Transaction Hash:
Block:
8402887 at Aug-22-2019 10:53:58 PM +UTC
Transaction Fee:
0.00022288835 ETH
$0.56
Gas Used:
103,669 Gas / 2.15 Gwei
Emitted Events:
87 |
CEther.AccrueInterest( interestAccumulated=3789464434027721, borrowIndex=1008186057010964257, totalBorrows=2391397217504676957878 )
|
88 |
CEther.Mint( minter=[Sender] 0xd1898665a01a91ac10bd2c6cb1899336df34ac33, mintAmount=14519102021383442, mintTokens=72563972 )
|
89 |
CEther.Transfer( from=[Receiver] CEther, to=[Sender] 0xd1898665a01a91ac10bd2c6cb1899336df34ac33, amount=72563972 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4Ddc2D19...718270ED5 | 436,871.074913016369095376 Eth | 436,871.089432118390478818 Eth | 0.014519102021383442 | ||
0x5A0b54D5...D3E029c4c
Miner
| (Spark Pool) | 56.692398897562803692 Eth | 56.692621785912803692 Eth | 0.00022288835 | |
0xD1898665...6df34AC33 |
0.039519102021383442 Eth
Nonce: 7
|
0.02477711165 Eth
Nonce: 8
| 0.014741990371383442 |
Execution Trace
ETH 0.014519102021383442
CEther.CALL( )

-
WhitePaperInterestRateModel.getBorrowRate( cash=436871074913016369095376, borrows=2391393428040242930157, _reserves=1329736463483957672 ) => ( 0, 10289779850 )
Unitroller.4ef4c3e1( )
-
Comptroller.mintAllowed( cToken=0x4Ddc2D193948926D02f9B1fE9e1daa0718270ED5, minter=0xD1898665a01A91AC10bD2C6cb1899336df34AC33, mintAmount=14519102021383442 ) => ( 0 )
-
Unitroller.41c728b9( )
-
Comptroller.mintVerify( cToken=0x4Ddc2D193948926D02f9B1fE9e1daa0718270ED5, minter=0xD1898665a01A91AC10bD2C6cb1899336df34AC33, mintAmount=14519102021383442, mintTokens=72563972 )
-
[CEther (ln:2470)]
requireNoError[CEther (ln:2471)]
mintInternal[CEther (ln:2471)]
File 1 of 4: CEther
File 2 of 4: WhitePaperInterestRateModel
File 3 of 4: Unitroller
File 4 of 4: Comptroller
// File: contracts/ComptrollerInterface.sol pragma solidity ^0.5.8; interface ComptrollerInterface { /** * @notice Marker function used for light validation when updating the comptroller of a market * @dev Implementations should simply return true. * @return true */ function isComptroller() external view returns (bool); /*** Assets You Are In ***/ function enterMarkets(address[] calldata cTokens) external returns (uint[] memory); function exitMarket(address cToken) external returns (uint); /*** Policy Hooks ***/ function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint); function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external; function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint); function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external; function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint); function borrowVerify(address cToken, address borrower, uint borrowAmount) external; function repayBorrowAllowed( address cToken, address payer, address borrower, uint repayAmount) external returns (uint); function repayBorrowVerify( address cToken, address payer, address borrower, uint repayAmount, uint borrowerIndex) external; function liquidateBorrowAllowed( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount) external returns (uint); function liquidateBorrowVerify( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount, uint seizeTokens) external; function seizeAllowed( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) external returns (uint); function seizeVerify( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) external; function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint); function transferVerify(address cToken, address src, address dst, uint transferTokens) external; /*** Liquidity/Liquidation Calculations ***/ function liquidateCalculateSeizeTokens( address cTokenBorrowed, address cTokenCollateral, uint repayAmount) external view returns (uint, uint); } // File: contracts/ErrorReporter.sol pragma solidity ^0.5.8; contract ComptrollerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, COMPTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK, ZUNUSED } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } contract TokenErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, BAD_INPUT, COMPTROLLER_REJECTION, COMPTROLLER_CALCULATION_ERROR, INTEREST_RATE_MODEL_ERROR, INVALID_ACCOUNT_PAIR, INVALID_CLOSE_AMOUNT_REQUESTED, INVALID_COLLATERAL_FACTOR, MATH_ERROR, MARKET_NOT_FRESH, MARKET_NOT_LISTED, TOKEN_INSUFFICIENT_ALLOWANCE, TOKEN_INSUFFICIENT_BALANCE, TOKEN_INSUFFICIENT_CASH, TOKEN_TRANSFER_IN_FAILED, TOKEN_TRANSFER_OUT_FAILED } /* * Note: FailureInfo (but not Error) is kept in alphabetical order * This is because FailureInfo grows significantly faster, and * the order of Error has some meaning, while the order of FailureInfo * is entirely arbitrary. */ enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, BORROW_ACCRUE_INTEREST_FAILED, BORROW_CASH_NOT_AVAILABLE, BORROW_FRESHNESS_CHECK, BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, BORROW_MARKET_NOT_LISTED, BORROW_COMPTROLLER_REJECTION, LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED, LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED, LIQUIDATE_COLLATERAL_FRESHNESS_CHECK, LIQUIDATE_COMPTROLLER_REJECTION, LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX, LIQUIDATE_CLOSE_AMOUNT_IS_ZERO, LIQUIDATE_FRESHNESS_CHECK, LIQUIDATE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_REPAY_BORROW_FRESH_FAILED, LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_SEIZE_TOO_MUCH, MINT_ACCRUE_INTEREST_FAILED, MINT_COMPTROLLER_REJECTION, MINT_EXCHANGE_CALCULATION_FAILED, MINT_EXCHANGE_RATE_READ_FAILED, MINT_FRESHNESS_CHECK, MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, MINT_TRANSFER_IN_FAILED, MINT_TRANSFER_IN_NOT_POSSIBLE, REDEEM_ACCRUE_INTEREST_FAILED, REDEEM_COMPTROLLER_REJECTION, REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, REDEEM_EXCHANGE_RATE_READ_FAILED, REDEEM_FRESHNESS_CHECK, REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, REDEEM_TRANSFER_OUT_NOT_POSSIBLE, REDUCE_RESERVES_ACCRUE_INTEREST_FAILED, REDUCE_RESERVES_ADMIN_CHECK, REDUCE_RESERVES_CASH_NOT_AVAILABLE, REDUCE_RESERVES_FRESH_CHECK, REDUCE_RESERVES_VALIDATION, REPAY_BEHALF_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, REPAY_BORROW_COMPTROLLER_REJECTION, REPAY_BORROW_FRESHNESS_CHECK, REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_VALIDATION, SET_COMPTROLLER_OWNER_CHECK, SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED, SET_INTEREST_RATE_MODEL_FRESH_CHECK, SET_INTEREST_RATE_MODEL_OWNER_CHECK, SET_MAX_ASSETS_OWNER_CHECK, SET_ORACLE_MARKET_NOT_LISTED, SET_PENDING_ADMIN_OWNER_CHECK, SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED, SET_RESERVE_FACTOR_ADMIN_CHECK, SET_RESERVE_FACTOR_FRESH_CHECK, SET_RESERVE_FACTOR_BOUNDS_CHECK, TRANSFER_COMPTROLLER_REJECTION, TRANSFER_NOT_ALLOWED, TRANSFER_NOT_ENOUGH, TRANSFER_TOO_MUCH } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } // File: contracts/CarefulMath.sol pragma solidity ^0.5.8; /** * @title Careful Math * @author Compound * @notice Derived from OpenZeppelin's SafeMath library * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol */ contract CarefulMath { /** * @dev Possible error codes that we can return */ enum MathError { NO_ERROR, DIVISION_BY_ZERO, INTEGER_OVERFLOW, INTEGER_UNDERFLOW } /** * @dev Multiplies two numbers, returns an error on overflow. */ function mulUInt(uint a, uint b) internal pure returns (MathError, uint) { if (a == 0) { return (MathError.NO_ERROR, 0); } uint c = a * b; if (c / a != b) { return (MathError.INTEGER_OVERFLOW, 0); } else { return (MathError.NO_ERROR, c); } } /** * @dev Integer division of two numbers, truncating the quotient. */ function divUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b == 0) { return (MathError.DIVISION_BY_ZERO, 0); } return (MathError.NO_ERROR, a / b); } /** * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend). */ function subUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b <= a) { return (MathError.NO_ERROR, a - b); } else { return (MathError.INTEGER_UNDERFLOW, 0); } } /** * @dev Adds two numbers, returns an error on overflow. */ function addUInt(uint a, uint b) internal pure returns (MathError, uint) { uint c = a + b; if (c >= a) { return (MathError.NO_ERROR, c); } else { return (MathError.INTEGER_OVERFLOW, 0); } } /** * @dev add a and b and then subtract c */ function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) { (MathError err0, uint sum) = addUInt(a, b); if (err0 != MathError.NO_ERROR) { return (err0, 0); } return subUInt(sum, c); } } // File: contracts/Exponential.sol pragma solidity ^0.5.8; /** * @title Exponential module for storing fixed-decision decimals * @author Compound * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract Exponential is CarefulMath { uint constant expScale = 1e18; uint constant halfExpScale = expScale/2; uint constant mantissaOne = expScale; struct Exp { uint mantissa; } /** * @dev Creates an exponential from numerator and denominator values. * Note: Returns an error if (`num` * 10e18) > MAX_INT, * or if `denom` is zero. */ function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledNumerator) = mulUInt(num, expScale); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } (MathError err1, uint rational) = divUInt(scaledNumerator, denom); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: rational})); } /** * @dev Adds two exponentials, returning a new exponential. */ function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = addUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Subtracts two exponentials, returning a new exponential. */ function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = subUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Multiply an Exp by a scalar, returning a new Exp. */ function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa})); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(product)); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return addUInt(truncate(product), addend); } /** * @dev Divide an Exp by a scalar, returning a new Exp. */ function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa})); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ (MathError err0, uint numerator) = mulUInt(expScale, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return getExp(numerator, divisor.mantissa); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) { (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(fraction)); } /** * @dev Multiplies two exponentials, returning a new exponential. */ function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } // We add half the scale before dividing so that we get rounding instead of truncation. // See "Listing 6" and text above it at https://accu.org/index.php/journals/1717 // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18. (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale); // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero. assert(err2 == MathError.NO_ERROR); return (MathError.NO_ERROR, Exp({mantissa: product})); } /** * @dev Multiplies two exponentials given their mantissas, returning a new exponential. */ function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) { return mulExp(Exp({mantissa: a}), Exp({mantissa: b})); } /** * @dev Multiplies three exponentials, returning a new exponential. */ function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) { (MathError err, Exp memory ab) = mulExp(a, b); if (err != MathError.NO_ERROR) { return (err, ab); } return mulExp(ab, c); } /** * @dev Divides two exponentials, returning a new exponential. * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b, * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa) */ function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { return getExp(a.mantissa, b.mantissa); } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) pure internal returns (uint) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa < right.mantissa; //TODO: Add some simple tests and this in another PR yo. } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) pure internal returns (bool) { return value.mantissa == 0; } } // File: contracts/EIP20Interface.sol pragma solidity ^0.5.8; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool success); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external returns (bool success); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); } // File: contracts/EIP20NonStandardInterface.sol pragma solidity ^0.5.8; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom(address src, address dst, uint256 amount) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); } // File: contracts/ReentrancyGuard.sol pragma solidity ^0.5.8; /** * @title Helps contracts guard against reentrancy attacks. * @author Remco Bloemen <remco@2Ï€.com>, Eenae <[email protected]> * @dev If you mark a function `nonReentrant`, you should also * mark it `external`. */ contract ReentrancyGuard { /// @dev counter to allow mutex lock with only one SSTORE operation uint256 private _guardCounter; constructor () internal { // The counter starts at one to prevent changing it from zero to a non-zero // value, which is a more expensive operation. _guardCounter = 1; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _guardCounter += 1; uint256 localCounter = _guardCounter; _; require(localCounter == _guardCounter, "re-entered"); } } // File: contracts/InterestRateModel.sol pragma solidity ^0.5.8; /** * @title The Compound InterestRateModel Interface * @author Compound * @notice Any interest rate model should derive from this contract. * @dev These functions are specifically not marked `pure` as implementations of this * contract may read from storage variables. */ interface InterestRateModel { /** * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows * and total reserves. * @dev The return value should be scaled by 1e18, thus a return value of * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*. * @param cash The total cash of the underlying asset in the CToken * @param borrows The total borrows of the underlying asset in the CToken * @param reserves The total reserves of the underlying asset in the CToken * @return Success or failure and the borrow interest rate per block scaled by 10e18 */ function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint, uint); /** * @notice Marker function used for light validation when updating the interest rate model of a market * @dev Marker function used for light validation when updating the interest rate model of a market. Implementations should simply return true. * @return Success or failure */ function isInterestRateModel() external view returns (bool); } // File: contracts/CToken.sol pragma solidity ^0.5.8; /** * @title Compound's CToken Contract * @notice Abstract base for CTokens * @author Compound */ contract CToken is EIP20Interface, Exponential, TokenErrorReporter, ReentrancyGuard { /** * @notice Indicator that this is a CToken contract (for inspection) */ bool public constant isCToken = true; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint public decimals; /** * @notice Maximum borrow rate that can ever be applied (.0005% / block) */ uint constant borrowRateMaxMantissa = 5e14; /** * @notice Maximum fraction of interest that can be set aside for reserves */ uint constant reserveFactorMaxMantissa = 1e18; /** * @notice Administrator for this contract */ address payable public admin; /** * @notice Pending administrator for this contract */ address payable public pendingAdmin; /** * @notice Contract which oversees inter-cToken operations */ ComptrollerInterface public comptroller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; /** * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0) */ uint public initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint public reserveFactorMantissa; /** * @notice Block number that interest was last accrued at */ uint public accrualBlockNumber; /** * @notice Accumulator of total earned interest since the opening of the market */ uint public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint public totalReserves; /** * @notice Total number of tokens in circulation */ uint256 public totalSupply; /** * @notice Official record of token balances for each account */ mapping (address => uint256) accountTokens; /** * @notice Approved token transfer amounts on behalf of others */ mapping (address => mapping (address => uint256)) transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint principal; uint interestIndex; } /** * @notice Mapping of account addresses to outstanding borrow balances */ mapping(address => BorrowSnapshot) accountBorrows; /*** Market Events ***/ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint interestAccumulated, uint borrowIndex, uint totalBorrows); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint mintAmount, uint mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint redeemAmount, uint redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens); /*** Admin Events ***/ /** * @notice Event emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Event emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); /** * @notice Event emitted when comptroller is changed */ event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves); /** * @notice Construct a new money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ constructor(ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint decimals_) internal { // Set admin to msg.sender admin = msg.sender; // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require(initialExchangeRateMantissa > 0, "Initial exchange rate must be greater than zero."); // Set the comptroller uint err = _setComptroller(comptroller_); require(err == uint(Error.NO_ERROR), "Setting comptroller failed"); // Initialize block number and borrow index (block number mocks depend on comptroller being set) accrualBlockNumber = getBlockNumber(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block number / borrow index) err = _setInterestRateModelFresh(interestRateModel_); require(err == uint(Error.NO_ERROR), "Setting interest rate model failed"); name = name_; symbol = symbol_; decimals = decimals_; } /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally * @param spender The address of the account performing the transfer * @param src The address of the source account * @param dst The address of the destination account * @param tokens The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) { /* Fail if transfer not allowed */ uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed); } /* Do not allow self-transfers */ if (src == dst) { return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED); } /* Get the allowance, infinite for the account owner */ uint startingAllowance = 0; if (spender == src) { startingAllowance = uint(-1); } else { startingAllowance = transferAllowances[src][spender]; } /* Do the calculations, checking for {under,over}flow */ MathError mathErr; uint allowanceNew; uint srcTokensNew; uint dstTokensNew; (mathErr, allowanceNew) = subUInt(startingAllowance, tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED); } (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH); } (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) accountTokens[src] = srcTokensNew; accountTokens[dst] = dstTokensNew; /* Eat some of the allowance (if necessary) */ if (startingAllowance != uint(-1)) { transferAllowances[src][spender] = allowanceNew; } /* We emit a Transfer event */ emit Transfer(src, dst, tokens); /* We call the defense hook (which checks for under-collateralization) */ comptroller.transferVerify(address(this), src, dst, tokens); return uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external returns (uint) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]); require(mErr == MathError.NO_ERROR); return balance; } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by comptroller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) { uint cTokenBalance = accountTokens[account]; uint borrowBalance; uint exchangeRateMantissa; MathError mErr; (mErr, borrowBalance) = borrowBalanceStoredInternal(account); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } (mErr, exchangeRateMantissa) = exchangeRateStoredInternal(); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa); } /** * @dev Function to simply retrieve block number * This exists mainly for inheriting test contracts to stub this result. */ function getBlockNumber() internal view returns (uint) { return block.number; } /** * @notice Returns the current per-block borrow interest rate for this cToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerBlock() external view returns (uint) { (uint opaqueErr, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(opaqueErr == 0, "borrowRatePerBlock: interestRateModel.borrowRate failed"); // semi-opaque return borrowRateMantissa; } /** * @notice Returns the current per-block supply interest rate for this cToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerBlock() external view returns (uint) { /* We calculate the supply rate: * underlying = totalSupply × exchangeRate * borrowsPer = totalBorrows ÷ underlying * supplyRate = borrowRate × (1-reserveFactor) × borrowsPer */ uint exchangeRateMantissa = exchangeRateStored(); (uint e0, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(e0 == 0, "supplyRatePerBlock: calculating borrowRate failed"); // semi-opaque (MathError e1, Exp memory underlying) = mulScalar(Exp({mantissa: exchangeRateMantissa}), totalSupply); require(e1 == MathError.NO_ERROR, "supplyRatePerBlock: calculating underlying failed"); (MathError e2, Exp memory borrowsPer) = divScalarByExp(totalBorrows, underlying); require(e2 == MathError.NO_ERROR, "supplyRatePerBlock: calculating borrowsPer failed"); (MathError e3, Exp memory oneMinusReserveFactor) = subExp(Exp({mantissa: mantissaOne}), Exp({mantissa: reserveFactorMantissa})); require(e3 == MathError.NO_ERROR, "supplyRatePerBlock: calculating oneMinusReserveFactor failed"); (MathError e4, Exp memory supplyRate) = mulExp3(Exp({mantissa: borrowRateMantissa}), oneMinusReserveFactor, borrowsPer); require(e4 == MathError.NO_ERROR, "supplyRatePerBlock: calculating supplyRate failed"); return supplyRate.mantissa; } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view returns (uint) { (MathError err, uint result) = borrowBalanceStoredInternal(account); require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed"); return result; } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return (error code, the calculated balance or 0 if error code is non-zero) */ function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) { /* Note: we do not assert that the market is up to date */ MathError mathErr; uint principalTimesIndex; uint result; /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return (MathError.NO_ERROR, 0); } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, result); } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view returns (uint) { (MathError err, uint result) = exchangeRateStoredInternal(); require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed"); return result; } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return (error code, calculated exchange rate scaled by 1e18) */ function exchangeRateStoredInternal() internal view returns (MathError, uint) { if (totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return (MathError.NO_ERROR, initialExchangeRateMantissa); } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint totalCash = getCashPrior(); uint cashPlusBorrowsMinusReserves; Exp memory exchangeRate; MathError mathErr; (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, totalSupply); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, exchangeRate.mantissa); } } /** * @notice Get cash balance of this cToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view returns (uint) { return getCashPrior(); } struct AccrueInterestLocalVars { MathError mathErr; uint opaqueErr; uint borrowRateMantissa; uint currentBlockNumber; uint blockDelta; Exp simpleInterestFactor; uint interestAccumulated; uint totalBorrowsNew; uint totalReservesNew; uint borrowIndexNew; } /** * @notice Applies accrued interest to total borrows and reserves. * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public returns (uint) { AccrueInterestLocalVars memory vars; /* Calculate the current borrow interest rate */ (vars.opaqueErr, vars.borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(vars.borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high"); if (vars.opaqueErr != 0) { return failOpaque(Error.INTEREST_RATE_MODEL_ERROR, FailureInfo.ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, vars.opaqueErr); } /* Remember the initial block number */ vars.currentBlockNumber = getBlockNumber(); /* Calculate the number of blocks elapsed since the last accrual */ (vars.mathErr, vars.blockDelta) = subUInt(vars.currentBlockNumber, accrualBlockNumber); assert(vars.mathErr == MathError.NO_ERROR); // Block delta should always succeed and if it doesn't, blow up. /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * blockDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ (vars.mathErr, vars.simpleInterestFactor) = mulScalar(Exp({mantissa: vars.borrowRateMantissa}), vars.blockDelta); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.interestAccumulated) = mulScalarTruncate(vars.simpleInterestFactor, totalBorrows); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = addUInt(vars.interestAccumulated, totalBorrows); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), vars.interestAccumulated, totalReserves); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.borrowIndexNew) = mulScalarTruncateAddUInt(vars.simpleInterestFactor, borrowIndex, borrowIndex); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockNumber = vars.currentBlockNumber; borrowIndex = vars.borrowIndexNew; totalBorrows = vars.totalBorrowsNew; totalReserves = vars.totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest(vars.interestAccumulated, vars.borrowIndexNew, totalBorrows); return uint(Error.NO_ERROR); } /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function mintInternal(uint mintAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED); } // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to return mintFresh(msg.sender, mintAmount); } struct MintLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint mintTokens; uint totalSupplyNew; uint accountTokensNew; } /** * @notice User supplies assets into the market and receives cTokens in exchange * @dev Assumes interest has already been accrued up to the current block * @param minter The address of the account which is supplying the assets * @param mintAmount The amount of the underlying asset to supply * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function mintFresh(address minter, uint mintAmount) internal returns (uint) { /* Fail if mint not allowed */ uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK); } MintLocalVars memory vars; /* Fail if checkTransferIn fails */ vars.err = checkTransferIn(minter, mintAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_NOT_POSSIBLE); } /* * We get the current exchange rate and calculate the number of cTokens to be minted: * mintTokens = mintAmount / exchangeRate */ (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(mintAmount, Exp({mantissa: vars.exchangeRateMantissa})); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_CALCULATION_FAILED, uint(vars.mathErr)); } /* * We calculate the new total supply of cTokens and minter token balance, checking for overflow: * totalSupplyNew = totalSupply + mintTokens * accountTokensNew = accountTokens[minter] + mintTokens */ (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the minter and the mintAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional mintAmount of cash. * If doTransferIn fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferIn(minter, mintAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_FAILED); } /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[minter] = vars.accountTokensNew; /* We emit a Mint event, and a Transfer event */ emit Mint(minter, mintAmount, vars.mintTokens); emit Transfer(address(this), minter, vars.mintTokens); /* We call the defense hook */ comptroller.mintVerify(address(this), minter, mintAmount, vars.mintTokens); return uint(Error.NO_ERROR); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, redeemTokens, 0); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to redeem * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, 0, redeemAmount); } struct RedeemLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint redeemTokens; uint redeemAmount; uint totalSupplyNew; uint accountTokensNew; } /** * @notice User redeems cTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block * @param redeemer The address of the account which is redeeming the tokens * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero) * @param redeemAmountIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero) * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) { require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero"); RedeemLocalVars memory vars; /* exchangeRate = invoke Exchange Rate Stored() */ (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)); } /* If redeemTokensIn > 0: */ if (redeemTokensIn > 0) { /* * We calculate the exchange rate and the amount of underlying to be redeemed: * redeemTokens = redeemTokensIn * redeemAmount = redeemTokensIn x exchangeRateCurrent */ vars.redeemTokens = redeemTokensIn; (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr)); } } else { /* * We get the current exchange rate and calculate the amount to be redeemed: * redeemTokens = redeemAmountIn / exchangeRate * redeemAmount = redeemAmountIn */ (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa})); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr)); } vars.redeemAmount = redeemAmountIn; } /* Fail if redeem not allowed */ uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK); } /* * We calculate the new total supply and redeemer balance, checking for underflow: * totalSupplyNew = totalSupply - redeemTokens * accountTokensNew = accountTokens[redeemer] - redeemTokens */ (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } /* Fail gracefully if protocol has insufficient cash */ if (getCashPrior() < vars.redeemAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the redeemer and the redeemAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken has redeemAmount less of cash. * If doTransferOut fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferOut(redeemer, vars.redeemAmount); require(vars.err == Error.NO_ERROR, "redeem transfer out failed"); /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[redeemer] = vars.accountTokensNew; /* We emit a Transfer event, and a Redeem event */ emit Transfer(redeemer, address(this), vars.redeemTokens); emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens); /* We call the defense hook */ comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens); return uint(Error.NO_ERROR); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED); } // borrowFresh emits borrow-specific logs on errors, so we don't need to return borrowFresh(msg.sender, borrowAmount); } struct BorrowLocalVars { Error err; MathError mathErr; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) { /* Fail if borrow not allowed */ uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK); } /* Fail gracefully if protocol has insufficient underlying cash */ if (getCashPrior() < borrowAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE); } BorrowLocalVars memory vars; /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowsNew = accountBorrows + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken borrowAmount less of cash. * If doTransferOut fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferOut(borrower, borrowAmount); require(vars.err == Error.NO_ERROR, "borrow transfer out failed"); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.borrowVerify(address(this), borrower, borrowAmount); return uint(Error.NO_ERROR); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, borrower, repayAmount); } struct RepayBorrowLocalVars { Error err; MathError mathErr; uint repayAmount; uint borrowerIndex; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of undelrying tokens being returned * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint) { /* Fail if repayBorrow not allowed */ uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK); } RepayBorrowLocalVars memory vars; /* We remember the original borrowerIndex for verification purposes */ vars.borrowerIndex = accountBorrows[borrower].interestIndex; /* We fetch the amount the borrower owes, with accumulated interest */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } /* If repayAmount == -1, repayAmount = accountBorrows */ if (repayAmount == uint(-1)) { vars.repayAmount = vars.accountBorrows; } else { vars.repayAmount = repayAmount; } /* Fail if checkTransferIn fails */ vars.err = checkTransferIn(payer, vars.repayAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE); } /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - repayAmount * totalBorrowsNew = totalBorrows - repayAmount */ (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.repayAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.repayAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional repayAmount of cash. * If doTransferIn fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferIn(payer, vars.repayAmount); require(vars.err == Error.NO_ERROR, "repay borrow transfer in failed"); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow(payer, borrower, vars.repayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.repayBorrowVerify(address(this), payer, borrower, vars.repayAmount, vars.borrowerIndex); return uint(Error.NO_ERROR); } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function liquidateBorrowInternal(address borrower, uint repayAmount, CToken cTokenCollateral) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED); } error = cTokenCollateral.accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED); } // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral); } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CToken cTokenCollateral) internal returns (uint) { /* Fail if liquidate not allowed */ uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK); } /* Verify cTokenCollateral market's block number equals current block number */ if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER); } /* Fail if repayAmount = 0 */ if (repayAmount == 0) { return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO); } /* Fail if repayAmount = -1 */ if (repayAmount == uint(-1)) { return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX); } /* We calculate the number of collateral tokens that will be seized */ (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), repayAmount); if (amountSeizeError != 0) { return failOpaque(Error.COMPTROLLER_CALCULATION_ERROR, FailureInfo.LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, amountSeizeError); } /* Fail if seizeTokens > borrower collateral token balance */ if (seizeTokens > cTokenCollateral.balanceOf(borrower)) { return fail(Error.TOKEN_INSUFFICIENT_BALANCE, FailureInfo.LIQUIDATE_SEIZE_TOO_MUCH); } /* Fail if repayBorrow fails */ uint repayBorrowError = repayBorrowFresh(liquidator, borrower, repayAmount); if (repayBorrowError != uint(Error.NO_ERROR)) { return fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED); } /* Revert if seize tokens fails (since we cannot be sure of side effects) */ uint seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens); require(seizeError == uint(Error.NO_ERROR), "token seizure failed"); /* We emit a LiquidateBorrow event */ emit LiquidateBorrow(liquidator, borrower, repayAmount, address(cTokenCollateral), seizeTokens); /* We call the defense hook */ comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount, seizeTokens); return uint(Error.NO_ERROR); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another cToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant returns (uint) { /* Fail if seize not allowed */ uint allowed = comptroller.seizeAllowed(address(this), msg.sender, liquidator, borrower, seizeTokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER); } MathError mathErr; uint borrowerTokensNew; uint liquidatorTokensNew; /* * We calculate the new borrower and liquidator token balances, failing on underflow/overflow: * borrowerTokensNew = accountTokens[borrower] - seizeTokens * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens */ (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr)); } (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accountTokens[borrower] = borrowerTokensNew; accountTokens[liquidator] = liquidatorTokensNew; /* Emit a Transfer event */ emit Transfer(borrower, liquidator, seizeTokens); /* We call the defense hook */ comptroller.seizeVerify(address(this), msg.sender, liquidator, borrower, seizeTokens); return uint(Error.NO_ERROR); } /*** Admin Functions ***/ /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) * * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address? */ function _setPendingAdmin(address payable newPendingAdmin) external returns (uint) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() external returns (uint) { // Check caller is pendingAdmin and pendingAdmin ≠address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Sets a new comptroller for the market * @dev Admin function to set a new comptroller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setComptroller(ComptrollerInterface newComptroller) public returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK); } ComptrollerInterface oldComptroller = comptroller; // Ensure invoke comptroller.isComptroller() returns true require(newComptroller.isComptroller(), "marker method returned false"); // Set market's comptroller to newComptroller comptroller = newComptroller; // Emit NewComptroller(oldComptroller, newComptroller) emit NewComptroller(oldComptroller, newComptroller); return uint(Error.NO_ERROR); } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed. return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED); } // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK); } // Verify market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK); } uint oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa); return uint(Error.NO_ERROR); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint reduceAmount) external nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed. return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED); } // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint reduceAmount) internal returns (uint) { Error err; // totalReserves - reduceAmount uint totalReservesNew; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE); } // Check reduceAmount ≤ reserves[n] (totalReserves) // TODO: I'm following the spec literally here but I think we should we just use SafeMath instead and fail on an error (which would be underflow) if (reduceAmount > totalReserves) { return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = totalReserves - reduceAmount; // We checked reduceAmount <= totalReserves above, so this should never revert. require(totalReservesNew <= totalReserves, "reduce reserves unexpected underflow"); // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // invoke doTransferOut(reduceAmount, admin) err = doTransferOut(admin, reduceAmount); // we revert on the failure of this command require(err == Error.NO_ERROR, "reduce reserves transfer out failed"); emit ReservesReduced(admin, reduceAmount, totalReservesNew); return uint(Error.NO_ERROR); } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED); } // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require(newInterestRateModel.isInterestRateModel(), "marker method returned false"); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel); return uint(Error.NO_ERROR); } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view returns (uint); /** * @dev Checks whether or not there is sufficient allowance for this contract to move amount from `from` and * whether or not `from` has a balance of at least `amount`. Does NOT do a transfer. */ function checkTransferIn(address from, uint amount) internal view returns (Error); /** * @dev Performs a transfer in, ideally returning an explanatory error code upon failure rather than reverting. * If caller has not called `checkTransferIn`, this may revert due to insufficient balance or insufficient allowance. * If caller has called `checkTransferIn` successfully, this should not revert in normal conditions. */ function doTransferIn(address from, uint amount) internal returns (Error); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut(address payable to, uint amount) internal returns (Error); } // File: contracts/CEther.sol pragma solidity ^0.5.8; /** * @title Compound's CEther Contract * @notice CToken which wraps Ether * @author Compound */ contract CEther is CToken { /** * @notice Construct a new CEther money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ ERC-20 name of this token * @param symbol_ ERC-20 symbol of this token * @param decimals_ ERC-20 decimal precision of this token */ constructor(ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint decimals_) public CToken(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_) {} /*** User Interface ***/ /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Reverts upon any failure */ function mint() external payable { requireNoError(mintInternal(msg.value), "mint failed"); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeem(uint redeemTokens) external returns (uint) { return redeemInternal(redeemTokens); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to redeem * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemUnderlying(uint redeemAmount) external returns (uint) { return redeemUnderlyingInternal(redeemAmount); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrow(uint borrowAmount) external returns (uint) { return borrowInternal(borrowAmount); } /** * @notice Sender repays their own borrow * @dev Reverts upon any failure */ function repayBorrow() external payable { requireNoError(repayBorrowInternal(msg.value), "repayBorrow failed"); } /** * @notice Sender repays a borrow belonging to borrower * @dev Reverts upon any failure * @param borrower the account with the debt being payed off */ function repayBorrowBehalf(address borrower) external payable { requireNoError(repayBorrowBehalfInternal(borrower, msg.value), "repayBorrowBehalf failed"); } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @dev Reverts upon any failure * @param borrower The borrower of this cToken to be liquidated * @param cTokenCollateral The market in which to seize collateral from the borrower */ function liquidateBorrow(address borrower, CToken cTokenCollateral) external payable { requireNoError(liquidateBorrowInternal(borrower, msg.value, cTokenCollateral), "liquidateBorrow failed"); } /** * @notice Send Ether to CEther to mint */ function () external payable { requireNoError(mintInternal(msg.value), "mint failed"); } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of Ether, before this message * @dev This excludes the value of the current message, if any * @return The quantity of Ether owned by this contract */ function getCashPrior() internal view returns (uint) { (MathError err, uint startingBalance) = subUInt(address(this).balance, msg.value); require(err == MathError.NO_ERROR); return startingBalance; } /** * @notice Checks whether the requested transfer matches the `msg` * @dev Does NOT do a transfer * @param from Address sending the Ether * @param amount Amount of Ether being sent * @return Whether or not the transfer checks out */ function checkTransferIn(address from, uint amount) internal view returns (Error) { // Sanity checks require(msg.sender == from, "sender mismatch"); require(msg.value == amount, "value mismatch"); return Error.NO_ERROR; } /** * @notice Perform the actual transfer in, which is a no-op * @param from Address sending the Ether * @param amount Amount of Ether being sent * @return Success */ function doTransferIn(address from, uint amount) internal returns (Error) { // Sanity checks require(msg.sender == from, "sender mismatch"); require(msg.value == amount, "value mismatch"); return Error.NO_ERROR; } function doTransferOut(address payable to, uint amount) internal returns (Error) { /* Send the Ether, with minimal gas and revert on failure */ to.transfer(amount); return Error.NO_ERROR; } function requireNoError(uint errCode, string memory message) internal pure { if (errCode == uint(Error.NO_ERROR)) { return; } bytes memory fullMessage = new bytes(bytes(message).length + 5); uint i; for (i = 0; i < bytes(message).length; i++) { fullMessage[i] = bytes(message)[i]; } fullMessage[i+0] = byte(uint8(32)); fullMessage[i+1] = byte(uint8(40)); fullMessage[i+2] = byte(uint8(48 + ( errCode / 10 ))); fullMessage[i+3] = byte(uint8(48 + ( errCode % 10 ))); fullMessage[i+4] = byte(uint8(41)); require(errCode == uint(Error.NO_ERROR), string(fullMessage)); } }
File 2 of 4: WhitePaperInterestRateModel
// File: contracts/CarefulMath.sol pragma solidity ^0.5.8; /** * @title Careful Math * @author Compound * @notice Derived from OpenZeppelin's SafeMath library * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol */ contract CarefulMath { /** * @dev Possible error codes that we can return */ enum MathError { NO_ERROR, DIVISION_BY_ZERO, INTEGER_OVERFLOW, INTEGER_UNDERFLOW } /** * @dev Multiplies two numbers, returns an error on overflow. */ function mulUInt(uint a, uint b) internal pure returns (MathError, uint) { if (a == 0) { return (MathError.NO_ERROR, 0); } uint c = a * b; if (c / a != b) { return (MathError.INTEGER_OVERFLOW, 0); } else { return (MathError.NO_ERROR, c); } } /** * @dev Integer division of two numbers, truncating the quotient. */ function divUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b == 0) { return (MathError.DIVISION_BY_ZERO, 0); } return (MathError.NO_ERROR, a / b); } /** * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend). */ function subUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b <= a) { return (MathError.NO_ERROR, a - b); } else { return (MathError.INTEGER_UNDERFLOW, 0); } } /** * @dev Adds two numbers, returns an error on overflow. */ function addUInt(uint a, uint b) internal pure returns (MathError, uint) { uint c = a + b; if (c >= a) { return (MathError.NO_ERROR, c); } else { return (MathError.INTEGER_OVERFLOW, 0); } } /** * @dev add a and b and then subtract c */ function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) { (MathError err0, uint sum) = addUInt(a, b); if (err0 != MathError.NO_ERROR) { return (err0, 0); } return subUInt(sum, c); } } // File: contracts/Exponential.sol pragma solidity ^0.5.8; /** * @title Exponential module for storing fixed-decision decimals * @author Compound * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract Exponential is CarefulMath { uint constant expScale = 1e18; uint constant halfExpScale = expScale/2; uint constant mantissaOne = expScale; struct Exp { uint mantissa; } /** * @dev Creates an exponential from numerator and denominator values. * Note: Returns an error if (`num` * 10e18) > MAX_INT, * or if `denom` is zero. */ function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledNumerator) = mulUInt(num, expScale); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } (MathError err1, uint rational) = divUInt(scaledNumerator, denom); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: rational})); } /** * @dev Adds two exponentials, returning a new exponential. */ function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = addUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Subtracts two exponentials, returning a new exponential. */ function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = subUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Multiply an Exp by a scalar, returning a new Exp. */ function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa})); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(product)); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return addUInt(truncate(product), addend); } /** * @dev Divide an Exp by a scalar, returning a new Exp. */ function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa})); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ (MathError err0, uint numerator) = mulUInt(expScale, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return getExp(numerator, divisor.mantissa); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) { (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(fraction)); } /** * @dev Multiplies two exponentials, returning a new exponential. */ function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } // We add half the scale before dividing so that we get rounding instead of truncation. // See "Listing 6" and text above it at https://accu.org/index.php/journals/1717 // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18. (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale); // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero. assert(err2 == MathError.NO_ERROR); return (MathError.NO_ERROR, Exp({mantissa: product})); } /** * @dev Multiplies two exponentials given their mantissas, returning a new exponential. */ function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) { return mulExp(Exp({mantissa: a}), Exp({mantissa: b})); } /** * @dev Multiplies three exponentials, returning a new exponential. */ function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) { (MathError err, Exp memory ab) = mulExp(a, b); if (err != MathError.NO_ERROR) { return (err, ab); } return mulExp(ab, c); } /** * @dev Divides two exponentials, returning a new exponential. * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b, * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa) */ function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { return getExp(a.mantissa, b.mantissa); } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) pure internal returns (uint) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa < right.mantissa; //TODO: Add some simple tests and this in another PR yo. } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) pure internal returns (bool) { return value.mantissa == 0; } } // File: contracts/InterestRateModel.sol pragma solidity ^0.5.8; /** * @title The Compound InterestRateModel Interface * @author Compound * @notice Any interest rate model should derive from this contract. * @dev These functions are specifically not marked `pure` as implementations of this * contract may read from storage variables. */ interface InterestRateModel { /** * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows * and total reserves. * @dev The return value should be scaled by 1e18, thus a return value of * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*. * @param cash The total cash of the underlying asset in the CToken * @param borrows The total borrows of the underlying asset in the CToken * @param reserves The total reserves of the underlying asset in the CToken * @return Success or failure and the borrow interest rate per block scaled by 10e18 */ function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint, uint); /** * @notice Marker function used for light validation when updating the interest rate model of a market * @dev Marker function used for light validation when updating the interest rate model of a market. Implementations should simply return true. * @return Success or failure */ function isInterestRateModel() external view returns (bool); } // File: contracts/WhitePaperInterestRateModel.sol pragma solidity ^0.5.8; /** * @title The Compound Standard Interest Rate Model with pluggable constants * @author Compound * @notice See Section 2.4 of the Compound Whitepaper */ contract WhitePaperInterestRateModel is InterestRateModel, Exponential { /** * @notice Indicator that this is an InterestRateModel contract (for inspection) */ bool public constant isInterestRateModel = true; /** * @notice The multiplier of utilization rate that gives the slope of the interest rate */ uint public multiplier; /** * @notice The base interest rate which is the y-intercept when utilization rate is 0 */ uint public baseRate; /** * @notice The approximate number of blocks per year that is assumed by the interest rate model */ uint public constant blocksPerYear = 2102400; constructor(uint baseRate_, uint multiplier_) public { baseRate = baseRate_; multiplier = multiplier_; } enum IRError { NO_ERROR, FAILED_TO_ADD_CASH_PLUS_BORROWS, FAILED_TO_GET_EXP, FAILED_TO_MUL_UTILIZATION_RATE, FAILED_TO_ADD_BASE_RATE } /* * @dev Calculates the utilization rate (borrows / (cash + borrows)) as an Exp */ function getUtilizationRate(uint cash, uint borrows) pure internal returns (IRError, Exp memory) { if (borrows == 0) { // Utilization rate is zero when there's no borrows return (IRError.NO_ERROR, Exp({mantissa: 0})); } (MathError err0, uint cashPlusBorrows) = addUInt(cash, borrows); if (err0 != MathError.NO_ERROR) { return (IRError.FAILED_TO_ADD_CASH_PLUS_BORROWS, Exp({mantissa: 0})); } (MathError err1, Exp memory utilizationRate) = getExp(borrows, cashPlusBorrows); if (err1 != MathError.NO_ERROR) { return (IRError.FAILED_TO_GET_EXP, Exp({mantissa: 0})); } return (IRError.NO_ERROR, utilizationRate); } /* * @dev Calculates the utilization and borrow rates for use by getBorrowRate function */ function getUtilizationAndAnnualBorrowRate(uint cash, uint borrows) view internal returns (IRError, Exp memory, Exp memory) { (IRError err0, Exp memory utilizationRate) = getUtilizationRate(cash, borrows); if (err0 != IRError.NO_ERROR) { return (err0, Exp({mantissa: 0}), Exp({mantissa: 0})); } // Borrow Rate is 5% + UtilizationRate * 45% (baseRate + UtilizationRate * multiplier); // 45% of utilizationRate, is `rate * 45 / 100` (MathError err1, Exp memory utilizationRateMuled) = mulScalar(utilizationRate, multiplier); // `mulScalar` only overflows when the product is >= 2^256. // utilizationRate is a real number on the interval [0,1], which means that // utilizationRate.mantissa is in the interval [0e18,1e18], which means that 45 times // that is in the interval [0e18,45e18]. That interval has no intersection with 2^256, and therefore // this can never overflow for the standard rates. if (err1 != MathError.NO_ERROR) { return (IRError.FAILED_TO_MUL_UTILIZATION_RATE, Exp({mantissa: 0}), Exp({mantissa: 0})); } (MathError err2, Exp memory utilizationRateScaled) = divScalar(utilizationRateMuled, mantissaOne); // 100 is a constant, and therefore cannot be zero, which is the only error case of divScalar. assert(err2 == MathError.NO_ERROR); // Add the 5% for (5% + 45% * Ua) (MathError err3, Exp memory annualBorrowRate) = addExp(utilizationRateScaled, Exp({mantissa: baseRate})); // `addExp` only fails when the addition of mantissas overflow. // As per above, utilizationRateMuled is capped at 45e18, // and utilizationRateScaled is capped at 4.5e17. mantissaFivePercent = 0.5e17, and thus the addition // is capped at 5e17, which is less than 2^256. This only applies to the standard rates if (err3 != MathError.NO_ERROR) { return (IRError.FAILED_TO_ADD_BASE_RATE, Exp({mantissa: 0}), Exp({mantissa: 0})); } return (IRError.NO_ERROR, utilizationRate, annualBorrowRate); } /** * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows * and total reserves. * @dev The return value should be scaled by 1e18, thus a return value of * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*. * @param cash The total cash of the underlying asset in the CToken * @param borrows The total borrows of the underlying asset in the CToken * @param _reserves The total reserves of the underlying asset in the CToken * @return Success or failure and the borrow interest rate per block scaled by 10e18 */ function getBorrowRate(uint cash, uint borrows, uint _reserves) public view returns (uint, uint) { _reserves; // pragma ignore unused argument (IRError err0, Exp memory _utilizationRate, Exp memory annualBorrowRate) = getUtilizationAndAnnualBorrowRate(cash, borrows); if (err0 != IRError.NO_ERROR) { return (uint(err0), 0); } // And then divide down by blocks per year. (MathError err1, Exp memory borrowRate) = divScalar(annualBorrowRate, blocksPerYear); // basis points * blocks per year // divScalar only fails when divisor is zero. This is clearly not the case. assert(err1 == MathError.NO_ERROR); _utilizationRate; // pragma ignore unused variable // Note: mantissa is the rate scaled 1e18, which matches the expected result return (uint(IRError.NO_ERROR), borrowRate.mantissa); } }
File 3 of 4: Unitroller
// File: contracts/ErrorReporter.sol pragma solidity ^0.5.8; contract ComptrollerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, COMPTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK, ZUNUSED } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } contract TokenErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, BAD_INPUT, COMPTROLLER_REJECTION, COMPTROLLER_CALCULATION_ERROR, INTEREST_RATE_MODEL_ERROR, INVALID_ACCOUNT_PAIR, INVALID_CLOSE_AMOUNT_REQUESTED, INVALID_COLLATERAL_FACTOR, MATH_ERROR, MARKET_NOT_FRESH, MARKET_NOT_LISTED, TOKEN_INSUFFICIENT_ALLOWANCE, TOKEN_INSUFFICIENT_BALANCE, TOKEN_INSUFFICIENT_CASH, TOKEN_TRANSFER_IN_FAILED, TOKEN_TRANSFER_OUT_FAILED } /* * Note: FailureInfo (but not Error) is kept in alphabetical order * This is because FailureInfo grows significantly faster, and * the order of Error has some meaning, while the order of FailureInfo * is entirely arbitrary. */ enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, BORROW_ACCRUE_INTEREST_FAILED, BORROW_CASH_NOT_AVAILABLE, BORROW_FRESHNESS_CHECK, BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, BORROW_MARKET_NOT_LISTED, BORROW_COMPTROLLER_REJECTION, LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED, LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED, LIQUIDATE_COLLATERAL_FRESHNESS_CHECK, LIQUIDATE_COMPTROLLER_REJECTION, LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX, LIQUIDATE_CLOSE_AMOUNT_IS_ZERO, LIQUIDATE_FRESHNESS_CHECK, LIQUIDATE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_REPAY_BORROW_FRESH_FAILED, LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_SEIZE_TOO_MUCH, MINT_ACCRUE_INTEREST_FAILED, MINT_COMPTROLLER_REJECTION, MINT_EXCHANGE_CALCULATION_FAILED, MINT_EXCHANGE_RATE_READ_FAILED, MINT_FRESHNESS_CHECK, MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, MINT_TRANSFER_IN_FAILED, MINT_TRANSFER_IN_NOT_POSSIBLE, REDEEM_ACCRUE_INTEREST_FAILED, REDEEM_COMPTROLLER_REJECTION, REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, REDEEM_EXCHANGE_RATE_READ_FAILED, REDEEM_FRESHNESS_CHECK, REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, REDEEM_TRANSFER_OUT_NOT_POSSIBLE, REDUCE_RESERVES_ACCRUE_INTEREST_FAILED, REDUCE_RESERVES_ADMIN_CHECK, REDUCE_RESERVES_CASH_NOT_AVAILABLE, REDUCE_RESERVES_FRESH_CHECK, REDUCE_RESERVES_VALIDATION, REPAY_BEHALF_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, REPAY_BORROW_COMPTROLLER_REJECTION, REPAY_BORROW_FRESHNESS_CHECK, REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_VALIDATION, SET_COMPTROLLER_OWNER_CHECK, SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED, SET_INTEREST_RATE_MODEL_FRESH_CHECK, SET_INTEREST_RATE_MODEL_OWNER_CHECK, SET_MAX_ASSETS_OWNER_CHECK, SET_ORACLE_MARKET_NOT_LISTED, SET_PENDING_ADMIN_OWNER_CHECK, SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED, SET_RESERVE_FACTOR_ADMIN_CHECK, SET_RESERVE_FACTOR_FRESH_CHECK, SET_RESERVE_FACTOR_BOUNDS_CHECK, TRANSFER_COMPTROLLER_REJECTION, TRANSFER_NOT_ALLOWED, TRANSFER_NOT_ENOUGH, TRANSFER_TOO_MUCH } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } // File: contracts/ComptrollerInterface.sol pragma solidity ^0.5.8; interface ComptrollerInterface { /** * @notice Marker function used for light validation when updating the comptroller of a market * @dev Implementations should simply return true. * @return true */ function isComptroller() external view returns (bool); /*** Assets You Are In ***/ function enterMarkets(address[] calldata cTokens) external returns (uint[] memory); function exitMarket(address cToken) external returns (uint); /*** Policy Hooks ***/ function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint); function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external; function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint); function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external; function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint); function borrowVerify(address cToken, address borrower, uint borrowAmount) external; function repayBorrowAllowed( address cToken, address payer, address borrower, uint repayAmount) external returns (uint); function repayBorrowVerify( address cToken, address payer, address borrower, uint repayAmount, uint borrowerIndex) external; function liquidateBorrowAllowed( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount) external returns (uint); function liquidateBorrowVerify( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount, uint seizeTokens) external; function seizeAllowed( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) external returns (uint); function seizeVerify( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) external; function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint); function transferVerify(address cToken, address src, address dst, uint transferTokens) external; /*** Liquidity/Liquidation Calculations ***/ function liquidateCalculateSeizeTokens( address cTokenBorrowed, address cTokenCollateral, uint repayAmount) external view returns (uint, uint); } // File: contracts/CarefulMath.sol pragma solidity ^0.5.8; /** * @title Careful Math * @author Compound * @notice Derived from OpenZeppelin's SafeMath library * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol */ contract CarefulMath { /** * @dev Possible error codes that we can return */ enum MathError { NO_ERROR, DIVISION_BY_ZERO, INTEGER_OVERFLOW, INTEGER_UNDERFLOW } /** * @dev Multiplies two numbers, returns an error on overflow. */ function mulUInt(uint a, uint b) internal pure returns (MathError, uint) { if (a == 0) { return (MathError.NO_ERROR, 0); } uint c = a * b; if (c / a != b) { return (MathError.INTEGER_OVERFLOW, 0); } else { return (MathError.NO_ERROR, c); } } /** * @dev Integer division of two numbers, truncating the quotient. */ function divUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b == 0) { return (MathError.DIVISION_BY_ZERO, 0); } return (MathError.NO_ERROR, a / b); } /** * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend). */ function subUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b <= a) { return (MathError.NO_ERROR, a - b); } else { return (MathError.INTEGER_UNDERFLOW, 0); } } /** * @dev Adds two numbers, returns an error on overflow. */ function addUInt(uint a, uint b) internal pure returns (MathError, uint) { uint c = a + b; if (c >= a) { return (MathError.NO_ERROR, c); } else { return (MathError.INTEGER_OVERFLOW, 0); } } /** * @dev add a and b and then subtract c */ function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) { (MathError err0, uint sum) = addUInt(a, b); if (err0 != MathError.NO_ERROR) { return (err0, 0); } return subUInt(sum, c); } } // File: contracts/Exponential.sol pragma solidity ^0.5.8; /** * @title Exponential module for storing fixed-decision decimals * @author Compound * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract Exponential is CarefulMath { uint constant expScale = 1e18; uint constant halfExpScale = expScale/2; uint constant mantissaOne = expScale; struct Exp { uint mantissa; } /** * @dev Creates an exponential from numerator and denominator values. * Note: Returns an error if (`num` * 10e18) > MAX_INT, * or if `denom` is zero. */ function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledNumerator) = mulUInt(num, expScale); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } (MathError err1, uint rational) = divUInt(scaledNumerator, denom); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: rational})); } /** * @dev Adds two exponentials, returning a new exponential. */ function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = addUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Subtracts two exponentials, returning a new exponential. */ function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = subUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Multiply an Exp by a scalar, returning a new Exp. */ function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa})); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(product)); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return addUInt(truncate(product), addend); } /** * @dev Divide an Exp by a scalar, returning a new Exp. */ function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa})); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ (MathError err0, uint numerator) = mulUInt(expScale, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return getExp(numerator, divisor.mantissa); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) { (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(fraction)); } /** * @dev Multiplies two exponentials, returning a new exponential. */ function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } // We add half the scale before dividing so that we get rounding instead of truncation. // See "Listing 6" and text above it at https://accu.org/index.php/journals/1717 // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18. (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale); // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero. assert(err2 == MathError.NO_ERROR); return (MathError.NO_ERROR, Exp({mantissa: product})); } /** * @dev Multiplies two exponentials given their mantissas, returning a new exponential. */ function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) { return mulExp(Exp({mantissa: a}), Exp({mantissa: b})); } /** * @dev Multiplies three exponentials, returning a new exponential. */ function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) { (MathError err, Exp memory ab) = mulExp(a, b); if (err != MathError.NO_ERROR) { return (err, ab); } return mulExp(ab, c); } /** * @dev Divides two exponentials, returning a new exponential. * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b, * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa) */ function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { return getExp(a.mantissa, b.mantissa); } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) pure internal returns (uint) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa < right.mantissa; //TODO: Add some simple tests and this in another PR yo. } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) pure internal returns (bool) { return value.mantissa == 0; } } // File: contracts/EIP20Interface.sol pragma solidity ^0.5.8; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool success); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external returns (bool success); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); } // File: contracts/EIP20NonStandardInterface.sol pragma solidity ^0.5.8; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom(address src, address dst, uint256 amount) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); } // File: contracts/ReentrancyGuard.sol pragma solidity ^0.5.8; /** * @title Helps contracts guard against reentrancy attacks. * @author Remco Bloemen <remco@2Ï€.com>, Eenae <[email protected]> * @dev If you mark a function `nonReentrant`, you should also * mark it `external`. */ contract ReentrancyGuard { /// @dev counter to allow mutex lock with only one SSTORE operation uint256 private _guardCounter; constructor () internal { // The counter starts at one to prevent changing it from zero to a non-zero // value, which is a more expensive operation. _guardCounter = 1; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _guardCounter += 1; uint256 localCounter = _guardCounter; _; require(localCounter == _guardCounter, "re-entered"); } } // File: contracts/InterestRateModel.sol pragma solidity ^0.5.8; /** * @title The Compound InterestRateModel Interface * @author Compound * @notice Any interest rate model should derive from this contract. * @dev These functions are specifically not marked `pure` as implementations of this * contract may read from storage variables. */ interface InterestRateModel { /** * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows * and total reserves. * @dev The return value should be scaled by 1e18, thus a return value of * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*. * @param cash The total cash of the underlying asset in the CToken * @param borrows The total borrows of the underlying asset in the CToken * @param reserves The total reserves of the underlying asset in the CToken * @return Success or failure and the borrow interest rate per block scaled by 10e18 */ function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint, uint); /** * @notice Marker function used for light validation when updating the interest rate model of a market * @dev Marker function used for light validation when updating the interest rate model of a market. Implementations should simply return true. * @return Success or failure */ function isInterestRateModel() external view returns (bool); } // File: contracts/CToken.sol pragma solidity ^0.5.8; /** * @title Compound's CToken Contract * @notice Abstract base for CTokens * @author Compound */ contract CToken is EIP20Interface, Exponential, TokenErrorReporter, ReentrancyGuard { /** * @notice Indicator that this is a CToken contract (for inspection) */ bool public constant isCToken = true; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint public decimals; /** * @notice Maximum borrow rate that can ever be applied (.0005% / block) */ uint constant borrowRateMaxMantissa = 5e14; /** * @notice Maximum fraction of interest that can be set aside for reserves */ uint constant reserveFactorMaxMantissa = 1e18; /** * @notice Administrator for this contract */ address payable public admin; /** * @notice Pending administrator for this contract */ address payable public pendingAdmin; /** * @notice Contract which oversees inter-cToken operations */ ComptrollerInterface public comptroller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; /** * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0) */ uint public initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint public reserveFactorMantissa; /** * @notice Block number that interest was last accrued at */ uint public accrualBlockNumber; /** * @notice Accumulator of total earned interest since the opening of the market */ uint public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint public totalReserves; /** * @notice Total number of tokens in circulation */ uint256 public totalSupply; /** * @notice Official record of token balances for each account */ mapping (address => uint256) accountTokens; /** * @notice Approved token transfer amounts on behalf of others */ mapping (address => mapping (address => uint256)) transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint principal; uint interestIndex; } /** * @notice Mapping of account addresses to outstanding borrow balances */ mapping(address => BorrowSnapshot) accountBorrows; /*** Market Events ***/ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint interestAccumulated, uint borrowIndex, uint totalBorrows); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint mintAmount, uint mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint redeemAmount, uint redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens); /*** Admin Events ***/ /** * @notice Event emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Event emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); /** * @notice Event emitted when comptroller is changed */ event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves); /** * @notice Construct a new money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ constructor(ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint decimals_) internal { // Set admin to msg.sender admin = msg.sender; // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require(initialExchangeRateMantissa > 0, "Initial exchange rate must be greater than zero."); // Set the comptroller uint err = _setComptroller(comptroller_); require(err == uint(Error.NO_ERROR), "Setting comptroller failed"); // Initialize block number and borrow index (block number mocks depend on comptroller being set) accrualBlockNumber = getBlockNumber(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block number / borrow index) err = _setInterestRateModelFresh(interestRateModel_); require(err == uint(Error.NO_ERROR), "Setting interest rate model failed"); name = name_; symbol = symbol_; decimals = decimals_; } /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally * @param spender The address of the account performing the transfer * @param src The address of the source account * @param dst The address of the destination account * @param tokens The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) { /* Fail if transfer not allowed */ uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed); } /* Do not allow self-transfers */ if (src == dst) { return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED); } /* Get the allowance, infinite for the account owner */ uint startingAllowance = 0; if (spender == src) { startingAllowance = uint(-1); } else { startingAllowance = transferAllowances[src][spender]; } /* Do the calculations, checking for {under,over}flow */ MathError mathErr; uint allowanceNew; uint srcTokensNew; uint dstTokensNew; (mathErr, allowanceNew) = subUInt(startingAllowance, tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED); } (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH); } (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) accountTokens[src] = srcTokensNew; accountTokens[dst] = dstTokensNew; /* Eat some of the allowance (if necessary) */ if (startingAllowance != uint(-1)) { transferAllowances[src][spender] = allowanceNew; } /* We emit a Transfer event */ emit Transfer(src, dst, tokens); /* We call the defense hook (which checks for under-collateralization) */ comptroller.transferVerify(address(this), src, dst, tokens); return uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external returns (uint) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]); require(mErr == MathError.NO_ERROR); return balance; } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by comptroller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) { uint cTokenBalance = accountTokens[account]; uint borrowBalance; uint exchangeRateMantissa; MathError mErr; (mErr, borrowBalance) = borrowBalanceStoredInternal(account); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } (mErr, exchangeRateMantissa) = exchangeRateStoredInternal(); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa); } /** * @dev Function to simply retrieve block number * This exists mainly for inheriting test contracts to stub this result. */ function getBlockNumber() internal view returns (uint) { return block.number; } /** * @notice Returns the current per-block borrow interest rate for this cToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerBlock() external view returns (uint) { (uint opaqueErr, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(opaqueErr == 0, "borrowRatePerBlock: interestRateModel.borrowRate failed"); // semi-opaque return borrowRateMantissa; } /** * @notice Returns the current per-block supply interest rate for this cToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerBlock() external view returns (uint) { /* We calculate the supply rate: * underlying = totalSupply × exchangeRate * borrowsPer = totalBorrows ÷ underlying * supplyRate = borrowRate × (1-reserveFactor) × borrowsPer */ uint exchangeRateMantissa = exchangeRateStored(); (uint e0, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(e0 == 0, "supplyRatePerBlock: calculating borrowRate failed"); // semi-opaque (MathError e1, Exp memory underlying) = mulScalar(Exp({mantissa: exchangeRateMantissa}), totalSupply); require(e1 == MathError.NO_ERROR, "supplyRatePerBlock: calculating underlying failed"); (MathError e2, Exp memory borrowsPer) = divScalarByExp(totalBorrows, underlying); require(e2 == MathError.NO_ERROR, "supplyRatePerBlock: calculating borrowsPer failed"); (MathError e3, Exp memory oneMinusReserveFactor) = subExp(Exp({mantissa: mantissaOne}), Exp({mantissa: reserveFactorMantissa})); require(e3 == MathError.NO_ERROR, "supplyRatePerBlock: calculating oneMinusReserveFactor failed"); (MathError e4, Exp memory supplyRate) = mulExp3(Exp({mantissa: borrowRateMantissa}), oneMinusReserveFactor, borrowsPer); require(e4 == MathError.NO_ERROR, "supplyRatePerBlock: calculating supplyRate failed"); return supplyRate.mantissa; } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view returns (uint) { (MathError err, uint result) = borrowBalanceStoredInternal(account); require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed"); return result; } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return (error code, the calculated balance or 0 if error code is non-zero) */ function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) { /* Note: we do not assert that the market is up to date */ MathError mathErr; uint principalTimesIndex; uint result; /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return (MathError.NO_ERROR, 0); } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, result); } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view returns (uint) { (MathError err, uint result) = exchangeRateStoredInternal(); require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed"); return result; } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return (error code, calculated exchange rate scaled by 1e18) */ function exchangeRateStoredInternal() internal view returns (MathError, uint) { if (totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return (MathError.NO_ERROR, initialExchangeRateMantissa); } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint totalCash = getCashPrior(); uint cashPlusBorrowsMinusReserves; Exp memory exchangeRate; MathError mathErr; (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, totalSupply); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, exchangeRate.mantissa); } } /** * @notice Get cash balance of this cToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view returns (uint) { return getCashPrior(); } struct AccrueInterestLocalVars { MathError mathErr; uint opaqueErr; uint borrowRateMantissa; uint currentBlockNumber; uint blockDelta; Exp simpleInterestFactor; uint interestAccumulated; uint totalBorrowsNew; uint totalReservesNew; uint borrowIndexNew; } /** * @notice Applies accrued interest to total borrows and reserves. * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public returns (uint) { AccrueInterestLocalVars memory vars; /* Calculate the current borrow interest rate */ (vars.opaqueErr, vars.borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); require(vars.borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high"); if (vars.opaqueErr != 0) { return failOpaque(Error.INTEREST_RATE_MODEL_ERROR, FailureInfo.ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, vars.opaqueErr); } /* Remember the initial block number */ vars.currentBlockNumber = getBlockNumber(); /* Calculate the number of blocks elapsed since the last accrual */ (vars.mathErr, vars.blockDelta) = subUInt(vars.currentBlockNumber, accrualBlockNumber); assert(vars.mathErr == MathError.NO_ERROR); // Block delta should always succeed and if it doesn't, blow up. /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * blockDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ (vars.mathErr, vars.simpleInterestFactor) = mulScalar(Exp({mantissa: vars.borrowRateMantissa}), vars.blockDelta); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.interestAccumulated) = mulScalarTruncate(vars.simpleInterestFactor, totalBorrows); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = addUInt(vars.interestAccumulated, totalBorrows); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), vars.interestAccumulated, totalReserves); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.borrowIndexNew) = mulScalarTruncateAddUInt(vars.simpleInterestFactor, borrowIndex, borrowIndex); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockNumber = vars.currentBlockNumber; borrowIndex = vars.borrowIndexNew; totalBorrows = vars.totalBorrowsNew; totalReserves = vars.totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest(vars.interestAccumulated, vars.borrowIndexNew, totalBorrows); return uint(Error.NO_ERROR); } /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function mintInternal(uint mintAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED); } // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to return mintFresh(msg.sender, mintAmount); } struct MintLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint mintTokens; uint totalSupplyNew; uint accountTokensNew; } /** * @notice User supplies assets into the market and receives cTokens in exchange * @dev Assumes interest has already been accrued up to the current block * @param minter The address of the account which is supplying the assets * @param mintAmount The amount of the underlying asset to supply * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function mintFresh(address minter, uint mintAmount) internal returns (uint) { /* Fail if mint not allowed */ uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK); } MintLocalVars memory vars; /* Fail if checkTransferIn fails */ vars.err = checkTransferIn(minter, mintAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_NOT_POSSIBLE); } /* * We get the current exchange rate and calculate the number of cTokens to be minted: * mintTokens = mintAmount / exchangeRate */ (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(mintAmount, Exp({mantissa: vars.exchangeRateMantissa})); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_CALCULATION_FAILED, uint(vars.mathErr)); } /* * We calculate the new total supply of cTokens and minter token balance, checking for overflow: * totalSupplyNew = totalSupply + mintTokens * accountTokensNew = accountTokens[minter] + mintTokens */ (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the minter and the mintAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional mintAmount of cash. * If doTransferIn fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferIn(minter, mintAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_FAILED); } /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[minter] = vars.accountTokensNew; /* We emit a Mint event, and a Transfer event */ emit Mint(minter, mintAmount, vars.mintTokens); emit Transfer(address(this), minter, vars.mintTokens); /* We call the defense hook */ comptroller.mintVerify(address(this), minter, mintAmount, vars.mintTokens); return uint(Error.NO_ERROR); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, redeemTokens, 0); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to redeem * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, 0, redeemAmount); } struct RedeemLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint redeemTokens; uint redeemAmount; uint totalSupplyNew; uint accountTokensNew; } /** * @notice User redeems cTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block * @param redeemer The address of the account which is redeeming the tokens * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero) * @param redeemAmountIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero) * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) { require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero"); RedeemLocalVars memory vars; /* exchangeRate = invoke Exchange Rate Stored() */ (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)); } /* If redeemTokensIn > 0: */ if (redeemTokensIn > 0) { /* * We calculate the exchange rate and the amount of underlying to be redeemed: * redeemTokens = redeemTokensIn * redeemAmount = redeemTokensIn x exchangeRateCurrent */ vars.redeemTokens = redeemTokensIn; (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr)); } } else { /* * We get the current exchange rate and calculate the amount to be redeemed: * redeemTokens = redeemAmountIn / exchangeRate * redeemAmount = redeemAmountIn */ (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa})); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr)); } vars.redeemAmount = redeemAmountIn; } /* Fail if redeem not allowed */ uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK); } /* * We calculate the new total supply and redeemer balance, checking for underflow: * totalSupplyNew = totalSupply - redeemTokens * accountTokensNew = accountTokens[redeemer] - redeemTokens */ (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } /* Fail gracefully if protocol has insufficient cash */ if (getCashPrior() < vars.redeemAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the redeemer and the redeemAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken has redeemAmount less of cash. * If doTransferOut fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferOut(redeemer, vars.redeemAmount); require(vars.err == Error.NO_ERROR, "redeem transfer out failed"); /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[redeemer] = vars.accountTokensNew; /* We emit a Transfer event, and a Redeem event */ emit Transfer(redeemer, address(this), vars.redeemTokens); emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens); /* We call the defense hook */ comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens); return uint(Error.NO_ERROR); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED); } // borrowFresh emits borrow-specific logs on errors, so we don't need to return borrowFresh(msg.sender, borrowAmount); } struct BorrowLocalVars { Error err; MathError mathErr; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) { /* Fail if borrow not allowed */ uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK); } /* Fail gracefully if protocol has insufficient underlying cash */ if (getCashPrior() < borrowAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE); } BorrowLocalVars memory vars; /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowsNew = accountBorrows + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken borrowAmount less of cash. * If doTransferOut fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferOut(borrower, borrowAmount); require(vars.err == Error.NO_ERROR, "borrow transfer out failed"); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.borrowVerify(address(this), borrower, borrowAmount); return uint(Error.NO_ERROR); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, borrower, repayAmount); } struct RepayBorrowLocalVars { Error err; MathError mathErr; uint repayAmount; uint borrowerIndex; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of undelrying tokens being returned * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint) { /* Fail if repayBorrow not allowed */ uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK); } RepayBorrowLocalVars memory vars; /* We remember the original borrowerIndex for verification purposes */ vars.borrowerIndex = accountBorrows[borrower].interestIndex; /* We fetch the amount the borrower owes, with accumulated interest */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } /* If repayAmount == -1, repayAmount = accountBorrows */ if (repayAmount == uint(-1)) { vars.repayAmount = vars.accountBorrows; } else { vars.repayAmount = repayAmount; } /* Fail if checkTransferIn fails */ vars.err = checkTransferIn(payer, vars.repayAmount); if (vars.err != Error.NO_ERROR) { return fail(vars.err, FailureInfo.REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE); } /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - repayAmount * totalBorrowsNew = totalBorrows - repayAmount */ (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.repayAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.repayAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional repayAmount of cash. * If doTransferIn fails despite the fact we checked pre-conditions, * we revert because we can't be sure if side effects occurred. */ vars.err = doTransferIn(payer, vars.repayAmount); require(vars.err == Error.NO_ERROR, "repay borrow transfer in failed"); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow(payer, borrower, vars.repayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.repayBorrowVerify(address(this), payer, borrower, vars.repayAmount, vars.borrowerIndex); return uint(Error.NO_ERROR); } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function liquidateBorrowInternal(address borrower, uint repayAmount, CToken cTokenCollateral) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED); } error = cTokenCollateral.accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED); } // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral); } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CToken cTokenCollateral) internal returns (uint) { /* Fail if liquidate not allowed */ uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK); } /* Verify cTokenCollateral market's block number equals current block number */ if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER); } /* Fail if repayAmount = 0 */ if (repayAmount == 0) { return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO); } /* Fail if repayAmount = -1 */ if (repayAmount == uint(-1)) { return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX); } /* We calculate the number of collateral tokens that will be seized */ (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), repayAmount); if (amountSeizeError != 0) { return failOpaque(Error.COMPTROLLER_CALCULATION_ERROR, FailureInfo.LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, amountSeizeError); } /* Fail if seizeTokens > borrower collateral token balance */ if (seizeTokens > cTokenCollateral.balanceOf(borrower)) { return fail(Error.TOKEN_INSUFFICIENT_BALANCE, FailureInfo.LIQUIDATE_SEIZE_TOO_MUCH); } /* Fail if repayBorrow fails */ uint repayBorrowError = repayBorrowFresh(liquidator, borrower, repayAmount); if (repayBorrowError != uint(Error.NO_ERROR)) { return fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED); } /* Revert if seize tokens fails (since we cannot be sure of side effects) */ uint seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens); require(seizeError == uint(Error.NO_ERROR), "token seizure failed"); /* We emit a LiquidateBorrow event */ emit LiquidateBorrow(liquidator, borrower, repayAmount, address(cTokenCollateral), seizeTokens); /* We call the defense hook */ comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount, seizeTokens); return uint(Error.NO_ERROR); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another cToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant returns (uint) { /* Fail if seize not allowed */ uint allowed = comptroller.seizeAllowed(address(this), msg.sender, liquidator, borrower, seizeTokens); if (allowed != 0) { return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER); } MathError mathErr; uint borrowerTokensNew; uint liquidatorTokensNew; /* * We calculate the new borrower and liquidator token balances, failing on underflow/overflow: * borrowerTokensNew = accountTokens[borrower] - seizeTokens * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens */ (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr)); } (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accountTokens[borrower] = borrowerTokensNew; accountTokens[liquidator] = liquidatorTokensNew; /* Emit a Transfer event */ emit Transfer(borrower, liquidator, seizeTokens); /* We call the defense hook */ comptroller.seizeVerify(address(this), msg.sender, liquidator, borrower, seizeTokens); return uint(Error.NO_ERROR); } /*** Admin Functions ***/ /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) * * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address? */ function _setPendingAdmin(address payable newPendingAdmin) external returns (uint) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() external returns (uint) { // Check caller is pendingAdmin and pendingAdmin ≠address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Sets a new comptroller for the market * @dev Admin function to set a new comptroller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setComptroller(ComptrollerInterface newComptroller) public returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK); } ComptrollerInterface oldComptroller = comptroller; // Ensure invoke comptroller.isComptroller() returns true require(newComptroller.isComptroller(), "marker method returned false"); // Set market's comptroller to newComptroller comptroller = newComptroller; // Emit NewComptroller(oldComptroller, newComptroller) emit NewComptroller(oldComptroller, newComptroller); return uint(Error.NO_ERROR); } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed. return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED); } // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK); } // Verify market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK); } uint oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa); return uint(Error.NO_ERROR); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint reduceAmount) external nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed. return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED); } // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint reduceAmount) internal returns (uint) { Error err; // totalReserves - reduceAmount uint totalReservesNew; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE); } // Check reduceAmount ≤ reserves[n] (totalReserves) // TODO: I'm following the spec literally here but I think we should we just use SafeMath instead and fail on an error (which would be underflow) if (reduceAmount > totalReserves) { return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = totalReserves - reduceAmount; // We checked reduceAmount <= totalReserves above, so this should never revert. require(totalReservesNew <= totalReserves, "reduce reserves unexpected underflow"); // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // invoke doTransferOut(reduceAmount, admin) err = doTransferOut(admin, reduceAmount); // we revert on the failure of this command require(err == Error.NO_ERROR, "reduce reserves transfer out failed"); emit ReservesReduced(admin, reduceAmount, totalReservesNew); return uint(Error.NO_ERROR); } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED); } // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { // TODO: static_assert + no error code? return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require(newInterestRateModel.isInterestRateModel(), "marker method returned false"); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel); return uint(Error.NO_ERROR); } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view returns (uint); /** * @dev Checks whether or not there is sufficient allowance for this contract to move amount from `from` and * whether or not `from` has a balance of at least `amount`. Does NOT do a transfer. */ function checkTransferIn(address from, uint amount) internal view returns (Error); /** * @dev Performs a transfer in, ideally returning an explanatory error code upon failure rather than reverting. * If caller has not called `checkTransferIn`, this may revert due to insufficient balance or insufficient allowance. * If caller has called `checkTransferIn` successfully, this should not revert in normal conditions. */ function doTransferIn(address from, uint amount) internal returns (Error); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut(address payable to, uint amount) internal returns (Error); } // File: contracts/PriceOracle.sol pragma solidity ^0.5.8; interface PriceOracle { /** * @notice Indicator that this is a PriceOracle contract (for inspection) */ function isPriceOracle() external pure returns (bool); /** * @notice Get the underlying price of a cToken asset * @param cToken The cToken to get the underlying price of * @return The underlying asset price mantissa (scaled by 1e18). * Zero means the price is unavailable. */ function getUnderlyingPrice(CToken cToken) external view returns (uint); } // File: contracts/ComptrollerStorage.sol pragma solidity ^0.5.8; contract UnitrollerAdminStorage { /** * @notice Administrator for this contract */ address public admin; /** * @notice Pending administrator for this contract */ address public pendingAdmin; /** * @notice Active brains of Unitroller */ address public comptrollerImplementation; /** * @notice Pending brains of Unitroller */ address public pendingComptrollerImplementation; } contract ComptrollerV1Storage is UnitrollerAdminStorage { /** * @notice Oracle which gives the price of any given asset */ PriceOracle public oracle; /** * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow */ uint public closeFactorMantissa; /** * @notice Multiplier representing the discount on collateral that a liquidator receives */ uint public liquidationIncentiveMantissa; /** * @notice Max number of assets a single account can participate in (borrow or use as collateral) */ uint public maxAssets; /** * @notice Per-account mapping of "assets you are in", capped by maxAssets */ mapping(address => CToken[]) public accountAssets; } // File: contracts/Unitroller.sol pragma solidity ^0.5.8; /** * @title ComptrollerCore * @dev storage for the comptroller will be at this address, and * cTokens should reference this contract rather than a deployed implementation if * */ contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter { /** * @notice Emitted when pendingComptrollerImplementation is changed */ event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation); /** * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); constructor() public { // Set admin to caller admin = msg.sender; } /*** Admin Functions ***/ function _setPendingImplementation(address newPendingImplementation) public returns (uint) { if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK); } address oldPendingImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = newPendingImplementation; emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint(Error.NO_ERROR); } /** * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation * @dev Admin function for new implementation to accept it's role as implementation * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptImplementation() public returns (uint) { // Check caller is pendingImplementation and pendingImplementation ≠address(0) if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK); } // Save current values for inclusion in log address oldImplementation = comptrollerImplementation; address oldPendingImplementation = pendingComptrollerImplementation; comptrollerImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = address(0); emit NewImplementation(oldImplementation, comptrollerImplementation); emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint(Error.NO_ERROR); } /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) * * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address? */ function _setPendingAdmin(address newPendingAdmin) public returns (uint) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() public returns (uint) { // Check caller is pendingAdmin and pendingAdmin ≠address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint(Error.NO_ERROR); } /** * @dev Delegates execution to an implementation contract. * It returns to the external caller whatever the implementation returns * or forwards reverts. */ function () payable external { // delegate all other functions to current implementation (bool success, ) = comptrollerImplementation.delegatecall(msg.data); // solium-disable-next-line security/no-inline-assembly assembly { let free_mem_ptr := mload(0x40) returndatacopy(free_mem_ptr, 0, returndatasize) switch success case 0 { revert(free_mem_ptr, returndatasize) } default { return(free_mem_ptr, returndatasize) } } } }
File 4 of 4: Comptroller
{"CarefulMath.sol":{"content":"pragma solidity ^0.5.8;\n\n/**\n * @title Careful Math\n * @author Compound\n * @notice Derived from OpenZeppelin\u0027s SafeMath library\n * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol\n */\ncontract CarefulMath {\n\n /**\n * @dev Possible error codes that we can return\n */\n enum MathError {\n NO_ERROR,\n DIVISION_BY_ZERO,\n INTEGER_OVERFLOW,\n INTEGER_UNDERFLOW\n }\n\n /**\n * @dev Multiplies two numbers, returns an error on overflow.\n */\n function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {\n if (a == 0) {\n return (MathError.NO_ERROR, 0);\n }\n\n uint c = a * b;\n\n if (c / a != b) {\n return (MathError.INTEGER_OVERFLOW, 0);\n } else {\n return (MathError.NO_ERROR, c);\n }\n }\n\n /**\n * @dev Integer division of two numbers, truncating the quotient.\n */\n function divUInt(uint a, uint b) internal pure returns (MathError, uint) {\n if (b == 0) {\n return (MathError.DIVISION_BY_ZERO, 0);\n }\n\n return (MathError.NO_ERROR, a / b);\n }\n\n /**\n * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).\n */\n function subUInt(uint a, uint b) internal pure returns (MathError, uint) {\n if (b \u003c= a) {\n return (MathError.NO_ERROR, a - b);\n } else {\n return (MathError.INTEGER_UNDERFLOW, 0);\n }\n }\n\n /**\n * @dev Adds two numbers, returns an error on overflow.\n */\n function addUInt(uint a, uint b) internal pure returns (MathError, uint) {\n uint c = a + b;\n\n if (c \u003e= a) {\n return (MathError.NO_ERROR, c);\n } else {\n return (MathError.INTEGER_OVERFLOW, 0);\n }\n }\n\n /**\n * @dev add a and b and then subtract c\n */\n function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {\n (MathError err0, uint sum) = addUInt(a, b);\n\n if (err0 != MathError.NO_ERROR) {\n return (err0, 0);\n }\n\n return subUInt(sum, c);\n }\n}"},"CErc20.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CToken.sol\";\n\n/**\n * @title Compound\u0027s CErc20 Contract\n * @notice CTokens which wrap an EIP-20 underlying\n * @author Compound\n */\ncontract CErc20 is CToken {\n\n /**\n * @notice Underlying asset for this CToken\n */\n address public underlying;\n\n /**\n * @notice Construct a new money market\n * @param underlying_ The address of the underlying asset\n * @param comptroller_ The address of the Comptroller\n * @param interestRateModel_ The address of the interest rate model\n * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18\n * @param name_ ERC-20 name of this token\n * @param symbol_ ERC-20 symbol of this token\n * @param decimals_ ERC-20 decimal precision of this token\n */\n constructor(address underlying_,\n ComptrollerInterface comptroller_,\n InterestRateModel interestRateModel_,\n uint initialExchangeRateMantissa_,\n string memory name_,\n string memory symbol_,\n uint decimals_) public\n CToken(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_) {\n // Set underlying\n underlying = underlying_;\n EIP20Interface(underlying).totalSupply(); // Sanity check the underlying\n }\n\n /*** User Interface ***/\n\n /**\n * @notice Sender supplies assets into the market and receives cTokens in exchange\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param mintAmount The amount of the underlying asset to supply\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function mint(uint mintAmount) external returns (uint) {\n return mintInternal(mintAmount);\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for the underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemTokens The number of cTokens to redeem into underlying\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeem(uint redeemTokens) external returns (uint) {\n return redeemInternal(redeemTokens);\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemAmount The amount of underlying to redeem\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeemUnderlying(uint redeemAmount) external returns (uint) {\n return redeemUnderlyingInternal(redeemAmount);\n }\n\n /**\n * @notice Sender borrows assets from the protocol to their own address\n * @param borrowAmount The amount of the underlying asset to borrow\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function borrow(uint borrowAmount) external returns (uint) {\n return borrowInternal(borrowAmount);\n }\n\n /**\n * @notice Sender repays their own borrow\n * @param repayAmount The amount to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function repayBorrow(uint repayAmount) external returns (uint) {\n return repayBorrowInternal(repayAmount);\n }\n\n /**\n * @notice Sender repays a borrow belonging to borrower\n * @param borrower the account with the debt being payed off\n * @param repayAmount The amount to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint) {\n return repayBorrowBehalfInternal(borrower, repayAmount);\n }\n\n /**\n * @notice The sender liquidates the borrowers collateral.\n * The collateral seized is transferred to the liquidator.\n * @param borrower The borrower of this cToken to be liquidated\n * @param cTokenCollateral The market in which to seize collateral from the borrower\n * @param repayAmount The amount of the underlying borrowed asset to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function liquidateBorrow(address borrower, uint repayAmount, CToken cTokenCollateral) external returns (uint) {\n return liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral);\n }\n\n /*** Safe Token ***/\n\n /**\n * @notice Gets balance of this contract in terms of the underlying\n * @dev This excludes the value of the current message, if any\n * @return The quantity of underlying tokens owned by this contract\n */\n function getCashPrior() internal view returns (uint) {\n EIP20Interface token = EIP20Interface(underlying);\n return token.balanceOf(address(this));\n }\n\n /**\n * @dev Checks whether or not there is sufficient allowance for this contract to move amount from `from` and\n * whether or not `from` has a balance of at least `amount`. Does NOT do a transfer.\n */\n function checkTransferIn(address from, uint amount) internal view returns (Error) {\n EIP20Interface token = EIP20Interface(underlying);\n\n if (token.allowance(from, address(this)) \u003c amount) {\n return Error.TOKEN_INSUFFICIENT_ALLOWANCE;\n }\n\n if (token.balanceOf(from) \u003c amount) {\n return Error.TOKEN_INSUFFICIENT_BALANCE;\n }\n\n return Error.NO_ERROR;\n }\n\n /**\n * @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and returns an explanatory\n * error code rather than reverting. If caller has not called `checkTransferIn`, this may revert due to\n * insufficient balance or insufficient allowance. If caller has called `checkTransferIn` prior to this call,\n * and it returned Error.NO_ERROR, this should not revert in normal conditions.\n *\n * Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.\n * See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca\n */\n function doTransferIn(address from, uint amount) internal returns (Error) {\n EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);\n bool result;\n\n token.transferFrom(from, address(this), amount);\n\n // solium-disable-next-line security/no-inline-assembly\n assembly {\n switch returndatasize()\n case 0 { // This is a non-standard ERC-20\n result := not(0) // set result to true\n }\n case 32 { // This is a complaint ERC-20\n returndatacopy(0, 0, 32)\n result := mload(0) // Set `result = returndata` of external call\n }\n default { // This is an excessively non-compliant ERC-20, revert.\n revert(0, 0)\n }\n }\n\n if (!result) {\n return Error.TOKEN_TRANSFER_IN_FAILED;\n }\n\n return Error.NO_ERROR;\n }\n\n /**\n * @dev Similar to EIP20 transfer, except it handles a False result from `transfer` and returns an explanatory\n * error code rather than reverting. If caller has not called checked protocol\u0027s balance, this may revert due to\n * insufficient cash held in this contract. If caller has checked protocol\u0027s balance prior to this call, and verified\n * it is \u003e= amount, this should not revert in normal conditions.\n *\n * Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.\n * See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca\n */\n function doTransferOut(address payable to, uint amount) internal returns (Error) {\n EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);\n bool result;\n\n token.transfer(to, amount);\n\n // solium-disable-next-line security/no-inline-assembly\n assembly {\n switch returndatasize()\n case 0 { // This is a non-standard ERC-20\n result := not(0) // set result to true\n }\n case 32 { // This is a complaint ERC-20\n returndatacopy(0, 0, 32)\n result := mload(0) // Set `result = returndata` of external call\n }\n default { // This is an excessively non-compliant ERC-20, revert.\n revert(0, 0)\n }\n }\n\n if (!result) {\n return Error.TOKEN_TRANSFER_OUT_FAILED;\n }\n\n return Error.NO_ERROR;\n }\n}\n"},"CEther.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CToken.sol\";\n\n/**\n * @title Compound\u0027s CEther Contract\n * @notice CToken which wraps Ether\n * @author Compound\n */\ncontract CEther is CToken {\n /**\n * @notice Construct a new CEther money market\n * @param comptroller_ The address of the Comptroller\n * @param interestRateModel_ The address of the interest rate model\n * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18\n * @param name_ ERC-20 name of this token\n * @param symbol_ ERC-20 symbol of this token\n * @param decimals_ ERC-20 decimal precision of this token\n */\n constructor(ComptrollerInterface comptroller_,\n InterestRateModel interestRateModel_,\n uint initialExchangeRateMantissa_,\n string memory name_,\n string memory symbol_,\n uint decimals_) public\n CToken(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_) {}\n\n /*** User Interface ***/\n\n /**\n * @notice Sender supplies assets into the market and receives cTokens in exchange\n * @dev Reverts upon any failure\n */\n function mint() external payable {\n requireNoError(mintInternal(msg.value), \"mint failed\");\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for the underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemTokens The number of cTokens to redeem into underlying\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeem(uint redeemTokens) external returns (uint) {\n return redeemInternal(redeemTokens);\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemAmount The amount of underlying to redeem\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeemUnderlying(uint redeemAmount) external returns (uint) {\n return redeemUnderlyingInternal(redeemAmount);\n }\n\n /**\n * @notice Sender borrows assets from the protocol to their own address\n * @param borrowAmount The amount of the underlying asset to borrow\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function borrow(uint borrowAmount) external returns (uint) {\n return borrowInternal(borrowAmount);\n }\n\n /**\n * @notice Sender repays their own borrow\n * @dev Reverts upon any failure\n */\n function repayBorrow() external payable {\n requireNoError(repayBorrowInternal(msg.value), \"repayBorrow failed\");\n }\n\n /**\n * @notice Sender repays a borrow belonging to borrower\n * @dev Reverts upon any failure\n * @param borrower the account with the debt being payed off\n */\n function repayBorrowBehalf(address borrower) external payable {\n requireNoError(repayBorrowBehalfInternal(borrower, msg.value), \"repayBorrowBehalf failed\");\n }\n\n /**\n * @notice The sender liquidates the borrowers collateral.\n * The collateral seized is transferred to the liquidator.\n * @dev Reverts upon any failure\n * @param borrower The borrower of this cToken to be liquidated\n * @param cTokenCollateral The market in which to seize collateral from the borrower\n */\n function liquidateBorrow(address borrower, CToken cTokenCollateral) external payable {\n requireNoError(liquidateBorrowInternal(borrower, msg.value, cTokenCollateral), \"liquidateBorrow failed\");\n }\n\n /**\n * @notice Send Ether to CEther to mint\n */\n function () external payable {\n requireNoError(mintInternal(msg.value), \"mint failed\");\n }\n\n /*** Safe Token ***/\n\n /**\n * @notice Gets balance of this contract in terms of Ether, before this message\n * @dev This excludes the value of the current message, if any\n * @return The quantity of Ether owned by this contract\n */\n function getCashPrior() internal view returns (uint) {\n (MathError err, uint startingBalance) = subUInt(address(this).balance, msg.value);\n require(err == MathError.NO_ERROR);\n return startingBalance;\n }\n\n /**\n * @notice Checks whether the requested transfer matches the `msg`\n * @dev Does NOT do a transfer\n * @param from Address sending the Ether\n * @param amount Amount of Ether being sent\n * @return Whether or not the transfer checks out\n */\n function checkTransferIn(address from, uint amount) internal view returns (Error) {\n // Sanity checks\n require(msg.sender == from, \"sender mismatch\");\n require(msg.value == amount, \"value mismatch\");\n return Error.NO_ERROR;\n }\n\n /**\n * @notice Perform the actual transfer in, which is a no-op\n * @param from Address sending the Ether\n * @param amount Amount of Ether being sent\n * @return Success\n */\n function doTransferIn(address from, uint amount) internal returns (Error) {\n // Sanity checks\n require(msg.sender == from, \"sender mismatch\");\n require(msg.value == amount, \"value mismatch\");\n return Error.NO_ERROR;\n }\n\n function doTransferOut(address payable to, uint amount) internal returns (Error) {\n /* Send the Ether, with minimal gas and revert on failure */\n to.transfer(amount);\n return Error.NO_ERROR;\n }\n\n function requireNoError(uint errCode, string memory message) internal pure {\n if (errCode == uint(Error.NO_ERROR)) {\n return;\n }\n\n bytes memory fullMessage = new bytes(bytes(message).length + 5);\n uint i;\n\n for (i = 0; i \u003c bytes(message).length; i++) {\n fullMessage[i] = bytes(message)[i];\n }\n\n fullMessage[i+0] = byte(uint8(32));\n fullMessage[i+1] = byte(uint8(40));\n fullMessage[i+2] = byte(uint8(48 + ( errCode / 10 )));\n fullMessage[i+3] = byte(uint8(48 + ( errCode % 10 )));\n fullMessage[i+4] = byte(uint8(41));\n\n require(errCode == uint(Error.NO_ERROR), string(fullMessage));\n }\n}\n"},"Comptroller.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CToken.sol\";\nimport \"./ErrorReporter.sol\";\nimport \"./Exponential.sol\";\nimport \"./PriceOracle.sol\";\nimport \"./ComptrollerInterface.sol\";\nimport \"./ComptrollerStorage.sol\";\nimport \"./Unitroller.sol\";\n\n/**\n * @title Compound\u0027s Comptroller Contract\n * @author Compound\n */\ncontract Comptroller is ComptrollerV1Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {\n struct Market {\n /**\n * @notice Whether or not this market is listed\n */\n bool isListed;\n\n /**\n * @notice Multiplier representing the most one can borrow against their collateral in this market.\n * For instance, 0.9 to allow borrowing 90% of collateral value.\n * Must be between 0 and 1, and stored as a mantissa.\n */\n uint collateralFactorMantissa;\n\n /**\n * @notice Per-market mapping of \"accounts in this asset\"\n */\n mapping(address =\u003e bool) accountMembership;\n }\n\n /**\n * @notice Official mapping of cTokens -\u003e Market metadata\n * @dev Used e.g. to determine if a market is supported\n */\n mapping(address =\u003e Market) public markets;\n\n /**\n * @notice Emitted when an admin supports a market\n */\n event MarketListed(CToken cToken);\n\n /**\n * @notice Emitted when an account enters a market\n */\n event MarketEntered(CToken cToken, address account);\n\n /**\n * @notice Emitted when an account exits a market\n */\n event MarketExited(CToken cToken, address account);\n\n /**\n * @notice Emitted when close factor is changed by admin\n */\n event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa);\n\n /**\n * @notice Emitted when a collateral factor is changed by admin\n */\n event NewCollateralFactor(CToken cToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa);\n\n /**\n * @notice Emitted when liquidation incentive is changed by admin\n */\n event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa);\n\n /**\n * @notice Emitted when maxAssets is changed by admin\n */\n event NewMaxAssets(uint oldMaxAssets, uint newMaxAssets);\n\n /**\n * @notice Emitted when price oracle is changed\n */\n event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);\n\n /**\n * @notice Indicator that this is a Comptroller contract (for inspection)\n */\n bool public constant isComptroller = true;\n\n // closeFactorMantissa must be strictly greater than this value\n uint constant closeFactorMinMantissa = 5e16; // 0.05\n\n // closeFactorMantissa must not exceed this value\n uint constant closeFactorMaxMantissa = 9e17; // 0.9\n\n // No collateralFactorMantissa may exceed this value\n uint constant collateralFactorMaxMantissa = 9e17; // 0.9\n\n // liquidationIncentiveMantissa must be no less than this value\n uint constant liquidationIncentiveMinMantissa = mantissaOne;\n\n // liquidationIncentiveMantissa must be no greater than this value\n uint constant liquidationIncentiveMaxMantissa = 15e17; // 1.5\n\n constructor() public {\n admin = msg.sender;\n }\n\n /*** Assets You Are In ***/\n\n /**\n * @notice Returns the assets an account has entered\n * @param account The address of the account to pull assets for\n * @return A dynamic list with the assets the account has entered\n */\n function getAssetsIn(address account) external view returns (CToken[] memory) {\n CToken[] memory assetsIn = accountAssets[account];\n\n return assetsIn;\n }\n\n /**\n * @notice Returns whether the given account is entered in the given asset\n * @param account The address of the account to check\n * @param cToken The cToken to check\n * @return True if the account is in the asset, otherwise false.\n */\n function checkMembership(address account, CToken cToken) external view returns (bool) {\n return markets[address(cToken)].accountMembership[account];\n }\n\n /**\n * @notice Add assets to be included in account liquidity calculation\n * @param cTokens The list of addresses of the cToken markets to be enabled\n * @return Success indicator for whether each corresponding market was entered\n */\n function enterMarkets(address[] memory cTokens) public returns (uint[] memory) {\n uint len = cTokens.length;\n\n uint[] memory results = new uint[](len);\n for (uint i = 0; i \u003c len; i++) {\n CToken cToken = CToken(cTokens[i]);\n Market storage marketToJoin = markets[address(cToken)];\n\n if (!marketToJoin.isListed) {\n // if market is not listed, cannot join move along\n results[i] = uint(Error.MARKET_NOT_LISTED);\n continue;\n }\n\n if (marketToJoin.accountMembership[msg.sender] == true) {\n // if already joined, move along\n results[i] = uint(Error.NO_ERROR);\n continue;\n }\n\n if (accountAssets[msg.sender].length \u003e= maxAssets) {\n // if no space, cannot join, move along\n results[i] = uint(Error.TOO_MANY_ASSETS);\n continue;\n }\n\n // survived the gauntlet, add to list\n // NOTE: we store these somewhat redundantly as a significant optimization\n // this avoids having to iterate through the list for the most common use cases\n // that is, only when we need to perform liquidity checks\n // and not whenever we want to check if an account is in a particular market\n marketToJoin.accountMembership[msg.sender] = true;\n accountAssets[msg.sender].push(cToken);\n\n emit MarketEntered(cToken, msg.sender);\n\n results[i] = uint(Error.NO_ERROR);\n }\n\n return results;\n }\n\n /**\n * @notice Removes asset from sender\u0027s account liquidity calculation\n * @dev Sender must not have an outstanding borrow balance in the asset,\n * or be providing neccessary collateral for an outstanding borrow.\n * @param cTokenAddress The address of the asset to be removed\n * @return Whether or not the account successfully exited the market\n */\n function exitMarket(address cTokenAddress) external returns (uint) {\n CToken cToken = CToken(cTokenAddress);\n /* Get sender tokensHeld and amountOwed underlying from the cToken */\n (uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);\n require(oErr == 0, \"exitMarket: getAccountSnapshot failed\"); // semi-opaque error code\n\n /* Fail if the sender has a borrow balance */\n if (amountOwed != 0) {\n return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);\n }\n\n /* Fail if the sender is not permitted to redeem all of their tokens */\n uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);\n if (allowed != 0) {\n return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);\n }\n\n Market storage marketToExit = markets[address(cToken)];\n\n /* Return true if the sender is not already ‘in’ the market */\n if (!marketToExit.accountMembership[msg.sender]) {\n return uint(Error.NO_ERROR);\n }\n\n /* Set cToken account membership to false */\n delete marketToExit.accountMembership[msg.sender];\n\n /* Delete cToken from the account’s list of assets */\n // load into memory for faster iteration\n CToken[] memory userAssetList = accountAssets[msg.sender];\n uint len = userAssetList.length;\n uint assetIndex = len;\n for (uint i = 0; i \u003c len; i++) {\n if (userAssetList[i] == cToken) {\n assetIndex = i;\n break;\n }\n }\n\n // We *must* have found the asset in the list or our redundant data structure is broken\n assert(assetIndex \u003c len);\n\n // copy last item in list to location of item to be removed, reduce length by 1\n CToken[] storage storedList = accountAssets[msg.sender];\n storedList[assetIndex] = storedList[storedList.length - 1];\n storedList.length--;\n\n emit MarketExited(cToken, msg.sender);\n\n return uint(Error.NO_ERROR);\n }\n\n /*** Policy Hooks ***/\n\n /**\n * @notice Checks if the account should be allowed to mint tokens in the given market\n * @param cToken The market to verify the mint against\n * @param minter The account which would get the minted tokens\n * @param mintAmount The amount of underlying being supplied to the market in exchange for tokens\n * @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)\n */\n function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint) {\n minter; // currently unused\n mintAmount; // currently unused\n\n if (!markets[cToken].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n // *may include Policy Hook-type checks\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates mint and reverts on rejection. May emit logs.\n * @param cToken Asset being minted\n * @param minter The address minting the tokens\n * @param mintAmount The amount of the underlying asset being minted\n * @param mintTokens The number of tokens being minted\n */\n function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external {\n cToken; // currently unused\n minter; // currently unused\n mintAmount; // currently unused\n mintTokens; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /**\n * @notice Checks if the account should be allowed to redeem tokens in the given market\n * @param cToken The market to verify the redeem against\n * @param redeemer The account which would redeem the tokens\n * @param redeemTokens The number of cTokens to exchange for the underlying asset in the market\n * @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)\n */\n function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint) {\n return redeemAllowedInternal(cToken, redeemer, redeemTokens);\n }\n\n function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens) internal view returns (uint) {\n if (!markets[cToken].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n // *may include Policy Hook-type checks\n\n /* If the redeemer is not \u0027in\u0027 the market, then we can bypass the liquidity check */\n if (!markets[cToken].accountMembership[redeemer]) {\n return uint(Error.NO_ERROR);\n }\n\n /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */\n (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, CToken(cToken), redeemTokens, 0);\n if (err != Error.NO_ERROR) {\n return uint(err);\n }\n if (shortfall \u003e 0) {\n return uint(Error.INSUFFICIENT_LIQUIDITY);\n }\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates redeem and reverts on rejection. May emit logs.\n * @param cToken Asset being redeemed\n * @param redeemer The address redeeming the tokens\n * @param redeemAmount The amount of the underlying asset being redeemed\n * @param redeemTokens The number of tokens being redeemed\n */\n function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external {\n cToken; // currently unused\n redeemer; // currently unused\n redeemAmount; // currently unused\n redeemTokens; // currently unused\n\n // Require tokens is zero or amount is also zero\n if (redeemTokens == 0 \u0026\u0026 redeemAmount \u003e 0) {\n revert(\"redeemTokens zero\");\n }\n }\n\n /**\n * @notice Checks if the account should be allowed to borrow the underlying asset of the given market\n * @param cToken The market to verify the borrow against\n * @param borrower The account which would borrow the asset\n * @param borrowAmount The amount of underlying the account would borrow\n * @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)\n */\n function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint) {\n if (!markets[cToken].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n // *may include Policy Hook-type checks\n\n if (!markets[cToken].accountMembership[borrower]) {\n return uint(Error.MARKET_NOT_ENTERED);\n }\n\n if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {\n return uint(Error.PRICE_ERROR);\n }\n\n (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(borrower, CToken(cToken), 0, borrowAmount);\n if (err != Error.NO_ERROR) {\n return uint(err);\n }\n if (shortfall \u003e 0) {\n return uint(Error.INSUFFICIENT_LIQUIDITY);\n }\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates borrow and reverts on rejection. May emit logs.\n * @param cToken Asset whose underlying is being borrowed\n * @param borrower The address borrowing the underlying\n * @param borrowAmount The amount of the underlying asset requested to borrow\n */\n function borrowVerify(address cToken, address borrower, uint borrowAmount) external {\n cToken; // currently unused\n borrower; // currently unused\n borrowAmount; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /**\n * @notice Checks if the account should be allowed to repay a borrow in the given market\n * @param cToken The market to verify the repay against\n * @param payer The account which would repay the asset\n * @param borrower The account which would borrowed the asset\n * @param repayAmount The amount of the underlying asset the account would repay\n * @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)\n */\n function repayBorrowAllowed(\n address cToken,\n address payer,\n address borrower,\n uint repayAmount) external returns (uint) {\n payer; // currently unused\n borrower; // currently unused\n repayAmount; // currently unused\n\n if (!markets[cToken].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n // *may include Policy Hook-type checks\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates repayBorrow and reverts on rejection. May emit logs.\n * @param cToken Asset being repaid\n * @param payer The address repaying the borrow\n * @param borrower The address of the borrower\n * @param repayAmount The amount of underlying being repaid\n */\n function repayBorrowVerify(\n address cToken,\n address payer,\n address borrower,\n uint repayAmount,\n uint borrowerIndex) external {\n cToken; // currently unused\n payer; // currently unused\n borrower; // currently unused\n repayAmount; // currently unused\n borrowerIndex; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /**\n * @notice Checks if the liquidation should be allowed to occur\n * @param cTokenBorrowed Asset which was borrowed by the borrower\n * @param cTokenCollateral Asset which was used as collateral and will be seized\n * @param liquidator The address repaying the borrow and seizing the collateral\n * @param borrower The address of the borrower\n * @param repayAmount The amount of underlying being repaid\n */\n function liquidateBorrowAllowed(\n address cTokenBorrowed,\n address cTokenCollateral,\n address liquidator,\n address borrower,\n uint repayAmount) external returns (uint) {\n liquidator; // currently unused\n borrower; // currently unused\n repayAmount; // currently unused\n\n if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n // *may include Policy Hook-type checks\n\n /* The borrower must have shortfall in order to be liquidatable */\n (Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);\n if (err != Error.NO_ERROR) {\n return uint(err);\n }\n if (shortfall == 0) {\n return uint(Error.INSUFFICIENT_SHORTFALL);\n }\n\n /* The liquidator may not repay more than what is allowed by the closeFactor */\n uint borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);\n (MathError mathErr, uint maxClose) = mulScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);\n if (mathErr != MathError.NO_ERROR) {\n return uint(Error.MATH_ERROR);\n }\n if (repayAmount \u003e maxClose) {\n return uint(Error.TOO_MUCH_REPAY);\n }\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates liquidateBorrow and reverts on rejection. May emit logs.\n * @param cTokenBorrowed Asset which was borrowed by the borrower\n * @param cTokenCollateral Asset which was used as collateral and will be seized\n * @param liquidator The address repaying the borrow and seizing the collateral\n * @param borrower The address of the borrower\n * @param repayAmount The amount of underlying being repaid\n */\n function liquidateBorrowVerify(\n address cTokenBorrowed,\n address cTokenCollateral,\n address liquidator,\n address borrower,\n uint repayAmount,\n uint seizeTokens) external {\n cTokenBorrowed; // currently unused\n cTokenCollateral; // currently unused\n liquidator; // currently unused\n borrower; // currently unused\n repayAmount; // currently unused\n seizeTokens; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /**\n * @notice Checks if the seizing of assets should be allowed to occur\n * @param cTokenCollateral Asset which was used as collateral and will be seized\n * @param cTokenBorrowed Asset which was borrowed by the borrower\n * @param liquidator The address repaying the borrow and seizing the collateral\n * @param borrower The address of the borrower\n * @param seizeTokens The number of collateral tokens to seize\n */\n function seizeAllowed(\n address cTokenCollateral,\n address cTokenBorrowed,\n address liquidator,\n address borrower,\n uint seizeTokens) external returns (uint) {\n liquidator; // currently unused\n borrower; // currently unused\n seizeTokens; // currently unused\n\n if (!markets[cTokenCollateral].isListed || !markets[cTokenBorrowed].isListed) {\n return uint(Error.MARKET_NOT_LISTED);\n }\n\n if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {\n return uint(Error.COMPTROLLER_MISMATCH);\n }\n\n // *may include Policy Hook-type checks\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Validates seize and reverts on rejection. May emit logs.\n * @param cTokenCollateral Asset which was used as collateral and will be seized\n * @param cTokenBorrowed Asset which was borrowed by the borrower\n * @param liquidator The address repaying the borrow and seizing the collateral\n * @param borrower The address of the borrower\n * @param seizeTokens The number of collateral tokens to seize\n */\n function seizeVerify(\n address cTokenCollateral,\n address cTokenBorrowed,\n address liquidator,\n address borrower,\n uint seizeTokens) external {\n cTokenCollateral; // currently unused\n cTokenBorrowed; // currently unused\n liquidator; // currently unused\n borrower; // currently unused\n seizeTokens; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /**\n * @notice Checks if the account should be allowed to transfer tokens in the given market\n * @param cToken The market to verify the transfer against\n * @param src The account which sources the tokens\n * @param dst The account which receives the tokens\n * @param transferTokens The number of cTokens to transfer\n * @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)\n */\n function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint) {\n cToken; // currently unused\n src; // currently unused\n dst; // currently unused\n transferTokens; // currently unused\n\n // *may include Policy Hook-type checks\n\n // Currently the only consideration is whether or not\n // the src is allowed to redeem this many tokens\n return redeemAllowedInternal(cToken, src, transferTokens);\n }\n\n /**\n * @notice Validates transfer and reverts on rejection. May emit logs.\n * @param cToken Asset being transferred\n * @param src The account which sources the tokens\n * @param dst The account which receives the tokens\n * @param transferTokens The number of cTokens to transfer\n */\n function transferVerify(address cToken, address src, address dst, uint transferTokens) external {\n cToken; // currently unused\n src; // currently unused\n dst; // currently unused\n transferTokens; // currently unused\n\n if (false) {\n maxAssets = maxAssets; // not pure\n }\n }\n\n /*** Liquidity/Liquidation Calculations ***/\n\n /**\n * @dev Local vars for avoiding stack-depth limits in calculating account liquidity.\n * Note that `cTokenBalance` is the number of cTokens the account owns in the market,\n * whereas `borrowBalance` is the amount of underlying that the account has borrowed.\n */\n struct AccountLiquidityLocalVars {\n uint sumCollateral;\n uint sumBorrowPlusEffects;\n uint cTokenBalance;\n uint borrowBalance;\n uint exchangeRateMantissa;\n uint oraclePriceMantissa;\n Exp collateralFactor;\n Exp exchangeRate;\n Exp oraclePrice;\n Exp tokensToEther;\n }\n\n /**\n * @notice Determine the current account liquidity wrt collateral requirements\n * @return (possible error code (semi-opaque),\n account liquidity in excess of collateral requirements,\n * account shortfall below collateral requirements)\n */\n function getAccountLiquidity(address account) public view returns (uint, uint, uint) {\n (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);\n\n return (uint(err), liquidity, shortfall);\n }\n\n /**\n * @notice Determine the current account liquidity wrt collateral requirements\n * @return (possible error code,\n account liquidity in excess of collateral requirements,\n * account shortfall below collateral requirements)\n */\n function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) {\n return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);\n }\n\n /**\n * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed\n * @param cTokenModify The market to hypothetically redeem/borrow in\n * @param account The account to determine liquidity for\n * @param redeemTokens The number of tokens to hypothetically redeem\n * @param borrowAmount The amount of underlying to hypothetically borrow\n * @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,\n * without calculating accumulated interest.\n * @return (possible error code,\n hypothetical account liquidity in excess of collateral requirements,\n * hypothetical account shortfall below collateral requirements)\n */\n function getHypotheticalAccountLiquidityInternal(\n address account,\n CToken cTokenModify,\n uint redeemTokens,\n uint borrowAmount) internal view returns (Error, uint, uint) {\n\n AccountLiquidityLocalVars memory vars; // Holds all our calculation results\n uint oErr;\n MathError mErr;\n\n // For each asset the account is in\n CToken[] memory assets = accountAssets[account];\n for (uint i = 0; i \u003c assets.length; i++) {\n CToken asset = assets[i];\n\n // Read the balances and exchange rate from the cToken\n (oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(account);\n if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades\n return (Error.SNAPSHOT_ERROR, 0, 0);\n }\n vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});\n vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});\n\n // Get the normalized price of the asset\n vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);\n if (vars.oraclePriceMantissa == 0) {\n return (Error.PRICE_ERROR, 0, 0);\n }\n vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});\n\n // Pre-compute a conversion factor from tokens -\u003e ether (normalized price value)\n (mErr, vars.tokensToEther) = mulExp3(vars.collateralFactor, vars.exchangeRate, vars.oraclePrice);\n if (mErr != MathError.NO_ERROR) {\n return (Error.MATH_ERROR, 0, 0);\n }\n\n // sumCollateral += tokensToEther * cTokenBalance\n (mErr, vars.sumCollateral) = mulScalarTruncateAddUInt(vars.tokensToEther, vars.cTokenBalance, vars.sumCollateral);\n if (mErr != MathError.NO_ERROR) {\n return (Error.MATH_ERROR, 0, 0);\n }\n\n // sumBorrowPlusEffects += oraclePrice * borrowBalance\n (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects);\n if (mErr != MathError.NO_ERROR) {\n return (Error.MATH_ERROR, 0, 0);\n }\n\n // Calculate effects of interacting with cTokenModify\n if (asset == cTokenModify) {\n // redeem effect\n // sumBorrowPlusEffects += tokensToEther * redeemTokens\n (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.tokensToEther, redeemTokens, vars.sumBorrowPlusEffects);\n if (mErr != MathError.NO_ERROR) {\n return (Error.MATH_ERROR, 0, 0);\n }\n\n // borrow effect\n // sumBorrowPlusEffects += oraclePrice * borrowAmount\n (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects);\n if (mErr != MathError.NO_ERROR) {\n return (Error.MATH_ERROR, 0, 0);\n }\n }\n }\n\n // These are safe, as the underflow condition is checked first\n if (vars.sumCollateral \u003e vars.sumBorrowPlusEffects) {\n return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);\n } else {\n return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);\n }\n }\n\n /**\n * @notice Calculate number of tokens of collateral asset to seize given an underlying amount\n * @dev Used in liquidation (called in cToken.liquidateBorrowFresh)\n * @param cTokenBorrowed The address of the borrowed cToken\n * @param cTokenCollateral The address of the collateral cToken\n * @param repayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens\n * @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)\n */\n function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint repayAmount) external view returns (uint, uint) {\n /* Read oracle prices for borrowed and collateral markets */\n uint priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));\n uint priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));\n if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {\n return (uint(Error.PRICE_ERROR), 0);\n }\n\n /*\n * Get the exchange rate and calculate the number of collateral tokens to seize:\n * seizeAmount = repayAmount * liquidationIncentive * priceBorrowed / priceCollateral\n * seizeTokens = seizeAmount / exchangeRate\n * = repayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)\n */\n uint exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error\n uint seizeTokens;\n Exp memory numerator;\n Exp memory denominator;\n Exp memory ratio;\n MathError mathErr;\n\n (mathErr, numerator) = mulExp(liquidationIncentiveMantissa, priceBorrowedMantissa);\n if (mathErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0);\n }\n\n (mathErr, denominator) = mulExp(priceCollateralMantissa, exchangeRateMantissa);\n if (mathErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0);\n }\n\n (mathErr, ratio) = divExp(numerator, denominator);\n if (mathErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0);\n }\n\n (mathErr, seizeTokens) = mulScalarTruncate(ratio, repayAmount);\n if (mathErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0);\n }\n\n return (uint(Error.NO_ERROR), seizeTokens);\n }\n\n /*** Admin Functions ***/\n\n /**\n * @notice Sets a new price oracle for the comptroller\n * @dev Admin function to set a new price oracle\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setPriceOracle(PriceOracle newOracle) public returns (uint) {\n // Check caller is admin OR currently initialzing as new unitroller implementation\n if (!adminOrInitializing()) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);\n }\n\n // Track the old oracle for the comptroller\n PriceOracle oldOracle = oracle;\n\n // Ensure invoke newOracle.isPriceOracle() returns true\n // require(newOracle.isPriceOracle(), \"oracle method isPriceOracle returned false\");\n\n // Set comptroller\u0027s oracle to newOracle\n oracle = newOracle;\n\n // Emit NewPriceOracle(oldOracle, newOracle)\n emit NewPriceOracle(oldOracle, newOracle);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sets the closeFactor used when liquidating borrows\n * @dev Admin function to set closeFactor\n * @param newCloseFactorMantissa New close factor, scaled by 1e18\n * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)\n */\n function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint256) {\n // Check caller is admin OR currently initialzing as new unitroller implementation\n if (!adminOrInitializing()) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);\n }\n\n Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa});\n Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa});\n if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) {\n return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);\n }\n\n Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa});\n if (lessThanExp(highLimit, newCloseFactorExp)) {\n return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);\n }\n\n uint oldCloseFactorMantissa = closeFactorMantissa;\n closeFactorMantissa = newCloseFactorMantissa;\n emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sets the collateralFactor for a market\n * @dev Admin function to set per-market collateralFactor\n * @param cToken The market to set the factor on\n * @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18\n * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)\n */\n function _setCollateralFactor(CToken cToken, uint newCollateralFactorMantissa) external returns (uint256) {\n // Check caller is admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);\n }\n\n // Verify market is listed\n Market storage market = markets[address(cToken)];\n if (!market.isListed) {\n return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);\n }\n\n Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});\n\n // Check collateral factor \u003c= 0.9\n Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});\n if (lessThanExp(highLimit, newCollateralFactorExp)) {\n return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);\n }\n\n // If collateral factor != 0, fail if price == 0\n if (newCollateralFactorMantissa != 0 \u0026\u0026 oracle.getUnderlyingPrice(cToken) == 0) {\n return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);\n }\n\n // Set market\u0027s collateral factor to new collateral factor, remember old value\n uint oldCollateralFactorMantissa = market.collateralFactorMantissa;\n market.collateralFactorMantissa = newCollateralFactorMantissa;\n\n // Emit event with asset, old collateral factor, and new collateral factor\n emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sets maxAssets which controls how many markets can be entered\n * @dev Admin function to set maxAssets\n * @param newMaxAssets New max assets\n * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)\n */\n function _setMaxAssets(uint newMaxAssets) external returns (uint) {\n // Check caller is admin OR currently initialzing as new unitroller implementation\n if (!adminOrInitializing()) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_MAX_ASSETS_OWNER_CHECK);\n }\n\n uint oldMaxAssets = maxAssets;\n maxAssets = newMaxAssets;\n emit NewMaxAssets(oldMaxAssets, newMaxAssets);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sets liquidationIncentive\n * @dev Admin function to set liquidationIncentive\n * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18\n * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)\n */\n function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) {\n // Check caller is admin OR currently initialzing as new unitroller implementation\n if (!adminOrInitializing()) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);\n }\n\n // Check de-scaled 1 \u003c= newLiquidationDiscount \u003c= 1.5\n Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa});\n Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa});\n if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) {\n return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);\n }\n\n Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa});\n if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) {\n return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);\n }\n\n // Save current value for use in log\n uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;\n\n // Set liquidation incentive to new incentive\n liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;\n\n // Emit event with old incentive, new incentive\n emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Add the market to the markets mapping and set it as listed\n * @dev Admin function to set isListed and add support for the market\n * @param cToken The address of the market (token) to list\n * @return uint 0=success, otherwise a failure. (See enum Error for details)\n */\n function _supportMarket(CToken cToken) external returns (uint) {\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);\n }\n\n if (markets[address(cToken)].isListed) {\n return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);\n }\n\n cToken.isCToken(); // Sanity check to make sure its really a CToken\n\n markets[address(cToken)] = Market({isListed: true, collateralFactorMantissa: 0});\n emit MarketListed(cToken);\n\n return uint(Error.NO_ERROR);\n }\n\n function _become(Unitroller unitroller, PriceOracle _oracle, uint _closeFactorMantissa, uint _maxAssets, bool reinitializing) public {\n require(msg.sender == unitroller.admin(), \"only unitroller admin can change brains\");\n uint changeStatus = unitroller._acceptImplementation();\n\n require(changeStatus == 0, \"change not authorized\");\n\n if (!reinitializing) {\n Comptroller freshBrainedComptroller = Comptroller(address(unitroller));\n\n // Ensure invoke _setPriceOracle() = 0\n uint err = freshBrainedComptroller._setPriceOracle(_oracle);\n require (err == uint(Error.NO_ERROR), \"set price oracle error\");\n\n // Ensure invoke _setCloseFactor() = 0\n err = freshBrainedComptroller._setCloseFactor(_closeFactorMantissa);\n require (err == uint(Error.NO_ERROR), \"set close factor error\");\n\n // Ensure invoke _setMaxAssets() = 0\n err = freshBrainedComptroller._setMaxAssets(_maxAssets);\n require (err == uint(Error.NO_ERROR), \"set max asssets error\");\n\n // Ensure invoke _setLiquidationIncentive(liquidationIncentiveMinMantissa) = 0\n err = freshBrainedComptroller._setLiquidationIncentive(liquidationIncentiveMinMantissa);\n require (err == uint(Error.NO_ERROR), \"set liquidation incentive error\");\n }\n }\n\n /**\n * @dev Check that caller is admin or this contract is initializing itself as\n * the new implementation.\n * There should be no way to satisfy msg.sender == comptrollerImplementaiton\n * without tx.origin also being admin, but both are included for extra safety\n */\n function adminOrInitializing() internal view returns (bool) {\n bool initializing = (\n msg.sender == comptrollerImplementation\n \u0026\u0026\n //solium-disable-next-line security/no-tx-origin\n tx.origin == admin\n );\n bool isAdmin = msg.sender == admin;\n return isAdmin || initializing;\n }\n}\n"},"ComptrollerInterface.sol":{"content":"pragma solidity ^0.5.8;\n\ninterface ComptrollerInterface {\n /**\n * @notice Marker function used for light validation when updating the comptroller of a market\n * @dev Implementations should simply return true.\n * @return true\n */\n function isComptroller() external view returns (bool);\n\n /*** Assets You Are In ***/\n\n function enterMarkets(address[] calldata cTokens) external returns (uint[] memory);\n function exitMarket(address cToken) external returns (uint);\n\n /*** Policy Hooks ***/\n\n function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint);\n function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external;\n\n function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint);\n function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external;\n\n function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint);\n function borrowVerify(address cToken, address borrower, uint borrowAmount) external;\n\n function repayBorrowAllowed(\n address cToken,\n address payer,\n address borrower,\n uint repayAmount) external returns (uint);\n function repayBorrowVerify(\n address cToken,\n address payer,\n address borrower,\n uint repayAmount,\n uint borrowerIndex) external;\n\n function liquidateBorrowAllowed(\n address cTokenBorrowed,\n address cTokenCollateral,\n address liquidator,\n address borrower,\n uint repayAmount) external returns (uint);\n function liquidateBorrowVerify(\n address cTokenBorrowed,\n address cTokenCollateral,\n address liquidator,\n address borrower,\n uint repayAmount,\n uint seizeTokens) external;\n\n function seizeAllowed(\n address cTokenCollateral,\n address cTokenBorrowed,\n address liquidator,\n address borrower,\n uint seizeTokens) external returns (uint);\n function seizeVerify(\n address cTokenCollateral,\n address cTokenBorrowed,\n address liquidator,\n address borrower,\n uint seizeTokens) external;\n\n function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint);\n function transferVerify(address cToken, address src, address dst, uint transferTokens) external;\n\n /*** Liquidity/Liquidation Calculations ***/\n\n function liquidateCalculateSeizeTokens(\n address cTokenBorrowed,\n address cTokenCollateral,\n uint repayAmount) external view returns (uint, uint);\n}\n"},"ComptrollerStorage.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CToken.sol\";\nimport \"./PriceOracle.sol\";\n\ncontract UnitrollerAdminStorage {\n /**\n * @notice Administrator for this contract\n */\n address public admin;\n\n /**\n * @notice Pending administrator for this contract\n */\n address public pendingAdmin;\n\n /**\n * @notice Active brains of Unitroller\n */\n address public comptrollerImplementation;\n\n /**\n * @notice Pending brains of Unitroller\n */\n address public pendingComptrollerImplementation;\n}\n\ncontract ComptrollerV1Storage is UnitrollerAdminStorage {\n\n /**\n * @notice Oracle which gives the price of any given asset\n */\n PriceOracle public oracle;\n\n /**\n * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow\n */\n uint public closeFactorMantissa;\n\n /**\n * @notice Multiplier representing the discount on collateral that a liquidator receives\n */\n uint public liquidationIncentiveMantissa;\n\n /**\n * @notice Max number of assets a single account can participate in (borrow or use as collateral)\n */\n uint public maxAssets;\n\n /**\n * @notice Per-account mapping of \"assets you are in\", capped by maxAssets\n */\n mapping(address =\u003e CToken[]) public accountAssets;\n\n}\n"},"CToken.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./ComptrollerInterface.sol\";\nimport \"./ErrorReporter.sol\";\nimport \"./Exponential.sol\";\nimport \"./EIP20Interface.sol\";\nimport \"./EIP20NonStandardInterface.sol\";\nimport \"./ReentrancyGuard.sol\";\nimport \"./InterestRateModel.sol\";\n\n/**\n * @title Compound\u0027s CToken Contract\n * @notice Abstract base for CTokens\n * @author Compound\n */\ncontract CToken is EIP20Interface, Exponential, TokenErrorReporter, ReentrancyGuard {\n /**\n * @notice Indicator that this is a CToken contract (for inspection)\n */\n bool public constant isCToken = true;\n\n /**\n * @notice EIP-20 token name for this token\n */\n string public name;\n\n /**\n * @notice EIP-20 token symbol for this token\n */\n string public symbol;\n\n /**\n * @notice EIP-20 token decimals for this token\n */\n uint public decimals;\n\n /**\n * @notice Maximum borrow rate that can ever be applied (.0005% / block)\n */\n uint constant borrowRateMaxMantissa = 5e14;\n\n /**\n * @notice Maximum fraction of interest that can be set aside for reserves\n */\n uint constant reserveFactorMaxMantissa = 1e18;\n\n /**\n * @notice Administrator for this contract\n */\n address payable public admin;\n\n /**\n * @notice Pending administrator for this contract\n */\n address payable public pendingAdmin;\n\n /**\n * @notice Contract which oversees inter-cToken operations\n */\n ComptrollerInterface public comptroller;\n\n /**\n * @notice Model which tells what the current interest rate should be\n */\n InterestRateModel public interestRateModel;\n\n /**\n * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)\n */\n uint public initialExchangeRateMantissa;\n\n /**\n * @notice Fraction of interest currently set aside for reserves\n */\n uint public reserveFactorMantissa;\n\n /**\n * @notice Block number that interest was last accrued at\n */\n uint public accrualBlockNumber;\n\n /**\n * @notice Accumulator of total earned interest since the opening of the market\n */\n uint public borrowIndex;\n\n /**\n * @notice Total amount of outstanding borrows of the underlying in this market\n */\n uint public totalBorrows;\n\n /**\n * @notice Total amount of reserves of the underlying held in this market\n */\n uint public totalReserves;\n\n /**\n * @notice Total number of tokens in circulation\n */\n uint256 public totalSupply;\n\n /**\n * @notice Official record of token balances for each account\n */\n mapping (address =\u003e uint256) accountTokens;\n\n /**\n * @notice Approved token transfer amounts on behalf of others\n */\n mapping (address =\u003e mapping (address =\u003e uint256)) transferAllowances;\n\n /**\n * @notice Container for borrow balance information\n * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action\n * @member interestIndex Global borrowIndex as of the most recent balance-changing action\n */\n struct BorrowSnapshot {\n uint principal;\n uint interestIndex;\n }\n\n /**\n * @notice Mapping of account addresses to outstanding borrow balances\n */\n mapping(address =\u003e BorrowSnapshot) accountBorrows;\n\n\n /*** Market Events ***/\n\n /**\n * @notice Event emitted when interest is accrued\n */\n event AccrueInterest(uint interestAccumulated, uint borrowIndex, uint totalBorrows);\n\n /**\n * @notice Event emitted when tokens are minted\n */\n event Mint(address minter, uint mintAmount, uint mintTokens);\n\n /**\n * @notice Event emitted when tokens are redeemed\n */\n event Redeem(address redeemer, uint redeemAmount, uint redeemTokens);\n\n /**\n * @notice Event emitted when underlying is borrowed\n */\n event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows);\n\n /**\n * @notice Event emitted when a borrow is repaid\n */\n event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows);\n\n /**\n * @notice Event emitted when a borrow is liquidated\n */\n event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens);\n\n\n /*** Admin Events ***/\n\n /**\n * @notice Event emitted when pendingAdmin is changed\n */\n event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);\n\n /**\n * @notice Event emitted when pendingAdmin is accepted, which means admin is updated\n */\n event NewAdmin(address oldAdmin, address newAdmin);\n\n /**\n * @notice Event emitted when comptroller is changed\n */\n event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);\n\n /**\n * @notice Event emitted when interestRateModel is changed\n */\n event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);\n\n /**\n * @notice Event emitted when the reserve factor is changed\n */\n event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa);\n\n /**\n * @notice Event emitted when the reserves are reduced\n */\n event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves);\n\n\n /**\n * @notice Construct a new money market\n * @param comptroller_ The address of the Comptroller\n * @param interestRateModel_ The address of the interest rate model\n * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18\n * @param name_ EIP-20 name of this token\n * @param symbol_ EIP-20 symbol of this token\n * @param decimals_ EIP-20 decimal precision of this token\n */\n constructor(ComptrollerInterface comptroller_,\n InterestRateModel interestRateModel_,\n uint initialExchangeRateMantissa_,\n string memory name_,\n string memory symbol_,\n uint decimals_) internal {\n // Set admin to msg.sender\n admin = msg.sender;\n\n // Set initial exchange rate\n initialExchangeRateMantissa = initialExchangeRateMantissa_;\n require(initialExchangeRateMantissa \u003e 0, \"Initial exchange rate must be greater than zero.\");\n\n // Set the comptroller\n uint err = _setComptroller(comptroller_);\n require(err == uint(Error.NO_ERROR), \"Setting comptroller failed\");\n\n // Initialize block number and borrow index (block number mocks depend on comptroller being set)\n accrualBlockNumber = getBlockNumber();\n borrowIndex = mantissaOne;\n\n // Set the interest rate model (depends on block number / borrow index)\n err = _setInterestRateModelFresh(interestRateModel_);\n require(err == uint(Error.NO_ERROR), \"Setting interest rate model failed\");\n\n name = name_;\n symbol = symbol_;\n decimals = decimals_;\n }\n\n /**\n * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`\n * @dev Called by both `transfer` and `transferFrom` internally\n * @param spender The address of the account performing the transfer\n * @param src The address of the source account\n * @param dst The address of the destination account\n * @param tokens The number of tokens to transfer\n * @return Whether or not the transfer succeeded\n */\n function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) {\n /* Fail if transfer not allowed */\n uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Do not allow self-transfers */\n if (src == dst) {\n return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);\n }\n\n /* Get the allowance, infinite for the account owner */\n uint startingAllowance = 0;\n if (spender == src) {\n startingAllowance = uint(-1);\n } else {\n startingAllowance = transferAllowances[src][spender];\n }\n\n /* Do the calculations, checking for {under,over}flow */\n MathError mathErr;\n uint allowanceNew;\n uint srcTokensNew;\n uint dstTokensNew;\n\n (mathErr, allowanceNew) = subUInt(startingAllowance, tokens);\n if (mathErr != MathError.NO_ERROR) {\n return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED);\n }\n\n (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens);\n if (mathErr != MathError.NO_ERROR) {\n return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH);\n }\n\n (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens);\n if (mathErr != MathError.NO_ERROR) {\n return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH);\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n accountTokens[src] = srcTokensNew;\n accountTokens[dst] = dstTokensNew;\n\n /* Eat some of the allowance (if necessary) */\n if (startingAllowance != uint(-1)) {\n transferAllowances[src][spender] = allowanceNew;\n }\n\n /* We emit a Transfer event */\n emit Transfer(src, dst, tokens);\n\n /* We call the defense hook (which checks for under-collateralization) */\n comptroller.transferVerify(address(this), src, dst, tokens);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Transfer `amount` tokens from `msg.sender` to `dst`\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n * @return Whether or not the transfer succeeded\n */\n function transfer(address dst, uint256 amount) external nonReentrant returns (bool) {\n return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Transfer `amount` tokens from `src` to `dst`\n * @param src The address of the source account\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n * @return Whether or not the transfer succeeded\n */\n function transferFrom(address src, address dst, uint256 amount) external nonReentrant returns (bool) {\n return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Approve `spender` to transfer up to `amount` from `src`\n * @dev This will overwrite the approval amount for `spender`\n * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)\n * @param spender The address of the account which may transfer tokens\n * @param amount The number of tokens that are approved (-1 means infinite)\n * @return Whether or not the approval succeeded\n */\n function approve(address spender, uint256 amount) external returns (bool) {\n address src = msg.sender;\n transferAllowances[src][spender] = amount;\n emit Approval(src, spender, amount);\n return true;\n }\n\n /**\n * @notice Get the current allowance from `owner` for `spender`\n * @param owner The address of the account which owns the tokens to be spent\n * @param spender The address of the account which may transfer tokens\n * @return The number of tokens allowed to be spent (-1 means infinite)\n */\n function allowance(address owner, address spender) external view returns (uint256) {\n return transferAllowances[owner][spender];\n }\n\n /**\n * @notice Get the token balance of the `owner`\n * @param owner The address of the account to query\n * @return The number of tokens owned by `owner`\n */\n function balanceOf(address owner) external view returns (uint256) {\n return accountTokens[owner];\n }\n\n /**\n * @notice Get the underlying balance of the `owner`\n * @dev This also accrues interest in a transaction\n * @param owner The address of the account to query\n * @return The amount of underlying owned by `owner`\n */\n function balanceOfUnderlying(address owner) external returns (uint) {\n Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});\n (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]);\n require(mErr == MathError.NO_ERROR);\n return balance;\n }\n\n /**\n * @notice Get a snapshot of the account\u0027s balances, and the cached exchange rate\n * @dev This is used by comptroller to more efficiently perform liquidity checks.\n * @param account Address of the account to snapshot\n * @return (possible error, token balance, borrow balance, exchange rate mantissa)\n */\n function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) {\n uint cTokenBalance = accountTokens[account];\n uint borrowBalance;\n uint exchangeRateMantissa;\n\n MathError mErr;\n\n (mErr, borrowBalance) = borrowBalanceStoredInternal(account);\n if (mErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0, 0, 0);\n }\n\n (mErr, exchangeRateMantissa) = exchangeRateStoredInternal();\n if (mErr != MathError.NO_ERROR) {\n return (uint(Error.MATH_ERROR), 0, 0, 0);\n }\n\n return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);\n }\n\n /**\n * @dev Function to simply retrieve block number\n * This exists mainly for inheriting test contracts to stub this result.\n */\n function getBlockNumber() internal view returns (uint) {\n return block.number;\n }\n\n /**\n * @notice Returns the current per-block borrow interest rate for this cToken\n * @return The borrow interest rate per block, scaled by 1e18\n */\n function borrowRatePerBlock() external view returns (uint) {\n (uint opaqueErr, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);\n require(opaqueErr == 0, \"borrowRatePerBlock: interestRateModel.borrowRate failed\"); // semi-opaque\n return borrowRateMantissa;\n }\n\n /**\n * @notice Returns the current per-block supply interest rate for this cToken\n * @return The supply interest rate per block, scaled by 1e18\n */\n function supplyRatePerBlock() external view returns (uint) {\n /* We calculate the supply rate:\n * underlying = totalSupply × exchangeRate\n * borrowsPer = totalBorrows ÷ underlying\n * supplyRate = borrowRate × (1-reserveFactor) × borrowsPer\n */\n uint exchangeRateMantissa = exchangeRateStored();\n\n (uint e0, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);\n require(e0 == 0, \"supplyRatePerBlock: calculating borrowRate failed\"); // semi-opaque\n\n (MathError e1, Exp memory underlying) = mulScalar(Exp({mantissa: exchangeRateMantissa}), totalSupply);\n require(e1 == MathError.NO_ERROR, \"supplyRatePerBlock: calculating underlying failed\");\n\n (MathError e2, Exp memory borrowsPer) = divScalarByExp(totalBorrows, underlying);\n require(e2 == MathError.NO_ERROR, \"supplyRatePerBlock: calculating borrowsPer failed\");\n\n (MathError e3, Exp memory oneMinusReserveFactor) = subExp(Exp({mantissa: mantissaOne}), Exp({mantissa: reserveFactorMantissa}));\n require(e3 == MathError.NO_ERROR, \"supplyRatePerBlock: calculating oneMinusReserveFactor failed\");\n\n (MathError e4, Exp memory supplyRate) = mulExp3(Exp({mantissa: borrowRateMantissa}), oneMinusReserveFactor, borrowsPer);\n require(e4 == MathError.NO_ERROR, \"supplyRatePerBlock: calculating supplyRate failed\");\n\n return supplyRate.mantissa;\n }\n\n /**\n * @notice Returns the current total borrows plus accrued interest\n * @return The total borrows with interest\n */\n function totalBorrowsCurrent() external nonReentrant returns (uint) {\n require(accrueInterest() == uint(Error.NO_ERROR), \"accrue interest failed\");\n return totalBorrows;\n }\n\n /**\n * @notice Accrue interest to updated borrowIndex and then calculate account\u0027s borrow balance using the updated borrowIndex\n * @param account The address whose balance should be calculated after updating borrowIndex\n * @return The calculated balance\n */\n function borrowBalanceCurrent(address account) external nonReentrant returns (uint) {\n require(accrueInterest() == uint(Error.NO_ERROR), \"accrue interest failed\");\n return borrowBalanceStored(account);\n }\n\n /**\n * @notice Return the borrow balance of account based on stored data\n * @param account The address whose balance should be calculated\n * @return The calculated balance\n */\n function borrowBalanceStored(address account) public view returns (uint) {\n (MathError err, uint result) = borrowBalanceStoredInternal(account);\n require(err == MathError.NO_ERROR, \"borrowBalanceStored: borrowBalanceStoredInternal failed\");\n return result;\n }\n\n /**\n * @notice Return the borrow balance of account based on stored data\n * @param account The address whose balance should be calculated\n * @return (error code, the calculated balance or 0 if error code is non-zero)\n */\n function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) {\n /* Note: we do not assert that the market is up to date */\n MathError mathErr;\n uint principalTimesIndex;\n uint result;\n\n /* Get borrowBalance and borrowIndex */\n BorrowSnapshot storage borrowSnapshot = accountBorrows[account];\n\n /* If borrowBalance = 0 then borrowIndex is likely also 0.\n * Rather than failing the calculation with a division by 0, we immediately return 0 in this case.\n */\n if (borrowSnapshot.principal == 0) {\n return (MathError.NO_ERROR, 0);\n }\n\n /* Calculate new borrow balance using the interest index:\n * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex\n */\n (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex);\n if (mathErr != MathError.NO_ERROR) {\n return (mathErr, 0);\n }\n\n (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex);\n if (mathErr != MathError.NO_ERROR) {\n return (mathErr, 0);\n }\n\n return (MathError.NO_ERROR, result);\n }\n\n /**\n * @notice Accrue interest then return the up-to-date exchange rate\n * @return Calculated exchange rate scaled by 1e18\n */\n function exchangeRateCurrent() public nonReentrant returns (uint) {\n require(accrueInterest() == uint(Error.NO_ERROR), \"accrue interest failed\");\n return exchangeRateStored();\n }\n\n /**\n * @notice Calculates the exchange rate from the underlying to the CToken\n * @dev This function does not accrue interest before calculating the exchange rate\n * @return Calculated exchange rate scaled by 1e18\n */\n function exchangeRateStored() public view returns (uint) {\n (MathError err, uint result) = exchangeRateStoredInternal();\n require(err == MathError.NO_ERROR, \"exchangeRateStored: exchangeRateStoredInternal failed\");\n return result;\n }\n\n /**\n * @notice Calculates the exchange rate from the underlying to the CToken\n * @dev This function does not accrue interest before calculating the exchange rate\n * @return (error code, calculated exchange rate scaled by 1e18)\n */\n function exchangeRateStoredInternal() internal view returns (MathError, uint) {\n if (totalSupply == 0) {\n /*\n * If there are no tokens minted:\n * exchangeRate = initialExchangeRate\n */\n return (MathError.NO_ERROR, initialExchangeRateMantissa);\n } else {\n /*\n * Otherwise:\n * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply\n */\n uint totalCash = getCashPrior();\n uint cashPlusBorrowsMinusReserves;\n Exp memory exchangeRate;\n MathError mathErr;\n\n (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves);\n if (mathErr != MathError.NO_ERROR) {\n return (mathErr, 0);\n }\n\n (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, totalSupply);\n if (mathErr != MathError.NO_ERROR) {\n return (mathErr, 0);\n }\n\n return (MathError.NO_ERROR, exchangeRate.mantissa);\n }\n }\n\n /**\n * @notice Get cash balance of this cToken in the underlying asset\n * @return The quantity of underlying asset owned by this contract\n */\n function getCash() external view returns (uint) {\n return getCashPrior();\n }\n\n struct AccrueInterestLocalVars {\n MathError mathErr;\n uint opaqueErr;\n uint borrowRateMantissa;\n uint currentBlockNumber;\n uint blockDelta;\n\n Exp simpleInterestFactor;\n\n uint interestAccumulated;\n uint totalBorrowsNew;\n uint totalReservesNew;\n uint borrowIndexNew;\n }\n\n /**\n * @notice Applies accrued interest to total borrows and reserves.\n * @dev This calculates interest accrued from the last checkpointed block\n * up to the current block and writes new checkpoint to storage.\n */\n function accrueInterest() public returns (uint) {\n AccrueInterestLocalVars memory vars;\n\n /* Calculate the current borrow interest rate */\n (vars.opaqueErr, vars.borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);\n require(vars.borrowRateMantissa \u003c= borrowRateMaxMantissa, \"borrow rate is absurdly high\");\n if (vars.opaqueErr != 0) {\n return failOpaque(Error.INTEREST_RATE_MODEL_ERROR, FailureInfo.ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, vars.opaqueErr);\n }\n\n /* Remember the initial block number */\n vars.currentBlockNumber = getBlockNumber();\n\n /* Calculate the number of blocks elapsed since the last accrual */\n (vars.mathErr, vars.blockDelta) = subUInt(vars.currentBlockNumber, accrualBlockNumber);\n assert(vars.mathErr == MathError.NO_ERROR); // Block delta should always succeed and if it doesn\u0027t, blow up.\n\n /*\n * Calculate the interest accumulated into borrows and reserves and the new index:\n * simpleInterestFactor = borrowRate * blockDelta\n * interestAccumulated = simpleInterestFactor * totalBorrows\n * totalBorrowsNew = interestAccumulated + totalBorrows\n * totalReservesNew = interestAccumulated * reserveFactor + totalReserves\n * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex\n */\n (vars.mathErr, vars.simpleInterestFactor) = mulScalar(Exp({mantissa: vars.borrowRateMantissa}), vars.blockDelta);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.interestAccumulated) = mulScalarTruncate(vars.simpleInterestFactor, totalBorrows);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.totalBorrowsNew) = addUInt(vars.interestAccumulated, totalBorrows);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), vars.interestAccumulated, totalReserves);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.borrowIndexNew) = mulScalarTruncateAddUInt(vars.simpleInterestFactor, borrowIndex, borrowIndex);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /* We write the previously calculated values into storage */\n accrualBlockNumber = vars.currentBlockNumber;\n borrowIndex = vars.borrowIndexNew;\n totalBorrows = vars.totalBorrowsNew;\n totalReserves = vars.totalReservesNew;\n\n /* We emit an AccrueInterest event */\n emit AccrueInterest(vars.interestAccumulated, vars.borrowIndexNew, totalBorrows);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sender supplies assets into the market and receives cTokens in exchange\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param mintAmount The amount of the underlying asset to supply\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function mintInternal(uint mintAmount) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed\n return fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED);\n }\n // mintFresh emits the actual Mint event if successful and logs on errors, so we don\u0027t need to\n return mintFresh(msg.sender, mintAmount);\n }\n\n struct MintLocalVars {\n Error err;\n MathError mathErr;\n uint exchangeRateMantissa;\n uint mintTokens;\n uint totalSupplyNew;\n uint accountTokensNew;\n }\n\n /**\n * @notice User supplies assets into the market and receives cTokens in exchange\n * @dev Assumes interest has already been accrued up to the current block\n * @param minter The address of the account which is supplying the assets\n * @param mintAmount The amount of the underlying asset to supply\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function mintFresh(address minter, uint mintAmount) internal returns (uint) {\n /* Fail if mint not allowed */\n uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Verify market\u0027s block number equals current block number */\n if (accrualBlockNumber != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK);\n }\n\n MintLocalVars memory vars;\n\n /* Fail if checkTransferIn fails */\n vars.err = checkTransferIn(minter, mintAmount);\n if (vars.err != Error.NO_ERROR) {\n return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_NOT_POSSIBLE);\n }\n\n /*\n * We get the current exchange rate and calculate the number of cTokens to be minted:\n * mintTokens = mintAmount / exchangeRate\n */\n (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(mintAmount, Exp({mantissa: vars.exchangeRateMantissa}));\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /*\n * We calculate the new total supply of cTokens and minter token balance, checking for overflow:\n * totalSupplyNew = totalSupply + mintTokens\n * accountTokensNew = accountTokens[minter] + mintTokens\n */\n (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /*\n * We call doTransferIn for the minter and the mintAmount\n * Note: The cToken must handle variations between ERC-20 and ETH underlying.\n * On success, the cToken holds an additional mintAmount of cash.\n * If doTransferIn fails despite the fact we checked pre-conditions,\n * we revert because we can\u0027t be sure if side effects occurred.\n */\n vars.err = doTransferIn(minter, mintAmount);\n if (vars.err != Error.NO_ERROR) {\n return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_FAILED);\n }\n\n /* We write previously calculated values into storage */\n totalSupply = vars.totalSupplyNew;\n accountTokens[minter] = vars.accountTokensNew;\n\n /* We emit a Mint event, and a Transfer event */\n emit Mint(minter, mintAmount, vars.mintTokens);\n emit Transfer(address(this), minter, vars.mintTokens);\n\n /* We call the defense hook */\n comptroller.mintVerify(address(this), minter, mintAmount, vars.mintTokens);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for the underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemTokens The number of cTokens to redeem into underlying\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed\n return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);\n }\n // redeemFresh emits redeem-specific logs on errors, so we don\u0027t need to\n return redeemFresh(msg.sender, redeemTokens, 0);\n }\n\n /**\n * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset\n * @dev Accrues interest whether or not the operation succeeds, unless reverted\n * @param redeemAmount The amount of underlying to redeem\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed\n return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);\n }\n // redeemFresh emits redeem-specific logs on errors, so we don\u0027t need to\n return redeemFresh(msg.sender, 0, redeemAmount);\n }\n\n struct RedeemLocalVars {\n Error err;\n MathError mathErr;\n uint exchangeRateMantissa;\n uint redeemTokens;\n uint redeemAmount;\n uint totalSupplyNew;\n uint accountTokensNew;\n }\n\n /**\n * @notice User redeems cTokens in exchange for the underlying asset\n * @dev Assumes interest has already been accrued up to the current block\n * @param redeemer The address of the account which is redeeming the tokens\n * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero)\n * @param redeemAmountIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero)\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) {\n require(redeemTokensIn == 0 || redeemAmountIn == 0, \"one of redeemTokensIn or redeemAmountIn must be zero\");\n\n RedeemLocalVars memory vars;\n\n /* exchangeRate = invoke Exchange Rate Stored() */\n (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));\n }\n\n /* If redeemTokensIn \u003e 0: */\n if (redeemTokensIn \u003e 0) {\n /*\n * We calculate the exchange rate and the amount of underlying to be redeemed:\n * redeemTokens = redeemTokensIn\n * redeemAmount = redeemTokensIn x exchangeRateCurrent\n */\n vars.redeemTokens = redeemTokensIn;\n\n (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr));\n }\n } else {\n /*\n * We get the current exchange rate and calculate the amount to be redeemed:\n * redeemTokens = redeemAmountIn / exchangeRate\n * redeemAmount = redeemAmountIn\n */\n\n (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n vars.redeemAmount = redeemAmountIn;\n }\n\n /* Fail if redeem not allowed */\n uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Verify market\u0027s block number equals current block number */\n if (accrualBlockNumber != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);\n }\n\n /*\n * We calculate the new total supply and redeemer balance, checking for underflow:\n * totalSupplyNew = totalSupply - redeemTokens\n * accountTokensNew = accountTokens[redeemer] - redeemTokens\n */\n (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /* Fail gracefully if protocol has insufficient cash */\n if (getCashPrior() \u003c vars.redeemAmount) {\n return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /*\n * We invoke doTransferOut for the redeemer and the redeemAmount.\n * Note: The cToken must handle variations between ERC-20 and ETH underlying.\n * On success, the cToken has redeemAmount less of cash.\n * If doTransferOut fails despite the fact we checked pre-conditions,\n * we revert because we can\u0027t be sure if side effects occurred.\n */\n vars.err = doTransferOut(redeemer, vars.redeemAmount);\n require(vars.err == Error.NO_ERROR, \"redeem transfer out failed\");\n\n /* We write previously calculated values into storage */\n totalSupply = vars.totalSupplyNew;\n accountTokens[redeemer] = vars.accountTokensNew;\n\n /* We emit a Transfer event, and a Redeem event */\n emit Transfer(redeemer, address(this), vars.redeemTokens);\n emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);\n\n /* We call the defense hook */\n comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sender borrows assets from the protocol to their own address\n * @param borrowAmount The amount of the underlying asset to borrow\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed\n return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);\n }\n // borrowFresh emits borrow-specific logs on errors, so we don\u0027t need to\n return borrowFresh(msg.sender, borrowAmount);\n }\n\n struct BorrowLocalVars {\n Error err;\n MathError mathErr;\n uint accountBorrows;\n uint accountBorrowsNew;\n uint totalBorrowsNew;\n }\n\n /**\n * @notice Users borrow assets from the protocol to their own address\n * @param borrowAmount The amount of the underlying asset to borrow\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) {\n /* Fail if borrow not allowed */\n uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Verify market\u0027s block number equals current block number */\n if (accrualBlockNumber != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);\n }\n\n /* Fail gracefully if protocol has insufficient underlying cash */\n if (getCashPrior() \u003c borrowAmount) {\n return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);\n }\n\n BorrowLocalVars memory vars;\n\n /*\n * We calculate the new borrower and total borrow balances, failing on overflow:\n * accountBorrowsNew = accountBorrows + borrowAmount\n * totalBorrowsNew = totalBorrows + borrowAmount\n */\n (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /*\n * We invoke doTransferOut for the borrower and the borrowAmount.\n * Note: The cToken must handle variations between ERC-20 and ETH underlying.\n * On success, the cToken borrowAmount less of cash.\n * If doTransferOut fails despite the fact we checked pre-conditions,\n * we revert because we can\u0027t be sure if side effects occurred.\n */\n vars.err = doTransferOut(borrower, borrowAmount);\n require(vars.err == Error.NO_ERROR, \"borrow transfer out failed\");\n\n /* We write the previously calculated values into storage */\n accountBorrows[borrower].principal = vars.accountBorrowsNew;\n accountBorrows[borrower].interestIndex = borrowIndex;\n totalBorrows = vars.totalBorrowsNew;\n\n /* We emit a Borrow event */\n emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);\n\n /* We call the defense hook */\n comptroller.borrowVerify(address(this), borrower, borrowAmount);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sender repays their own borrow\n * @param repayAmount The amount to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed\n return fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED);\n }\n // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don\u0027t need to\n return repayBorrowFresh(msg.sender, msg.sender, repayAmount);\n }\n\n /**\n * @notice Sender repays a borrow belonging to borrower\n * @param borrower the account with the debt being payed off\n * @param repayAmount The amount to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed\n return fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED);\n }\n // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don\u0027t need to\n return repayBorrowFresh(msg.sender, borrower, repayAmount);\n }\n\n struct RepayBorrowLocalVars {\n Error err;\n MathError mathErr;\n uint repayAmount;\n uint borrowerIndex;\n uint accountBorrows;\n uint accountBorrowsNew;\n uint totalBorrowsNew;\n }\n\n /**\n * @notice Borrows are repaid by another user (possibly the borrower).\n * @param payer the account paying off the borrow\n * @param borrower the account with the debt being payed off\n * @param repayAmount the amount of undelrying tokens being returned\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint) {\n /* Fail if repayBorrow not allowed */\n uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Verify market\u0027s block number equals current block number */\n if (accrualBlockNumber != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK);\n }\n\n RepayBorrowLocalVars memory vars;\n\n /* We remember the original borrowerIndex for verification purposes */\n vars.borrowerIndex = accountBorrows[borrower].interestIndex;\n\n /* We fetch the amount the borrower owes, with accumulated interest */\n (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /* If repayAmount == -1, repayAmount = accountBorrows */\n if (repayAmount == uint(-1)) {\n vars.repayAmount = vars.accountBorrows;\n } else {\n vars.repayAmount = repayAmount;\n }\n\n /* Fail if checkTransferIn fails */\n vars.err = checkTransferIn(payer, vars.repayAmount);\n if (vars.err != Error.NO_ERROR) {\n return fail(vars.err, FailureInfo.REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE);\n }\n\n /*\n * We calculate the new borrower and total borrow balances, failing on underflow:\n * accountBorrowsNew = accountBorrows - repayAmount\n * totalBorrowsNew = totalBorrows - repayAmount\n */\n (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.repayAmount);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.repayAmount);\n if (vars.mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /*\n * We call doTransferIn for the payer and the repayAmount\n * Note: The cToken must handle variations between ERC-20 and ETH underlying.\n * On success, the cToken holds an additional repayAmount of cash.\n * If doTransferIn fails despite the fact we checked pre-conditions,\n * we revert because we can\u0027t be sure if side effects occurred.\n */\n vars.err = doTransferIn(payer, vars.repayAmount);\n require(vars.err == Error.NO_ERROR, \"repay borrow transfer in failed\");\n\n /* We write the previously calculated values into storage */\n accountBorrows[borrower].principal = vars.accountBorrowsNew;\n accountBorrows[borrower].interestIndex = borrowIndex;\n totalBorrows = vars.totalBorrowsNew;\n\n /* We emit a RepayBorrow event */\n emit RepayBorrow(payer, borrower, vars.repayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);\n\n /* We call the defense hook */\n comptroller.repayBorrowVerify(address(this), payer, borrower, vars.repayAmount, vars.borrowerIndex);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice The sender liquidates the borrowers collateral.\n * The collateral seized is transferred to the liquidator.\n * @param borrower The borrower of this cToken to be liquidated\n * @param cTokenCollateral The market in which to seize collateral from the borrower\n * @param repayAmount The amount of the underlying borrowed asset to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function liquidateBorrowInternal(address borrower, uint repayAmount, CToken cTokenCollateral) internal nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed\n return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED);\n }\n\n error = cTokenCollateral.accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed\n return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED);\n }\n\n // liquidateBorrowFresh emits borrow-specific logs on errors, so we don\u0027t need to\n return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral);\n }\n\n /**\n * @notice The liquidator liquidates the borrowers collateral.\n * The collateral seized is transferred to the liquidator.\n * @param borrower The borrower of this cToken to be liquidated\n * @param liquidator The address repaying the borrow and seizing collateral\n * @param cTokenCollateral The market in which to seize collateral from the borrower\n * @param repayAmount The amount of the underlying borrowed asset to repay\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CToken cTokenCollateral) internal returns (uint) {\n /* Fail if liquidate not allowed */\n uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Verify market\u0027s block number equals current block number */\n if (accrualBlockNumber != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK);\n }\n\n /* Verify cTokenCollateral market\u0027s block number equals current block number */\n if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK);\n }\n\n /* Fail if borrower = liquidator */\n if (borrower == liquidator) {\n return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER);\n }\n\n /* Fail if repayAmount = 0 */\n if (repayAmount == 0) {\n return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO);\n }\n\n /* Fail if repayAmount = -1 */\n if (repayAmount == uint(-1)) {\n return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX);\n }\n\n /* We calculate the number of collateral tokens that will be seized */\n (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), repayAmount);\n if (amountSeizeError != 0) {\n return failOpaque(Error.COMPTROLLER_CALCULATION_ERROR, FailureInfo.LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, amountSeizeError);\n }\n\n /* Fail if seizeTokens \u003e borrower collateral token balance */\n if (seizeTokens \u003e cTokenCollateral.balanceOf(borrower)) {\n return fail(Error.TOKEN_INSUFFICIENT_BALANCE, FailureInfo.LIQUIDATE_SEIZE_TOO_MUCH);\n }\n\n /* Fail if repayBorrow fails */\n uint repayBorrowError = repayBorrowFresh(liquidator, borrower, repayAmount);\n if (repayBorrowError != uint(Error.NO_ERROR)) {\n return fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED);\n }\n\n /* Revert if seize tokens fails (since we cannot be sure of side effects) */\n uint seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens);\n require(seizeError == uint(Error.NO_ERROR), \"token seizure failed\");\n\n /* We emit a LiquidateBorrow event */\n emit LiquidateBorrow(liquidator, borrower, repayAmount, address(cTokenCollateral), seizeTokens);\n\n /* We call the defense hook */\n comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount, seizeTokens);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Transfers collateral tokens (this market) to the liquidator.\n * @dev Will fail unless called by another cToken during the process of liquidation.\n * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.\n * @param liquidator The account receiving seized collateral\n * @param borrower The account having collateral seized\n * @param seizeTokens The number of cTokens to seize\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant returns (uint) {\n /* Fail if seize not allowed */\n uint allowed = comptroller.seizeAllowed(address(this), msg.sender, liquidator, borrower, seizeTokens);\n if (allowed != 0) {\n return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);\n }\n\n /* Fail if borrower = liquidator */\n if (borrower == liquidator) {\n return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);\n }\n\n MathError mathErr;\n uint borrowerTokensNew;\n uint liquidatorTokensNew;\n\n /*\n * We calculate the new borrower and liquidator token balances, failing on underflow/overflow:\n * borrowerTokensNew = accountTokens[borrower] - seizeTokens\n * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens\n */\n (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens);\n if (mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr));\n }\n\n (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens);\n if (mathErr != MathError.NO_ERROR) {\n return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr));\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n /* We write the previously calculated values into storage */\n accountTokens[borrower] = borrowerTokensNew;\n accountTokens[liquidator] = liquidatorTokensNew;\n\n /* Emit a Transfer event */\n emit Transfer(borrower, liquidator, seizeTokens);\n\n /* We call the defense hook */\n comptroller.seizeVerify(address(this), msg.sender, liquidator, borrower, seizeTokens);\n\n return uint(Error.NO_ERROR);\n }\n\n\n /*** Admin Functions ***/\n\n /**\n * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.\n * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.\n * @param newPendingAdmin New pending admin.\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n *\n * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address?\n */\n function _setPendingAdmin(address payable newPendingAdmin) external returns (uint) {\n // Check caller = admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);\n }\n\n // Save current value, if any, for inclusion in log\n address oldPendingAdmin = pendingAdmin;\n\n // Store pendingAdmin with value newPendingAdmin\n pendingAdmin = newPendingAdmin;\n\n // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)\n emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin\n * @dev Admin function for pending admin to accept role and update admin\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _acceptAdmin() external returns (uint) {\n // Check caller is pendingAdmin and pendingAdmin ≠address(0)\n if (msg.sender != pendingAdmin || msg.sender == address(0)) {\n return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);\n }\n\n // Save current values for inclusion in log\n address oldAdmin = admin;\n address oldPendingAdmin = pendingAdmin;\n\n // Store admin with value pendingAdmin\n admin = pendingAdmin;\n\n // Clear the pending value\n pendingAdmin = address(0);\n\n emit NewAdmin(oldAdmin, admin);\n emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Sets a new comptroller for the market\n * @dev Admin function to set a new comptroller\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setComptroller(ComptrollerInterface newComptroller) public returns (uint) {\n // Check caller is admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK);\n }\n\n ComptrollerInterface oldComptroller = comptroller;\n // Ensure invoke comptroller.isComptroller() returns true\n require(newComptroller.isComptroller(), \"marker method returned false\");\n\n // Set market\u0027s comptroller to newComptroller\n comptroller = newComptroller;\n\n // Emit NewComptroller(oldComptroller, newComptroller)\n emit NewComptroller(oldComptroller, newComptroller);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh\n * @dev Admin function to accrue interest and set a new reserve factor\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.\n return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);\n }\n // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don\u0027t need to.\n return _setReserveFactorFresh(newReserveFactorMantissa);\n }\n\n /**\n * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)\n * @dev Admin function to set a new reserve factor\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) {\n // Check caller is admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);\n }\n\n // Verify market\u0027s block number equals current block number\n if (accrualBlockNumber != getBlockNumber()) {\n // TODO: static_assert + no error code?\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);\n }\n\n // Check newReserveFactor ≤ maxReserveFactor\n if (newReserveFactorMantissa \u003e reserveFactorMaxMantissa) {\n return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);\n }\n\n uint oldReserveFactorMantissa = reserveFactorMantissa;\n reserveFactorMantissa = newReserveFactorMantissa;\n\n emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Accrues interest and reduces reserves by transferring to admin\n * @param reduceAmount Amount of reduction to reserves\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _reduceReserves(uint reduceAmount) external nonReentrant returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.\n return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);\n }\n // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don\u0027t need to.\n return _reduceReservesFresh(reduceAmount);\n }\n\n /**\n * @notice Reduces reserves by transferring to admin\n * @dev Requires fresh interest accrual\n * @param reduceAmount Amount of reduction to reserves\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _reduceReservesFresh(uint reduceAmount) internal returns (uint) {\n Error err;\n // totalReserves - reduceAmount\n uint totalReservesNew;\n\n // Check caller is admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);\n }\n\n // We fail gracefully unless market\u0027s block number equals current block number\n if (accrualBlockNumber != getBlockNumber()) {\n // TODO: static_assert + no error code?\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);\n }\n\n // Fail gracefully if protocol has insufficient underlying cash\n if (getCashPrior() \u003c reduceAmount) {\n return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);\n }\n\n // Check reduceAmount ≤ reserves[n] (totalReserves)\n // TODO: I\u0027m following the spec literally here but I think we should we just use SafeMath instead and fail on an error (which would be underflow)\n if (reduceAmount \u003e totalReserves) {\n return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);\n }\n\n /////////////////////////\n // EFFECTS \u0026 INTERACTIONS\n // (No safe failures beyond this point)\n\n totalReservesNew = totalReserves - reduceAmount;\n // We checked reduceAmount \u003c= totalReserves above, so this should never revert.\n require(totalReservesNew \u003c= totalReserves, \"reduce reserves unexpected underflow\");\n\n // Store reserves[n+1] = reserves[n] - reduceAmount\n totalReserves = totalReservesNew;\n\n // invoke doTransferOut(reduceAmount, admin)\n err = doTransferOut(admin, reduceAmount);\n // we revert on the failure of this command\n require(err == Error.NO_ERROR, \"reduce reserves transfer out failed\");\n\n emit ReservesReduced(admin, reduceAmount, totalReservesNew);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh\n * @dev Admin function to accrue interest and update the interest rate model\n * @param newInterestRateModel the new interest rate model to use\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) {\n uint error = accrueInterest();\n if (error != uint(Error.NO_ERROR)) {\n // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed\n return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);\n }\n // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don\u0027t need to.\n return _setInterestRateModelFresh(newInterestRateModel);\n }\n\n /**\n * @notice updates the interest rate model (*requires fresh interest accrual)\n * @dev Admin function to update the interest rate model\n * @param newInterestRateModel the new interest rate model to use\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) {\n\n // Used to store old model for use in the event that is emitted on success\n InterestRateModel oldInterestRateModel;\n\n // Check caller is admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);\n }\n\n // We fail gracefully unless market\u0027s block number equals current block number\n if (accrualBlockNumber != getBlockNumber()) {\n // TODO: static_assert + no error code?\n return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);\n }\n\n // Track the market\u0027s current interest rate model\n oldInterestRateModel = interestRateModel;\n\n // Ensure invoke newInterestRateModel.isInterestRateModel() returns true\n require(newInterestRateModel.isInterestRateModel(), \"marker method returned false\");\n\n // Set the interest rate model to newInterestRateModel\n interestRateModel = newInterestRateModel;\n\n // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)\n emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);\n\n return uint(Error.NO_ERROR);\n }\n\n /*** Safe Token ***/\n\n /**\n * @notice Gets balance of this contract in terms of the underlying\n * @dev This excludes the value of the current message, if any\n * @return The quantity of underlying owned by this contract\n */\n function getCashPrior() internal view returns (uint);\n\n /**\n * @dev Checks whether or not there is sufficient allowance for this contract to move amount from `from` and\n * whether or not `from` has a balance of at least `amount`. Does NOT do a transfer.\n */\n function checkTransferIn(address from, uint amount) internal view returns (Error);\n\n /**\n * @dev Performs a transfer in, ideally returning an explanatory error code upon failure rather than reverting.\n * If caller has not called `checkTransferIn`, this may revert due to insufficient balance or insufficient allowance.\n * If caller has called `checkTransferIn` successfully, this should not revert in normal conditions.\n */\n function doTransferIn(address from, uint amount) internal returns (Error);\n\n /**\n * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.\n * If caller has not called checked protocol\u0027s balance, may revert due to insufficient cash held in the contract.\n * If caller has checked protocol\u0027s balance, and verified it is \u003e= amount, this should not revert in normal conditions.\n */\n function doTransferOut(address payable to, uint amount) internal returns (Error);\n}\n"},"EIP20Interface.sol":{"content":"pragma solidity ^0.5.8;\n\n/**\n * @title ERC 20 Token Standard Interface\n * https://eips.ethereum.org/EIPS/eip-20\n */\ninterface EIP20Interface {\n\n /**\n * @notice Get the total number of tokens in circulation\n * @return The supply of tokens\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @notice Gets the balance of the specified address\n * @param owner The address from which the balance will be retrieved\n * @return The balance\n */\n function balanceOf(address owner) external view returns (uint256 balance);\n\n /**\n * @notice Transfer `amount` tokens from `msg.sender` to `dst`\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n * @return Whether or not the transfer succeeded\n */\n function transfer(address dst, uint256 amount) external returns (bool success);\n\n /**\n * @notice Transfer `amount` tokens from `src` to `dst`\n * @param src The address of the source account\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n * @return Whether or not the transfer succeeded\n */\n function transferFrom(address src, address dst, uint256 amount) external returns (bool success);\n\n /**\n * @notice Approve `spender` to transfer up to `amount` from `src`\n * @dev This will overwrite the approval amount for `spender`\n * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)\n * @param spender The address of the account which may transfer tokens\n * @param amount The number of tokens that are approved (-1 means infinite)\n * @return Whether or not the approval succeeded\n */\n function approve(address spender, uint256 amount) external returns (bool success);\n\n /**\n * @notice Get the current allowance from `owner` for `spender`\n * @param owner The address of the account which owns the tokens to be spent\n * @param spender The address of the account which may transfer tokens\n * @return The number of tokens allowed to be spent (-1 means infinite)\n */\n function allowance(address owner, address spender) external view returns (uint256 remaining);\n\n event Transfer(address indexed from, address indexed to, uint256 amount);\n event Approval(address indexed owner, address indexed spender, uint256 amount);\n}\n"},"EIP20NonStandardInterface.sol":{"content":"pragma solidity ^0.5.8;\n\n/**\n * @title EIP20NonStandardInterface\n * @dev Version of ERC20 with no return values for `transfer` and `transferFrom`\n * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca\n */\ninterface EIP20NonStandardInterface {\n\n /**\n * @notice Get the total number of tokens in circulation\n * @return The supply of tokens\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @notice Gets the balance of the specified address\n * @param owner The address from which the balance will be retrieved\n * @return The balance\n */\n function balanceOf(address owner) external view returns (uint256 balance);\n\n ///\n /// !!!!!!!!!!!!!!\n /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification\n /// !!!!!!!!!!!!!!\n ///\n\n /**\n * @notice Transfer `amount` tokens from `msg.sender` to `dst`\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n */\n function transfer(address dst, uint256 amount) external;\n\n ///\n /// !!!!!!!!!!!!!!\n /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification\n /// !!!!!!!!!!!!!!\n ///\n\n /**\n * @notice Transfer `amount` tokens from `src` to `dst`\n * @param src The address of the source account\n * @param dst The address of the destination account\n * @param amount The number of tokens to transfer\n */\n function transferFrom(address src, address dst, uint256 amount) external;\n\n /**\n * @notice Approve `spender` to transfer up to `amount` from `src`\n * @dev This will overwrite the approval amount for `spender`\n * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)\n * @param spender The address of the account which may transfer tokens\n * @param amount The number of tokens that are approved\n * @return Whether or not the approval succeeded\n */\n function approve(address spender, uint256 amount) external returns (bool success);\n\n /**\n * @notice Get the current allowance from `owner` for `spender`\n * @param owner The address of the account which owns the tokens to be spent\n * @param spender The address of the account which may transfer tokens\n * @return The number of tokens allowed to be spent\n */\n function allowance(address owner, address spender) external view returns (uint256 remaining);\n\n event Transfer(address indexed from, address indexed to, uint256 amount);\n event Approval(address indexed owner, address indexed spender, uint256 amount);\n}\n"},"ErrorReporter.sol":{"content":"pragma solidity ^0.5.8;\n\ncontract ComptrollerErrorReporter {\n enum Error {\n NO_ERROR,\n UNAUTHORIZED,\n COMPTROLLER_MISMATCH,\n INSUFFICIENT_SHORTFALL,\n INSUFFICIENT_LIQUIDITY,\n INVALID_CLOSE_FACTOR,\n INVALID_COLLATERAL_FACTOR,\n INVALID_LIQUIDATION_INCENTIVE,\n MARKET_NOT_ENTERED,\n MARKET_NOT_LISTED,\n MARKET_ALREADY_LISTED,\n MATH_ERROR,\n NONZERO_BORROW_BALANCE,\n PRICE_ERROR,\n REJECTION,\n SNAPSHOT_ERROR,\n TOO_MANY_ASSETS,\n TOO_MUCH_REPAY\n }\n\n enum FailureInfo {\n ACCEPT_ADMIN_PENDING_ADMIN_CHECK,\n ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,\n EXIT_MARKET_BALANCE_OWED,\n EXIT_MARKET_REJECTION,\n SET_CLOSE_FACTOR_OWNER_CHECK,\n SET_CLOSE_FACTOR_VALIDATION,\n SET_COLLATERAL_FACTOR_OWNER_CHECK,\n SET_COLLATERAL_FACTOR_NO_EXISTS,\n SET_COLLATERAL_FACTOR_VALIDATION,\n SET_COLLATERAL_FACTOR_WITHOUT_PRICE,\n SET_IMPLEMENTATION_OWNER_CHECK,\n SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,\n SET_LIQUIDATION_INCENTIVE_VALIDATION,\n SET_MAX_ASSETS_OWNER_CHECK,\n SET_PENDING_ADMIN_OWNER_CHECK,\n SET_PENDING_IMPLEMENTATION_OWNER_CHECK,\n SET_PRICE_ORACLE_OWNER_CHECK,\n SUPPORT_MARKET_EXISTS,\n SUPPORT_MARKET_OWNER_CHECK,\n ZUNUSED\n }\n\n /**\n * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary\n * contract-specific code that enables us to report opaque error codes from upgradeable contracts.\n **/\n event Failure(uint error, uint info, uint detail);\n\n /**\n * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator\n */\n function fail(Error err, FailureInfo info) internal returns (uint) {\n emit Failure(uint(err), uint(info), 0);\n\n return uint(err);\n }\n\n /**\n * @dev use this when reporting an opaque error from an upgradeable collaborator contract\n */\n function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {\n emit Failure(uint(err), uint(info), opaqueError);\n\n return uint(err);\n }\n}\n\ncontract TokenErrorReporter {\n enum Error {\n NO_ERROR,\n UNAUTHORIZED,\n BAD_INPUT,\n COMPTROLLER_REJECTION,\n COMPTROLLER_CALCULATION_ERROR,\n INTEREST_RATE_MODEL_ERROR,\n INVALID_ACCOUNT_PAIR,\n INVALID_CLOSE_AMOUNT_REQUESTED,\n INVALID_COLLATERAL_FACTOR,\n MATH_ERROR,\n MARKET_NOT_FRESH,\n MARKET_NOT_LISTED,\n TOKEN_INSUFFICIENT_ALLOWANCE,\n TOKEN_INSUFFICIENT_BALANCE,\n TOKEN_INSUFFICIENT_CASH,\n TOKEN_TRANSFER_IN_FAILED,\n TOKEN_TRANSFER_OUT_FAILED\n }\n\n /*\n * Note: FailureInfo (but not Error) is kept in alphabetical order\n * This is because FailureInfo grows significantly faster, and\n * the order of Error has some meaning, while the order of FailureInfo\n * is entirely arbitrary.\n */\n enum FailureInfo {\n ACCEPT_ADMIN_PENDING_ADMIN_CHECK,\n ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED,\n ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,\n ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED,\n ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED,\n ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED,\n ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED,\n BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,\n BORROW_ACCRUE_INTEREST_FAILED,\n BORROW_CASH_NOT_AVAILABLE,\n BORROW_FRESHNESS_CHECK,\n BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,\n BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,\n BORROW_MARKET_NOT_LISTED,\n BORROW_COMPTROLLER_REJECTION,\n LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,\n LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,\n LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,\n LIQUIDATE_COMPTROLLER_REJECTION,\n LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,\n LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,\n LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,\n LIQUIDATE_FRESHNESS_CHECK,\n LIQUIDATE_LIQUIDATOR_IS_BORROWER,\n LIQUIDATE_REPAY_BORROW_FRESH_FAILED,\n LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED,\n LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED,\n LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,\n LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,\n LIQUIDATE_SEIZE_TOO_MUCH,\n MINT_ACCRUE_INTEREST_FAILED,\n MINT_COMPTROLLER_REJECTION,\n MINT_EXCHANGE_CALCULATION_FAILED,\n MINT_EXCHANGE_RATE_READ_FAILED,\n MINT_FRESHNESS_CHECK,\n MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,\n MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,\n MINT_TRANSFER_IN_FAILED,\n MINT_TRANSFER_IN_NOT_POSSIBLE,\n REDEEM_ACCRUE_INTEREST_FAILED,\n REDEEM_COMPTROLLER_REJECTION,\n REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,\n REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,\n REDEEM_EXCHANGE_RATE_READ_FAILED,\n REDEEM_FRESHNESS_CHECK,\n REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,\n REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,\n REDEEM_TRANSFER_OUT_NOT_POSSIBLE,\n REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,\n REDUCE_RESERVES_ADMIN_CHECK,\n REDUCE_RESERVES_CASH_NOT_AVAILABLE,\n REDUCE_RESERVES_FRESH_CHECK,\n REDUCE_RESERVES_VALIDATION,\n REPAY_BEHALF_ACCRUE_INTEREST_FAILED,\n REPAY_BORROW_ACCRUE_INTEREST_FAILED,\n REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,\n REPAY_BORROW_COMPTROLLER_REJECTION,\n REPAY_BORROW_FRESHNESS_CHECK,\n REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,\n REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,\n REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,\n SET_COLLATERAL_FACTOR_OWNER_CHECK,\n SET_COLLATERAL_FACTOR_VALIDATION,\n SET_COMPTROLLER_OWNER_CHECK,\n SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,\n SET_INTEREST_RATE_MODEL_FRESH_CHECK,\n SET_INTEREST_RATE_MODEL_OWNER_CHECK,\n SET_MAX_ASSETS_OWNER_CHECK,\n SET_ORACLE_MARKET_NOT_LISTED,\n SET_PENDING_ADMIN_OWNER_CHECK,\n SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,\n SET_RESERVE_FACTOR_ADMIN_CHECK,\n SET_RESERVE_FACTOR_FRESH_CHECK,\n SET_RESERVE_FACTOR_BOUNDS_CHECK,\n TRANSFER_COMPTROLLER_REJECTION,\n TRANSFER_NOT_ALLOWED,\n TRANSFER_NOT_ENOUGH,\n TRANSFER_TOO_MUCH\n }\n\n /**\n * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary\n * contract-specific code that enables us to report opaque error codes from upgradeable contracts.\n **/\n event Failure(uint error, uint info, uint detail);\n\n /**\n * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator\n */\n function fail(Error err, FailureInfo info) internal returns (uint) {\n emit Failure(uint(err), uint(info), 0);\n\n return uint(err);\n }\n\n /**\n * @dev use this when reporting an opaque error from an upgradeable collaborator contract\n */\n function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {\n emit Failure(uint(err), uint(info), opaqueError);\n\n return uint(err);\n }\n}\n"},"Exponential.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CarefulMath.sol\";\n\n/**\n * @title Exponential module for storing fixed-decision decimals\n * @author Compound\n * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.\n * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:\n * `Exp({mantissa: 5100000000000000000})`.\n */\ncontract Exponential is CarefulMath {\n uint constant expScale = 1e18;\n uint constant halfExpScale = expScale/2;\n uint constant mantissaOne = expScale;\n\n struct Exp {\n uint mantissa;\n }\n\n /**\n * @dev Creates an exponential from numerator and denominator values.\n * Note: Returns an error if (`num` * 10e18) \u003e MAX_INT,\n * or if `denom` is zero.\n */\n function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {\n (MathError err0, uint scaledNumerator) = mulUInt(num, expScale);\n if (err0 != MathError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}));\n }\n\n (MathError err1, uint rational) = divUInt(scaledNumerator, denom);\n if (err1 != MathError.NO_ERROR) {\n return (err1, Exp({mantissa: 0}));\n }\n\n return (MathError.NO_ERROR, Exp({mantissa: rational}));\n }\n\n /**\n * @dev Adds two exponentials, returning a new exponential.\n */\n function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {\n (MathError error, uint result) = addUInt(a.mantissa, b.mantissa);\n\n return (error, Exp({mantissa: result}));\n }\n\n /**\n * @dev Subtracts two exponentials, returning a new exponential.\n */\n function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {\n (MathError error, uint result) = subUInt(a.mantissa, b.mantissa);\n\n return (error, Exp({mantissa: result}));\n }\n\n /**\n * @dev Multiply an Exp by a scalar, returning a new Exp.\n */\n function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {\n (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);\n if (err0 != MathError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}));\n }\n\n return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));\n }\n\n /**\n * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.\n */\n function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {\n (MathError err, Exp memory product) = mulScalar(a, scalar);\n if (err != MathError.NO_ERROR) {\n return (err, 0);\n }\n\n return (MathError.NO_ERROR, truncate(product));\n }\n\n /**\n * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.\n */\n function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {\n (MathError err, Exp memory product) = mulScalar(a, scalar);\n if (err != MathError.NO_ERROR) {\n return (err, 0);\n }\n\n return addUInt(truncate(product), addend);\n }\n\n /**\n * @dev Divide an Exp by a scalar, returning a new Exp.\n */\n function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {\n (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);\n if (err0 != MathError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}));\n }\n\n return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));\n }\n\n /**\n * @dev Divide a scalar by an Exp, returning a new Exp.\n */\n function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {\n /*\n We are doing this as:\n getExp(mulUInt(expScale, scalar), divisor.mantissa)\n\n How it works:\n Exp = a / b;\n Scalar = s;\n `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`\n */\n (MathError err0, uint numerator) = mulUInt(expScale, scalar);\n if (err0 != MathError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}));\n }\n return getExp(numerator, divisor.mantissa);\n }\n\n /**\n * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.\n */\n function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {\n (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);\n if (err != MathError.NO_ERROR) {\n return (err, 0);\n }\n\n return (MathError.NO_ERROR, truncate(fraction));\n }\n\n /**\n * @dev Multiplies two exponentials, returning a new exponential.\n */\n function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {\n\n (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);\n if (err0 != MathError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}));\n }\n\n // We add half the scale before dividing so that we get rounding instead of truncation.\n // See \"Listing 6\" and text above it at https://accu.org/index.php/journals/1717\n // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.\n (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);\n if (err1 != MathError.NO_ERROR) {\n return (err1, Exp({mantissa: 0}));\n }\n\n (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);\n // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.\n assert(err2 == MathError.NO_ERROR);\n\n return (MathError.NO_ERROR, Exp({mantissa: product}));\n }\n\n /**\n * @dev Multiplies two exponentials given their mantissas, returning a new exponential.\n */\n function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {\n return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));\n }\n\n /**\n * @dev Multiplies three exponentials, returning a new exponential.\n */\n function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {\n (MathError err, Exp memory ab) = mulExp(a, b);\n if (err != MathError.NO_ERROR) {\n return (err, ab);\n }\n return mulExp(ab, c);\n }\n\n /**\n * @dev Divides two exponentials, returning a new exponential.\n * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,\n * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)\n */\n function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {\n return getExp(a.mantissa, b.mantissa);\n }\n\n /**\n * @dev Truncates the given exp to a whole number value.\n * For example, truncate(Exp{mantissa: 15 * expScale}) = 15\n */\n function truncate(Exp memory exp) pure internal returns (uint) {\n // Note: We are not using careful math here as we\u0027re performing a division that cannot fail\n return exp.mantissa / expScale;\n }\n\n /**\n * @dev Checks if first Exp is less than second Exp.\n */\n function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {\n return left.mantissa \u003c right.mantissa; //TODO: Add some simple tests and this in another PR yo.\n }\n\n /**\n * @dev Checks if left Exp \u003c= right Exp.\n */\n function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {\n return left.mantissa \u003c= right.mantissa;\n }\n\n /**\n * @dev returns true if Exp is exactly zero\n */\n function isZeroExp(Exp memory value) pure internal returns (bool) {\n return value.mantissa == 0;\n }\n}\n"},"InterestRateModel.sol":{"content":"pragma solidity ^0.5.8;\n\n/**\n * @title The Compound InterestRateModel Interface\n * @author Compound\n * @notice Any interest rate model should derive from this contract.\n * @dev These functions are specifically not marked `pure` as implementations of this\n * contract may read from storage variables.\n */\ninterface InterestRateModel {\n /**\n * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows\n * and total reserves.\n * @dev The return value should be scaled by 1e18, thus a return value of\n * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*.\n * @param cash The total cash of the underlying asset in the CToken\n * @param borrows The total borrows of the underlying asset in the CToken\n * @param reserves The total reserves of the underlying asset in the CToken\n * @return Success or failure and the borrow interest rate per block scaled by 10e18\n */\n function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint, uint);\n\n /**\n * @notice Marker function used for light validation when updating the interest rate model of a market\n * @dev Marker function used for light validation when updating the interest rate model of a market. Implementations should simply return true.\n * @return Success or failure\n */\n function isInterestRateModel() external view returns (bool);\n}"},"Maximillion.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CEther.sol\";\n\n/**\n * @title Compound\u0027s Maximillion Contract\n * @author Compound\n */\ncontract Maximillion {\n /**\n * @notice The default cEther market to repay in\n */\n CEther public cEther;\n\n /**\n * @notice Construct a Maximillion to repay max in a CEther market\n */\n constructor(CEther cEther_) public {\n cEther = cEther_;\n }\n\n /**\n * @notice msg.sender sends Ether to repay an account\u0027s borrow in the cEther market\n * @dev The provided Ether is applied towards the borrow balance, any excess is refunded\n * @param borrower The address of the borrower account to repay on behalf of\n * @return The initial borrows before the repay\n */\n function repayBehalf(address borrower) public payable {\n return repayBehalfExplicit(borrower, cEther);\n }\n\n /**\n * @notice msg.sender sends Ether to repay an account\u0027s borrow in a cEther market\n * @dev The provided Ether is applied towards the borrow balance, any excess is refunded\n * @param borrower The address of the borrower account to repay on behalf of\n * @param cEther_ The address of the cEther contract to repay in\n * @return The initial borrows before the repay\n */\n function repayBehalfExplicit(address borrower, CEther cEther_) public payable {\n uint received = msg.value;\n uint borrows = cEther_.borrowBalanceCurrent(borrower);\n if (received \u003e borrows) {\n cEther_.repayBorrowBehalf.value(borrows)(borrower);\n msg.sender.transfer(received - borrows);\n } else {\n cEther_.repayBorrowBehalf.value(received)(borrower);\n }\n }\n}\n"},"PriceOracle.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CToken.sol\";\n\ninterface PriceOracle {\n /**\n * @notice Indicator that this is a PriceOracle contract (for inspection)\n */\n function isPriceOracle() external pure returns (bool);\n\n /**\n * @notice Get the underlying price of a cToken asset\n * @param cToken The cToken to get the underlying price of\n * @return The underlying asset price mantissa (scaled by 1e18).\n * Zero means the price is unavailable.\n */\n function getUnderlyingPrice(CToken cToken) external view returns (uint);\n}\n"},"PriceOracleProxy.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./CErc20.sol\";\nimport \"./CToken.sol\";\nimport \"./PriceOracle.sol\";\nimport \"./Comptroller.sol\";\n\ninterface V1PriceOracleInterface {\n function assetPrices(address asset) external view returns (uint);\n}\n\ncontract PriceOracleProxy is PriceOracle {\n /**\n * @notice The v1 price oracle, which will continue to serve prices\n * prices for v1 assets\n */\n V1PriceOracleInterface public v1PriceOracle;\n\n /**\n * @notice The active comptroller, which will be checked for listing status\n * to short circuit and return 0 for unlisted assets.\n *\n * @dev Listed markets are not part of the comptroller interface used by\n * cTokens, so we assumena an instance of v1 comptroller.sol instead\n */\n Comptroller public comptroller;\n\n /**\n * @notice address of the cEther contract, which has a constant price\n */\n address public cEtherAddress;\n\n /**\n * @notice Indicator that this is a PriceOracle contract (for inspection)\n */\n bool public constant isPriceOracle = true;\n\n /**\n * @param comptroller_ The address of the active comptroller, which will\n * be consulted for market listing status.\n * @param v1PriceOracle_ The address of the v1 price oracle, which will\n * continue to operate and hold prices for collateral assets.\n * @param cEtherAddress_ The address of the cEther contract, which will\n * return a constant 1e18, since all prices relative to ether\n */\n constructor(address comptroller_, address v1PriceOracle_, address cEtherAddress_) public {\n comptroller = Comptroller(comptroller_);\n v1PriceOracle = V1PriceOracleInterface(v1PriceOracle_);\n cEtherAddress = cEtherAddress_;\n }\n\n /**\n * @notice Get the underlying price of a listed cToken asset\n * @param cToken The cToken to get the underlying price of\n * @return The underlying asset price mantissa (scaled by 1e18).\n * Zero means the price is unavailable.\n */\n function getUnderlyingPrice(CToken cToken) public view returns (uint) {\n address cTokenAddress = address(cToken);\n (bool isListed, ) = comptroller.markets(cTokenAddress);\n\n if (!isListed) {\n // not listed, worthless\n return 0;\n } else if (cTokenAddress == cEtherAddress) {\n // ether always worth 1\n return 1e18;\n } else {\n // read from v1 oracle\n address underlying = CErc20(cTokenAddress).underlying();\n return v1PriceOracle.assetPrices(underlying);\n }\n }\n}\n"},"ReentrancyGuard.sol":{"content":"pragma solidity ^0.5.8;\n\n/**\n * @title Helps contracts guard against reentrancy attacks.\n * @author Remco Bloemen \u003cremco@2Ï€.com\u003e, Eenae \[email protected]\u003e\n * @dev If you mark a function `nonReentrant`, you should also\n * mark it `external`.\n */\ncontract ReentrancyGuard {\n /// @dev counter to allow mutex lock with only one SSTORE operation\n uint256 private _guardCounter;\n\n constructor () internal {\n // The counter starts at one to prevent changing it from zero to a non-zero\n // value, which is a more expensive operation.\n _guardCounter = 1;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and make it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n _guardCounter += 1;\n uint256 localCounter = _guardCounter;\n _;\n require(localCounter == _guardCounter, \"re-entered\");\n }\n}\n"},"SimplePriceOracle.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./PriceOracle.sol\";\nimport \"./CErc20.sol\";\n\ncontract SimplePriceOracle is PriceOracle {\n mapping(address =\u003e uint) prices;\n bool public constant isPriceOracle = true;\n\n function getUnderlyingPrice(CToken cToken) public view returns (uint) {\n return prices[address(CErc20(address(cToken)).underlying())];\n }\n\n function setUnderlyingPrice(CToken cToken, uint underlyingPriceMantissa) public {\n prices[address(CErc20(address(cToken)).underlying())] = underlyingPriceMantissa;\n }\n\n // v1 price oracle interface for use as backing of proxy\n function assetPrices(address asset) external view returns (uint) {\n return prices[asset];\n }\n}\n"},"Unitroller.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./ErrorReporter.sol\";\nimport \"./ComptrollerStorage.sol\";\n/**\n * @title ComptrollerCore\n * @dev storage for the comptroller will be at this address, and\n * cTokens should reference this contract rather than a deployed implementation if\n *\n */\ncontract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {\n\n /**\n * @notice Emitted when pendingComptrollerImplementation is changed\n */\n event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);\n\n /**\n * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated\n */\n event NewImplementation(address oldImplementation, address newImplementation);\n\n /**\n * @notice Emitted when pendingAdmin is changed\n */\n event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);\n\n /**\n * @notice Emitted when pendingAdmin is accepted, which means admin is updated\n */\n event NewAdmin(address oldAdmin, address newAdmin);\n\n constructor() public {\n // Set admin to caller\n admin = msg.sender;\n }\n\n /*** Admin Functions ***/\n function _setPendingImplementation(address newPendingImplementation) public returns (uint) {\n\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);\n }\n\n address oldPendingImplementation = pendingComptrollerImplementation;\n\n pendingComptrollerImplementation = newPendingImplementation;\n\n emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation\n * @dev Admin function for new implementation to accept it\u0027s role as implementation\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _acceptImplementation() public returns (uint) {\n // Check caller is pendingImplementation and pendingImplementation ≠address(0)\n if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {\n return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);\n }\n\n // Save current values for inclusion in log\n address oldImplementation = comptrollerImplementation;\n address oldPendingImplementation = pendingComptrollerImplementation;\n\n comptrollerImplementation = pendingComptrollerImplementation;\n\n pendingComptrollerImplementation = address(0);\n\n emit NewImplementation(oldImplementation, comptrollerImplementation);\n emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);\n\n return uint(Error.NO_ERROR);\n }\n\n\n /**\n * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.\n * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.\n * @param newPendingAdmin New pending admin.\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n *\n * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address?\n */\n function _setPendingAdmin(address newPendingAdmin) public returns (uint) {\n // Check caller = admin\n if (msg.sender != admin) {\n return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);\n }\n\n // Save current value, if any, for inclusion in log\n address oldPendingAdmin = pendingAdmin;\n\n // Store pendingAdmin with value newPendingAdmin\n pendingAdmin = newPendingAdmin;\n\n // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)\n emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin\n * @dev Admin function for pending admin to accept role and update admin\n * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)\n */\n function _acceptAdmin() public returns (uint) {\n // Check caller is pendingAdmin and pendingAdmin ≠address(0)\n if (msg.sender != pendingAdmin || msg.sender == address(0)) {\n return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);\n }\n\n // Save current values for inclusion in log\n address oldAdmin = admin;\n address oldPendingAdmin = pendingAdmin;\n\n // Store admin with value pendingAdmin\n admin = pendingAdmin;\n\n // Clear the pending value\n pendingAdmin = address(0);\n\n emit NewAdmin(oldAdmin, admin);\n emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);\n\n return uint(Error.NO_ERROR);\n }\n\n /**\n * @dev Delegates execution to an implementation contract.\n * It returns to the external caller whatever the implementation returns\n * or forwards reverts.\n */\n function () payable external {\n // delegate all other functions to current implementation\n (bool success, ) = comptrollerImplementation.delegatecall(msg.data);\n\n // solium-disable-next-line security/no-inline-assembly\n assembly {\n let free_mem_ptr := mload(0x40)\n returndatacopy(free_mem_ptr, 0, returndatasize)\n\n switch success\n case 0 { revert(free_mem_ptr, returndatasize) }\n default { return(free_mem_ptr, returndatasize) }\n }\n }\n}\n"},"WhitePaperInterestRateModel.sol":{"content":"pragma solidity ^0.5.8;\n\nimport \"./Exponential.sol\";\nimport \"./InterestRateModel.sol\";\n\n/**\n * @title The Compound Standard Interest Rate Model with pluggable constants\n * @author Compound\n * @notice See Section 2.4 of the Compound Whitepaper\n */\ncontract WhitePaperInterestRateModel is InterestRateModel, Exponential {\n /**\n * @notice Indicator that this is an InterestRateModel contract (for inspection)\n */\n bool public constant isInterestRateModel = true;\n\n /**\n * @notice The multiplier of utilization rate that gives the slope of the interest rate\n */\n uint public multiplier;\n\n /**\n * @notice The base interest rate which is the y-intercept when utilization rate is 0\n */\n uint public baseRate;\n\n /**\n * @notice The approximate number of blocks per year that is assumed by the interest rate model\n */\n uint public constant blocksPerYear = 2102400;\n\n constructor(uint baseRate_, uint multiplier_) public {\n baseRate = baseRate_;\n multiplier = multiplier_;\n }\n\n enum IRError {\n NO_ERROR,\n FAILED_TO_ADD_CASH_PLUS_BORROWS,\n FAILED_TO_GET_EXP,\n FAILED_TO_MUL_UTILIZATION_RATE,\n FAILED_TO_ADD_BASE_RATE\n }\n\n /*\n * @dev Calculates the utilization rate (borrows / (cash + borrows)) as an Exp\n */\n function getUtilizationRate(uint cash, uint borrows) pure internal returns (IRError, Exp memory) {\n if (borrows == 0) {\n // Utilization rate is zero when there\u0027s no borrows\n return (IRError.NO_ERROR, Exp({mantissa: 0}));\n }\n\n (MathError err0, uint cashPlusBorrows) = addUInt(cash, borrows);\n if (err0 != MathError.NO_ERROR) {\n return (IRError.FAILED_TO_ADD_CASH_PLUS_BORROWS, Exp({mantissa: 0}));\n }\n\n (MathError err1, Exp memory utilizationRate) = getExp(borrows, cashPlusBorrows);\n if (err1 != MathError.NO_ERROR) {\n return (IRError.FAILED_TO_GET_EXP, Exp({mantissa: 0}));\n }\n\n return (IRError.NO_ERROR, utilizationRate);\n }\n\n /*\n * @dev Calculates the utilization and borrow rates for use by getBorrowRate function\n */\n function getUtilizationAndAnnualBorrowRate(uint cash, uint borrows) view internal returns (IRError, Exp memory, Exp memory) {\n (IRError err0, Exp memory utilizationRate) = getUtilizationRate(cash, borrows);\n if (err0 != IRError.NO_ERROR) {\n return (err0, Exp({mantissa: 0}), Exp({mantissa: 0}));\n }\n\n // Borrow Rate is 5% + UtilizationRate * 45% (baseRate + UtilizationRate * multiplier);\n // 45% of utilizationRate, is `rate * 45 / 100`\n (MathError err1, Exp memory utilizationRateMuled) = mulScalar(utilizationRate, multiplier);\n // `mulScalar` only overflows when the product is \u003e= 2^256.\n // utilizationRate is a real number on the interval [0,1], which means that\n // utilizationRate.mantissa is in the interval [0e18,1e18], which means that 45 times\n // that is in the interval [0e18,45e18]. That interval has no intersection with 2^256, and therefore\n // this can never overflow for the standard rates.\n if (err1 != MathError.NO_ERROR) {\n return (IRError.FAILED_TO_MUL_UTILIZATION_RATE, Exp({mantissa: 0}), Exp({mantissa: 0}));\n }\n\n (MathError err2, Exp memory utilizationRateScaled) = divScalar(utilizationRateMuled, mantissaOne);\n // 100 is a constant, and therefore cannot be zero, which is the only error case of divScalar.\n assert(err2 == MathError.NO_ERROR);\n\n // Add the 5% for (5% + 45% * Ua)\n (MathError err3, Exp memory annualBorrowRate) = addExp(utilizationRateScaled, Exp({mantissa: baseRate}));\n // `addExp` only fails when the addition of mantissas overflow.\n // As per above, utilizationRateMuled is capped at 45e18,\n // and utilizationRateScaled is capped at 4.5e17. mantissaFivePercent = 0.5e17, and thus the addition\n // is capped at 5e17, which is less than 2^256. This only applies to the standard rates\n if (err3 != MathError.NO_ERROR) {\n return (IRError.FAILED_TO_ADD_BASE_RATE, Exp({mantissa: 0}), Exp({mantissa: 0}));\n }\n\n return (IRError.NO_ERROR, utilizationRate, annualBorrowRate);\n }\n\n /**\n * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows\n * and total reserves.\n * @dev The return value should be scaled by 1e18, thus a return value of\n * `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*.\n * @param cash The total cash of the underlying asset in the CToken\n * @param borrows The total borrows of the underlying asset in the CToken\n * @param _reserves The total reserves of the underlying asset in the CToken\n * @return Success or failure and the borrow interest rate per block scaled by 10e18\n */\n function getBorrowRate(uint cash, uint borrows, uint _reserves) public view returns (uint, uint) {\n _reserves; // pragma ignore unused argument\n\n (IRError err0, Exp memory _utilizationRate, Exp memory annualBorrowRate) = getUtilizationAndAnnualBorrowRate(cash, borrows);\n if (err0 != IRError.NO_ERROR) {\n return (uint(err0), 0);\n }\n\n // And then divide down by blocks per year.\n (MathError err1, Exp memory borrowRate) = divScalar(annualBorrowRate, blocksPerYear); // basis points * blocks per year\n // divScalar only fails when divisor is zero. This is clearly not the case.\n assert(err1 == MathError.NO_ERROR);\n\n _utilizationRate; // pragma ignore unused variable\n\n // Note: mantissa is the rate scaled 1e18, which matches the expected result\n return (uint(IRError.NO_ERROR), borrowRate.mantissa);\n }\n}\n"}}