internal setter for `beaconChainOracle` that also emits an event function _updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) internal { beaconChainOracle = newBeaconChainOracle; emit BeaconOracleUpdated(address(newBeaconChainOracle)); } /** * @notice Calculates the change in a pod owner's delegateable shares as a result of their beacon chain ETH shares changing * from `sharesBefore` to `sharesAfter`. The key concept here is that negative/"deficit" shares are not delegateable. */ function _calculateChangeInDelegatableShares(int256 sharesBefore, int256 sharesAfter) internal pure returns (int256) { if (sharesBefore <= 0) { // if the shares started negative and stayed negative, then there cannot have been an increase in delegateable shares if (sharesAfter <= 0) { return 0; // if the shares started negative and became positive, then the increase in delegateable shares is the ending share amount } else { return sharesAfter; } } else { // if the shares started positive and became negative, then the decrease in delegateable shares is the starting share amount if (sharesAfter <= 0) { return (-sharesBefore); // if the shares started positive and stayed positive, then the change in delegateable shares // is the difference between starting and ending amounts } else { return (sharesAfter - sharesBefore); } } } // VIEW FUNCTIONS /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not). function getPod(address podOwner) public view returns (IEigenPod) { IEigenPod pod = ownerToPod[podOwner]; // if pod does not exist already, calculate what its address *will be* once it is deployed if (address(pod) == address(0)) { pod = IEigenPod( Create2.computeAddress( bytes32(uint256(uint160(podOwner))), //salt keccak256(abi.encodePacked(beaconProxyBytecode, abi.encode(eigenPodBeacon, ""))) //bytecode ) ); } return pod; } /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise. function hasPod(address podOwner) public view returns (bool) { return address(ownerToPod[podOwner]) != address(0); } /// @notice Returns the Beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized. function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32) { bytes32 stateRoot = beaconChainOracle.timestampToBlockRoot(timestamp); require( stateRoot != bytes32(0), "EigenPodManager.getBlockRootAtTimestamp: state root at timestamp not yet finalized" ); return stateRoot; } /** * @notice Wrapper around the `_denebForkTimestamp` storage variable that returns type(uint64).max if the storage variable is unset. * @dev This allows restricting the storage variable to be set once and only once. */ function denebForkTimestamp() public view returns (uint64) { uint64 timestamp = _denebForkTimestamp; if (timestamp == 0) { return type(uint64).max; } else { return timestamp; } } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Create2.sol) pragma solidity ^0.8.0; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy( uint256 amount, bytes32 salt, bytes memory bytecode ) internal returns (address) { address addr; require(address(this).balance >= amount, "Create2: insufficient balance"); require(bytecode.length != 0, "Create2: bytecode length is zero"); /// @solidity memory-safe-assembly assembly { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) } require(addr != address(0), "Create2: Failed on deploy"); return addr; } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress( bytes32 salt, bytes32 bytecodeHash, address deployer ) internal pure returns (address) { bytes32 _data = keccak256(abi.encodePacked(bytes1(0xff), deployer, salt, bytecodeHash)); return address(uint160(uint256(_data))); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the BeaconStateOracle contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IBeaconChainOracle { /// @notice The block number to state root mapping. function timestampToBlockRoot(uint256 timestamp) external view returns (bytes32); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.8.12; import "../interfaces/IPausable.sol"; /** * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions. * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control. * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality. * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code. * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause, * you can only flip (any number of) switches to off/0 (aka "paused"). * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will: * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256) * 2) update the paused state to this new value * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3` * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused */ contract Pausable is IPausable { /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing). IPauserRegistry public pauserRegistry; /// @dev whether or not the contract is currently paused uint256 private _paused; uint256 internal constant UNPAUSE_ALL = 0; uint256 internal constant PAUSE_ALL = type(uint256).max; /// @notice modifier onlyPauser() { require(pauserRegistry.isPauser(msg.sender), "msg.sender is not permissioned as pauser"); _; } modifier onlyUnpauser() { require(msg.sender == pauserRegistry.unpauser(), "msg.sender is not permissioned as unpauser"); _; } /// @notice Throws if the contract is paused, i.e. if any of the bits in `_paused` is flipped to 1. modifier whenNotPaused() { require(_paused == 0, "Pausable: contract is paused"); _; } /// @notice Throws if the `indexed`th bit of `_paused` is 1, i.e. if the `index`th pause switch is flipped. modifier onlyWhenNotPaused(uint8 index) { require(!paused(index), "Pausable: index is paused"); _; } /// @notice One-time function for setting the `pauserRegistry` and initializing the value of `_paused`. function _initializePauser(IPauserRegistry _pauserRegistry, uint256 initPausedStatus) internal { require( address(pauserRegistry) == address(0) && address(_pauserRegistry) != address(0), "Pausable._initializePauser: _initializePauser() can only be called once" ); _paused = initPausedStatus; emit Paused(msg.sender, initPausedStatus); _setPauserRegistry(_pauserRegistry); } /** * @notice This function is used to pause an EigenLayer contract's functionality. * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0. */ function pause(uint256 newPausedStatus) external onlyPauser { // verify that the `newPausedStatus` does not *unflip* any bits (i.e. doesn't unpause anything, all 1 bits remain) require((_paused & newPausedStatus) == _paused, "Pausable.pause: invalid attempt to unpause functionality"); _paused = newPausedStatus; emit Paused(msg.sender, newPausedStatus); } /** * @notice Alias for `pause(type(uint256).max)`. */ function pauseAll() external onlyPauser { _paused = type(uint256).max; emit Paused(msg.sender, type(uint256).max); } /** * @notice This function is used to unpause an EigenLayer contract's functionality. * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1. */ function unpause(uint256 newPausedStatus) external onlyUnpauser { // verify that the `newPausedStatus` does not *flip* any bits (i.e. doesn't pause anything, all 0 bits remain) require( ((~_paused) & (~newPausedStatus)) == (~_paused), "Pausable.unpause: invalid attempt to pause functionality" ); _paused = newPausedStatus; emit Unpaused(msg.sender, newPausedStatus); } /// @notice Returns the current paused status as a uint256. function paused() public view virtual returns (uint256) { return _paused; } /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise function paused(uint8 index) public view virtual returns (bool) { uint256 mask = 1 << index; return ((_paused & mask) == mask); } /// @notice Allows the unpauser to set a new pauser registry function setPauserRegistry(IPauserRegistry newPauserRegistry) external onlyUnpauser { _setPauserRegistry(newPauserRegistry); } /// internal function for setting pauser registry function _setPauserRegistry(IPauserRegistry newPauserRegistry) internal { require( address(newPauserRegistry) != address(0), "Pausable._setPauserRegistry: newPauserRegistry cannot be the zero address" ); emit PauserRegistrySet(pauserRegistry, newPauserRegistry); pauserRegistry = newPauserRegistry; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[48] private __gap; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.8.12; /** * @title Constants shared between 'EigenPod' and 'EigenPodManager' contracts. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ abstract contract EigenPodPausingConstants { /// @notice Index for flag that pauses creation of new EigenPods when set. See EigenPodManager code for details. uint8 internal constant PAUSED_NEW_EIGENPODS = 0; /** * @notice Index for flag that pauses all withdrawal-of-restaked ETH related functionality ` * function *of the EigenPodManager* when set. See EigenPodManager code for details. */ uint8 internal constant PAUSED_WITHDRAW_RESTAKED_ETH = 1; /// @notice Index for flag that pauses the deposit related functions *of the EigenPods* when set. see EigenPod code for details. uint8 internal constant PAUSED_EIGENPODS_VERIFY_CREDENTIALS = 2; /// @notice Index for flag that pauses the `verifyBalanceUpdate` function *of the EigenPods* when set. see EigenPod code for details. uint8 internal constant PAUSED_EIGENPODS_VERIFY_BALANCE_UPDATE = 3; /// @notice Index for flag that pauses the `verifyBeaconChainFullWithdrawal` function *of the EigenPods* when set. see EigenPod code for details. uint8 internal constant PAUSED_EIGENPODS_VERIFY_WITHDRAWAL = 4; /// @notice Pausability for EigenPod's "accidental transfer" withdrawal methods uint8 internal constant PAUSED_NON_PROOF_WITHDRAWALS = 5; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.8.12; import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol"; import "../interfaces/IStrategy.sol"; import "../interfaces/IEigenPodManager.sol"; import "../interfaces/IStrategyManager.sol"; import "../interfaces/IDelegationManager.sol"; import "../interfaces/IETHPOSDeposit.sol"; import "../interfaces/IEigenPod.sol"; abstract contract EigenPodManagerStorage is IEigenPodManager { /// @notice The ETH2 Deposit Contract IETHPOSDeposit public immutable ethPOS; /// @notice Beacon proxy to which the EigenPods point IBeacon public immutable eigenPodBeacon; /// @notice EigenLayer's StrategyManager contract IStrategyManager public immutable strategyManager; /// @notice EigenLayer's Slasher contract ISlasher public immutable slasher; /// @notice EigenLayer's DelegationManager contract IDelegationManager public immutable delegationManager; /** * @notice Stored code of type(BeaconProxy).creationCode * @dev Maintained as a constant to solve an edge case - changes to OpenZeppelin's BeaconProxy code should not cause * addresses of EigenPods that are pre-computed with Create2 to change, even upon upgrading this contract, changing compiler version, etc. */ bytes internal constant beaconProxyBytecode = hex"608060405260405161090e38038061090e83398101604081905261002291610460565b61002e82826000610035565b505061058a565b61003e83610100565b6040516001600160a01b038416907f1cf3b03a6cf19fa2baba4df148e9dcabedea7f8a5c07840e207e5c089be95d3e90600090a260008251118061007f5750805b156100fb576100f9836001600160a01b0316635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156100c5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100e99190610520565b836102a360201b6100291760201c565b505b505050565b610113816102cf60201b6100551760201c565b6101725760405162461bcd60e51b815260206004820152602560248201527f455243313936373a206e657720626561636f6e206973206e6f74206120636f6e6044820152641d1c9858dd60da1b60648201526084015b60405180910390fd5b6101e6816001600160a01b0316635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156101b3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101d79190610520565b6102cf60201b6100551760201c565b61024b5760405162461bcd60e51b815260206004820152603060248201527f455243313936373a20626561636f6e20696d706c656d656e746174696f6e206960448201526f1cc81b9bdd08184818dbdb9d1c9858dd60821b6064820152608401610169565b806102827fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d5060001b6102de60201b6100641760201c565b80546001600160a01b0319166001600160a01b039290921691909117905550565b60606102c883836040518060600160405280602781526020016108e7602791396102e1565b9392505050565b6001600160a01b03163b151590565b90565b6060600080856001600160a01b0316856040516102fe919061053b565b600060405180830381855af49150503d8060008114610339576040519150601f19603f3d011682016040523d82523d6000602084013e61033e565b606091505b5090925090506103508683838761035a565b9695505050505050565b606083156103c65782516103bf576001600160a01b0385163b6103bf5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610169565b50816103d0565b6103d083836103d8565b949350505050565b8151156103e85781518083602001fd5b8060405162461bcd60e51b81526004016101699190610557565b80516001600160a01b038116811461041957600080fd5b919050565b634e487b7160e01b600052604160045260246000fd5b60005b8381101561044f578181015183820152602001610437565b838111156100f95750506000910152565b6000806040838503121561047357600080fd5b61047c83610402565b60208401519092506001600160401b038082111561049957600080fd5b818501915085601f8301126104ad57600080fd5b8151818111156104bf576104bf61041e565b604051601f8201601f19908116603f011681019083821181831017156104e7576104e761041e565b8160405282815288602084870101111561050057600080fd5b610511836020830160208801610434565b80955050505050509250929050565b60006020828403121561053257600080fd5b6102c882610402565b6000825161054d818460208701610434565b9190910192915050565b6020815260008251806020840152610576816040850160208701610434565b601f01601f19169190910160400192915050565b61034e806105996000396000f3fe60806040523661001357610011610017565b005b6100115b610027610022610067565b610100565b565b606061004e83836040518060600160405280602781526020016102f260279139610124565b9392505050565b6001600160a01b03163b151590565b90565b600061009a7fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50546001600160a01b031690565b6001600160a01b0316635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156100d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100fb9190610249565b905090565b3660008037600080366000845af43d6000803e80801561011f573d6000f35b3d6000fd5b6060600080856001600160a01b03168560405161014191906102a2565b600060405180830381855af49150503d806000811461017c576040519150601f19603f3d011682016040523d82523d6000602084013e610181565b606091505b50915091506101928683838761019c565b9695505050505050565b6060831561020d578251610206576001600160a01b0385163b6102065760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064015b60405180910390fd5b5081610217565b610217838361021f565b949350505050565b81511561022f5781518083602001fd5b8060405162461bcd60e51b81526004016101fd91906102be565b60006020828403121561025b57600080fd5b81516001600160a01b038116811461004e57600080fd5b60005b8381101561028d578181015183820152602001610275565b8381111561029c576000848401525b50505050565b600082516102b4818460208701610272565b9190910192915050565b60208152600082518060208401526102dd816040850160208701610272565b601f01601f1916919091016040019291505056fe416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a2646970667358221220d51e81d3bc5ed20a26aeb05dce7e825c503b2061aa78628027300c8d65b9d89a64736f6c634300080c0033416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564"; // @notice Internal constant used in calculations, since the beacon chain stores balances in Gwei rather than wei uint256 internal constant GWEI_TO_WEI = 1e9; /// @notice Canonical, virtual beacon chain ETH strategy IStrategy public constant beaconChainETHStrategy = IStrategy(0xbeaC0eeEeeeeEEeEeEEEEeeEEeEeeeEeeEEBEaC0); /// @notice Oracle contract that provides updates to the beacon chain's state IBeaconChainOracle public beaconChainOracle; /// @notice Pod owner to deployed EigenPod address mapping(address => IEigenPod) public ownerToPod; // BEGIN STORAGE VARIABLES ADDED AFTER FIRST TESTNET DEPLOYMENT -- DO NOT SUGGEST REORDERING TO CONVENTIONAL ORDER /// @notice The number of EigenPods that have been deployed uint256 public numPods; /// @notice Deprecated from old mainnet release. Was initially used to limit growth early on but there is no longer /// a maximum number of EigenPods that can be deployed. uint256 private __deprecated_maxPods; // BEGIN STORAGE VARIABLES ADDED AFTER MAINNET DEPLOYMENT -- DO NOT SUGGEST REORDERING TO CONVENTIONAL ORDER /** * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy. * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can * decrease between the pod owner queuing and completing a withdrawal. * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_. * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this * as the withdrawal "paying off the deficit". */ mapping(address => int256) public podOwnerShares; uint64 internal _denebForkTimestamp; constructor( IETHPOSDeposit _ethPOS, IBeacon _eigenPodBeacon, IStrategyManager _strategyManager, ISlasher _slasher, IDelegationManager _delegationManager ) { ethPOS = _ethPOS; eigenPodBeacon = _eigenPodBeacon; strategyManager = _strategyManager; slasher = _slasher; delegationManager = _delegationManager; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[44] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../interfaces/IPauserRegistry.sol"; /** * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions. * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control. * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality. * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code. * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause, * you can only flip (any number of) switches to off/0 (aka "paused"). * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will: * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256) * 2) update the paused state to this new value * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3` * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused */ interface IPausable { /// @notice Emitted when the `pauserRegistry` is set to `newPauserRegistry`. event PauserRegistrySet(IPauserRegistry pauserRegistry, IPauserRegistry newPauserRegistry); /// @notice Emitted when the pause is triggered by `account`, and changed to `newPausedStatus`. event Paused(address indexed account, uint256 newPausedStatus); /// @notice Emitted when the pause is lifted by `account`, and changed to `newPausedStatus`. event Unpaused(address indexed account, uint256 newPausedStatus); /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing). function pauserRegistry() external view returns (IPauserRegistry); /** * @notice This function is used to pause an EigenLayer contract's functionality. * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0. */ function pause(uint256 newPausedStatus) external; /** * @notice Alias for `pause(type(uint256).max)`. */ function pauseAll() external; /** * @notice This function is used to unpause an EigenLayer contract's functionality. * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1. */ function unpause(uint256 newPausedStatus) external; /// @notice Returns the current paused status as a uint256. function paused() external view returns (uint256); /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise function paused(uint8 index) external view returns (bool); /// @notice Allows the unpauser to set a new pauser registry function setPauserRegistry(IPauserRegistry newPauserRegistry) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title Minimal interface for an `Strategy` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Custom `Strategy` implementations may expand extensively on this interface. */ interface IStrategy { /** * @notice Used to deposit tokens into this Strategy * @param token is the ERC20 token being deposited * @param amount is the amount of token being deposited * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well. * @return newShares is the number of new shares issued at the current exchange ratio. */ function deposit(IERC20 token, uint256 amount) external returns (uint256); /** * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address * @param recipient is the address to receive the withdrawn funds * @param token is the ERC20 token being transferred out * @param amountShares is the amount of shares being withdrawn * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * other functions, and individual share balances are recorded in the strategyManager as well. */ function withdraw(address recipient, IERC20 token, uint256 amountShares) external; /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlying(uint256 amountShares) external returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToShares(uint256 amountUnderlying) external returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications */ function userUnderlying(address user) external returns (uint256); /** * @notice convenience function for fetching the current total shares of `user` in this strategy, by * querying the `strategyManager` contract */ function shares(address user) external view returns (uint256); /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlyingView(uint256 amountShares) external view returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToSharesView(uint256 amountUnderlying) external view returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications */ function userUnderlyingView(address user) external view returns (uint256); /// @notice The underlying token for shares in this Strategy function underlyingToken() external view returns (IERC20); /// @notice The total number of extant shares in this Strategy function totalShares() external view returns (uint256); /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail. function explanation() external view returns (string memory); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol"; import "./IETHPOSDeposit.sol"; import "./IStrategyManager.sol"; import "./IEigenPod.sol"; import "./IBeaconChainOracle.sol"; import "./IPausable.sol"; import "./ISlasher.sol"; import "./IStrategy.sol"; /** * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IEigenPodManager is IPausable { /// @notice Emitted to notify the update of the beaconChainOracle address event BeaconOracleUpdated(address indexed newOracleAddress); /// @notice Emitted to notify the deployment of an EigenPod event PodDeployed(address indexed eigenPod, address indexed podOwner); /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager event BeaconChainETHDeposited(address indexed podOwner, uint256 amount); /// @notice Emitted when the balance of an EigenPod is updated event PodSharesUpdated(address indexed podOwner, int256 sharesDelta); /// @notice Emitted when a withdrawal of beacon chain ETH is completed event BeaconChainETHWithdrawalCompleted( address indexed podOwner, uint256 shares, uint96 nonce, address delegatedAddress, address withdrawer, bytes32 withdrawalRoot ); event DenebForkTimestampUpdated(uint64 newValue); /** * @notice Creates an EigenPod for the sender. * @dev Function will revert if the `msg.sender` already has an EigenPod. * @dev Returns EigenPod address */ function createPod() external returns (address); /** * @notice Stakes for a new beacon chain validator on the sender's EigenPod. * Also creates an EigenPod for the sender if they don't have one already. * @param pubkey The 48 bytes public key of the beacon chain validator. * @param signature The validator's signature of the deposit data. * @param depositDataRoot The root/hash of the deposit data for the validator's deposit. */ function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Changes the `podOwner`'s shares by `sharesDelta` and performs a call to the DelegationManager * to ensure that delegated shares are also tracked correctly * @param podOwner is the pod owner whose balance is being updated. * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares * @dev Callable only by the podOwner's EigenPod contract. * @dev Reverts if `sharesDelta` is not a whole Gwei amount */ function recordBeaconChainETHBalanceUpdate(address podOwner, int256 sharesDelta) external; /** * @notice Updates the oracle contract that provides the beacon chain state root * @param newBeaconChainOracle is the new oracle contract being pointed to * @dev Callable only by the owner of this contract (i.e. governance) */ function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external; /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed. function ownerToPod(address podOwner) external view returns (IEigenPod); /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not). function getPod(address podOwner) external view returns (IEigenPod); /// @notice The ETH2 Deposit Contract function ethPOS() external view returns (IETHPOSDeposit); /// @notice Beacon proxy to which the EigenPods point function eigenPodBeacon() external view returns (IBeacon); /// @notice Oracle contract that provides updates to the beacon chain's state function beaconChainOracle() external view returns (IBeaconChainOracle); /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized. function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32); /// @notice EigenLayer's StrategyManager contract function strategyManager() external view returns (IStrategyManager); /// @notice EigenLayer's Slasher contract function slasher() external view returns (ISlasher); /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise. function hasPod(address podOwner) external view returns (bool); /// @notice Returns the number of EigenPods that have been created function numPods() external view returns (uint256); /** * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy. * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can * decrease between the pod owner queuing and completing a withdrawal. * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_. * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this * as the withdrawal "paying off the deficit". */ function podOwnerShares(address podOwner) external view returns (int256); /// @notice returns canonical, virtual beaconChainETH strategy function beaconChainETHStrategy() external view returns (IStrategy); /** * @notice Used by the DelegationManager to remove a pod owner's shares while they're in the withdrawal queue. * Simply decreases the `podOwner`'s shares by `shares`, down to a minimum of zero. * @dev This function reverts if it would result in `podOwnerShares[podOwner]` being less than zero, i.e. it is forbidden for this function to * result in the `podOwner` incurring a "share deficit". This behavior prevents a Staker from queuing a withdrawal which improperly removes excessive * shares from the operator to whom the staker is delegated. * @dev Reverts if `shares` is not a whole Gwei amount */ function removeShares(address podOwner, uint256 shares) external; /** * @notice Increases the `podOwner`'s shares by `shares`, paying off deficit if possible. * Used by the DelegationManager to award a pod owner shares on exiting the withdrawal queue * @dev Returns the number of shares added to `podOwnerShares[podOwner]` above zero, which will be less than the `shares` input * in the event that the podOwner has an existing shares deficit (i.e. `podOwnerShares[podOwner]` starts below zero) * @dev Reverts if `shares` is not a whole Gwei amount */ function addShares(address podOwner, uint256 shares) external returns (uint256); /** * @notice Used by the DelegationManager to complete a withdrawal, sending tokens to some destination address * @dev Prioritizes decreasing the podOwner's share deficit, if they have one * @dev Reverts if `shares` is not a whole Gwei amount */ function withdrawSharesAsTokens(address podOwner, address destination, uint256 shares) external; /** * @notice the deneb hard fork timestamp used to determine which proof path to use for proving a withdrawal */ function denebForkTimestamp() external view returns (uint64); /** * setting the deneb hard fork timestamp by the eigenPodManager owner * @dev this function is designed to be called twice. Once, it is set to type(uint64).max * prior to the actual deneb fork timestamp being set, and then the second time it is set * to the actual deneb fork timestamp. */ function setDenebForkTimestamp(uint64 newDenebForkTimestamp) external; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; import "./ISlasher.sol"; import "./IDelegationManager.sol"; import "./IEigenPodManager.sol"; /** * @title Interface for the primary entrypoint for funds into EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `StrategyManager` contract itself for implementation details. */ interface IStrategyManager { /** * @notice Emitted when a new deposit occurs on behalf of `staker`. * @param staker Is the staker who is depositing funds into EigenLayer. * @param strategy Is the strategy that `staker` has deposited into. * @param token Is the token that `staker` deposited. * @param shares Is the number of new shares `staker` has been granted in `strategy`. */ event Deposit(address staker, IERC20 token, IStrategy strategy, uint256 shares); /// @notice Emitted when `thirdPartyTransfersForbidden` is updated for a strategy and value by the owner event UpdatedThirdPartyTransfersForbidden(IStrategy strategy, bool value); /// @notice Emitted when the `strategyWhitelister` is changed event StrategyWhitelisterChanged(address previousAddress, address newAddress); /// @notice Emitted when a strategy is added to the approved list of strategies for deposit event StrategyAddedToDepositWhitelist(IStrategy strategy); /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit event StrategyRemovedFromDepositWhitelist(IStrategy strategy); /** * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender` * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the staker * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen). * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy. */ function depositIntoStrategy(IStrategy strategy, IERC20 token, uint256 amount) external returns (uint256 shares); /** * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`, * who must sign off on the action. * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed * purely to help one address deposit 'for' another. * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the staker * @param staker the staker that the deposited assets will be credited to * @param expiry the timestamp at which the signature expires * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward * following EIP-1271 if the `staker` is a contract * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those * targeting stakers who may be attempting to undelegate. * @dev Cannot be called if thirdPartyTransfersForbidden is set to true for this strategy * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy */ function depositIntoStrategyWithSignature( IStrategy strategy, IERC20 token, uint256 amount, address staker, uint256 expiry, bytes memory signature ) external returns (uint256 shares); /// @notice Used by the DelegationManager to remove a Staker's shares from a particular strategy when entering the withdrawal queue function removeShares(address staker, IStrategy strategy, uint256 shares) external; /// @notice Used by the DelegationManager to award a Staker some shares that have passed through the withdrawal queue function addShares(address staker, IERC20 token, IStrategy strategy, uint256 shares) external; /// @notice Used by the DelegationManager to convert withdrawn shares to tokens and send them to a recipient function withdrawSharesAsTokens(address recipient, IStrategy strategy, uint256 shares, IERC20 token) external; /// @notice Returns the current shares of `user` in `strategy` function stakerStrategyShares(address user, IStrategy strategy) external view returns (uint256 shares); /** * @notice Get all details on the staker's deposits and corresponding shares * @return (staker's strategies, shares in these strategies) */ function getDeposits(address staker) external view returns (IStrategy[] memory, uint256[] memory); /// @notice Simple getter function that returns `stakerStrategyList[staker].length`. function stakerStrategyListLength(address staker) external view returns (uint256); /** * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already) * @param thirdPartyTransfersForbiddenValues bool values to set `thirdPartyTransfersForbidden` to for each strategy */ function addStrategiesToDepositWhitelist( IStrategy[] calldata strategiesToWhitelist, bool[] calldata thirdPartyTransfersForbiddenValues ) external; /** * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it) */ function removeStrategiesFromDepositWhitelist(IStrategy[] calldata strategiesToRemoveFromWhitelist) external; /// @notice Returns the single, central Delegation contract of EigenLayer function delegation() external view returns (IDelegationManager); /// @notice Returns the single, central Slasher contract of EigenLayer function slasher() external view returns (ISlasher); /// @notice Returns the EigenPodManager contract of EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice Returns the address of the `strategyWhitelister` function strategyWhitelister() external view returns (address); /** * @notice Returns bool for whether or not `strategy` enables credit transfers. i.e enabling * depositIntoStrategyWithSignature calls or queueing withdrawals to a different address than the staker. */ function thirdPartyTransfersForbidden(IStrategy strategy) external view returns (bool); // LIMITED BACKWARDS-COMPATIBILITY FOR DEPRECATED FUNCTIONALITY // packed struct for queued withdrawals; helps deal with stack-too-deep errors struct DeprecatedStruct_WithdrawerAndNonce { address withdrawer; uint96 nonce; } /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`, * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the * stored hash in order to confirm the integrity of the submitted data. */ struct DeprecatedStruct_QueuedWithdrawal { IStrategy[] strategies; uint256[] shares; address staker; DeprecatedStruct_WithdrawerAndNonce withdrawerAndNonce; uint32 withdrawalStartBlock; address delegatedAddress; } function migrateQueuedWithdrawal(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external returns (bool, bytes32); function calculateWithdrawalRoot(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external pure returns (bytes32); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; import "./ISignatureUtils.sol"; import "./IStrategyManager.sol"; /** * @title DelegationManager * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice This is the contract for delegation in EigenLayer. The main functionalities of this contract are * - enabling anyone to register as an operator in EigenLayer * - allowing operators to specify parameters related to stakers who delegate to them * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time) * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager) */ interface IDelegationManager is ISignatureUtils { // @notice Struct used for storing information about a single operator who has registered with EigenLayer struct OperatorDetails { // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer. address earningsReceiver; /** * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations". * @dev Signature verification follows these rules: * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed. * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator. * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value". */ address delegationApprover; /** * @notice A minimum delay -- measured in blocks -- enforced between: * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing` * and * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate` * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails, * then they are only allowed to either increase this value or keep it the same. */ uint32 stakerOptOutWindowBlocks; } /** * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator. * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function. */ struct StakerDelegation { // the staker who is delegating address staker; // the operator being delegated to address operator; // the staker's nonce uint256 nonce; // the expiration timestamp (UTC) of the signature uint256 expiry; } /** * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator. * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function. */ struct DelegationApproval { // the staker who is delegating address staker; // the operator being delegated to address operator; // the operator's provided salt bytes32 salt; // the expiration timestamp (UTC) of the signature uint256 expiry; } /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. completeQueuedWithdrawal`, the data is resubmitted and the hash of the submitted * data is computed by `calculateWithdrawalRoot` and checked against the stored hash in order to confirm the integrity of the submitted data. */ struct Withdrawal { // The address that originated the Withdrawal address staker; // The address that the staker was delegated to at the time that the Withdrawal was created address delegatedTo; // The address that can complete the Withdrawal + will receive funds when completing the withdrawal address withdrawer; // Nonce used to guarantee that otherwise identical withdrawals have unique hashes uint256 nonce; // Block number when the Withdrawal was created uint32 startBlock; // Array of strategies that the Withdrawal contains IStrategy[] strategies; // Array containing the amount of shares in each Strategy in the `strategies` array uint256[] shares; } struct QueuedWithdrawalParams { // Array of strategies that the QueuedWithdrawal contains IStrategy[] strategies; // Array containing the amount of shares in each Strategy in the `strategies` array uint256[] shares; // The address of the withdrawer address withdrawer; } // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails. event OperatorRegistered(address indexed operator, OperatorDetails operatorDetails); /// @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails event OperatorDetailsModified(address indexed operator, OperatorDetails newOperatorDetails); /** * @notice Emitted when @param operator indicates that they are updating their MetadataURI string * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing */ event OperatorMetadataURIUpdated(address indexed operator, string metadataURI); /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesIncreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesDecreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted when @param staker delegates to @param operator. event StakerDelegated(address indexed staker, address indexed operator); /// @notice Emitted when @param staker undelegates from @param operator. event StakerUndelegated(address indexed staker, address indexed operator); /// @notice Emitted when @param staker is undelegated via a call not originating from the staker themself event StakerForceUndelegated(address indexed staker, address indexed operator); /** * @notice Emitted when a new withdrawal is queued. * @param withdrawalRoot Is the hash of the `withdrawal`. * @param withdrawal Is the withdrawal itself. */ event WithdrawalQueued(bytes32 withdrawalRoot, Withdrawal withdrawal); /// @notice Emitted when a queued withdrawal is completed event WithdrawalCompleted(bytes32 withdrawalRoot); /// @notice Emitted when a queued withdrawal is *migrated* from the StrategyManager to the DelegationManager event WithdrawalMigrated(bytes32 oldWithdrawalRoot, bytes32 newWithdrawalRoot); /// @notice Emitted when the `minWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event MinWithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue); /// @notice Emitted when the `strategyWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event StrategyWithdrawalDelayBlocksSet(IStrategy strategy, uint256 previousValue, uint256 newValue); /** * @notice Registers the caller as an operator in EigenLayer. * @param registeringOperatorDetails is the `OperatorDetails` for the operator. * @param metadataURI is a URI for the operator's metadata, i.e. a link providing more details on the operator. * * @dev Once an operator is registered, they cannot 'deregister' as an operator, and they will forever be considered "delegated to themself". * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event */ function registerAsOperator( OperatorDetails calldata registeringOperatorDetails, string calldata metadataURI ) external; /** * @notice Updates an operator's stored `OperatorDetails`. * @param newOperatorDetails is the updated `OperatorDetails` for the operator, to replace their current OperatorDetails`. * * @dev The caller must have previously registered as an operator in EigenLayer. * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). */ function modifyOperatorDetails(OperatorDetails calldata newOperatorDetails) external; /** * @notice Called by an operator to emit an `OperatorMetadataURIUpdated` event indicating the information has updated. * @param metadataURI The URI for metadata associated with an operator * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event */ function updateOperatorMetadataURI(string calldata metadataURI) external; /** * @notice Caller delegates their stake to an operator. * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer. * @param approverSignatureAndExpiry Verifies the operator approves of this delegation * @param approverSalt A unique single use value tied to an individual signature. * @dev The approverSignatureAndExpiry is used in the event that: * 1) the operator's `delegationApprover` address is set to a non-zero value. * AND * 2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator * or their delegationApprover is the `msg.sender`, then approval is assumed. * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateTo( address operator, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties. * @param staker The account delegating stake to an `operator` account * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer. * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that: * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver. * * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action. * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271. * @dev the operator's `delegationApprover` address is set to a non-zero value. * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover * is the `msg.sender`, then approval is assumed. * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateToBySignature( address staker, address operator, SignatureWithExpiry memory stakerSignatureAndExpiry, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary. * @param staker The account to be undelegated. * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0). * * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves. * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover" * @dev Reverts if the `staker` is already undelegated. */ function undelegate(address staker) external returns (bytes32[] memory withdrawalRoot); /** * Allows a staker to withdraw some shares. Withdrawn shares/strategies are immediately removed * from the staker. If the staker is delegated, withdrawn shares/strategies are also removed from * their operator. * * All withdrawn shares/strategies are placed in a queue and can be fully withdrawn after a delay. */ function queueWithdrawals( QueuedWithdrawalParams[] calldata queuedWithdrawalParams ) external returns (bytes32[] memory); /** * @notice Used to complete the specified `withdrawal`. The caller must match `withdrawal.withdrawer` * @param withdrawal The Withdrawal to complete. * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `withdrawal.strategies` array. * This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused) * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array * @param receiveAsTokens If true, the shares specified in the withdrawal will be withdrawn from the specified strategies themselves * and sent to the caller, through calls to `withdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies * will simply be transferred to the caller directly. * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw` * @dev beaconChainETHStrategy shares are non-transferrable, so if `receiveAsTokens = false` and `withdrawal.withdrawer != withdrawal.staker`, note that * any beaconChainETHStrategy shares in the `withdrawal` will be _returned to the staker_, rather than transferred to the withdrawer, unlike shares in * any other strategies, which will be transferred to the withdrawer. */ function completeQueuedWithdrawal( Withdrawal calldata withdrawal, IERC20[] calldata tokens, uint256 middlewareTimesIndex, bool receiveAsTokens ) external; /** * @notice Array-ified version of `completeQueuedWithdrawal`. * Used to complete the specified `withdrawals`. The function caller must match `withdrawals[...].withdrawer` * @param withdrawals The Withdrawals to complete. * @param tokens Array of tokens for each Withdrawal. See `completeQueuedWithdrawal` for the usage of a single array. * @param middlewareTimesIndexes One index to reference per Withdrawal. See `completeQueuedWithdrawal` for the usage of a single index. * @param receiveAsTokens Whether or not to complete each withdrawal as tokens. See `completeQueuedWithdrawal` for the usage of a single boolean. * @dev See `completeQueuedWithdrawal` for relevant dev tags */ function completeQueuedWithdrawals( Withdrawal[] calldata withdrawals, IERC20[][] calldata tokens, uint256[] calldata middlewareTimesIndexes, bool[] calldata receiveAsTokens ) external; /** * @notice Increases a staker's delegated share balance in a strategy. * @param staker The address to increase the delegated shares for their operator. * @param strategy The strategy in which to increase the delegated shares. * @param shares The number of shares to increase. * * @dev *If the staker is actively delegated*, then increases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing. * @dev Callable only by the StrategyManager or EigenPodManager. */ function increaseDelegatedShares( address staker, IStrategy strategy, uint256 shares ) external; /** * @notice Decreases a staker's delegated share balance in a strategy. * @param staker The address to increase the delegated shares for their operator. * @param strategy The strategy in which to decrease the delegated shares. * @param shares The number of shares to decrease. * * @dev *If the staker is actively delegated*, then decreases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing. * @dev Callable only by the StrategyManager or EigenPodManager. */ function decreaseDelegatedShares( address staker, IStrategy strategy, uint256 shares ) external; /** * @notice returns the address of the operator that `staker` is delegated to. * @notice Mapping: staker => operator whom the staker is currently delegated to. * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator. */ function delegatedTo(address staker) external view returns (address); /** * @notice Returns the OperatorDetails struct associated with an `operator`. */ function operatorDetails(address operator) external view returns (OperatorDetails memory); /* * @notice Returns the earnings receiver address for an operator */ function earningsReceiver(address operator) external view returns (address); /** * @notice Returns the delegationApprover account for an operator */ function delegationApprover(address operator) external view returns (address); /** * @notice Returns the stakerOptOutWindowBlocks for an operator */ function stakerOptOutWindowBlocks(address operator) external view returns (uint256); /** * @notice Given array of strategies, returns array of shares for the operator */ function getOperatorShares( address operator, IStrategy[] memory strategies ) external view returns (uint256[] memory); /** * @notice Given a list of strategies, return the minimum number of blocks that must pass to withdraw * from all the inputted strategies. Return value is >= minWithdrawalDelayBlocks as this is the global min withdrawal delay. * @param strategies The strategies to check withdrawal delays for */ function getWithdrawalDelay(IStrategy[] calldata strategies) external view returns (uint256); /** * @notice returns the total number of shares in `strategy` that are delegated to `operator`. * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator. * @dev By design, the following invariant should hold for each Strategy: * (operator's shares in delegation manager) = sum (shares above zero of all stakers delegated to operator) * = sum (delegateable shares of all stakers delegated to the operator) */ function operatorShares(address operator, IStrategy strategy) external view returns (uint256); /** * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise. */ function isDelegated(address staker) external view returns (bool); /** * @notice Returns true is an operator has previously registered for delegation. */ function isOperator(address operator) external view returns (bool); /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked function stakerNonce(address staker) external view returns (uint256); /** * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover. * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`. */ function delegationApproverSaltIsSpent(address _delegationApprover, bytes32 salt) external view returns (bool); /** * @notice Minimum delay enforced by this contract for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner, * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced). * Note that strategies each have a separate withdrawal delay, which can be greater than this value. So the minimum number of blocks that must pass * to withdraw a strategy is MAX(minWithdrawalDelayBlocks, strategyWithdrawalDelayBlocks[strategy]) */ function minWithdrawalDelayBlocks() external view returns (uint256); /** * @notice Minimum delay enforced by this contract per Strategy for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner, * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced). */ function strategyWithdrawalDelayBlocks(IStrategy strategy) external view returns (uint256); /** * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator` * @param staker The signing staker * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateCurrentStakerDelegationDigestHash( address staker, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function * @param staker The signing staker * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]` * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateStakerDelegationDigestHash( address staker, uint256 _stakerNonce, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions. * @param staker The account delegating their stake * @param operator The account receiving delegated stake * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general) * @param approverSalt A unique and single use value associated with the approver signature. * @param expiry Time after which the approver's signature becomes invalid */ function calculateDelegationApprovalDigestHash( address staker, address operator, address _delegationApprover, bytes32 approverSalt, uint256 expiry ) external view returns (bytes32); /// @notice The EIP-712 typehash for the contract's domain function DOMAIN_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32); /** * @notice Getter function for the current EIP-712 domain separator for this contract. * * @dev The domain separator will change in the event of a fork that changes the ChainID. * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision. * for more detailed information please read EIP-712. */ function domainSeparator() external view returns (bytes32); /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated. /// @dev This only increments (doesn't decrement), and is used to help ensure that otherwise identical withdrawals have unique hashes. function cumulativeWithdrawalsQueued(address staker) external view returns (uint256); /// @notice Returns the keccak256 hash of `withdrawal`. function calculateWithdrawalRoot(Withdrawal memory withdrawal) external pure returns (bytes32); function migrateQueuedWithdrawals(IStrategyManager.DeprecatedStruct_QueuedWithdrawal[] memory withdrawalsToQueue) external; } // ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━ // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓ // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛ // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━ // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓ // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // SPDX-License-Identifier: CC0-1.0 pragma solidity >=0.5.0; // This interface is designed to be compatible with the Vyper version. /// @notice This is the Ethereum 2.0 deposit contract interface. /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs interface IETHPOSDeposit { /// @notice A processed deposit event. event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index); /// @notice Submit a Phase 0 DepositData object. /// @param pubkey A BLS12-381 public key. /// @param withdrawal_credentials Commitment to a public key for withdrawals. /// @param signature A BLS12-381 signature. /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object. /// Used as a protection against malformed input. function deposit( bytes calldata pubkey, bytes calldata withdrawal_credentials, bytes calldata signature, bytes32 deposit_data_root ) external payable; /// @notice Query the current deposit root hash. /// @return The deposit root hash. function get_deposit_root() external view returns (bytes32); /// @notice Query the current deposit count. /// @return The deposit count encoded as a little endian 64-bit number. function get_deposit_count() external view returns (bytes memory); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../libraries/BeaconChainProofs.sol"; import "./IEigenPodManager.sol"; import "./IBeaconChainOracle.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title The implementation contract used for restaking beacon chain ETH on EigenLayer * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice The main functionalities are: * - creating new ETH validators with their withdrawal credentials pointed to this contract * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials * pointed to this contract * - updating aggregate balances in the EigenPodManager * - withdrawing eth when withdrawals are initiated * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose * to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts */ interface IEigenPod { enum VALIDATOR_STATUS { INACTIVE, // doesnt exist ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod WITHDRAWN // withdrawn from the Beacon Chain } struct ValidatorInfo { // index of the validator in the beacon chain uint64 validatorIndex; // amount of beacon chain ETH restaked on EigenLayer in gwei uint64 restakedBalanceGwei; //timestamp of the validator's most recent balance update uint64 mostRecentBalanceUpdateTimestamp; // status of the validator VALIDATOR_STATUS status; } /** * @notice struct used to store amounts related to proven withdrawals in memory. Used to help * manage stack depth and optimize the number of external calls, when batching withdrawal operations. */ struct VerifiedWithdrawal { // amount to send to a podOwner from a proven withdrawal uint256 amountToSendGwei; // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal int256 sharesDeltaGwei; } enum PARTIAL_WITHDRAWAL_CLAIM_STATUS { REDEEMED, PENDING, FAILED } /// @notice Emitted when an ETH validator stakes via this eigenPod event EigenPodStaked(bytes pubkey); /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod event ValidatorRestaked(uint40 validatorIndex); /// @notice Emitted when an ETH validator's balance is proven to be updated. Here newValidatorBalanceGwei // is the validator's balance that is credited on EigenLayer. event ValidatorBalanceUpdated(uint40 validatorIndex, uint64 balanceTimestamp, uint64 newValidatorBalanceGwei); /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain event FullWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 withdrawalAmountGwei ); /// @notice Emitted when a partial withdrawal claim is successfully redeemed event PartialWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 partialWithdrawalAmountGwei ); /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod. event RestakedBeaconChainETHWithdrawn(address indexed recipient, uint256 amount); /// @notice Emitted when podOwner enables restaking event RestakingActivated(address indexed podOwner); /// @notice Emitted when ETH is received via the `receive` fallback event NonBeaconChainETHReceived(uint256 amountReceived); /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn event NonBeaconChainETHWithdrawn(address indexed recipient, uint256 amountWithdrawn); /// @notice The max amount of eth, in gwei, that can be restaked per validator function MAX_RESTAKED_BALANCE_GWEI_PER_VALIDATOR() external view returns (uint64); /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer), function withdrawableRestakedExecutionLayerGwei() external view returns (uint64); /// @notice any ETH deposited into the EigenPod contract via the `receive` fallback function function nonBeaconChainETHBalanceWei() external view returns (uint256); /// @notice Used to initialize the pointers to contracts crucial to the pod's functionality, in beacon proxy construction from EigenPodManager function initialize(address owner) external; /// @notice Called by EigenPodManager when the owner wants to create another ETH validator. function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Transfers `amountWei` in ether from this contract to the specified `recipient` address * @notice Called by EigenPodManager to withdrawBeaconChainETH that has been added to the EigenPod's balance due to a withdrawal from the beacon chain. * @dev The podOwner must have already proved sufficient withdrawals, so that this pod's `withdrawableRestakedExecutionLayerGwei` exceeds the * `amountWei` input (when converted to GWEI). * @dev Reverts if `amountWei` is not a whole Gwei amount */ function withdrawRestakedBeaconChainETH(address recipient, uint256 amount) external; /// @notice The single EigenPodManager for EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice The owner of this EigenPod function podOwner() external view returns (address); /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`. function hasRestaked() external view returns (bool); /** * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`. * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod. * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`. */ function mostRecentWithdrawalTimestamp() external view returns (uint64); /// @notice Returns the validatorInfo struct for the provided pubkeyHash function validatorPubkeyHashToInfo(bytes32 validatorPubkeyHash) external view returns (ValidatorInfo memory); /// @notice Returns the validatorInfo struct for the provided pubkey function validatorPubkeyToInfo(bytes calldata validatorPubkey) external view returns (ValidatorInfo memory); ///@notice mapping that tracks proven withdrawals function provenWithdrawal(bytes32 validatorPubkeyHash, uint64 slot) external view returns (bool); /// @notice This returns the status of a given validator function validatorStatus(bytes32 pubkeyHash) external view returns (VALIDATOR_STATUS); /// @notice This returns the status of a given validator pubkey function validatorStatus(bytes calldata validatorPubkey) external view returns (VALIDATOR_STATUS); /** * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to * this contract. It also verifies the effective balance of the validator. It verifies the provided proof of the ETH validator against the beacon chain state * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer. * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against. * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials * against a beacon chain state root * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyWithdrawalCredentials( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, uint40[] calldata validatorIndices, bytes[] calldata withdrawalCredentialProofs, bytes32[][] calldata validatorFields ) external; /** * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager. It also verifies a merkle proof of the validator's current beacon chain balance. * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against. * Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block. * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs * @param validatorFieldsProofs proofs against the `beaconStateRoot` for each validator in `validatorFields` * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyBalanceUpdates( uint64 oracleTimestamp, uint40[] calldata validatorIndices, BeaconChainProofs.StateRootProof calldata stateRootProof, bytes[] calldata validatorFieldsProofs, bytes32[][] calldata validatorFields ) external; /** * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree * @param withdrawalFields are the fields of the withdrawals being proven * @param validatorFields are the fields of the validators being proven */ function verifyAndProcessWithdrawals( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, BeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs, bytes[] calldata validatorFieldsProofs, bytes32[][] calldata validatorFields, bytes32[][] calldata withdrawalFields ) external; /** * @notice Called by the pod owner to activate restaking by withdrawing * all existing ETH from the pod and preventing further withdrawals via * "withdrawBeforeRestaking()" */ function activateRestaking() external; /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false function withdrawBeforeRestaking() external; /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei function withdrawNonBeaconChainETHBalanceWei(address recipient, uint256 amountToWithdraw) external; /// @notice called by owner of a pod to remove any ERC20s deposited in the pod function recoverTokens(IERC20[] memory tokenList, uint256[] memory amountsToWithdraw, address recipient) external; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the `PauserRegistry` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IPauserRegistry { event PauserStatusChanged(address pauser, bool canPause); event UnpauserChanged(address previousUnpauser, address newUnpauser); /// @notice Mapping of addresses to whether they hold the pauser role. function isPauser(address pauser) external view returns (bool); /// @notice Unique address that holds the unpauser role. Capable of changing *both* the pauser and unpauser addresses. function unpauser() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategyManager.sol"; import "./IDelegationManager.sol"; /** * @title Interface for the primary 'slashing' contract for EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `Slasher` contract itself for implementation details. */ interface ISlasher { // struct used to store information about the current state of an operator's obligations to middlewares they are serving struct MiddlewareTimes { // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving uint32 stalestUpdateBlock; // The latest 'serveUntilBlock' from all of the middleware that the operator is serving uint32 latestServeUntilBlock; } // struct used to store details relevant to a single middleware that an operator has opted-in to serving struct MiddlewareDetails { // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate` uint32 registrationMayBeginAtBlock; // the block before which the contract is allowed to slash the user uint32 contractCanSlashOperatorUntilBlock; // the block at which the middleware's view of the operator's stake was most recently updated uint32 latestUpdateBlock; } /// @notice Emitted when a middleware times is added to `operator`'s array. event MiddlewareTimesAdded( address operator, uint256 index, uint32 stalestUpdateBlock, uint32 latestServeUntilBlock ); /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them. event OptedIntoSlashing(address indexed operator, address indexed contractAddress); /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`. event SlashingAbilityRevoked( address indexed operator, address indexed contractAddress, uint32 contractCanSlashOperatorUntilBlock ); /** * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`. * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'. */ event OperatorFrozen(address indexed slashedOperator, address indexed slashingContract); /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer. event FrozenStatusReset(address indexed previouslySlashedAddress); /** * @notice Gives the `contractAddress` permission to slash the funds of the caller. * @dev Typically, this function must be called prior to registering for a middleware. */ function optIntoSlashing(address contractAddress) external; /** * @notice Used for 'slashing' a certain operator. * @param toBeFrozen The operator to be frozen. * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop. * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`. */ function freezeOperator(address toBeFrozen) external; /** * @notice Removes the 'frozen' status from each of the `frozenAddresses` * @dev Callable only by the contract owner (i.e. governance). */ function resetFrozenStatus(address[] calldata frozenAddresses) external; /** * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev adds the middleware's slashing contract to the operator's linked list */ function recordFirstStakeUpdate(address operator, uint32 serveUntilBlock) external; /** * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals) * to make sure the operator's stake at updateBlock is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param updateBlock the block for which the stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions, * but it is anticipated to be rare and not detrimental. */ function recordStakeUpdate( address operator, uint32 updateBlock, uint32 serveUntilBlock, uint256 insertAfter ) external; /** * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to * slash `operator` once `serveUntil` is reached */ function recordLastStakeUpdateAndRevokeSlashingAbility(address operator, uint32 serveUntilBlock) external; /// @notice The StrategyManager contract of EigenLayer function strategyManager() external view returns (IStrategyManager); /// @notice The DelegationManager contract of EigenLayer function delegation() external view returns (IDelegationManager); /** * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed * and the staker's status is reset (to 'unfrozen'). * @param staker The staker of interest. * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated * to an operator who has their status set to frozen. Otherwise returns 'false'. */ function isFrozen(address staker) external view returns (bool); /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`. function canSlash(address toBeSlashed, address slashingContract) external view returns (bool); /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`. function contractCanSlashOperatorUntilBlock( address operator, address serviceContract ) external view returns (uint32); /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake function latestUpdateBlock(address operator, address serviceContract) external view returns (uint32); /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`. function getCorrectValueForInsertAfter(address operator, uint32 updateBlock) external view returns (uint256); /** * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal. * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist. * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator, * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`. * @param withdrawalStartBlock The block number at which the withdrawal was initiated. * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw * @dev The correct `middlewareTimesIndex` input should be computable off-chain. */ function canWithdraw( address operator, uint32 withdrawalStartBlock, uint256 middlewareTimesIndex ) external returns (bool); /** * operator => * [ * ( * the least recent update block of all of the middlewares it's serving/served, * latest time that the stake bonded at that update needed to serve until * ) * ] */ function operatorToMiddlewareTimes( address operator, uint256 arrayIndex ) external view returns (MiddlewareTimes memory); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length` function middlewareTimesLength(address operator) external view returns (uint256); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`. function getMiddlewareTimesIndexStalestUpdateBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`. function getMiddlewareTimesIndexServeUntilBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`. function operatorWhitelistedContractsLinkedListSize(address operator) external view returns (uint256); /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`). function operatorWhitelistedContractsLinkedListEntry( address operator, address node ) external view returns (bool, uint256, uint256); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title The interface for common signature utilities. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface ISignatureUtils { // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management. struct SignatureWithExpiry { // the signature itself, formatted as a single bytes object bytes signature; // the expiration timestamp (UTC) of the signature uint256 expiry; } // @notice Struct that bundles together a signature, a salt for uniqueness, and an expiration time for the signature. Used primarily for stack management. struct SignatureWithSaltAndExpiry { // the signature itself, formatted as a single bytes object bytes signature; // the salt used to generate the signature bytes32 salt; // the expiration timestamp (UTC) of the signature uint256 expiry; } }// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; import "./Merkle.sol"; import "../libraries/Endian.sol"; //Utility library for parsing and PHASE0 beacon chain block headers //SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization //BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader //BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate library BeaconChainProofs { // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3; uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4; uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5; uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3; //Note: changed in the deneb hard fork from 4->5 uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_DENEB = 5; uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_CAPELLA = 4; // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13 uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13; //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24 uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24; //Index of block_summary_root in historical_summary container uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0; // tree height for hash tree of an individual withdrawal container uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2; uint256 internal constant VALIDATOR_TREE_HEIGHT = 40; // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4 uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4; //in beacon block body https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconblockbody uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9; // in beacon block header https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader uint256 internal constant SLOT_INDEX = 0; uint256 internal constant STATE_ROOT_INDEX = 3; uint256 internal constant BODY_ROOT_INDEX = 4; // in beacon state https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11; uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27; // in validator https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0; uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1; uint256 internal constant VALIDATOR_BALANCE_INDEX = 2; uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7; // in execution payload header uint256 internal constant TIMESTAMP_INDEX = 9; //in execution payload uint256 internal constant WITHDRAWALS_INDEX = 14; // in withdrawal uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1; uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3; //Misc Constants /// @notice The number of slots each epoch in the beacon chain uint64 internal constant SLOTS_PER_EPOCH = 32; /// @notice The number of seconds in a slot in the beacon chain uint64 internal constant SECONDS_PER_SLOT = 12; /// @notice Number of seconds per epoch: 384 == 32 slots/epoch * 12 seconds/slot uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT; bytes8 internal constant UINT64_MASK = 0xffffffffffffffff; /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal struct WithdrawalProof { bytes withdrawalProof; bytes slotProof; bytes executionPayloadProof; bytes timestampProof; bytes historicalSummaryBlockRootProof; uint64 blockRootIndex; uint64 historicalSummaryIndex; uint64 withdrawalIndex; bytes32 blockRoot; bytes32 slotRoot; bytes32 timestampRoot; bytes32 executionPayloadRoot; } /// @notice This struct contains the root and proof for verifying the state root against the oracle block root struct StateRootProof { bytes32 beaconStateRoot; bytes proof; } /** * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root * @param validatorIndex the index of the proven validator * @param beaconStateRoot is the beacon chain state root to be proven against. * @param validatorFieldsProof is the data used in proving the validator's fields * @param validatorFields the claimed fields of the validator */ function verifyValidatorFields( bytes32 beaconStateRoot, bytes32[] calldata validatorFields, bytes calldata validatorFieldsProof, uint40 validatorIndex ) internal view { require( validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length" ); /** * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1. * There is an additional layer added by hashing the root with the length of the validator list */ require( validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length" ); uint256 index = (VALIDATOR_TREE_ROOT_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex); // merkleize the validatorFields to get the leaf to prove bytes32 validatorRoot = Merkle.merkleizeSha256(validatorFields); // verify the proof of the validatorRoot against the beaconStateRoot require( Merkle.verifyInclusionSha256({ proof: validatorFieldsProof, root: beaconStateRoot, leaf: validatorRoot, index: index }), "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof" ); } /** * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is * a tracked in the beacon state. * @param beaconStateRoot is the beacon chain state root to be proven against. * @param stateRootProof is the provided merkle proof * @param latestBlockRoot is hashtree root of the latest block header in the beacon state */ function verifyStateRootAgainstLatestBlockRoot( bytes32 latestBlockRoot, bytes32 beaconStateRoot, bytes calldata stateRootProof ) internal view { require( stateRootProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: stateRootProof, root: latestBlockRoot, leaf: beaconStateRoot, index: STATE_ROOT_INDEX }), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof" ); } /** * @notice This function verifies the slot and the withdrawal fields for a given withdrawal * @param withdrawalProof is the provided set of merkle proofs * @param withdrawalFields is the serialized withdrawal container to be proven */ function verifyWithdrawal( bytes32 beaconStateRoot, bytes32[] calldata withdrawalFields, WithdrawalProof calldata withdrawalProof, uint64 denebForkTimestamp ) internal view { require( withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length" ); require( withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large" ); require( withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large" ); require( withdrawalProof.historicalSummaryIndex < 2 ** HISTORICAL_SUMMARIES_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: historicalSummaryIndex is too large" ); //Note: post deneb hard fork, the number of exection payload header fields increased from 15->17, adding an extra level to the tree height uint256 executionPayloadHeaderFieldTreeHeight = (getWithdrawalTimestamp(withdrawalProof) < denebForkTimestamp) ? EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_CAPELLA : EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_DENEB; require( withdrawalProof.withdrawalProof.length == 32 * (executionPayloadHeaderFieldTreeHeight + WITHDRAWALS_TREE_HEIGHT + 1), "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length" ); require( withdrawalProof.executionPayloadProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT + BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length" ); require( withdrawalProof.slotProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length" ); require( withdrawalProof.timestampProof.length == 32 * (executionPayloadHeaderFieldTreeHeight), "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length" ); require( withdrawalProof.historicalSummaryBlockRootProof.length == 32 * (BEACON_STATE_FIELD_TREE_HEIGHT + (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT)), "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length" ); /** * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array, * but not here. */ uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX << ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (uint256(withdrawalProof.historicalSummaryIndex) << (1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) | uint256(withdrawalProof.blockRootIndex); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.historicalSummaryBlockRootProof, root: beaconStateRoot, leaf: withdrawalProof.blockRoot, index: historicalBlockHeaderIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.slotProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.slotRoot, index: SLOT_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof" ); { // Next we verify the executionPayloadRoot against the blockRoot uint256 executionPayloadIndex = (BODY_ROOT_INDEX << (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) | EXECUTION_PAYLOAD_INDEX; require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.executionPayloadProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.executionPayloadRoot, index: executionPayloadIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof" ); } // Next we verify the timestampRoot against the executionPayload root require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.timestampProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalProof.timestampRoot, index: TIMESTAMP_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid timestamp merkle proof" ); { /** * Next we verify the withdrawal fields against the executionPayloadRoot: * First we compute the withdrawal_index, then we merkleize the * withdrawalFields container to calculate the withdrawalRoot. * * Note: Merkleization of the withdrawals root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of * the array. Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT. */ uint256 withdrawalIndex = (WITHDRAWALS_INDEX << (WITHDRAWALS_TREE_HEIGHT + 1)) | uint256(withdrawalProof.withdrawalIndex); bytes32 withdrawalRoot = Merkle.merkleizeSha256(withdrawalFields); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.withdrawalProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalRoot, index: withdrawalIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof" ); } } /** * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below: * hh := ssz.NewHasher() * hh.PutBytes(validatorPubkey[:]) * validatorPubkeyHash := hh.Hash() * hh.Reset() */ function hashValidatorBLSPubkey(bytes memory validatorPubkey) internal pure returns (bytes32 pubkeyHash) { require(validatorPubkey.length == 48, "Input should be 48 bytes in length"); return sha256(abi.encodePacked(validatorPubkey, bytes16(0))); } /** * @dev Retrieve the withdrawal timestamp */ function getWithdrawalTimestamp(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalProof.timestampRoot); } /** * @dev Converts the withdrawal's slot to an epoch */ function getWithdrawalEpoch(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalProof.slotRoot) / SLOTS_PER_EPOCH; } /** * Indices for validator fields (refer to consensus specs): * 0: pubkey * 1: withdrawal credentials * 2: effective balance * 3: slashed? * 4: activation elligibility epoch * 5: activation epoch * 6: exit epoch * 7: withdrawable epoch */ /** * @dev Retrieves a validator's pubkey hash */ function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) { return validatorFields[VALIDATOR_PUBKEY_INDEX]; } function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) { return validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX]; } /** * @dev Retrieves a validator's effective balance (in gwei) */ function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]); } /** * @dev Retrieves a validator's withdrawable epoch */ function getWithdrawableEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_WITHDRAWABLE_EPOCH_INDEX]); } /** * Indices for withdrawal fields (refer to consensus specs): * 0: withdrawal index * 1: validator index * 2: execution address * 3: withdrawal amount */ /** * @dev Retrieves a withdrawal's validator index */ function getValidatorIndex(bytes32[] memory withdrawalFields) internal pure returns (uint40) { return uint40(Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_INDEX_INDEX])); } /** * @dev Retrieves a withdrawal's withdrawal amount (in gwei) */ function getWithdrawalAmountGwei(bytes32[] memory withdrawalFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_AMOUNT_INDEX]); } } // SPDX-License-Identifier: MIT // Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library Merkle { /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function verifyInclusionKeccak( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal pure returns (bool) { return processInclusionProofKeccak(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function processInclusionProofKeccak( bytes memory proof, bytes32 leaf, uint256 index ) internal pure returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32" ); bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, computedHash) mstore(0x20, mload(add(proof, i))) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, computedHash) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } } return computedHash; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the sha256 hash function */ function verifyInclusionSha256( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal view returns (bool) { return processInclusionProofSha256(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the sha256 hash function */ function processInclusionProofSha256( bytes memory proof, bytes32 leaf, uint256 index ) internal view returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32" ); bytes32[1] memory computedHash = [leaf]; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, mload(computedHash)) mstore(0x20, mload(add(proof, i))) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, mload(computedHash)) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } } return computedHash[0]; } /** @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function @param leaves the leaves of the merkle tree @return The computed Merkle root of the tree. @dev A pre-condition to this function is that leaves.length is a power of two. If not, the function will merkleize the inputs incorrectly. */ function merkleizeSha256(bytes32[] memory leaves) internal pure returns (bytes32) { //there are half as many nodes in the layer above the leaves uint256 numNodesInLayer = leaves.length / 2; //create a layer to store the internal nodes bytes32[] memory layer = new bytes32[](numNodesInLayer); //fill the layer with the pairwise hashes of the leaves for (uint256 i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(leaves[2 * i], leaves[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; //while we haven't computed the root while (numNodesInLayer != 0) { //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children for (uint256 i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(layer[2 * i], layer[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; } //the first node in the layer is the root return layer[0]; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; library Endian { /** * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64 * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type * @return n The big endian-formatted uint64 * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits) * through a right-shift/shr operation. */ function fromLittleEndianUint64(bytes32 lenum) internal pure returns (uint64 n) { // the number needs to be stored in little-endian encoding (ie in bytes 0-8) n = uint64(uint256(lenum >> 192)); return (n >> 56) | ((0x00FF000000000000 & n) >> 40) | ((0x0000FF0000000000 & n) >> 24) | ((0x000000FF00000000 & n) >> 8) | ((0x00000000FF000000 & n) << 8) | ((0x0000000000FF0000 & n) << 24) | ((0x000000000000FF00 & n) << 40) | ((0x00000000000000FF & n) << 56); } }