ETH Price: $2,492.09 (-3.05%)

Transaction Decoder

Block:
11368661 at Dec-01-2020 07:53:45 PM +UTC
Transaction Fee:
0.003056097 ETH $7.62
Gas Used:
92,609 Gas / 33 Gwei

Emitted Events:

49 Unitroller.0x3ab23ab0d51cccc0c3085aec51f99228625aa1a922b3a8ca89a26b0f2027a1a5( 0x3ab23ab0d51cccc0c3085aec51f99228625aa1a922b3a8ca89a26b0f2027a1a5, 000000000000000000000000c11b1268c1a384e55c48c2391d8d480264a3a7f4, 000000000000000000000000ad7d50d88dcfec80d97892469ad19b23997e6e54 )

Account State Difference:

  Address   Before After State Difference Code
(zhizhu.top)
2,245.575769316859943547 Eth2,245.578825413859943547 Eth0.003056097
0x3d981921...9B9c9Cd3B
(Compound: Comptroller)
0xaD7D50D8...3997E6E54
0.36984694418343904 Eth
Nonce: 86
0.36679084718343904 Eth
Nonce: 87
0.003056097

Execution Trace

Unitroller.c2998238( )
  • Comptroller.enterMarkets( cTokens=[0xC11b1268C1A384e55C48c2391d8d480264A3A7F4] ) => ( [0] )
    File 1 of 2: Unitroller
    // File: contracts/ErrorReporter.sol
    
    pragma solidity ^0.5.8;
    
    contract ComptrollerErrorReporter {
        enum Error {
            NO_ERROR,
            UNAUTHORIZED,
            COMPTROLLER_MISMATCH,
            INSUFFICIENT_SHORTFALL,
            INSUFFICIENT_LIQUIDITY,
            INVALID_CLOSE_FACTOR,
            INVALID_COLLATERAL_FACTOR,
            INVALID_LIQUIDATION_INCENTIVE,
            MARKET_NOT_ENTERED,
            MARKET_NOT_LISTED,
            MARKET_ALREADY_LISTED,
            MATH_ERROR,
            NONZERO_BORROW_BALANCE,
            PRICE_ERROR,
            REJECTION,
            SNAPSHOT_ERROR,
            TOO_MANY_ASSETS,
            TOO_MUCH_REPAY
        }
    
        enum FailureInfo {
            ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
            ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
            EXIT_MARKET_BALANCE_OWED,
            EXIT_MARKET_REJECTION,
            SET_CLOSE_FACTOR_OWNER_CHECK,
            SET_CLOSE_FACTOR_VALIDATION,
            SET_COLLATERAL_FACTOR_OWNER_CHECK,
            SET_COLLATERAL_FACTOR_NO_EXISTS,
            SET_COLLATERAL_FACTOR_VALIDATION,
            SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
            SET_IMPLEMENTATION_OWNER_CHECK,
            SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
            SET_LIQUIDATION_INCENTIVE_VALIDATION,
            SET_MAX_ASSETS_OWNER_CHECK,
            SET_PENDING_ADMIN_OWNER_CHECK,
            SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
            SET_PRICE_ORACLE_OWNER_CHECK,
            SUPPORT_MARKET_EXISTS,
            SUPPORT_MARKET_OWNER_CHECK,
            ZUNUSED
        }
    
        /**
          * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
          * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
          **/
        event Failure(uint error, uint info, uint detail);
    
        /**
          * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
          */
        function fail(Error err, FailureInfo info) internal returns (uint) {
            emit Failure(uint(err), uint(info), 0);
    
            return uint(err);
        }
    
        /**
          * @dev use this when reporting an opaque error from an upgradeable collaborator contract
          */
        function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
            emit Failure(uint(err), uint(info), opaqueError);
    
            return uint(err);
        }
    }
    
    contract TokenErrorReporter {
        enum Error {
            NO_ERROR,
            UNAUTHORIZED,
            BAD_INPUT,
            COMPTROLLER_REJECTION,
            COMPTROLLER_CALCULATION_ERROR,
            INTEREST_RATE_MODEL_ERROR,
            INVALID_ACCOUNT_PAIR,
            INVALID_CLOSE_AMOUNT_REQUESTED,
            INVALID_COLLATERAL_FACTOR,
            MATH_ERROR,
            MARKET_NOT_FRESH,
            MARKET_NOT_LISTED,
            TOKEN_INSUFFICIENT_ALLOWANCE,
            TOKEN_INSUFFICIENT_BALANCE,
            TOKEN_INSUFFICIENT_CASH,
            TOKEN_TRANSFER_IN_FAILED,
            TOKEN_TRANSFER_OUT_FAILED
        }
    
        /*
         * Note: FailureInfo (but not Error) is kept in alphabetical order
         *       This is because FailureInfo grows significantly faster, and
         *       the order of Error has some meaning, while the order of FailureInfo
         *       is entirely arbitrary.
         */
        enum FailureInfo {
            ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
            ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED,
            ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED,
            ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED,
            BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
            BORROW_ACCRUE_INTEREST_FAILED,
            BORROW_CASH_NOT_AVAILABLE,
            BORROW_FRESHNESS_CHECK,
            BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
            BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
            BORROW_MARKET_NOT_LISTED,
            BORROW_COMPTROLLER_REJECTION,
            LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
            LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
            LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
            LIQUIDATE_COMPTROLLER_REJECTION,
            LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
            LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
            LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
            LIQUIDATE_FRESHNESS_CHECK,
            LIQUIDATE_LIQUIDATOR_IS_BORROWER,
            LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
            LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED,
            LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED,
            LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
            LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
            LIQUIDATE_SEIZE_TOO_MUCH,
            MINT_ACCRUE_INTEREST_FAILED,
            MINT_COMPTROLLER_REJECTION,
            MINT_EXCHANGE_CALCULATION_FAILED,
            MINT_EXCHANGE_RATE_READ_FAILED,
            MINT_FRESHNESS_CHECK,
            MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
            MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
            MINT_TRANSFER_IN_FAILED,
            MINT_TRANSFER_IN_NOT_POSSIBLE,
            REDEEM_ACCRUE_INTEREST_FAILED,
            REDEEM_COMPTROLLER_REJECTION,
            REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,
            REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,
            REDEEM_EXCHANGE_RATE_READ_FAILED,
            REDEEM_FRESHNESS_CHECK,
            REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
            REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
            REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
            REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
            REDUCE_RESERVES_ADMIN_CHECK,
            REDUCE_RESERVES_CASH_NOT_AVAILABLE,
            REDUCE_RESERVES_FRESH_CHECK,
            REDUCE_RESERVES_VALIDATION,
            REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
            REPAY_BORROW_ACCRUE_INTEREST_FAILED,
            REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_COMPTROLLER_REJECTION,
            REPAY_BORROW_FRESHNESS_CHECK,
            REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
            SET_COLLATERAL_FACTOR_OWNER_CHECK,
            SET_COLLATERAL_FACTOR_VALIDATION,
            SET_COMPTROLLER_OWNER_CHECK,
            SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
            SET_INTEREST_RATE_MODEL_FRESH_CHECK,
            SET_INTEREST_RATE_MODEL_OWNER_CHECK,
            SET_MAX_ASSETS_OWNER_CHECK,
            SET_ORACLE_MARKET_NOT_LISTED,
            SET_PENDING_ADMIN_OWNER_CHECK,
            SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
            SET_RESERVE_FACTOR_ADMIN_CHECK,
            SET_RESERVE_FACTOR_FRESH_CHECK,
            SET_RESERVE_FACTOR_BOUNDS_CHECK,
            TRANSFER_COMPTROLLER_REJECTION,
            TRANSFER_NOT_ALLOWED,
            TRANSFER_NOT_ENOUGH,
            TRANSFER_TOO_MUCH
        }
    
        /**
          * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
          * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
          **/
        event Failure(uint error, uint info, uint detail);
    
        /**
          * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
          */
        function fail(Error err, FailureInfo info) internal returns (uint) {
            emit Failure(uint(err), uint(info), 0);
    
            return uint(err);
        }
    
        /**
          * @dev use this when reporting an opaque error from an upgradeable collaborator contract
          */
        function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
            emit Failure(uint(err), uint(info), opaqueError);
    
            return uint(err);
        }
    }
    
    // File: contracts/ComptrollerInterface.sol
    
    pragma solidity ^0.5.8;
    
    interface ComptrollerInterface {
        /**
         * @notice Marker function used for light validation when updating the comptroller of a market
         * @dev Implementations should simply return true.
         * @return true
         */
        function isComptroller() external view returns (bool);
    
        /*** Assets You Are In ***/
    
        function enterMarkets(address[] calldata cTokens) external returns (uint[] memory);
        function exitMarket(address cToken) external returns (uint);
    
        /*** Policy Hooks ***/
    
        function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint);
        function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external;
    
        function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint);
        function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external;
    
        function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint);
        function borrowVerify(address cToken, address borrower, uint borrowAmount) external;
    
        function repayBorrowAllowed(
            address cToken,
            address payer,
            address borrower,
            uint repayAmount) external returns (uint);
        function repayBorrowVerify(
            address cToken,
            address payer,
            address borrower,
            uint repayAmount,
            uint borrowerIndex) external;
    
        function liquidateBorrowAllowed(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint repayAmount) external returns (uint);
        function liquidateBorrowVerify(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint repayAmount,
            uint seizeTokens) external;
    
        function seizeAllowed(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external returns (uint);
        function seizeVerify(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external;
    
        function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint);
        function transferVerify(address cToken, address src, address dst, uint transferTokens) external;
    
        /*** Liquidity/Liquidation Calculations ***/
    
        function liquidateCalculateSeizeTokens(
            address cTokenBorrowed,
            address cTokenCollateral,
            uint repayAmount) external view returns (uint, uint);
    }
    
    // File: contracts/CarefulMath.sol
    
    pragma solidity ^0.5.8;
    
    /**
      * @title Careful Math
      * @author Compound
      * @notice Derived from OpenZeppelin's SafeMath library
      *         https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
      */
    contract CarefulMath {
    
        /**
         * @dev Possible error codes that we can return
         */
        enum MathError {
            NO_ERROR,
            DIVISION_BY_ZERO,
            INTEGER_OVERFLOW,
            INTEGER_UNDERFLOW
        }
    
        /**
        * @dev Multiplies two numbers, returns an error on overflow.
        */
        function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (a == 0) {
                return (MathError.NO_ERROR, 0);
            }
    
            uint c = a * b;
    
            if (c / a != b) {
                return (MathError.INTEGER_OVERFLOW, 0);
            } else {
                return (MathError.NO_ERROR, c);
            }
        }
    
        /**
        * @dev Integer division of two numbers, truncating the quotient.
        */
        function divUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (b == 0) {
                return (MathError.DIVISION_BY_ZERO, 0);
            }
    
            return (MathError.NO_ERROR, a / b);
        }
    
        /**
        * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
        */
        function subUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (b <= a) {
                return (MathError.NO_ERROR, a - b);
            } else {
                return (MathError.INTEGER_UNDERFLOW, 0);
            }
        }
    
        /**
        * @dev Adds two numbers, returns an error on overflow.
        */
        function addUInt(uint a, uint b) internal pure returns (MathError, uint) {
            uint c = a + b;
    
            if (c >= a) {
                return (MathError.NO_ERROR, c);
            } else {
                return (MathError.INTEGER_OVERFLOW, 0);
            }
        }
    
        /**
        * @dev add a and b and then subtract c
        */
        function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {
            (MathError err0, uint sum) = addUInt(a, b);
    
            if (err0 != MathError.NO_ERROR) {
                return (err0, 0);
            }
    
            return subUInt(sum, c);
        }
    }
    
    // File: contracts/Exponential.sol
    
    pragma solidity ^0.5.8;
    
    
    /**
     * @title Exponential module for storing fixed-decision decimals
     * @author Compound
     * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
     *         Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
     *         `Exp({mantissa: 5100000000000000000})`.
     */
    contract Exponential is CarefulMath {
        uint constant expScale = 1e18;
        uint constant halfExpScale = expScale/2;
        uint constant mantissaOne = expScale;
    
        struct Exp {
            uint mantissa;
        }
    
        /**
         * @dev Creates an exponential from numerator and denominator values.
         *      Note: Returns an error if (`num` * 10e18) > MAX_INT,
         *            or if `denom` is zero.
         */
        function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint scaledNumerator) = mulUInt(num, expScale);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
    
            (MathError err1, uint rational) = divUInt(scaledNumerator, denom);
            if (err1 != MathError.NO_ERROR) {
                return (err1, Exp({mantissa: 0}));
            }
    
            return (MathError.NO_ERROR, Exp({mantissa: rational}));
        }
    
        /**
         * @dev Adds two exponentials, returning a new exponential.
         */
        function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            (MathError error, uint result) = addUInt(a.mantissa, b.mantissa);
    
            return (error, Exp({mantissa: result}));
        }
    
        /**
         * @dev Subtracts two exponentials, returning a new exponential.
         */
        function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            (MathError error, uint result) = subUInt(a.mantissa, b.mantissa);
    
            return (error, Exp({mantissa: result}));
        }
    
        /**
         * @dev Multiply an Exp by a scalar, returning a new Exp.
         */
        function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
    
            return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
        }
    
        /**
         * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
         */
        function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {
            (MathError err, Exp memory product) = mulScalar(a, scalar);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
    
            return (MathError.NO_ERROR, truncate(product));
        }
    
        /**
         * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
         */
        function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {
            (MathError err, Exp memory product) = mulScalar(a, scalar);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
    
            return addUInt(truncate(product), addend);
        }
    
        /**
         * @dev Divide an Exp by a scalar, returning a new Exp.
         */
        function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
    
            return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
        }
    
        /**
         * @dev Divide a scalar by an Exp, returning a new Exp.
         */
        function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {
            /*
              We are doing this as:
              getExp(mulUInt(expScale, scalar), divisor.mantissa)
    
              How it works:
              Exp = a / b;
              Scalar = s;
              `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
            */
            (MathError err0, uint numerator) = mulUInt(expScale, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            return getExp(numerator, divisor.mantissa);
        }
    
        /**
         * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
         */
        function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {
            (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
    
            return (MathError.NO_ERROR, truncate(fraction));
        }
    
        /**
         * @dev Multiplies two exponentials, returning a new exponential.
         */
        function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
    
            (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
    
            // We add half the scale before dividing so that we get rounding instead of truncation.
            //  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
            // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
            (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
            if (err1 != MathError.NO_ERROR) {
                return (err1, Exp({mantissa: 0}));
            }
    
            (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);
            // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
            assert(err2 == MathError.NO_ERROR);
    
            return (MathError.NO_ERROR, Exp({mantissa: product}));
        }
    
        /**
         * @dev Multiplies two exponentials given their mantissas, returning a new exponential.
         */
        function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {
            return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
        }
    
        /**
         * @dev Multiplies three exponentials, returning a new exponential.
         */
        function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {
            (MathError err, Exp memory ab) = mulExp(a, b);
            if (err != MathError.NO_ERROR) {
                return (err, ab);
            }
            return mulExp(ab, c);
        }
    
        /**
         * @dev Divides two exponentials, returning a new exponential.
         *     (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
         *  which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
         */
        function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            return getExp(a.mantissa, b.mantissa);
        }
    
        /**
         * @dev Truncates the given exp to a whole number value.
         *      For example, truncate(Exp{mantissa: 15 * expScale}) = 15
         */
        function truncate(Exp memory exp) pure internal returns (uint) {
            // Note: We are not using careful math here as we're performing a division that cannot fail
            return exp.mantissa / expScale;
        }
    
        /**
         * @dev Checks if first Exp is less than second Exp.
         */
        function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
            return left.mantissa < right.mantissa; //TODO: Add some simple tests and this in another PR yo.
        }
    
        /**
         * @dev Checks if left Exp <= right Exp.
         */
        function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
            return left.mantissa <= right.mantissa;
        }
    
        /**
         * @dev returns true if Exp is exactly zero
         */
        function isZeroExp(Exp memory value) pure internal returns (bool) {
            return value.mantissa == 0;
        }
    }
    
    // File: contracts/EIP20Interface.sol
    
    pragma solidity ^0.5.8;
    
    /**
     * @title ERC 20 Token Standard Interface
     *  https://eips.ethereum.org/EIPS/eip-20
     */
    interface EIP20Interface {
    
        /**
          * @notice Get the total number of tokens in circulation
          * @return The supply of tokens
          */
        function totalSupply() external view returns (uint256);
    
        /**
         * @notice Gets the balance of the specified address
         * @param owner The address from which the balance will be retrieved
         * @return The balance
         */
        function balanceOf(address owner) external view returns (uint256 balance);
    
        /**
          * @notice Transfer `amount` tokens from `msg.sender` to `dst`
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          * @return Whether or not the transfer succeeded
          */
        function transfer(address dst, uint256 amount) external returns (bool success);
    
        /**
          * @notice Transfer `amount` tokens from `src` to `dst`
          * @param src The address of the source account
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          * @return Whether or not the transfer succeeded
          */
        function transferFrom(address src, address dst, uint256 amount) external returns (bool success);
    
        /**
          * @notice Approve `spender` to transfer up to `amount` from `src`
          * @dev This will overwrite the approval amount for `spender`
          *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
          * @param spender The address of the account which may transfer tokens
          * @param amount The number of tokens that are approved (-1 means infinite)
          * @return Whether or not the approval succeeded
          */
        function approve(address spender, uint256 amount) external returns (bool success);
    
        /**
          * @notice Get the current allowance from `owner` for `spender`
          * @param owner The address of the account which owns the tokens to be spent
          * @param spender The address of the account which may transfer tokens
          * @return The number of tokens allowed to be spent (-1 means infinite)
          */
        function allowance(address owner, address spender) external view returns (uint256 remaining);
    
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
    }
    
    // File: contracts/EIP20NonStandardInterface.sol
    
    pragma solidity ^0.5.8;
    
    /**
     * @title EIP20NonStandardInterface
     * @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
     *  See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    interface EIP20NonStandardInterface {
    
        /**
         * @notice Get the total number of tokens in circulation
         * @return The supply of tokens
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @notice Gets the balance of the specified address
         * @param owner The address from which the balance will be retrieved
         * @return The balance
         */
        function balanceOf(address owner) external view returns (uint256 balance);
    
        ///
        /// !!!!!!!!!!!!!!
        /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
        /// !!!!!!!!!!!!!!
        ///
    
        /**
          * @notice Transfer `amount` tokens from `msg.sender` to `dst`
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          */
        function transfer(address dst, uint256 amount) external;
    
        ///
        /// !!!!!!!!!!!!!!
        /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
        /// !!!!!!!!!!!!!!
        ///
    
        /**
          * @notice Transfer `amount` tokens from `src` to `dst`
          * @param src The address of the source account
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          */
        function transferFrom(address src, address dst, uint256 amount) external;
    
        /**
          * @notice Approve `spender` to transfer up to `amount` from `src`
          * @dev This will overwrite the approval amount for `spender`
          *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
          * @param spender The address of the account which may transfer tokens
          * @param amount The number of tokens that are approved
          * @return Whether or not the approval succeeded
          */
        function approve(address spender, uint256 amount) external returns (bool success);
    
        /**
          * @notice Get the current allowance from `owner` for `spender`
          * @param owner The address of the account which owns the tokens to be spent
          * @param spender The address of the account which may transfer tokens
          * @return The number of tokens allowed to be spent
          */
        function allowance(address owner, address spender) external view returns (uint256 remaining);
    
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
    }
    
    // File: contracts/ReentrancyGuard.sol
    
    pragma solidity ^0.5.8;
    
    /**
     * @title Helps contracts guard against reentrancy attacks.
     * @author Remco Bloemen <remco@2π.com>, Eenae <[email protected]>
     * @dev If you mark a function `nonReentrant`, you should also
     * mark it `external`.
     */
    contract ReentrancyGuard {
        /// @dev counter to allow mutex lock with only one SSTORE operation
        uint256 private _guardCounter;
    
        constructor () internal {
            // The counter starts at one to prevent changing it from zero to a non-zero
            // value, which is a more expensive operation.
            _guardCounter = 1;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and make it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _guardCounter += 1;
            uint256 localCounter = _guardCounter;
            _;
            require(localCounter == _guardCounter, "re-entered");
        }
    }
    
    // File: contracts/InterestRateModel.sol
    
    pragma solidity ^0.5.8;
    
    /**
      * @title The Compound InterestRateModel Interface
      * @author Compound
      * @notice Any interest rate model should derive from this contract.
      * @dev These functions are specifically not marked `pure` as implementations of this
      *      contract may read from storage variables.
      */
    interface InterestRateModel {
        /**
          * @notice Gets the current borrow interest rate based on the given asset, total cash, total borrows
          *         and total reserves.
          * @dev The return value should be scaled by 1e18, thus a return value of
          *      `(true, 1000000000000)` implies an interest rate of 0.000001 or 0.0001% *per block*.
          * @param cash The total cash of the underlying asset in the CToken
          * @param borrows The total borrows of the underlying asset in the CToken
          * @param reserves The total reserves of the underlying asset in the CToken
          * @return Success or failure and the borrow interest rate per block scaled by 10e18
          */
        function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint, uint);
    
        /**
          * @notice Marker function used for light validation when updating the interest rate model of a market
          * @dev Marker function used for light validation when updating the interest rate model of a market. Implementations should simply return true.
          * @return Success or failure
          */
        function isInterestRateModel() external view returns (bool);
    }
    
    // File: contracts/CToken.sol
    
    pragma solidity ^0.5.8;
    
    
    
    
    
    
    
    
    /**
     * @title Compound's CToken Contract
     * @notice Abstract base for CTokens
     * @author Compound
     */
    contract CToken is EIP20Interface, Exponential, TokenErrorReporter, ReentrancyGuard {
        /**
         * @notice Indicator that this is a CToken contract (for inspection)
         */
        bool public constant isCToken = true;
    
        /**
         * @notice EIP-20 token name for this token
         */
        string public name;
    
        /**
         * @notice EIP-20 token symbol for this token
         */
        string public symbol;
    
        /**
         * @notice EIP-20 token decimals for this token
         */
        uint public decimals;
    
        /**
         * @notice Maximum borrow rate that can ever be applied (.0005% / block)
         */
        uint constant borrowRateMaxMantissa = 5e14;
    
        /**
         * @notice Maximum fraction of interest that can be set aside for reserves
         */
        uint constant reserveFactorMaxMantissa = 1e18;
    
        /**
         * @notice Administrator for this contract
         */
        address payable public admin;
    
        /**
         * @notice Pending administrator for this contract
         */
        address payable public pendingAdmin;
    
        /**
         * @notice Contract which oversees inter-cToken operations
         */
        ComptrollerInterface public comptroller;
    
        /**
         * @notice Model which tells what the current interest rate should be
         */
        InterestRateModel public interestRateModel;
    
        /**
         * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
         */
        uint public initialExchangeRateMantissa;
    
        /**
         * @notice Fraction of interest currently set aside for reserves
         */
        uint public reserveFactorMantissa;
    
        /**
         * @notice Block number that interest was last accrued at
         */
        uint public accrualBlockNumber;
    
        /**
         * @notice Accumulator of total earned interest since the opening of the market
         */
        uint public borrowIndex;
    
        /**
         * @notice Total amount of outstanding borrows of the underlying in this market
         */
        uint public totalBorrows;
    
        /**
         * @notice Total amount of reserves of the underlying held in this market
         */
        uint public totalReserves;
    
        /**
         * @notice Total number of tokens in circulation
         */
        uint256 public totalSupply;
    
        /**
         * @notice Official record of token balances for each account
         */
        mapping (address => uint256) accountTokens;
    
        /**
         * @notice Approved token transfer amounts on behalf of others
         */
        mapping (address => mapping (address => uint256)) transferAllowances;
    
        /**
         * @notice Container for borrow balance information
         * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
         * @member interestIndex Global borrowIndex as of the most recent balance-changing action
         */
        struct BorrowSnapshot {
            uint principal;
            uint interestIndex;
        }
    
        /**
         * @notice Mapping of account addresses to outstanding borrow balances
         */
        mapping(address => BorrowSnapshot) accountBorrows;
    
    
        /*** Market Events ***/
    
        /**
         * @notice Event emitted when interest is accrued
         */
        event AccrueInterest(uint interestAccumulated, uint borrowIndex, uint totalBorrows);
    
        /**
         * @notice Event emitted when tokens are minted
         */
        event Mint(address minter, uint mintAmount, uint mintTokens);
    
        /**
         * @notice Event emitted when tokens are redeemed
         */
        event Redeem(address redeemer, uint redeemAmount, uint redeemTokens);
    
        /**
         * @notice Event emitted when underlying is borrowed
         */
        event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows);
    
        /**
         * @notice Event emitted when a borrow is repaid
         */
        event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows);
    
        /**
         * @notice Event emitted when a borrow is liquidated
         */
        event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens);
    
    
        /*** Admin Events ***/
    
        /**
         * @notice Event emitted when pendingAdmin is changed
         */
        event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
    
        /**
         * @notice Event emitted when pendingAdmin is accepted, which means admin is updated
         */
        event NewAdmin(address oldAdmin, address newAdmin);
    
        /**
         * @notice Event emitted when comptroller is changed
         */
        event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);
    
        /**
         * @notice Event emitted when interestRateModel is changed
         */
        event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);
    
        /**
         * @notice Event emitted when the reserve factor is changed
         */
        event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa);
    
        /**
         * @notice Event emitted when the reserves are reduced
         */
        event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves);
    
    
        /**
         * @notice Construct a new money market
         * @param comptroller_ The address of the Comptroller
         * @param interestRateModel_ The address of the interest rate model
         * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
         * @param name_ EIP-20 name of this token
         * @param symbol_ EIP-20 symbol of this token
         * @param decimals_ EIP-20 decimal precision of this token
         */
        constructor(ComptrollerInterface comptroller_,
                    InterestRateModel interestRateModel_,
                    uint initialExchangeRateMantissa_,
                    string memory name_,
                    string memory symbol_,
                    uint decimals_) internal {
            // Set admin to msg.sender
            admin = msg.sender;
    
            // Set initial exchange rate
            initialExchangeRateMantissa = initialExchangeRateMantissa_;
            require(initialExchangeRateMantissa > 0, "Initial exchange rate must be greater than zero.");
    
            // Set the comptroller
            uint err = _setComptroller(comptroller_);
            require(err == uint(Error.NO_ERROR), "Setting comptroller failed");
    
            // Initialize block number and borrow index (block number mocks depend on comptroller being set)
            accrualBlockNumber = getBlockNumber();
            borrowIndex = mantissaOne;
    
            // Set the interest rate model (depends on block number / borrow index)
            err = _setInterestRateModelFresh(interestRateModel_);
            require(err == uint(Error.NO_ERROR), "Setting interest rate model failed");
    
            name = name_;
            symbol = symbol_;
            decimals = decimals_;
        }
    
        /**
         * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
         * @dev Called by both `transfer` and `transferFrom` internally
         * @param spender The address of the account performing the transfer
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param tokens The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) {
            /* Fail if transfer not allowed */
            uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Do not allow self-transfers */
            if (src == dst) {
                return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
            }
    
            /* Get the allowance, infinite for the account owner */
            uint startingAllowance = 0;
            if (spender == src) {
                startingAllowance = uint(-1);
            } else {
                startingAllowance = transferAllowances[src][spender];
            }
    
            /* Do the calculations, checking for {under,over}flow */
            MathError mathErr;
            uint allowanceNew;
            uint srcTokensNew;
            uint dstTokensNew;
    
            (mathErr, allowanceNew) = subUInt(startingAllowance, tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED);
            }
    
            (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH);
            }
    
            (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH);
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            accountTokens[src] = srcTokensNew;
            accountTokens[dst] = dstTokensNew;
    
            /* Eat some of the allowance (if necessary) */
            if (startingAllowance != uint(-1)) {
                transferAllowances[src][spender] = allowanceNew;
            }
    
            /* We emit a Transfer event */
            emit Transfer(src, dst, tokens);
    
            /* We call the defense hook (which checks for under-collateralization) */
            comptroller.transferVerify(address(this), src, dst, tokens);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param amount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint256 amount) external nonReentrant returns (bool) {
            return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param amount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(address src, address dst, uint256 amount) external nonReentrant returns (bool) {
            return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param amount The number of tokens that are approved (-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint256 amount) external returns (bool) {
            address src = msg.sender;
            transferAllowances[src][spender] = amount;
            emit Approval(src, spender, amount);
            return true;
        }
    
        /**
         * @notice Get the current allowance from `owner` for `spender`
         * @param owner The address of the account which owns the tokens to be spent
         * @param spender The address of the account which may transfer tokens
         * @return The number of tokens allowed to be spent (-1 means infinite)
         */
        function allowance(address owner, address spender) external view returns (uint256) {
            return transferAllowances[owner][spender];
        }
    
        /**
         * @notice Get the token balance of the `owner`
         * @param owner The address of the account to query
         * @return The number of tokens owned by `owner`
         */
        function balanceOf(address owner) external view returns (uint256) {
            return accountTokens[owner];
        }
    
        /**
         * @notice Get the underlying balance of the `owner`
         * @dev This also accrues interest in a transaction
         * @param owner The address of the account to query
         * @return The amount of underlying owned by `owner`
         */
        function balanceOfUnderlying(address owner) external returns (uint) {
            Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
            (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]);
            require(mErr == MathError.NO_ERROR);
            return balance;
        }
    
        /**
         * @notice Get a snapshot of the account's balances, and the cached exchange rate
         * @dev This is used by comptroller to more efficiently perform liquidity checks.
         * @param account Address of the account to snapshot
         * @return (possible error, token balance, borrow balance, exchange rate mantissa)
         */
        function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) {
            uint cTokenBalance = accountTokens[account];
            uint borrowBalance;
            uint exchangeRateMantissa;
    
            MathError mErr;
    
            (mErr, borrowBalance) = borrowBalanceStoredInternal(account);
            if (mErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0, 0, 0);
            }
    
            (mErr, exchangeRateMantissa) = exchangeRateStoredInternal();
            if (mErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0, 0, 0);
            }
    
            return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
        }
    
        /**
         * @dev Function to simply retrieve block number
         *  This exists mainly for inheriting test contracts to stub this result.
         */
        function getBlockNumber() internal view returns (uint) {
            return block.number;
        }
    
        /**
         * @notice Returns the current per-block borrow interest rate for this cToken
         * @return The borrow interest rate per block, scaled by 1e18
         */
        function borrowRatePerBlock() external view returns (uint) {
            (uint opaqueErr, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
            require(opaqueErr == 0, "borrowRatePerBlock: interestRateModel.borrowRate failed"); // semi-opaque
            return borrowRateMantissa;
        }
    
        /**
         * @notice Returns the current per-block supply interest rate for this cToken
         * @return The supply interest rate per block, scaled by 1e18
         */
        function supplyRatePerBlock() external view returns (uint) {
            /* We calculate the supply rate:
             *  underlying = totalSupply × exchangeRate
             *  borrowsPer = totalBorrows ÷ underlying
             *  supplyRate = borrowRate × (1-reserveFactor) × borrowsPer
             */
            uint exchangeRateMantissa = exchangeRateStored();
    
            (uint e0, uint borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
            require(e0 == 0, "supplyRatePerBlock: calculating borrowRate failed"); // semi-opaque
    
            (MathError e1, Exp memory underlying) = mulScalar(Exp({mantissa: exchangeRateMantissa}), totalSupply);
            require(e1 == MathError.NO_ERROR, "supplyRatePerBlock: calculating underlying failed");
    
            (MathError e2, Exp memory borrowsPer) = divScalarByExp(totalBorrows, underlying);
            require(e2 == MathError.NO_ERROR, "supplyRatePerBlock: calculating borrowsPer failed");
    
            (MathError e3, Exp memory oneMinusReserveFactor) = subExp(Exp({mantissa: mantissaOne}), Exp({mantissa: reserveFactorMantissa}));
            require(e3 == MathError.NO_ERROR, "supplyRatePerBlock: calculating oneMinusReserveFactor failed");
    
            (MathError e4, Exp memory supplyRate) = mulExp3(Exp({mantissa: borrowRateMantissa}), oneMinusReserveFactor, borrowsPer);
            require(e4 == MathError.NO_ERROR, "supplyRatePerBlock: calculating supplyRate failed");
    
            return supplyRate.mantissa;
        }
    
        /**
         * @notice Returns the current total borrows plus accrued interest
         * @return The total borrows with interest
         */
        function totalBorrowsCurrent() external nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return totalBorrows;
        }
    
        /**
         * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
         * @param account The address whose balance should be calculated after updating borrowIndex
         * @return The calculated balance
         */
        function borrowBalanceCurrent(address account) external nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return borrowBalanceStored(account);
        }
    
        /**
         * @notice Return the borrow balance of account based on stored data
         * @param account The address whose balance should be calculated
         * @return The calculated balance
         */
        function borrowBalanceStored(address account) public view returns (uint) {
            (MathError err, uint result) = borrowBalanceStoredInternal(account);
            require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed");
            return result;
        }
    
        /**
         * @notice Return the borrow balance of account based on stored data
         * @param account The address whose balance should be calculated
         * @return (error code, the calculated balance or 0 if error code is non-zero)
         */
        function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) {
            /* Note: we do not assert that the market is up to date */
            MathError mathErr;
            uint principalTimesIndex;
            uint result;
    
            /* Get borrowBalance and borrowIndex */
            BorrowSnapshot storage borrowSnapshot = accountBorrows[account];
    
            /* If borrowBalance = 0 then borrowIndex is likely also 0.
             * Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
             */
            if (borrowSnapshot.principal == 0) {
                return (MathError.NO_ERROR, 0);
            }
    
            /* Calculate new borrow balance using the interest index:
             *  recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
             */
            (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex);
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }
    
            (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex);
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }
    
            return (MathError.NO_ERROR, result);
        }
    
        /**
         * @notice Accrue interest then return the up-to-date exchange rate
         * @return Calculated exchange rate scaled by 1e18
         */
        function exchangeRateCurrent() public nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return exchangeRateStored();
        }
    
        /**
         * @notice Calculates the exchange rate from the underlying to the CToken
         * @dev This function does not accrue interest before calculating the exchange rate
         * @return Calculated exchange rate scaled by 1e18
         */
        function exchangeRateStored() public view returns (uint) {
            (MathError err, uint result) = exchangeRateStoredInternal();
            require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed");
            return result;
        }
    
        /**
         * @notice Calculates the exchange rate from the underlying to the CToken
         * @dev This function does not accrue interest before calculating the exchange rate
         * @return (error code, calculated exchange rate scaled by 1e18)
         */
        function exchangeRateStoredInternal() internal view returns (MathError, uint) {
            if (totalSupply == 0) {
                /*
                 * If there are no tokens minted:
                 *  exchangeRate = initialExchangeRate
                 */
                return (MathError.NO_ERROR, initialExchangeRateMantissa);
            } else {
                /*
                 * Otherwise:
                 *  exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply
                 */
                uint totalCash = getCashPrior();
                uint cashPlusBorrowsMinusReserves;
                Exp memory exchangeRate;
                MathError mathErr;
    
                (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves);
                if (mathErr != MathError.NO_ERROR) {
                    return (mathErr, 0);
                }
    
                (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, totalSupply);
                if (mathErr != MathError.NO_ERROR) {
                    return (mathErr, 0);
                }
    
                return (MathError.NO_ERROR, exchangeRate.mantissa);
            }
        }
    
        /**
         * @notice Get cash balance of this cToken in the underlying asset
         * @return The quantity of underlying asset owned by this contract
         */
        function getCash() external view returns (uint) {
            return getCashPrior();
        }
    
        struct AccrueInterestLocalVars {
            MathError mathErr;
            uint opaqueErr;
            uint borrowRateMantissa;
            uint currentBlockNumber;
            uint blockDelta;
    
            Exp simpleInterestFactor;
    
            uint interestAccumulated;
            uint totalBorrowsNew;
            uint totalReservesNew;
            uint borrowIndexNew;
        }
    
        /**
          * @notice Applies accrued interest to total borrows and reserves.
          * @dev This calculates interest accrued from the last checkpointed block
          *      up to the current block and writes new checkpoint to storage.
          */
        function accrueInterest() public returns (uint) {
            AccrueInterestLocalVars memory vars;
    
            /* Calculate the current borrow interest rate */
            (vars.opaqueErr, vars.borrowRateMantissa) = interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
            require(vars.borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high");
            if (vars.opaqueErr != 0) {
                return failOpaque(Error.INTEREST_RATE_MODEL_ERROR, FailureInfo.ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, vars.opaqueErr);
            }
    
            /* Remember the initial block number */
            vars.currentBlockNumber = getBlockNumber();
    
            /* Calculate the number of blocks elapsed since the last accrual */
            (vars.mathErr, vars.blockDelta) = subUInt(vars.currentBlockNumber, accrualBlockNumber);
            assert(vars.mathErr == MathError.NO_ERROR); // Block delta should always succeed and if it doesn't, blow up.
    
            /*
             * Calculate the interest accumulated into borrows and reserves and the new index:
             *  simpleInterestFactor = borrowRate * blockDelta
             *  interestAccumulated = simpleInterestFactor * totalBorrows
             *  totalBorrowsNew = interestAccumulated + totalBorrows
             *  totalReservesNew = interestAccumulated * reserveFactor + totalReserves
             *  borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
             */
            (vars.mathErr, vars.simpleInterestFactor) = mulScalar(Exp({mantissa: vars.borrowRateMantissa}), vars.blockDelta);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.interestAccumulated) = mulScalarTruncate(vars.simpleInterestFactor, totalBorrows);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.totalBorrowsNew) = addUInt(vars.interestAccumulated, totalBorrows);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), vars.interestAccumulated, totalReserves);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.borrowIndexNew) = mulScalarTruncateAddUInt(vars.simpleInterestFactor, borrowIndex, borrowIndex);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /* We write the previously calculated values into storage */
            accrualBlockNumber = vars.currentBlockNumber;
            borrowIndex = vars.borrowIndexNew;
            totalBorrows = vars.totalBorrowsNew;
            totalReserves = vars.totalReservesNew;
    
            /* We emit an AccrueInterest event */
            emit AccrueInterest(vars.interestAccumulated, vars.borrowIndexNew, totalBorrows);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Sender supplies assets into the market and receives cTokens in exchange
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param mintAmount The amount of the underlying asset to supply
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function mintInternal(uint mintAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED);
            }
            // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
            return mintFresh(msg.sender, mintAmount);
        }
    
        struct MintLocalVars {
            Error err;
            MathError mathErr;
            uint exchangeRateMantissa;
            uint mintTokens;
            uint totalSupplyNew;
            uint accountTokensNew;
        }
    
        /**
         * @notice User supplies assets into the market and receives cTokens in exchange
         * @dev Assumes interest has already been accrued up to the current block
         * @param minter The address of the account which is supplying the assets
         * @param mintAmount The amount of the underlying asset to supply
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function mintFresh(address minter, uint mintAmount) internal returns (uint) {
            /* Fail if mint not allowed */
            uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK);
            }
    
            MintLocalVars memory vars;
    
            /* Fail if checkTransferIn fails */
            vars.err = checkTransferIn(minter, mintAmount);
            if (vars.err != Error.NO_ERROR) {
                return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_NOT_POSSIBLE);
            }
    
            /*
             * We get the current exchange rate and calculate the number of cTokens to be minted:
             *  mintTokens = mintAmount / exchangeRate
             */
            (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(mintAmount, Exp({mantissa: vars.exchangeRateMantissa}));
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /*
             * We calculate the new total supply of cTokens and minter token balance, checking for overflow:
             *  totalSupplyNew = totalSupply + mintTokens
             *  accountTokensNew = accountTokens[minter] + mintTokens
             */
            (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /*
             * We call doTransferIn for the minter and the mintAmount
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken holds an additional mintAmount of cash.
             *  If doTransferIn fails despite the fact we checked pre-conditions,
             *   we revert because we can't be sure if side effects occurred.
             */
            vars.err = doTransferIn(minter, mintAmount);
            if (vars.err != Error.NO_ERROR) {
                return fail(vars.err, FailureInfo.MINT_TRANSFER_IN_FAILED);
            }
    
            /* We write previously calculated values into storage */
            totalSupply = vars.totalSupplyNew;
            accountTokens[minter] = vars.accountTokensNew;
    
            /* We emit a Mint event, and a Transfer event */
            emit Mint(minter, mintAmount, vars.mintTokens);
            emit Transfer(address(this), minter, vars.mintTokens);
    
            /* We call the defense hook */
            comptroller.mintVerify(address(this), minter, mintAmount, vars.mintTokens);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Sender redeems cTokens in exchange for the underlying asset
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param redeemTokens The number of cTokens to redeem into underlying
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
                return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
            }
            // redeemFresh emits redeem-specific logs on errors, so we don't need to
            return redeemFresh(msg.sender, redeemTokens, 0);
        }
    
        /**
         * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param redeemAmount The amount of underlying to redeem
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
                return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
            }
            // redeemFresh emits redeem-specific logs on errors, so we don't need to
            return redeemFresh(msg.sender, 0, redeemAmount);
        }
    
        struct RedeemLocalVars {
            Error err;
            MathError mathErr;
            uint exchangeRateMantissa;
            uint redeemTokens;
            uint redeemAmount;
            uint totalSupplyNew;
            uint accountTokensNew;
        }
    
        /**
         * @notice User redeems cTokens in exchange for the underlying asset
         * @dev Assumes interest has already been accrued up to the current block
         * @param redeemer The address of the account which is redeeming the tokens
         * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero)
         * @param redeemAmountIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be zero)
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) {
            require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");
    
            RedeemLocalVars memory vars;
    
            /* exchangeRate = invoke Exchange Rate Stored() */
            (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));
            }
    
            /* If redeemTokensIn > 0: */
            if (redeemTokensIn > 0) {
                /*
                 * We calculate the exchange rate and the amount of underlying to be redeemed:
                 *  redeemTokens = redeemTokensIn
                 *  redeemAmount = redeemTokensIn x exchangeRateCurrent
                 */
                vars.redeemTokens = redeemTokensIn;
    
                (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
                if (vars.mathErr != MathError.NO_ERROR) {
                    return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr));
                }
            } else {
                /*
                 * We get the current exchange rate and calculate the amount to be redeemed:
                 *  redeemTokens = redeemAmountIn / exchangeRate
                 *  redeemAmount = redeemAmountIn
                 */
    
                (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
                if (vars.mathErr != MathError.NO_ERROR) {
                    return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr));
                }
    
                vars.redeemAmount = redeemAmountIn;
            }
    
            /* Fail if redeem not allowed */
            uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
            }
    
            /*
             * We calculate the new total supply and redeemer balance, checking for underflow:
             *  totalSupplyNew = totalSupply - redeemTokens
             *  accountTokensNew = accountTokens[redeemer] - redeemTokens
             */
            (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /* Fail gracefully if protocol has insufficient cash */
            if (getCashPrior() < vars.redeemAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /*
             * We invoke doTransferOut for the redeemer and the redeemAmount.
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken has redeemAmount less of cash.
             *  If doTransferOut fails despite the fact we checked pre-conditions,
             *   we revert because we can't be sure if side effects occurred.
             */
            vars.err = doTransferOut(redeemer, vars.redeemAmount);
            require(vars.err == Error.NO_ERROR, "redeem transfer out failed");
    
            /* We write previously calculated values into storage */
            totalSupply = vars.totalSupplyNew;
            accountTokens[redeemer] = vars.accountTokensNew;
    
            /* We emit a Transfer event, and a Redeem event */
            emit Transfer(redeemer, address(this), vars.redeemTokens);
            emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);
    
            /* We call the defense hook */
            comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
          * @notice Sender borrows assets from the protocol to their own address
          * @param borrowAmount The amount of the underlying asset to borrow
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);
            }
            // borrowFresh emits borrow-specific logs on errors, so we don't need to
            return borrowFresh(msg.sender, borrowAmount);
        }
    
        struct BorrowLocalVars {
            Error err;
            MathError mathErr;
            uint accountBorrows;
            uint accountBorrowsNew;
            uint totalBorrowsNew;
        }
    
        /**
          * @notice Users borrow assets from the protocol to their own address
          * @param borrowAmount The amount of the underlying asset to borrow
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) {
            /* Fail if borrow not allowed */
            uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);
            }
    
            /* Fail gracefully if protocol has insufficient underlying cash */
            if (getCashPrior() < borrowAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);
            }
    
            BorrowLocalVars memory vars;
    
            /*
             * We calculate the new borrower and total borrow balances, failing on overflow:
             *  accountBorrowsNew = accountBorrows + borrowAmount
             *  totalBorrowsNew = totalBorrows + borrowAmount
             */
            (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /*
             * We invoke doTransferOut for the borrower and the borrowAmount.
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken borrowAmount less of cash.
             *  If doTransferOut fails despite the fact we checked pre-conditions,
             *   we revert because we can't be sure if side effects occurred.
             */
            vars.err = doTransferOut(borrower, borrowAmount);
            require(vars.err == Error.NO_ERROR, "borrow transfer out failed");
    
            /* We write the previously calculated values into storage */
            accountBorrows[borrower].principal = vars.accountBorrowsNew;
            accountBorrows[borrower].interestIndex = borrowIndex;
            totalBorrows = vars.totalBorrowsNew;
    
            /* We emit a Borrow event */
            emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
    
            /* We call the defense hook */
            comptroller.borrowVerify(address(this), borrower, borrowAmount);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Sender repays their own borrow
         * @param repayAmount The amount to repay
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED);
            }
            // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
            return repayBorrowFresh(msg.sender, msg.sender, repayAmount);
        }
    
        /**
         * @notice Sender repays a borrow belonging to borrower
         * @param borrower the account with the debt being payed off
         * @param repayAmount The amount to repay
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED);
            }
            // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
            return repayBorrowFresh(msg.sender, borrower, repayAmount);
        }
    
        struct RepayBorrowLocalVars {
            Error err;
            MathError mathErr;
            uint repayAmount;
            uint borrowerIndex;
            uint accountBorrows;
            uint accountBorrowsNew;
            uint totalBorrowsNew;
        }
    
        /**
         * @notice Borrows are repaid by another user (possibly the borrower).
         * @param payer the account paying off the borrow
         * @param borrower the account with the debt being payed off
         * @param repayAmount the amount of undelrying tokens being returned
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint) {
            /* Fail if repayBorrow not allowed */
            uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK);
            }
    
            RepayBorrowLocalVars memory vars;
    
            /* We remember the original borrowerIndex for verification purposes */
            vars.borrowerIndex = accountBorrows[borrower].interestIndex;
    
            /* We fetch the amount the borrower owes, with accumulated interest */
            (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /* If repayAmount == -1, repayAmount = accountBorrows */
            if (repayAmount == uint(-1)) {
                vars.repayAmount = vars.accountBorrows;
            } else {
                vars.repayAmount = repayAmount;
            }
    
            /* Fail if checkTransferIn fails */
            vars.err = checkTransferIn(payer, vars.repayAmount);
            if (vars.err != Error.NO_ERROR) {
                return fail(vars.err, FailureInfo.REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE);
            }
    
            /*
             * We calculate the new borrower and total borrow balances, failing on underflow:
             *  accountBorrowsNew = accountBorrows - repayAmount
             *  totalBorrowsNew = totalBorrows - repayAmount
             */
            (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.repayAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.repayAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /*
             * We call doTransferIn for the payer and the repayAmount
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken holds an additional repayAmount of cash.
             *  If doTransferIn fails despite the fact we checked pre-conditions,
             *   we revert because we can't be sure if side effects occurred.
             */
            vars.err = doTransferIn(payer, vars.repayAmount);
            require(vars.err == Error.NO_ERROR, "repay borrow transfer in failed");
    
            /* We write the previously calculated values into storage */
            accountBorrows[borrower].principal = vars.accountBorrowsNew;
            accountBorrows[borrower].interestIndex = borrowIndex;
            totalBorrows = vars.totalBorrowsNew;
    
            /* We emit a RepayBorrow event */
            emit RepayBorrow(payer, borrower, vars.repayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
    
            /* We call the defense hook */
            comptroller.repayBorrowVerify(address(this), payer, borrower, vars.repayAmount, vars.borrowerIndex);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice The sender liquidates the borrowers collateral.
         *  The collateral seized is transferred to the liquidator.
         * @param borrower The borrower of this cToken to be liquidated
         * @param cTokenCollateral The market in which to seize collateral from the borrower
         * @param repayAmount The amount of the underlying borrowed asset to repay
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function liquidateBorrowInternal(address borrower, uint repayAmount, CToken cTokenCollateral) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
                return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED);
            }
    
            error = cTokenCollateral.accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
                return fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED);
            }
    
            // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
            return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral);
        }
    
        /**
         * @notice The liquidator liquidates the borrowers collateral.
         *  The collateral seized is transferred to the liquidator.
         * @param borrower The borrower of this cToken to be liquidated
         * @param liquidator The address repaying the borrow and seizing collateral
         * @param cTokenCollateral The market in which to seize collateral from the borrower
         * @param repayAmount The amount of the underlying borrowed asset to repay
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CToken cTokenCollateral) internal returns (uint) {
            /* Fail if liquidate not allowed */
            uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK);
            }
    
            /* Verify cTokenCollateral market's block number equals current block number */
            if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK);
            }
    
            /* Fail if borrower = liquidator */
            if (borrower == liquidator) {
                return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER);
            }
    
            /* Fail if repayAmount = 0 */
            if (repayAmount == 0) {
                return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO);
            }
    
            /* Fail if repayAmount = -1 */
            if (repayAmount == uint(-1)) {
                return fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX);
            }
    
            /* We calculate the number of collateral tokens that will be seized */
            (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), repayAmount);
            if (amountSeizeError != 0) {
                return failOpaque(Error.COMPTROLLER_CALCULATION_ERROR, FailureInfo.LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, amountSeizeError);
            }
    
            /* Fail if seizeTokens > borrower collateral token balance */
            if (seizeTokens > cTokenCollateral.balanceOf(borrower)) {
                return fail(Error.TOKEN_INSUFFICIENT_BALANCE, FailureInfo.LIQUIDATE_SEIZE_TOO_MUCH);
            }
    
            /* Fail if repayBorrow fails */
            uint repayBorrowError = repayBorrowFresh(liquidator, borrower, repayAmount);
            if (repayBorrowError != uint(Error.NO_ERROR)) {
                return fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED);
            }
    
            /* Revert if seize tokens fails (since we cannot be sure of side effects) */
            uint seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens);
            require(seizeError == uint(Error.NO_ERROR), "token seizure failed");
    
            /* We emit a LiquidateBorrow event */
            emit LiquidateBorrow(liquidator, borrower, repayAmount, address(cTokenCollateral), seizeTokens);
    
            /* We call the defense hook */
            comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount, seizeTokens);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Transfers collateral tokens (this market) to the liquidator.
         * @dev Will fail unless called by another cToken during the process of liquidation.
         *  Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
         * @param liquidator The account receiving seized collateral
         * @param borrower The account having collateral seized
         * @param seizeTokens The number of cTokens to seize
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant returns (uint) {
            /* Fail if seize not allowed */
            uint allowed = comptroller.seizeAllowed(address(this), msg.sender, liquidator, borrower, seizeTokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
            }
    
            /* Fail if borrower = liquidator */
            if (borrower == liquidator) {
                return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
            }
    
            MathError mathErr;
            uint borrowerTokensNew;
            uint liquidatorTokensNew;
    
            /*
             * We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
             *  borrowerTokensNew = accountTokens[borrower] - seizeTokens
             *  liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
             */
            (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr));
            }
    
            (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr));
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            /* We write the previously calculated values into storage */
            accountTokens[borrower] = borrowerTokensNew;
            accountTokens[liquidator] = liquidatorTokensNew;
    
            /* Emit a Transfer event */
            emit Transfer(borrower, liquidator, seizeTokens);
    
            /* We call the defense hook */
            comptroller.seizeVerify(address(this), msg.sender, liquidator, borrower, seizeTokens);
    
            return uint(Error.NO_ERROR);
        }
    
    
        /*** Admin Functions ***/
    
        /**
          * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @param newPendingAdmin New pending admin.
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          *
          * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address?
          */
        function _setPendingAdmin(address payable newPendingAdmin) external returns (uint) {
            // Check caller = admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
            }
    
            // Save current value, if any, for inclusion in log
            address oldPendingAdmin = pendingAdmin;
    
            // Store pendingAdmin with value newPendingAdmin
            pendingAdmin = newPendingAdmin;
    
            // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
            emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
          * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
          * @dev Admin function for pending admin to accept role and update admin
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _acceptAdmin() external returns (uint) {
            // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
            if (msg.sender != pendingAdmin || msg.sender == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
            }
    
            // Save current values for inclusion in log
            address oldAdmin = admin;
            address oldPendingAdmin = pendingAdmin;
    
            // Store admin with value pendingAdmin
            admin = pendingAdmin;
    
            // Clear the pending value
            pendingAdmin = address(0);
    
            emit NewAdmin(oldAdmin, admin);
            emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
          * @notice Sets a new comptroller for the market
          * @dev Admin function to set a new comptroller
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setComptroller(ComptrollerInterface newComptroller) public returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK);
            }
    
            ComptrollerInterface oldComptroller = comptroller;
            // Ensure invoke comptroller.isComptroller() returns true
            require(newComptroller.isComptroller(), "marker method returned false");
    
            // Set market's comptroller to newComptroller
            comptroller = newComptroller;
    
            // Emit NewComptroller(oldComptroller, newComptroller)
            emit NewComptroller(oldComptroller, newComptroller);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
          * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
          * @dev Admin function to accrue interest and set a new reserve factor
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.
                return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);
            }
            // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
            return _setReserveFactorFresh(newReserveFactorMantissa);
        }
    
        /**
          * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
          * @dev Admin function to set a new reserve factor
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
            }
    
            // Verify market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                // TODO: static_assert + no error code?
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
            }
    
            // Check newReserveFactor ≤ maxReserveFactor
            if (newReserveFactorMantissa > reserveFactorMaxMantissa) {
                return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
            }
    
            uint oldReserveFactorMantissa = reserveFactorMantissa;
            reserveFactorMantissa = newReserveFactorMantissa;
    
            emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice Accrues interest and reduces reserves by transferring to admin
         * @param reduceAmount Amount of reduction to reserves
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _reduceReserves(uint reduceAmount) external nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
                return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);
            }
            // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
            return _reduceReservesFresh(reduceAmount);
        }
    
        /**
         * @notice Reduces reserves by transferring to admin
         * @dev Requires fresh interest accrual
         * @param reduceAmount Amount of reduction to reserves
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _reduceReservesFresh(uint reduceAmount) internal returns (uint) {
            Error err;
            // totalReserves - reduceAmount
            uint totalReservesNew;
    
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
            }
    
            // We fail gracefully unless market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                // TODO: static_assert + no error code?
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
            }
    
            // Fail gracefully if protocol has insufficient underlying cash
            if (getCashPrior() < reduceAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
            }
    
            // Check reduceAmount ≤ reserves[n] (totalReserves)
            // TODO: I'm following the spec literally here but I think we should we just use SafeMath instead and fail on an error (which would be underflow)
            if (reduceAmount > totalReserves) {
                return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
            }
    
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
    
            totalReservesNew = totalReserves - reduceAmount;
            // We checked reduceAmount <= totalReserves above, so this should never revert.
            require(totalReservesNew <= totalReserves, "reduce reserves unexpected underflow");
    
            // Store reserves[n+1] = reserves[n] - reduceAmount
            totalReserves = totalReservesNew;
    
            // invoke doTransferOut(reduceAmount, admin)
            err = doTransferOut(admin, reduceAmount);
            // we revert on the failure of this command
            require(err == Error.NO_ERROR, "reduce reserves transfer out failed");
    
            emit ReservesReduced(admin, reduceAmount, totalReservesNew);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
         * @dev Admin function to accrue interest and update the interest rate model
         * @param newInterestRateModel the new interest rate model to use
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed
                return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);
            }
            // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
            return _setInterestRateModelFresh(newInterestRateModel);
        }
    
        /**
         * @notice updates the interest rate model (*requires fresh interest accrual)
         * @dev Admin function to update the interest rate model
         * @param newInterestRateModel the new interest rate model to use
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) {
    
            // Used to store old model for use in the event that is emitted on success
            InterestRateModel oldInterestRateModel;
    
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
            }
    
            // We fail gracefully unless market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                // TODO: static_assert + no error code?
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
            }
    
            // Track the market's current interest rate model
            oldInterestRateModel = interestRateModel;
    
            // Ensure invoke newInterestRateModel.isInterestRateModel() returns true
            require(newInterestRateModel.isInterestRateModel(), "marker method returned false");
    
            // Set the interest rate model to newInterestRateModel
            interestRateModel = newInterestRateModel;
    
            // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
            emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);
    
            return uint(Error.NO_ERROR);
        }
    
        /*** Safe Token ***/
    
        /**
         * @notice Gets balance of this contract in terms of the underlying
         * @dev This excludes the value of the current message, if any
         * @return The quantity of underlying owned by this contract
         */
        function getCashPrior() internal view returns (uint);
    
        /**
         * @dev Checks whether or not there is sufficient allowance for this contract to move amount from `from` and
         *      whether or not `from` has a balance of at least `amount`. Does NOT do a transfer.
         */
        function checkTransferIn(address from, uint amount) internal view returns (Error);
    
        /**
         * @dev Performs a transfer in, ideally returning an explanatory error code upon failure rather than reverting.
         *  If caller has not called `checkTransferIn`, this may revert due to insufficient balance or insufficient allowance.
         *  If caller has called `checkTransferIn` successfully, this should not revert in normal conditions.
         */
        function doTransferIn(address from, uint amount) internal returns (Error);
    
        /**
         * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.
         *  If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
         *  If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
         */
        function doTransferOut(address payable to, uint amount) internal returns (Error);
    }
    
    // File: contracts/PriceOracle.sol
    
    pragma solidity ^0.5.8;
    
    
    interface PriceOracle {
        /**
         * @notice Indicator that this is a PriceOracle contract (for inspection)
         */
        function isPriceOracle() external pure returns (bool);
    
        /**
          * @notice Get the underlying price of a cToken asset
          * @param cToken The cToken to get the underlying price of
          * @return The underlying asset price mantissa (scaled by 1e18).
          *  Zero means the price is unavailable.
          */
        function getUnderlyingPrice(CToken cToken) external view returns (uint);
    }
    
    // File: contracts/ComptrollerStorage.sol
    
    pragma solidity ^0.5.8;
    
    
    
    contract UnitrollerAdminStorage {
        /**
        * @notice Administrator for this contract
        */
        address public admin;
    
        /**
        * @notice Pending administrator for this contract
        */
        address public pendingAdmin;
    
        /**
        * @notice Active brains of Unitroller
        */
        address public comptrollerImplementation;
    
        /**
        * @notice Pending brains of Unitroller
        */
        address public pendingComptrollerImplementation;
    }
    
    contract ComptrollerV1Storage is UnitrollerAdminStorage {
    
        /**
         * @notice Oracle which gives the price of any given asset
         */
        PriceOracle public oracle;
    
        /**
         * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
         */
        uint public closeFactorMantissa;
    
        /**
         * @notice Multiplier representing the discount on collateral that a liquidator receives
         */
        uint public liquidationIncentiveMantissa;
    
        /**
         * @notice Max number of assets a single account can participate in (borrow or use as collateral)
         */
        uint public maxAssets;
    
        /**
         * @notice Per-account mapping of "assets you are in", capped by maxAssets
         */
        mapping(address => CToken[]) public accountAssets;
    
    }
    
    // File: contracts/Unitroller.sol
    
    pragma solidity ^0.5.8;
    
    
    /**
     * @title ComptrollerCore
     * @dev storage for the comptroller will be at this address, and
     * cTokens should reference this contract rather than a deployed implementation if
     *
     */
    contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {
    
        /**
          * @notice Emitted when pendingComptrollerImplementation is changed
          */
        event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);
    
        /**
          * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated
          */
        event NewImplementation(address oldImplementation, address newImplementation);
    
        /**
          * @notice Emitted when pendingAdmin is changed
          */
        event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
    
        /**
          * @notice Emitted when pendingAdmin is accepted, which means admin is updated
          */
        event NewAdmin(address oldAdmin, address newAdmin);
    
        constructor() public {
            // Set admin to caller
            admin = msg.sender;
        }
    
        /*** Admin Functions ***/
        function _setPendingImplementation(address newPendingImplementation) public returns (uint) {
    
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);
            }
    
            address oldPendingImplementation = pendingComptrollerImplementation;
    
            pendingComptrollerImplementation = newPendingImplementation;
    
            emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
        * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation
        * @dev Admin function for new implementation to accept it's role as implementation
        * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
        */
        function _acceptImplementation() public returns (uint) {
            // Check caller is pendingImplementation and pendingImplementation ≠ address(0)
            if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);
            }
    
            // Save current values for inclusion in log
            address oldImplementation = comptrollerImplementation;
            address oldPendingImplementation = pendingComptrollerImplementation;
    
            comptrollerImplementation = pendingComptrollerImplementation;
    
            pendingComptrollerImplementation = address(0);
    
            emit NewImplementation(oldImplementation, comptrollerImplementation);
            emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
    
            return uint(Error.NO_ERROR);
        }
    
    
        /**
          * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @param newPendingAdmin New pending admin.
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          *
          * TODO: Should we add a second arg to verify, like a checksum of `newAdmin` address?
          */
        function _setPendingAdmin(address newPendingAdmin) public returns (uint) {
            // Check caller = admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
            }
    
            // Save current value, if any, for inclusion in log
            address oldPendingAdmin = pendingAdmin;
    
            // Store pendingAdmin with value newPendingAdmin
            pendingAdmin = newPendingAdmin;
    
            // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
            emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
          * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
          * @dev Admin function for pending admin to accept role and update admin
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _acceptAdmin() public returns (uint) {
            // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
            if (msg.sender != pendingAdmin || msg.sender == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
            }
    
            // Save current values for inclusion in log
            address oldAdmin = admin;
            address oldPendingAdmin = pendingAdmin;
    
            // Store admin with value pendingAdmin
            admin = pendingAdmin;
    
            // Clear the pending value
            pendingAdmin = address(0);
    
            emit NewAdmin(oldAdmin, admin);
            emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
    
            return uint(Error.NO_ERROR);
        }
    
        /**
         * @dev Delegates execution to an implementation contract.
         * It returns to the external caller whatever the implementation returns
         * or forwards reverts.
         */
        function () payable external {
            // delegate all other functions to current implementation
            (bool success, ) = comptrollerImplementation.delegatecall(msg.data);
    
            // solium-disable-next-line security/no-inline-assembly
            assembly {
                  let free_mem_ptr := mload(0x40)
                  returndatacopy(free_mem_ptr, 0, returndatasize)
    
                  switch success
                  case 0 { revert(free_mem_ptr, returndatasize) }
                  default { return(free_mem_ptr, returndatasize) }
            }
        }
    }
    

    File 2 of 2: Comptroller
    pragma solidity ^0.5.16;
    import "./ComptrollerInterface.sol";
    import "./CTokenInterfaces.sol";
    import "./ErrorReporter.sol";
    import "./Exponential.sol";
    import "./EIP20Interface.sol";
    import "./EIP20NonStandardInterface.sol";
    import "./InterestRateModel.sol";
    /**
     * @title Compound's CToken Contract
     * @notice Abstract base for CTokens
     * @author Compound
     */
    contract CToken is CTokenInterface, Exponential, TokenErrorReporter {
        /**
         * @notice Initialize the money market
         * @param comptroller_ The address of the Comptroller
         * @param interestRateModel_ The address of the interest rate model
         * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
         * @param name_ EIP-20 name of this token
         * @param symbol_ EIP-20 symbol of this token
         * @param decimals_ EIP-20 decimal precision of this token
         */
        function initialize(ComptrollerInterface comptroller_,
                            InterestRateModel interestRateModel_,
                            uint initialExchangeRateMantissa_,
                            string memory name_,
                            string memory symbol_,
                            uint8 decimals_) public {
            require(msg.sender == admin, "only admin may initialize the market");
            require(accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once");
            // Set initial exchange rate
            initialExchangeRateMantissa = initialExchangeRateMantissa_;
            require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero.");
            // Set the comptroller
            uint err = _setComptroller(comptroller_);
            require(err == uint(Error.NO_ERROR), "setting comptroller failed");
            // Initialize block number and borrow index (block number mocks depend on comptroller being set)
            accrualBlockNumber = getBlockNumber();
            borrowIndex = mantissaOne;
            // Set the interest rate model (depends on block number / borrow index)
            err = _setInterestRateModelFresh(interestRateModel_);
            require(err == uint(Error.NO_ERROR), "setting interest rate model failed");
            name = name_;
            symbol = symbol_;
            decimals = decimals_;
            // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund)
            _notEntered = true;
        }
        /**
         * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
         * @dev Called by both `transfer` and `transferFrom` internally
         * @param spender The address of the account performing the transfer
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param tokens The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) {
            /* Fail if transfer not allowed */
            uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
            }
            /* Do not allow self-transfers */
            if (src == dst) {
                return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
            }
            /* Get the allowance, infinite for the account owner */
            uint startingAllowance = 0;
            if (spender == src) {
                startingAllowance = uint(-1);
            } else {
                startingAllowance = transferAllowances[src][spender];
            }
            /* Do the calculations, checking for {under,over}flow */
            MathError mathErr;
            uint allowanceNew;
            uint srcTokensNew;
            uint dstTokensNew;
            (mathErr, allowanceNew) = subUInt(startingAllowance, tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED);
            }
            (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH);
            }
            (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens);
            if (mathErr != MathError.NO_ERROR) {
                return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            accountTokens[src] = srcTokensNew;
            accountTokens[dst] = dstTokensNew;
            /* Eat some of the allowance (if necessary) */
            if (startingAllowance != uint(-1)) {
                transferAllowances[src][spender] = allowanceNew;
            }
            /* We emit a Transfer event */
            emit Transfer(src, dst, tokens);
            comptroller.transferVerify(address(this), src, dst, tokens);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param amount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint256 amount) external nonReentrant returns (bool) {
            return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR);
        }
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param amount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(address src, address dst, uint256 amount) external nonReentrant returns (bool) {
            return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR);
        }
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param amount The number of tokens that are approved (-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint256 amount) external returns (bool) {
            address src = msg.sender;
            transferAllowances[src][spender] = amount;
            emit Approval(src, spender, amount);
            return true;
        }
        /**
         * @notice Get the current allowance from `owner` for `spender`
         * @param owner The address of the account which owns the tokens to be spent
         * @param spender The address of the account which may transfer tokens
         * @return The number of tokens allowed to be spent (-1 means infinite)
         */
        function allowance(address owner, address spender) external view returns (uint256) {
            return transferAllowances[owner][spender];
        }
        /**
         * @notice Get the token balance of the `owner`
         * @param owner The address of the account to query
         * @return The number of tokens owned by `owner`
         */
        function balanceOf(address owner) external view returns (uint256) {
            return accountTokens[owner];
        }
        /**
         * @notice Get the underlying balance of the `owner`
         * @dev This also accrues interest in a transaction
         * @param owner The address of the account to query
         * @return The amount of underlying owned by `owner`
         */
        function balanceOfUnderlying(address owner) external returns (uint) {
            Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
            (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]);
            require(mErr == MathError.NO_ERROR, "balance could not be calculated");
            return balance;
        }
        /**
         * @notice Get a snapshot of the account's balances, and the cached exchange rate
         * @dev This is used by comptroller to more efficiently perform liquidity checks.
         * @param account Address of the account to snapshot
         * @return (possible error, token balance, borrow balance, exchange rate mantissa)
         */
        function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) {
            uint cTokenBalance = accountTokens[account];
            uint borrowBalance;
            uint exchangeRateMantissa;
            MathError mErr;
            (mErr, borrowBalance) = borrowBalanceStoredInternal(account);
            if (mErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0, 0, 0);
            }
            (mErr, exchangeRateMantissa) = exchangeRateStoredInternal();
            if (mErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0, 0, 0);
            }
            return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
        }
        /**
         * @dev Function to simply retrieve block number
         *  This exists mainly for inheriting test contracts to stub this result.
         */
        function getBlockNumber() internal view returns (uint) {
            return block.number;
        }
        /**
         * @notice Returns the current per-block borrow interest rate for this cToken
         * @return The borrow interest rate per block, scaled by 1e18
         */
        function borrowRatePerBlock() external view returns (uint) {
            return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
        }
        /**
         * @notice Returns the current per-block supply interest rate for this cToken
         * @return The supply interest rate per block, scaled by 1e18
         */
        function supplyRatePerBlock() external view returns (uint) {
            return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa);
        }
        /**
         * @notice Returns the current total borrows plus accrued interest
         * @return The total borrows with interest
         */
        function totalBorrowsCurrent() external nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return totalBorrows;
        }
        /**
         * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
         * @param account The address whose balance should be calculated after updating borrowIndex
         * @return The calculated balance
         */
        function borrowBalanceCurrent(address account) external nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return borrowBalanceStored(account);
        }
        /**
         * @notice Return the borrow balance of account based on stored data
         * @param account The address whose balance should be calculated
         * @return The calculated balance
         */
        function borrowBalanceStored(address account) public view returns (uint) {
            (MathError err, uint result) = borrowBalanceStoredInternal(account);
            require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed");
            return result;
        }
        /**
         * @notice Return the borrow balance of account based on stored data
         * @param account The address whose balance should be calculated
         * @return (error code, the calculated balance or 0 if error code is non-zero)
         */
        function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) {
            /* Note: we do not assert that the market is up to date */
            MathError mathErr;
            uint principalTimesIndex;
            uint result;
            /* Get borrowBalance and borrowIndex */
            BorrowSnapshot storage borrowSnapshot = accountBorrows[account];
            /* If borrowBalance = 0 then borrowIndex is likely also 0.
             * Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
             */
            if (borrowSnapshot.principal == 0) {
                return (MathError.NO_ERROR, 0);
            }
            /* Calculate new borrow balance using the interest index:
             *  recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
             */
            (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex);
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }
            (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex);
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }
            return (MathError.NO_ERROR, result);
        }
        /**
         * @notice Accrue interest then return the up-to-date exchange rate
         * @return Calculated exchange rate scaled by 1e18
         */
        function exchangeRateCurrent() public nonReentrant returns (uint) {
            require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
            return exchangeRateStored();
        }
        /**
         * @notice Calculates the exchange rate from the underlying to the CToken
         * @dev This function does not accrue interest before calculating the exchange rate
         * @return Calculated exchange rate scaled by 1e18
         */
        function exchangeRateStored() public view returns (uint) {
            (MathError err, uint result) = exchangeRateStoredInternal();
            require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed");
            return result;
        }
        /**
         * @notice Calculates the exchange rate from the underlying to the CToken
         * @dev This function does not accrue interest before calculating the exchange rate
         * @return (error code, calculated exchange rate scaled by 1e18)
         */
        function exchangeRateStoredInternal() internal view returns (MathError, uint) {
            uint _totalSupply = totalSupply;
            if (_totalSupply == 0) {
                /*
                 * If there are no tokens minted:
                 *  exchangeRate = initialExchangeRate
                 */
                return (MathError.NO_ERROR, initialExchangeRateMantissa);
            } else {
                /*
                 * Otherwise:
                 *  exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply
                 */
                uint totalCash = getCashPrior();
                uint cashPlusBorrowsMinusReserves;
                Exp memory exchangeRate;
                MathError mathErr;
                (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves);
                if (mathErr != MathError.NO_ERROR) {
                    return (mathErr, 0);
                }
                (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, _totalSupply);
                if (mathErr != MathError.NO_ERROR) {
                    return (mathErr, 0);
                }
                return (MathError.NO_ERROR, exchangeRate.mantissa);
            }
        }
        /**
         * @notice Get cash balance of this cToken in the underlying asset
         * @return The quantity of underlying asset owned by this contract
         */
        function getCash() external view returns (uint) {
            return getCashPrior();
        }
        /**
         * @notice Applies accrued interest to total borrows and reserves
         * @dev This calculates interest accrued from the last checkpointed block
         *   up to the current block and writes new checkpoint to storage.
         */
        function accrueInterest() public returns (uint) {
            /* Remember the initial block number */
            uint currentBlockNumber = getBlockNumber();
            uint accrualBlockNumberPrior = accrualBlockNumber;
            /* Short-circuit accumulating 0 interest */
            if (accrualBlockNumberPrior == currentBlockNumber) {
                return uint(Error.NO_ERROR);
            }
            /* Read the previous values out of storage */
            uint cashPrior = getCashPrior();
            uint borrowsPrior = totalBorrows;
            uint reservesPrior = totalReserves;
            uint borrowIndexPrior = borrowIndex;
            /* Calculate the current borrow interest rate */
            uint borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior);
            require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high");
            /* Calculate the number of blocks elapsed since the last accrual */
            (MathError mathErr, uint blockDelta) = subUInt(currentBlockNumber, accrualBlockNumberPrior);
            require(mathErr == MathError.NO_ERROR, "could not calculate block delta");
            /*
             * Calculate the interest accumulated into borrows and reserves and the new index:
             *  simpleInterestFactor = borrowRate * blockDelta
             *  interestAccumulated = simpleInterestFactor * totalBorrows
             *  totalBorrowsNew = interestAccumulated + totalBorrows
             *  totalReservesNew = interestAccumulated * reserveFactor + totalReserves
             *  borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
             */
            Exp memory simpleInterestFactor;
            uint interestAccumulated;
            uint totalBorrowsNew;
            uint totalReservesNew;
            uint borrowIndexNew;
            (mathErr, simpleInterestFactor) = mulScalar(Exp({mantissa: borrowRateMantissa}), blockDelta);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(mathErr));
            }
            (mathErr, interestAccumulated) = mulScalarTruncate(simpleInterestFactor, borrowsPrior);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(mathErr));
            }
            (mathErr, totalBorrowsNew) = addUInt(interestAccumulated, borrowsPrior);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(mathErr));
            }
            (mathErr, totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), interestAccumulated, reservesPrior);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(mathErr));
            }
            (mathErr, borrowIndexNew) = mulScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(mathErr));
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /* We write the previously calculated values into storage */
            accrualBlockNumber = currentBlockNumber;
            borrowIndex = borrowIndexNew;
            totalBorrows = totalBorrowsNew;
            totalReserves = totalReservesNew;
            /* We emit an AccrueInterest event */
            emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Sender supplies assets into the market and receives cTokens in exchange
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param mintAmount The amount of the underlying asset to supply
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
         */
        function mintInternal(uint mintAmount) internal nonReentrant returns (uint, uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0);
            }
            // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
            return mintFresh(msg.sender, mintAmount);
        }
        struct MintLocalVars {
            Error err;
            MathError mathErr;
            uint exchangeRateMantissa;
            uint mintTokens;
            uint totalSupplyNew;
            uint accountTokensNew;
            uint actualMintAmount;
        }
        /**
         * @notice User supplies assets into the market and receives cTokens in exchange
         * @dev Assumes interest has already been accrued up to the current block
         * @param minter The address of the account which is supplying the assets
         * @param mintAmount The amount of the underlying asset to supply
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
         */
        function mintFresh(address minter, uint mintAmount) internal returns (uint, uint) {
            /* Fail if mint not allowed */
            uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
            if (allowed != 0) {
                return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
            }
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0);
            }
            MintLocalVars memory vars;
            (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
            if (vars.mathErr != MathError.NO_ERROR) {
                return (failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)), 0);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /*
             *  We call `doTransferIn` for the minter and the mintAmount.
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  `doTransferIn` reverts if anything goes wrong, since we can't be sure if
             *  side-effects occurred. The function returns the amount actually transferred,
             *  in case of a fee. On success, the cToken holds an additional `actualMintAmount`
             *  of cash.
             */
            vars.actualMintAmount = doTransferIn(minter, mintAmount);
            /*
             * We get the current exchange rate and calculate the number of cTokens to be minted:
             *  mintTokens = actualMintAmount / exchangeRate
             */
            (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));
            require(vars.mathErr == MathError.NO_ERROR, "MINT_EXCHANGE_CALCULATION_FAILED");
            /*
             * We calculate the new total supply of cTokens and minter token balance, checking for overflow:
             *  totalSupplyNew = totalSupply + mintTokens
             *  accountTokensNew = accountTokens[minter] + mintTokens
             */
            (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens);
            require(vars.mathErr == MathError.NO_ERROR, "MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED");
            (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens);
            require(vars.mathErr == MathError.NO_ERROR, "MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED");
            /* We write previously calculated values into storage */
            totalSupply = vars.totalSupplyNew;
            accountTokens[minter] = vars.accountTokensNew;
            /* We emit a Mint event, and a Transfer event */
            emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
            emit Transfer(address(this), minter, vars.mintTokens);
            /* We call the defense hook */
            comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);
            return (uint(Error.NO_ERROR), vars.actualMintAmount);
        }
        /**
         * @notice Sender redeems cTokens in exchange for the underlying asset
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param redeemTokens The number of cTokens to redeem into underlying
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
                return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
            }
            // redeemFresh emits redeem-specific logs on errors, so we don't need to
            return redeemFresh(msg.sender, redeemTokens, 0);
        }
        /**
         * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
         * @dev Accrues interest whether or not the operation succeeds, unless reverted
         * @param redeemAmount The amount of underlying to receive from redeeming cTokens
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
                return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
            }
            // redeemFresh emits redeem-specific logs on errors, so we don't need to
            return redeemFresh(msg.sender, 0, redeemAmount);
        }
        struct RedeemLocalVars {
            Error err;
            MathError mathErr;
            uint exchangeRateMantissa;
            uint redeemTokens;
            uint redeemAmount;
            uint totalSupplyNew;
            uint accountTokensNew;
        }
        /**
         * @notice User redeems cTokens in exchange for the underlying asset
         * @dev Assumes interest has already been accrued up to the current block
         * @param redeemer The address of the account which is redeeming the tokens
         * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero)
         * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero)
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) {
            require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");
            RedeemLocalVars memory vars;
            /* exchangeRate = invoke Exchange Rate Stored() */
            (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));
            }
            /* If redeemTokensIn > 0: */
            if (redeemTokensIn > 0) {
                /*
                 * We calculate the exchange rate and the amount of underlying to be redeemed:
                 *  redeemTokens = redeemTokensIn
                 *  redeemAmount = redeemTokensIn x exchangeRateCurrent
                 */
                vars.redeemTokens = redeemTokensIn;
                (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
                if (vars.mathErr != MathError.NO_ERROR) {
                    return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr));
                }
            } else {
                /*
                 * We get the current exchange rate and calculate the amount to be redeemed:
                 *  redeemTokens = redeemAmountIn / exchangeRate
                 *  redeemAmount = redeemAmountIn
                 */
                (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
                if (vars.mathErr != MathError.NO_ERROR) {
                    return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr));
                }
                vars.redeemAmount = redeemAmountIn;
            }
            /* Fail if redeem not allowed */
            uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);
            }
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
            }
            /*
             * We calculate the new total supply and redeemer balance, checking for underflow:
             *  totalSupplyNew = totalSupply - redeemTokens
             *  accountTokensNew = accountTokens[redeemer] - redeemTokens
             */
            (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));
            }
            (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
            /* Fail gracefully if protocol has insufficient cash */
            if (getCashPrior() < vars.redeemAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /*
             * We invoke doTransferOut for the redeemer and the redeemAmount.
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken has redeemAmount less of cash.
             *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
             */
            doTransferOut(redeemer, vars.redeemAmount);
            /* We write previously calculated values into storage */
            totalSupply = vars.totalSupplyNew;
            accountTokens[redeemer] = vars.accountTokensNew;
            /* We emit a Transfer event, and a Redeem event */
            emit Transfer(redeemer, address(this), vars.redeemTokens);
            emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);
            /* We call the defense hook */
            comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sender borrows assets from the protocol to their own address
          * @param borrowAmount The amount of the underlying asset to borrow
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);
            }
            // borrowFresh emits borrow-specific logs on errors, so we don't need to
            return borrowFresh(msg.sender, borrowAmount);
        }
        struct BorrowLocalVars {
            MathError mathErr;
            uint accountBorrows;
            uint accountBorrowsNew;
            uint totalBorrowsNew;
        }
        /**
          * @notice Users borrow assets from the protocol to their own address
          * @param borrowAmount The amount of the underlying asset to borrow
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) {
            /* Fail if borrow not allowed */
            uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
            }
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);
            }
            /* Fail gracefully if protocol has insufficient underlying cash */
            if (getCashPrior() < borrowAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);
            }
            BorrowLocalVars memory vars;
            /*
             * We calculate the new borrower and total borrow balances, failing on overflow:
             *  accountBorrowsNew = accountBorrows + borrowAmount
             *  totalBorrowsNew = totalBorrows + borrowAmount
             */
            (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
            (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
            (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /*
             * We invoke doTransferOut for the borrower and the borrowAmount.
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken borrowAmount less of cash.
             *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
             */
            doTransferOut(borrower, borrowAmount);
            /* We write the previously calculated values into storage */
            accountBorrows[borrower].principal = vars.accountBorrowsNew;
            accountBorrows[borrower].interestIndex = borrowIndex;
            totalBorrows = vars.totalBorrowsNew;
            /* We emit a Borrow event */
            emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
            /* We call the defense hook */
            comptroller.borrowVerify(address(this), borrower, borrowAmount);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Sender repays their own borrow
         * @param repayAmount The amount to repay
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
         */
        function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint, uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0);
            }
            // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
            return repayBorrowFresh(msg.sender, msg.sender, repayAmount);
        }
        /**
         * @notice Sender repays a borrow belonging to borrower
         * @param borrower the account with the debt being payed off
         * @param repayAmount The amount to repay
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
         */
        function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint, uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
                return (fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED), 0);
            }
            // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
            return repayBorrowFresh(msg.sender, borrower, repayAmount);
        }
        struct RepayBorrowLocalVars {
            Error err;
            MathError mathErr;
            uint repayAmount;
            uint borrowerIndex;
            uint accountBorrows;
            uint accountBorrowsNew;
            uint totalBorrowsNew;
            uint actualRepayAmount;
        }
        /**
         * @notice Borrows are repaid by another user (possibly the borrower).
         * @param payer the account paying off the borrow
         * @param borrower the account with the debt being payed off
         * @param repayAmount the amount of undelrying tokens being returned
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
         */
        function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint, uint) {
            /* Fail if repayBorrow not allowed */
            uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);
            if (allowed != 0) {
                return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed), 0);
            }
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return (fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), 0);
            }
            RepayBorrowLocalVars memory vars;
            /* We remember the original borrowerIndex for verification purposes */
            vars.borrowerIndex = accountBorrows[borrower].interestIndex;
            /* We fetch the amount the borrower owes, with accumulated interest */
            (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
            if (vars.mathErr != MathError.NO_ERROR) {
                return (failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)), 0);
            }
            /* If repayAmount == -1, repayAmount = accountBorrows */
            if (repayAmount == uint(-1)) {
                vars.repayAmount = vars.accountBorrows;
            } else {
                vars.repayAmount = repayAmount;
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /*
             * We call doTransferIn for the payer and the repayAmount
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken holds an additional repayAmount of cash.
             *  doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
             *   it returns the amount actually transferred, in case of a fee.
             */
            vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount);
            /*
             * We calculate the new borrower and total borrow balances, failing on underflow:
             *  accountBorrowsNew = accountBorrows - actualRepayAmount
             *  totalBorrowsNew = totalBorrows - actualRepayAmount
             */
            (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.actualRepayAmount);
            require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED");
            (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.actualRepayAmount);
            require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED");
            /* We write the previously calculated values into storage */
            accountBorrows[borrower].principal = vars.accountBorrowsNew;
            accountBorrows[borrower].interestIndex = borrowIndex;
            totalBorrows = vars.totalBorrowsNew;
            /* We emit a RepayBorrow event */
            emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
            /* We call the defense hook */
            comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex);
            return (uint(Error.NO_ERROR), vars.actualRepayAmount);
        }
        /**
         * @notice The sender liquidates the borrowers collateral.
         *  The collateral seized is transferred to the liquidator.
         * @param borrower The borrower of this cToken to be liquidated
         * @param cTokenCollateral The market in which to seize collateral from the borrower
         * @param repayAmount The amount of the underlying borrowed asset to repay
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
         */
        function liquidateBorrowInternal(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal nonReentrant returns (uint, uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
                return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED), 0);
            }
            error = cTokenCollateral.accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
                return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED), 0);
            }
            // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
            return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral);
        }
        /**
         * @notice The liquidator liquidates the borrowers collateral.
         *  The collateral seized is transferred to the liquidator.
         * @param borrower The borrower of this cToken to be liquidated
         * @param liquidator The address repaying the borrow and seizing collateral
         * @param cTokenCollateral The market in which to seize collateral from the borrower
         * @param repayAmount The amount of the underlying borrowed asset to repay
         * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
         */
        function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal returns (uint, uint) {
            /* Fail if liquidate not allowed */
            uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount);
            if (allowed != 0) {
                return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed), 0);
            }
            /* Verify market's block number equals current block number */
            if (accrualBlockNumber != getBlockNumber()) {
                return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK), 0);
            }
            /* Verify cTokenCollateral market's block number equals current block number */
            if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {
                return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK), 0);
            }
            /* Fail if borrower = liquidator */
            if (borrower == liquidator) {
                return (fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER), 0);
            }
            /* Fail if repayAmount = 0 */
            if (repayAmount == 0) {
                return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO), 0);
            }
            /* Fail if repayAmount = -1 */
            if (repayAmount == uint(-1)) {
                return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX), 0);
            }
            /* Fail if repayBorrow fails */
            (uint repayBorrowError, uint actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount);
            if (repayBorrowError != uint(Error.NO_ERROR)) {
                return (fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED), 0);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /* We calculate the number of collateral tokens that will be seized */
            (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), actualRepayAmount);
            require(amountSeizeError == uint(Error.NO_ERROR), "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED");
            /* Revert if borrower collateral token balance < seizeTokens */
            require(cTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH");
            // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call
            uint seizeError;
            if (address(cTokenCollateral) == address(this)) {
                seizeError = seizeInternal(address(this), liquidator, borrower, seizeTokens);
            } else {
                seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens);
            }
            /* Revert if seize tokens fails (since we cannot be sure of side effects) */
            require(seizeError == uint(Error.NO_ERROR), "token seizure failed");
            /* We emit a LiquidateBorrow event */
            emit LiquidateBorrow(liquidator, borrower, actualRepayAmount, address(cTokenCollateral), seizeTokens);
            /* We call the defense hook */
            comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, actualRepayAmount, seizeTokens);
            return (uint(Error.NO_ERROR), actualRepayAmount);
        }
        /**
         * @notice Transfers collateral tokens (this market) to the liquidator.
         * @dev Will fail unless called by another cToken during the process of liquidation.
         *  Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
         * @param liquidator The account receiving seized collateral
         * @param borrower The account having collateral seized
         * @param seizeTokens The number of cTokens to seize
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant returns (uint) {
            return seizeInternal(msg.sender, liquidator, borrower, seizeTokens);
        }
        /**
         * @notice Transfers collateral tokens (this market) to the liquidator.
         * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
         *  Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
         * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
         * @param liquidator The account receiving seized collateral
         * @param borrower The account having collateral seized
         * @param seizeTokens The number of cTokens to seize
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function seizeInternal(address seizerToken, address liquidator, address borrower, uint seizeTokens) internal returns (uint) {
            /* Fail if seize not allowed */
            uint allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);
            if (allowed != 0) {
                return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
            }
            /* Fail if borrower = liquidator */
            if (borrower == liquidator) {
                return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
            }
            MathError mathErr;
            uint borrowerTokensNew;
            uint liquidatorTokensNew;
            /*
             * We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
             *  borrowerTokensNew = accountTokens[borrower] - seizeTokens
             *  liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
             */
            (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr));
            }
            (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens);
            if (mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr));
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /* We write the previously calculated values into storage */
            accountTokens[borrower] = borrowerTokensNew;
            accountTokens[liquidator] = liquidatorTokensNew;
            /* Emit a Transfer event */
            emit Transfer(borrower, liquidator, seizeTokens);
            /* We call the defense hook */
            comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);
            return uint(Error.NO_ERROR);
        }
        /*** Admin Functions ***/
        /**
          * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @param newPendingAdmin New pending admin.
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setPendingAdmin(address payable newPendingAdmin) external returns (uint) {
            // Check caller = admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
            }
            // Save current value, if any, for inclusion in log
            address oldPendingAdmin = pendingAdmin;
            // Store pendingAdmin with value newPendingAdmin
            pendingAdmin = newPendingAdmin;
            // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
            emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
          * @dev Admin function for pending admin to accept role and update admin
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _acceptAdmin() external returns (uint) {
            // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
            if (msg.sender != pendingAdmin || msg.sender == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
            }
            // Save current values for inclusion in log
            address oldAdmin = admin;
            address oldPendingAdmin = pendingAdmin;
            // Store admin with value pendingAdmin
            admin = pendingAdmin;
            // Clear the pending value
            pendingAdmin = address(0);
            emit NewAdmin(oldAdmin, admin);
            emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sets a new comptroller for the market
          * @dev Admin function to set a new comptroller
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setComptroller(ComptrollerInterface newComptroller) public returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK);
            }
            ComptrollerInterface oldComptroller = comptroller;
            // Ensure invoke comptroller.isComptroller() returns true
            require(newComptroller.isComptroller(), "marker method returned false");
            // Set market's comptroller to newComptroller
            comptroller = newComptroller;
            // Emit NewComptroller(oldComptroller, newComptroller)
            emit NewComptroller(oldComptroller, newComptroller);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
          * @dev Admin function to accrue interest and set a new reserve factor
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.
                return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);
            }
            // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
            return _setReserveFactorFresh(newReserveFactorMantissa);
        }
        /**
          * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
          * @dev Admin function to set a new reserve factor
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
            }
            // Verify market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
            }
            // Check newReserveFactor ≤ maxReserveFactor
            if (newReserveFactorMantissa > reserveFactorMaxMantissa) {
                return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
            }
            uint oldReserveFactorMantissa = reserveFactorMantissa;
            reserveFactorMantissa = newReserveFactorMantissa;
            emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Accrues interest and reduces reserves by transferring from msg.sender
         * @param addAmount Amount of addition to reserves
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _addReservesInternal(uint addAmount) internal nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
                return fail(Error(error), FailureInfo.ADD_RESERVES_ACCRUE_INTEREST_FAILED);
            }
            // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to.
            (error, ) = _addReservesFresh(addAmount);
            return error;
        }
        /**
         * @notice Add reserves by transferring from caller
         * @dev Requires fresh interest accrual
         * @param addAmount Amount of addition to reserves
         * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees
         */
        function _addReservesFresh(uint addAmount) internal returns (uint, uint) {
            // totalReserves + actualAddAmount
            uint totalReservesNew;
            uint actualAddAmount;
            // We fail gracefully unless market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                return (fail(Error.MARKET_NOT_FRESH, FailureInfo.ADD_RESERVES_FRESH_CHECK), actualAddAmount);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            /*
             * We call doTransferIn for the caller and the addAmount
             *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
             *  On success, the cToken holds an additional addAmount of cash.
             *  doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
             *  it returns the amount actually transferred, in case of a fee.
             */
            actualAddAmount = doTransferIn(msg.sender, addAmount);
            totalReservesNew = totalReserves + actualAddAmount;
            /* Revert on overflow */
            require(totalReservesNew >= totalReserves, "add reserves unexpected overflow");
            // Store reserves[n+1] = reserves[n] + actualAddAmount
            totalReserves = totalReservesNew;
            /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */
            emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew);
            /* Return (NO_ERROR, actualAddAmount) */
            return (uint(Error.NO_ERROR), actualAddAmount);
        }
        /**
         * @notice Accrues interest and reduces reserves by transferring to admin
         * @param reduceAmount Amount of reduction to reserves
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _reduceReserves(uint reduceAmount) external nonReentrant returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
                return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);
            }
            // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
            return _reduceReservesFresh(reduceAmount);
        }
        /**
         * @notice Reduces reserves by transferring to admin
         * @dev Requires fresh interest accrual
         * @param reduceAmount Amount of reduction to reserves
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _reduceReservesFresh(uint reduceAmount) internal returns (uint) {
            // totalReserves - reduceAmount
            uint totalReservesNew;
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
            }
            // We fail gracefully unless market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
            }
            // Fail gracefully if protocol has insufficient underlying cash
            if (getCashPrior() < reduceAmount) {
                return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
            }
            // Check reduceAmount ≤ reserves[n] (totalReserves)
            if (reduceAmount > totalReserves) {
                return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
            }
            /////////////////////////
            // EFFECTS & INTERACTIONS
            // (No safe failures beyond this point)
            totalReservesNew = totalReserves - reduceAmount;
            // We checked reduceAmount <= totalReserves above, so this should never revert.
            require(totalReservesNew <= totalReserves, "reduce reserves unexpected underflow");
            // Store reserves[n+1] = reserves[n] - reduceAmount
            totalReserves = totalReservesNew;
            // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
            doTransferOut(admin, reduceAmount);
            emit ReservesReduced(admin, reduceAmount, totalReservesNew);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
         * @dev Admin function to accrue interest and update the interest rate model
         * @param newInterestRateModel the new interest rate model to use
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) {
            uint error = accrueInterest();
            if (error != uint(Error.NO_ERROR)) {
                // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed
                return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);
            }
            // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
            return _setInterestRateModelFresh(newInterestRateModel);
        }
        /**
         * @notice updates the interest rate model (*requires fresh interest accrual)
         * @dev Admin function to update the interest rate model
         * @param newInterestRateModel the new interest rate model to use
         * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
         */
        function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) {
            // Used to store old model for use in the event that is emitted on success
            InterestRateModel oldInterestRateModel;
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
            }
            // We fail gracefully unless market's block number equals current block number
            if (accrualBlockNumber != getBlockNumber()) {
                return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
            }
            // Track the market's current interest rate model
            oldInterestRateModel = interestRateModel;
            // Ensure invoke newInterestRateModel.isInterestRateModel() returns true
            require(newInterestRateModel.isInterestRateModel(), "marker method returned false");
            // Set the interest rate model to newInterestRateModel
            interestRateModel = newInterestRateModel;
            // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
            emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);
            return uint(Error.NO_ERROR);
        }
        /*** Safe Token ***/
        /**
         * @notice Gets balance of this contract in terms of the underlying
         * @dev This excludes the value of the current message, if any
         * @return The quantity of underlying owned by this contract
         */
        function getCashPrior() internal view returns (uint);
        /**
         * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee.
         *  This may revert due to insufficient balance or insufficient allowance.
         */
        function doTransferIn(address from, uint amount) internal returns (uint);
        /**
         * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.
         *  If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
         *  If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
         */
        function doTransferOut(address payable to, uint amount) internal;
        /*** Reentrancy Guard ***/
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         */
        modifier nonReentrant() {
            require(_notEntered, "re-entered");
            _notEntered = false;
            _;
            _notEntered = true; // get a gas-refund post-Istanbul
        }
    }
    pragma solidity ^0.5.16;
    import "./ComptrollerInterface.sol";
    import "./InterestRateModel.sol";
    contract CTokenStorage {
        /**
         * @dev Guard variable for re-entrancy checks
         */
        bool internal _notEntered;
        /**
         * @notice EIP-20 token name for this token
         */
        string public name;
        /**
         * @notice EIP-20 token symbol for this token
         */
        string public symbol;
        /**
         * @notice EIP-20 token decimals for this token
         */
        uint8 public decimals;
        /**
         * @notice Maximum borrow rate that can ever be applied (.0005% / block)
         */
        uint internal constant borrowRateMaxMantissa = 0.0005e16;
        /**
         * @notice Maximum fraction of interest that can be set aside for reserves
         */
        uint internal constant reserveFactorMaxMantissa = 1e18;
        /**
         * @notice Administrator for this contract
         */
        address payable public admin;
        /**
         * @notice Pending administrator for this contract
         */
        address payable public pendingAdmin;
        /**
         * @notice Contract which oversees inter-cToken operations
         */
        ComptrollerInterface public comptroller;
        /**
         * @notice Model which tells what the current interest rate should be
         */
        InterestRateModel public interestRateModel;
        /**
         * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
         */
        uint internal initialExchangeRateMantissa;
        /**
         * @notice Fraction of interest currently set aside for reserves
         */
        uint public reserveFactorMantissa;
        /**
         * @notice Block number that interest was last accrued at
         */
        uint public accrualBlockNumber;
        /**
         * @notice Accumulator of the total earned interest rate since the opening of the market
         */
        uint public borrowIndex;
        /**
         * @notice Total amount of outstanding borrows of the underlying in this market
         */
        uint public totalBorrows;
        /**
         * @notice Total amount of reserves of the underlying held in this market
         */
        uint public totalReserves;
        /**
         * @notice Total number of tokens in circulation
         */
        uint public totalSupply;
        /**
         * @notice Official record of token balances for each account
         */
        mapping (address => uint) internal accountTokens;
        /**
         * @notice Approved token transfer amounts on behalf of others
         */
        mapping (address => mapping (address => uint)) internal transferAllowances;
        /**
         * @notice Container for borrow balance information
         * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
         * @member interestIndex Global borrowIndex as of the most recent balance-changing action
         */
        struct BorrowSnapshot {
            uint principal;
            uint interestIndex;
        }
        /**
         * @notice Mapping of account addresses to outstanding borrow balances
         */
        mapping(address => BorrowSnapshot) internal accountBorrows;
    }
    contract CTokenInterface is CTokenStorage {
        /**
         * @notice Indicator that this is a CToken contract (for inspection)
         */
        bool public constant isCToken = true;
        /*** Market Events ***/
        /**
         * @notice Event emitted when interest is accrued
         */
        event AccrueInterest(uint cashPrior, uint interestAccumulated, uint borrowIndex, uint totalBorrows);
        /**
         * @notice Event emitted when tokens are minted
         */
        event Mint(address minter, uint mintAmount, uint mintTokens);
        /**
         * @notice Event emitted when tokens are redeemed
         */
        event Redeem(address redeemer, uint redeemAmount, uint redeemTokens);
        /**
         * @notice Event emitted when underlying is borrowed
         */
        event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows);
        /**
         * @notice Event emitted when a borrow is repaid
         */
        event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows);
        /**
         * @notice Event emitted when a borrow is liquidated
         */
        event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens);
        /*** Admin Events ***/
        /**
         * @notice Event emitted when pendingAdmin is changed
         */
        event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
        /**
         * @notice Event emitted when pendingAdmin is accepted, which means admin is updated
         */
        event NewAdmin(address oldAdmin, address newAdmin);
        /**
         * @notice Event emitted when comptroller is changed
         */
        event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);
        /**
         * @notice Event emitted when interestRateModel is changed
         */
        event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);
        /**
         * @notice Event emitted when the reserve factor is changed
         */
        event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa);
        /**
         * @notice Event emitted when the reserves are added
         */
        event ReservesAdded(address benefactor, uint addAmount, uint newTotalReserves);
        /**
         * @notice Event emitted when the reserves are reduced
         */
        event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves);
        /**
         * @notice EIP20 Transfer event
         */
        event Transfer(address indexed from, address indexed to, uint amount);
        /**
         * @notice EIP20 Approval event
         */
        event Approval(address indexed owner, address indexed spender, uint amount);
        /**
         * @notice Failure event
         */
        event Failure(uint error, uint info, uint detail);
        /*** User Interface ***/
        function transfer(address dst, uint amount) external returns (bool);
        function transferFrom(address src, address dst, uint amount) external returns (bool);
        function approve(address spender, uint amount) external returns (bool);
        function allowance(address owner, address spender) external view returns (uint);
        function balanceOf(address owner) external view returns (uint);
        function balanceOfUnderlying(address owner) external returns (uint);
        function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint);
        function borrowRatePerBlock() external view returns (uint);
        function supplyRatePerBlock() external view returns (uint);
        function totalBorrowsCurrent() external returns (uint);
        function borrowBalanceCurrent(address account) external returns (uint);
        function borrowBalanceStored(address account) public view returns (uint);
        function exchangeRateCurrent() public returns (uint);
        function exchangeRateStored() public view returns (uint);
        function getCash() external view returns (uint);
        function accrueInterest() public returns (uint);
        function seize(address liquidator, address borrower, uint seizeTokens) external returns (uint);
        /*** Admin Functions ***/
        function _setPendingAdmin(address payable newPendingAdmin) external returns (uint);
        function _acceptAdmin() external returns (uint);
        function _setComptroller(ComptrollerInterface newComptroller) public returns (uint);
        function _setReserveFactor(uint newReserveFactorMantissa) external returns (uint);
        function _reduceReserves(uint reduceAmount) external returns (uint);
        function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint);
    }
    contract CErc20Storage {
        /**
         * @notice Underlying asset for this CToken
         */
        address public underlying;
    }
    contract CErc20Interface is CErc20Storage {
        /*** User Interface ***/
        function mint(uint mintAmount) external returns (uint);
        function redeem(uint redeemTokens) external returns (uint);
        function redeemUnderlying(uint redeemAmount) external returns (uint);
        function borrow(uint borrowAmount) external returns (uint);
        function repayBorrow(uint repayAmount) external returns (uint);
        function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint);
        function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) external returns (uint);
        /*** Admin Functions ***/
        function _addReserves(uint addAmount) external returns (uint);
    }
    contract CDelegationStorage {
        /**
         * @notice Implementation address for this contract
         */
        address public implementation;
    }
    contract CDelegatorInterface is CDelegationStorage {
        /**
         * @notice Emitted when implementation is changed
         */
        event NewImplementation(address oldImplementation, address newImplementation);
        /**
         * @notice Called by the admin to update the implementation of the delegator
         * @param implementation_ The address of the new implementation for delegation
         * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
         * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
         */
        function _setImplementation(address implementation_, bool allowResign, bytes memory becomeImplementationData) public;
    }
    contract CDelegateInterface is CDelegationStorage {
        /**
         * @notice Called by the delegator on a delegate to initialize it for duty
         * @dev Should revert if any issues arise which make it unfit for delegation
         * @param data The encoded bytes data for any initialization
         */
        function _becomeImplementation(bytes memory data) public;
        /**
         * @notice Called by the delegator on a delegate to forfeit its responsibility
         */
        function _resignImplementation() public;
    }
    pragma solidity ^0.5.16;
    /**
      * @title Careful Math
      * @author Compound
      * @notice Derived from OpenZeppelin's SafeMath library
      *         https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
      */
    contract CarefulMath {
        /**
         * @dev Possible error codes that we can return
         */
        enum MathError {
            NO_ERROR,
            DIVISION_BY_ZERO,
            INTEGER_OVERFLOW,
            INTEGER_UNDERFLOW
        }
        /**
        * @dev Multiplies two numbers, returns an error on overflow.
        */
        function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (a == 0) {
                return (MathError.NO_ERROR, 0);
            }
            uint c = a * b;
            if (c / a != b) {
                return (MathError.INTEGER_OVERFLOW, 0);
            } else {
                return (MathError.NO_ERROR, c);
            }
        }
        /**
        * @dev Integer division of two numbers, truncating the quotient.
        */
        function divUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (b == 0) {
                return (MathError.DIVISION_BY_ZERO, 0);
            }
            return (MathError.NO_ERROR, a / b);
        }
        /**
        * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
        */
        function subUInt(uint a, uint b) internal pure returns (MathError, uint) {
            if (b <= a) {
                return (MathError.NO_ERROR, a - b);
            } else {
                return (MathError.INTEGER_UNDERFLOW, 0);
            }
        }
        /**
        * @dev Adds two numbers, returns an error on overflow.
        */
        function addUInt(uint a, uint b) internal pure returns (MathError, uint) {
            uint c = a + b;
            if (c >= a) {
                return (MathError.NO_ERROR, c);
            } else {
                return (MathError.INTEGER_OVERFLOW, 0);
            }
        }
        /**
        * @dev add a and b and then subtract c
        */
        function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {
            (MathError err0, uint sum) = addUInt(a, b);
            if (err0 != MathError.NO_ERROR) {
                return (err0, 0);
            }
            return subUInt(sum, c);
        }
    }pragma solidity ^0.5.16;
    import "./CToken.sol";
    import "./ErrorReporter.sol";
    import "./Exponential.sol";
    import "./PriceOracle.sol";
    import "./ComptrollerInterface.sol";
    import "./ComptrollerStorage.sol";
    import "./Unitroller.sol";
    import "./Governance/Comp.sol";
    /**
     * @title Compound's Comptroller Contract
     * @author Compound (modified by Arr00)
     */
    contract Comptroller is ComptrollerV4Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {
        /// @notice Emitted when an admin supports a market
        event MarketListed(CToken cToken);
        /// @notice Emitted when an account enters a market
        event MarketEntered(CToken cToken, address account);
        /// @notice Emitted when an account exits a market
        event MarketExited(CToken cToken, address account);
        /// @notice Emitted when close factor is changed by admin
        event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa);
        /// @notice Emitted when a collateral factor is changed by admin
        event NewCollateralFactor(CToken cToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa);
        /// @notice Emitted when liquidation incentive is changed by admin
        event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa);
        /// @notice Emitted when maxAssets is changed by admin
        event NewMaxAssets(uint oldMaxAssets, uint newMaxAssets);
        /// @notice Emitted when price oracle is changed
        event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);
        /// @notice Emitted when pause guardian is changed
        event NewPauseGuardian(address oldPauseGuardian, address newPauseGuardian);
        /// @notice Emitted when an action is paused globally
        event ActionPaused(string action, bool pauseState);
        /// @notice Emitted when an action is paused on a market
        event ActionPaused(CToken cToken, string action, bool pauseState);
        /// @notice Emitted when market comped status is changed
        event MarketComped(CToken cToken, bool isComped);
        /// @notice Emitted when COMP rate is changed
        event NewCompRate(uint oldCompRate, uint newCompRate);
        /// @notice Emitted when a new COMP speed is calculated for a market
        event CompSpeedUpdated(CToken indexed cToken, uint newSpeed);
        /// @notice Emitted when COMP is distributed to a supplier
        event DistributedSupplierComp(CToken indexed cToken, address indexed supplier, uint compDelta, uint compSupplyIndex);
        /// @notice Emitted when COMP is distributed to a borrower
        event DistributedBorrowerComp(CToken indexed cToken, address indexed borrower, uint compDelta, uint compBorrowIndex);
        /// @notice Emitted when borrow cap for a cToken is changed
        event NewBorrowCap(CToken indexed cToken, uint newBorrowCap);
        /// @notice Emitted when borrow cap guardian is changed
        event NewBorrowCapGuardian(address oldBorrowCapGuardian, address newBorrowCapGuardian);
        /// @notice The threshold above which the flywheel transfers COMP, in wei
        uint public constant compClaimThreshold = 0.001e18;
        /// @notice The initial COMP index for a market
        uint224 public constant compInitialIndex = 1e36;
        // closeFactorMantissa must be strictly greater than this value
        uint internal constant closeFactorMinMantissa = 0.05e18; // 0.05
        // closeFactorMantissa must not exceed this value
        uint internal constant closeFactorMaxMantissa = 0.9e18; // 0.9
        // No collateralFactorMantissa may exceed this value
        uint internal constant collateralFactorMaxMantissa = 0.9e18; // 0.9
        // liquidationIncentiveMantissa must be no less than this value
        uint internal constant liquidationIncentiveMinMantissa = 1.0e18; // 1.0
        // liquidationIncentiveMantissa must be no greater than this value
        uint internal constant liquidationIncentiveMaxMantissa = 1.5e18; // 1.5
        constructor() public {
            admin = msg.sender;
        }
        /*** Assets You Are In ***/
        /**
         * @notice Returns the assets an account has entered
         * @param account The address of the account to pull assets for
         * @return A dynamic list with the assets the account has entered
         */
        function getAssetsIn(address account) external view returns (CToken[] memory) {
            CToken[] memory assetsIn = accountAssets[account];
            return assetsIn;
        }
        /**
         * @notice Returns whether the given account is entered in the given asset
         * @param account The address of the account to check
         * @param cToken The cToken to check
         * @return True if the account is in the asset, otherwise false.
         */
        function checkMembership(address account, CToken cToken) external view returns (bool) {
            return markets[address(cToken)].accountMembership[account];
        }
        /**
         * @notice Add assets to be included in account liquidity calculation
         * @param cTokens The list of addresses of the cToken markets to be enabled
         * @return Success indicator for whether each corresponding market was entered
         */
        function enterMarkets(address[] memory cTokens) public returns (uint[] memory) {
            uint len = cTokens.length;
            uint[] memory results = new uint[](len);
            for (uint i = 0; i < len; i++) {
                CToken cToken = CToken(cTokens[i]);
                results[i] = uint(addToMarketInternal(cToken, msg.sender));
            }
            return results;
        }
        /**
         * @notice Add the market to the borrower's "assets in" for liquidity calculations
         * @param cToken The market to enter
         * @param borrower The address of the account to modify
         * @return Success indicator for whether the market was entered
         */
        function addToMarketInternal(CToken cToken, address borrower) internal returns (Error) {
            Market storage marketToJoin = markets[address(cToken)];
            if (!marketToJoin.isListed) {
                // market is not listed, cannot join
                return Error.MARKET_NOT_LISTED;
            }
            if (marketToJoin.accountMembership[borrower] == true) {
                // already joined
                return Error.NO_ERROR;
            }
            if (accountAssets[borrower].length >= maxAssets)  {
                // no space, cannot join
                return Error.TOO_MANY_ASSETS;
            }
            // survived the gauntlet, add to list
            // NOTE: we store these somewhat redundantly as a significant optimization
            //  this avoids having to iterate through the list for the most common use cases
            //  that is, only when we need to perform liquidity checks
            //  and not whenever we want to check if an account is in a particular market
            marketToJoin.accountMembership[borrower] = true;
            accountAssets[borrower].push(cToken);
            emit MarketEntered(cToken, borrower);
            return Error.NO_ERROR;
        }
        /**
         * @notice Removes asset from sender's account liquidity calculation
         * @dev Sender must not have an outstanding borrow balance in the asset,
         *  or be providing necessary collateral for an outstanding borrow.
         * @param cTokenAddress The address of the asset to be removed
         * @return Whether or not the account successfully exited the market
         */
        function exitMarket(address cTokenAddress) external returns (uint) {
            CToken cToken = CToken(cTokenAddress);
            /* Get sender tokensHeld and amountOwed underlying from the cToken */
            (uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
            require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code
            /* Fail if the sender has a borrow balance */
            if (amountOwed != 0) {
                return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);
            }
            /* Fail if the sender is not permitted to redeem all of their tokens */
            uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
            if (allowed != 0) {
                return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);
            }
            Market storage marketToExit = markets[address(cToken)];
            /* Return true if the sender is not already ‘in’ the market */
            if (!marketToExit.accountMembership[msg.sender]) {
                return uint(Error.NO_ERROR);
            }
            /* Set cToken account membership to false */
            delete marketToExit.accountMembership[msg.sender];
            /* Delete cToken from the account’s list of assets */
            // load into memory for faster iteration
            CToken[] memory userAssetList = accountAssets[msg.sender];
            uint len = userAssetList.length;
            uint assetIndex = len;
            for (uint i = 0; i < len; i++) {
                if (userAssetList[i] == cToken) {
                    assetIndex = i;
                    break;
                }
            }
            // We *must* have found the asset in the list or our redundant data structure is broken
            assert(assetIndex < len);
            // copy last item in list to location of item to be removed, reduce length by 1
            CToken[] storage storedList = accountAssets[msg.sender];
            storedList[assetIndex] = storedList[storedList.length - 1];
            storedList.length--;
            emit MarketExited(cToken, msg.sender);
            return uint(Error.NO_ERROR);
        }
        /*** Policy Hooks ***/
        /**
         * @notice Checks if the account should be allowed to mint tokens in the given market
         * @param cToken The market to verify the mint against
         * @param minter The account which would get the minted tokens
         * @param mintAmount The amount of underlying being supplied to the market in exchange for tokens
         * @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
         */
        function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint) {
            // Pausing is a very serious situation - we revert to sound the alarms
            require(!mintGuardianPaused[cToken], "mint is paused");
            // Shh - currently unused
            minter;
            mintAmount;
            if (!markets[cToken].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            // Keep the flywheel moving
            updateCompSupplyIndex(cToken);
            distributeSupplierComp(cToken, minter, false);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates mint and reverts on rejection. May emit logs.
         * @param cToken Asset being minted
         * @param minter The address minting the tokens
         * @param actualMintAmount The amount of the underlying asset being minted
         * @param mintTokens The number of tokens being minted
         */
        function mintVerify(address cToken, address minter, uint actualMintAmount, uint mintTokens) external {
            // Shh - currently unused
            cToken;
            minter;
            actualMintAmount;
            mintTokens;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /**
         * @notice Checks if the account should be allowed to redeem tokens in the given market
         * @param cToken The market to verify the redeem against
         * @param redeemer The account which would redeem the tokens
         * @param redeemTokens The number of cTokens to exchange for the underlying asset in the market
         * @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
         */
        function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint) {
            uint allowed = redeemAllowedInternal(cToken, redeemer, redeemTokens);
            if (allowed != uint(Error.NO_ERROR)) {
                return allowed;
            }
            // Keep the flywheel moving
            updateCompSupplyIndex(cToken);
            distributeSupplierComp(cToken, redeemer, false);
            return uint(Error.NO_ERROR);
        }
        function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens) internal view returns (uint) {
            if (!markets[cToken].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            /* If the redeemer is not 'in' the market, then we can bypass the liquidity check */
            if (!markets[cToken].accountMembership[redeemer]) {
                return uint(Error.NO_ERROR);
            }
            /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
            (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, CToken(cToken), redeemTokens, 0);
            if (err != Error.NO_ERROR) {
                return uint(err);
            }
            if (shortfall > 0) {
                return uint(Error.INSUFFICIENT_LIQUIDITY);
            }
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates redeem and reverts on rejection. May emit logs.
         * @param cToken Asset being redeemed
         * @param redeemer The address redeeming the tokens
         * @param redeemAmount The amount of the underlying asset being redeemed
         * @param redeemTokens The number of tokens being redeemed
         */
        function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external {
            // Shh - currently unused
            cToken;
            redeemer;
            // Require tokens is zero or amount is also zero
            if (redeemTokens == 0 && redeemAmount > 0) {
                revert("redeemTokens zero");
            }
        }
        /**
         * @notice Checks if the account should be allowed to borrow the underlying asset of the given market
         * @param cToken The market to verify the borrow against
         * @param borrower The account which would borrow the asset
         * @param borrowAmount The amount of underlying the account would borrow
         * @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
         */
        function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint) {
            // Pausing is a very serious situation - we revert to sound the alarms
            require(!borrowGuardianPaused[cToken], "borrow is paused");
            if (!markets[cToken].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            if (!markets[cToken].accountMembership[borrower]) {
                // only cTokens may call borrowAllowed if borrower not in market
                require(msg.sender == cToken, "sender must be cToken");
                // attempt to add borrower to the market
                Error err = addToMarketInternal(CToken(msg.sender), borrower);
                if (err != Error.NO_ERROR) {
                    return uint(err);
                }
                // it should be impossible to break the important invariant
                assert(markets[cToken].accountMembership[borrower]);
            }
            if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {
                return uint(Error.PRICE_ERROR);
            }
            uint borrowCap = borrowCaps[cToken];
            // Borrow cap of 0 corresponds to unlimited borrowing
            if (borrowCap != 0) {
                uint totalBorrows = CToken(cToken).totalBorrows();
                (MathError mathErr, uint nextTotalBorrows) = addUInt(totalBorrows, borrowAmount);
                require(mathErr == MathError.NO_ERROR, "total borrows overflow");
                require(nextTotalBorrows < borrowCap, "market borrow cap reached");
            }
            (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(borrower, CToken(cToken), 0, borrowAmount);
            if (err != Error.NO_ERROR) {
                return uint(err);
            }
            if (shortfall > 0) {
                return uint(Error.INSUFFICIENT_LIQUIDITY);
            }
            // Keep the flywheel moving
            Exp memory borrowIndex = Exp({mantissa: CToken(cToken).borrowIndex()});
            updateCompBorrowIndex(cToken, borrowIndex);
            distributeBorrowerComp(cToken, borrower, borrowIndex, false);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates borrow and reverts on rejection. May emit logs.
         * @param cToken Asset whose underlying is being borrowed
         * @param borrower The address borrowing the underlying
         * @param borrowAmount The amount of the underlying asset requested to borrow
         */
        function borrowVerify(address cToken, address borrower, uint borrowAmount) external {
            // Shh - currently unused
            cToken;
            borrower;
            borrowAmount;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /**
         * @notice Checks if the account should be allowed to repay a borrow in the given market
         * @param cToken The market to verify the repay against
         * @param payer The account which would repay the asset
         * @param borrower The account which would borrowed the asset
         * @param repayAmount The amount of the underlying asset the account would repay
         * @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
         */
        function repayBorrowAllowed(
            address cToken,
            address payer,
            address borrower,
            uint repayAmount) external returns (uint) {
            // Shh - currently unused
            payer;
            borrower;
            repayAmount;
            if (!markets[cToken].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            // Keep the flywheel moving
            Exp memory borrowIndex = Exp({mantissa: CToken(cToken).borrowIndex()});
            updateCompBorrowIndex(cToken, borrowIndex);
            distributeBorrowerComp(cToken, borrower, borrowIndex, false);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates repayBorrow and reverts on rejection. May emit logs.
         * @param cToken Asset being repaid
         * @param payer The address repaying the borrow
         * @param borrower The address of the borrower
         * @param actualRepayAmount The amount of underlying being repaid
         */
        function repayBorrowVerify(
            address cToken,
            address payer,
            address borrower,
            uint actualRepayAmount,
            uint borrowerIndex) external {
            // Shh - currently unused
            cToken;
            payer;
            borrower;
            actualRepayAmount;
            borrowerIndex;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /**
         * @notice Checks if the liquidation should be allowed to occur
         * @param cTokenBorrowed Asset which was borrowed by the borrower
         * @param cTokenCollateral Asset which was used as collateral and will be seized
         * @param liquidator The address repaying the borrow and seizing the collateral
         * @param borrower The address of the borrower
         * @param repayAmount The amount of underlying being repaid
         */
        function liquidateBorrowAllowed(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint repayAmount) external returns (uint) {
            // Shh - currently unused
            liquidator;
            if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            /* The borrower must have shortfall in order to be liquidatable */
            (Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);
            if (err != Error.NO_ERROR) {
                return uint(err);
            }
            if (shortfall == 0) {
                return uint(Error.INSUFFICIENT_SHORTFALL);
            }
            /* The liquidator may not repay more than what is allowed by the closeFactor */
            uint borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);
            (MathError mathErr, uint maxClose) = mulScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);
            if (mathErr != MathError.NO_ERROR) {
                return uint(Error.MATH_ERROR);
            }
            if (repayAmount > maxClose) {
                return uint(Error.TOO_MUCH_REPAY);
            }
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates liquidateBorrow and reverts on rejection. May emit logs.
         * @param cTokenBorrowed Asset which was borrowed by the borrower
         * @param cTokenCollateral Asset which was used as collateral and will be seized
         * @param liquidator The address repaying the borrow and seizing the collateral
         * @param borrower The address of the borrower
         * @param actualRepayAmount The amount of underlying being repaid
         */
        function liquidateBorrowVerify(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint actualRepayAmount,
            uint seizeTokens) external {
            // Shh - currently unused
            cTokenBorrowed;
            cTokenCollateral;
            liquidator;
            borrower;
            actualRepayAmount;
            seizeTokens;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /**
         * @notice Checks if the seizing of assets should be allowed to occur
         * @param cTokenCollateral Asset which was used as collateral and will be seized
         * @param cTokenBorrowed Asset which was borrowed by the borrower
         * @param liquidator The address repaying the borrow and seizing the collateral
         * @param borrower The address of the borrower
         * @param seizeTokens The number of collateral tokens to seize
         */
        function seizeAllowed(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external returns (uint) {
            // Pausing is a very serious situation - we revert to sound the alarms
            require(!seizeGuardianPaused, "seize is paused");
            // Shh - currently unused
            seizeTokens;
            if (!markets[cTokenCollateral].isListed || !markets[cTokenBorrowed].isListed) {
                return uint(Error.MARKET_NOT_LISTED);
            }
            if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {
                return uint(Error.COMPTROLLER_MISMATCH);
            }
            // Keep the flywheel moving
            updateCompSupplyIndex(cTokenCollateral);
            distributeSupplierComp(cTokenCollateral, borrower, false);
            distributeSupplierComp(cTokenCollateral, liquidator, false);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates seize and reverts on rejection. May emit logs.
         * @param cTokenCollateral Asset which was used as collateral and will be seized
         * @param cTokenBorrowed Asset which was borrowed by the borrower
         * @param liquidator The address repaying the borrow and seizing the collateral
         * @param borrower The address of the borrower
         * @param seizeTokens The number of collateral tokens to seize
         */
        function seizeVerify(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external {
            // Shh - currently unused
            cTokenCollateral;
            cTokenBorrowed;
            liquidator;
            borrower;
            seizeTokens;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /**
         * @notice Checks if the account should be allowed to transfer tokens in the given market
         * @param cToken The market to verify the transfer against
         * @param src The account which sources the tokens
         * @param dst The account which receives the tokens
         * @param transferTokens The number of cTokens to transfer
         * @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
         */
        function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint) {
            // Pausing is a very serious situation - we revert to sound the alarms
            require(!transferGuardianPaused, "transfer is paused");
            // Currently the only consideration is whether or not
            //  the src is allowed to redeem this many tokens
            uint allowed = redeemAllowedInternal(cToken, src, transferTokens);
            if (allowed != uint(Error.NO_ERROR)) {
                return allowed;
            }
            // Keep the flywheel moving
            updateCompSupplyIndex(cToken);
            distributeSupplierComp(cToken, src, false);
            distributeSupplierComp(cToken, dst, false);
            return uint(Error.NO_ERROR);
        }
        /**
         * @notice Validates transfer and reverts on rejection. May emit logs.
         * @param cToken Asset being transferred
         * @param src The account which sources the tokens
         * @param dst The account which receives the tokens
         * @param transferTokens The number of cTokens to transfer
         */
        function transferVerify(address cToken, address src, address dst, uint transferTokens) external {
            // Shh - currently unused
            cToken;
            src;
            dst;
            transferTokens;
            // Shh - we don't ever want this hook to be marked pure
            if (false) {
                maxAssets = maxAssets;
            }
        }
        /*** Liquidity/Liquidation Calculations ***/
        /**
         * @dev Local vars for avoiding stack-depth limits in calculating account liquidity.
         *  Note that `cTokenBalance` is the number of cTokens the account owns in the market,
         *  whereas `borrowBalance` is the amount of underlying that the account has borrowed.
         */
        struct AccountLiquidityLocalVars {
            uint sumCollateral;
            uint sumBorrowPlusEffects;
            uint cTokenBalance;
            uint borrowBalance;
            uint exchangeRateMantissa;
            uint oraclePriceMantissa;
            Exp collateralFactor;
            Exp exchangeRate;
            Exp oraclePrice;
            Exp tokensToDenom;
        }
        /**
         * @notice Determine the current account liquidity wrt collateral requirements
         * @return (possible error code (semi-opaque),
                    account liquidity in excess of collateral requirements,
         *          account shortfall below collateral requirements)
         */
        function getAccountLiquidity(address account) public view returns (uint, uint, uint) {
            (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
            return (uint(err), liquidity, shortfall);
        }
        /**
         * @notice Determine the current account liquidity wrt collateral requirements
         * @return (possible error code,
                    account liquidity in excess of collateral requirements,
         *          account shortfall below collateral requirements)
         */
        function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) {
            return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
        }
        /**
         * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
         * @param cTokenModify The market to hypothetically redeem/borrow in
         * @param account The account to determine liquidity for
         * @param redeemTokens The number of tokens to hypothetically redeem
         * @param borrowAmount The amount of underlying to hypothetically borrow
         * @return (possible error code (semi-opaque),
                    hypothetical account liquidity in excess of collateral requirements,
         *          hypothetical account shortfall below collateral requirements)
         */
        function getHypotheticalAccountLiquidity(
            address account,
            address cTokenModify,
            uint redeemTokens,
            uint borrowAmount) public view returns (uint, uint, uint) {
            (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(cTokenModify), redeemTokens, borrowAmount);
            return (uint(err), liquidity, shortfall);
        }
        /**
         * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
         * @param cTokenModify The market to hypothetically redeem/borrow in
         * @param account The account to determine liquidity for
         * @param redeemTokens The number of tokens to hypothetically redeem
         * @param borrowAmount The amount of underlying to hypothetically borrow
         * @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,
         *  without calculating accumulated interest.
         * @return (possible error code,
                    hypothetical account liquidity in excess of collateral requirements,
         *          hypothetical account shortfall below collateral requirements)
         */
        function getHypotheticalAccountLiquidityInternal(
            address account,
            CToken cTokenModify,
            uint redeemTokens,
            uint borrowAmount) internal view returns (Error, uint, uint) {
            AccountLiquidityLocalVars memory vars; // Holds all our calculation results
            uint oErr;
            MathError mErr;
            // For each asset the account is in
            CToken[] memory assets = accountAssets[account];
            for (uint i = 0; i < assets.length; i++) {
                CToken asset = assets[i];
                // Read the balances and exchange rate from the cToken
                (oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(account);
                if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades
                    return (Error.SNAPSHOT_ERROR, 0, 0);
                }
                vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});
                vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});
                // Get the normalized price of the asset
                vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);
                if (vars.oraclePriceMantissa == 0) {
                    return (Error.PRICE_ERROR, 0, 0);
                }
                vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});
                // Pre-compute a conversion factor from tokens -> ether (normalized price value)
                (mErr, vars.tokensToDenom) = mulExp3(vars.collateralFactor, vars.exchangeRate, vars.oraclePrice);
                if (mErr != MathError.NO_ERROR) {
                    return (Error.MATH_ERROR, 0, 0);
                }
                // sumCollateral += tokensToDenom * cTokenBalance
                (mErr, vars.sumCollateral) = mulScalarTruncateAddUInt(vars.tokensToDenom, vars.cTokenBalance, vars.sumCollateral);
                if (mErr != MathError.NO_ERROR) {
                    return (Error.MATH_ERROR, 0, 0);
                }
                // sumBorrowPlusEffects += oraclePrice * borrowBalance
                (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects);
                if (mErr != MathError.NO_ERROR) {
                    return (Error.MATH_ERROR, 0, 0);
                }
                // Calculate effects of interacting with cTokenModify
                if (asset == cTokenModify) {
                    // redeem effect
                    // sumBorrowPlusEffects += tokensToDenom * redeemTokens
                    (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.tokensToDenom, redeemTokens, vars.sumBorrowPlusEffects);
                    if (mErr != MathError.NO_ERROR) {
                        return (Error.MATH_ERROR, 0, 0);
                    }
                    // borrow effect
                    // sumBorrowPlusEffects += oraclePrice * borrowAmount
                    (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects);
                    if (mErr != MathError.NO_ERROR) {
                        return (Error.MATH_ERROR, 0, 0);
                    }
                }
            }
            // These are safe, as the underflow condition is checked first
            if (vars.sumCollateral > vars.sumBorrowPlusEffects) {
                return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);
            } else {
                return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);
            }
        }
        /**
         * @notice Calculate number of tokens of collateral asset to seize given an underlying amount
         * @dev Used in liquidation (called in cToken.liquidateBorrowFresh)
         * @param cTokenBorrowed The address of the borrowed cToken
         * @param cTokenCollateral The address of the collateral cToken
         * @param actualRepayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens
         * @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)
         */
        function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint actualRepayAmount) external view returns (uint, uint) {
            /* Read oracle prices for borrowed and collateral markets */
            uint priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));
            uint priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));
            if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {
                return (uint(Error.PRICE_ERROR), 0);
            }
            /*
             * Get the exchange rate and calculate the number of collateral tokens to seize:
             *  seizeAmount = actualRepayAmount * liquidationIncentive * priceBorrowed / priceCollateral
             *  seizeTokens = seizeAmount / exchangeRate
             *   = actualRepayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)
             */
            uint exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error
            uint seizeTokens;
            Exp memory numerator;
            Exp memory denominator;
            Exp memory ratio;
            MathError mathErr;
            (mathErr, numerator) = mulExp(liquidationIncentiveMantissa, priceBorrowedMantissa);
            if (mathErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0);
            }
            (mathErr, denominator) = mulExp(priceCollateralMantissa, exchangeRateMantissa);
            if (mathErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0);
            }
            (mathErr, ratio) = divExp(numerator, denominator);
            if (mathErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0);
            }
            (mathErr, seizeTokens) = mulScalarTruncate(ratio, actualRepayAmount);
            if (mathErr != MathError.NO_ERROR) {
                return (uint(Error.MATH_ERROR), 0);
            }
            return (uint(Error.NO_ERROR), seizeTokens);
        }
        /*** Admin Functions ***/
        /**
          * @notice Sets a new price oracle for the comptroller
          * @dev Admin function to set a new price oracle
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setPriceOracle(PriceOracle newOracle) public returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);
            }
            // Track the old oracle for the comptroller
            PriceOracle oldOracle = oracle;
            // Set comptroller's oracle to newOracle
            oracle = newOracle;
            // Emit NewPriceOracle(oldOracle, newOracle)
            emit NewPriceOracle(oldOracle, newOracle);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sets the closeFactor used when liquidating borrows
          * @dev Admin function to set closeFactor
          * @param newCloseFactorMantissa New close factor, scaled by 1e18
          * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
          */
        function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);
            }
            Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa});
            Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa});
            if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) {
                return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
            }
            Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa});
            if (lessThanExp(highLimit, newCloseFactorExp)) {
                return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
            }
            uint oldCloseFactorMantissa = closeFactorMantissa;
            closeFactorMantissa = newCloseFactorMantissa;
            emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sets the collateralFactor for a market
          * @dev Admin function to set per-market collateralFactor
          * @param cToken The market to set the factor on
          * @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18
          * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
          */
        function _setCollateralFactor(CToken cToken, uint newCollateralFactorMantissa) external returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);
            }
            // Verify market is listed
            Market storage market = markets[address(cToken)];
            if (!market.isListed) {
                return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);
            }
            Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});
            // Check collateral factor <= 0.9
            Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});
            if (lessThanExp(highLimit, newCollateralFactorExp)) {
                return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);
            }
            // If collateral factor != 0, fail if price == 0
            if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(cToken) == 0) {
                return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);
            }
            // Set market's collateral factor to new collateral factor, remember old value
            uint oldCollateralFactorMantissa = market.collateralFactorMantissa;
            market.collateralFactorMantissa = newCollateralFactorMantissa;
            // Emit event with asset, old collateral factor, and new collateral factor
            emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sets maxAssets which controls how many markets can be entered
          * @dev Admin function to set maxAssets
          * @param newMaxAssets New max assets
          * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
          */
        function _setMaxAssets(uint newMaxAssets) external returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_MAX_ASSETS_OWNER_CHECK);
            }
            uint oldMaxAssets = maxAssets;
            maxAssets = newMaxAssets;
            emit NewMaxAssets(oldMaxAssets, newMaxAssets);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Sets liquidationIncentive
          * @dev Admin function to set liquidationIncentive
          * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
          * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
          */
        function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) {
            // Check caller is admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);
            }
            // Check de-scaled min <= newLiquidationIncentive <= max
            Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa});
            Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa});
            if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) {
                return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
            }
            Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa});
            if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) {
                return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
            }
            // Save current value for use in log
            uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;
            // Set liquidation incentive to new incentive
            liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;
            // Emit event with old incentive, new incentive
            emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Add the market to the markets mapping and set it as listed
          * @dev Admin function to set isListed and add support for the market
          * @param cToken The address of the market (token) to list
          * @return uint 0=success, otherwise a failure. (See enum Error for details)
          */
        function _supportMarket(CToken cToken) external returns (uint) {
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
            }
            if (markets[address(cToken)].isListed) {
                return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
            }
            cToken.isCToken(); // Sanity check to make sure its really a CToken
            markets[address(cToken)] = Market({isListed: true, isComped: false, collateralFactorMantissa: 0});
            _addMarketInternal(address(cToken));
            emit MarketListed(cToken);
            return uint(Error.NO_ERROR);
        }
        function _addMarketInternal(address cToken) internal {
            for (uint i = 0; i < allMarkets.length; i ++) {
                require(allMarkets[i] != CToken(cToken), "market already added");
            }
            allMarkets.push(CToken(cToken));
        }
        /**
          * @notice Set the given borrow caps for the given cToken markets. Borrowing that brings total borrows to or above borrow cap will revert.
          * @dev Admin or borrowCapGuardian function to set the borrow caps. A borrow cap of 0 corresponds to unlimited borrowing.
          * @param cTokens The addresses of the markets (tokens) to change the borrow caps for
          * @param newBorrowCaps The new borrow cap values in underlying to be set. A value of 0 corresponds to unlimited borrowing.
          */
        function _setMarketBorrowCaps(CToken[] calldata cTokens, uint[] calldata newBorrowCaps) external {
        \trequire(msg.sender == admin || msg.sender == borrowCapGuardian, "only admin or borrow cap guardian can set borrow caps"); 
            uint numMarkets = cTokens.length;
            uint numBorrowCaps = newBorrowCaps.length;
            require(numMarkets != 0 && numMarkets == numBorrowCaps, "invalid input");
            for(uint i = 0; i < numMarkets; i++) {
                borrowCaps[address(cTokens[i])] = newBorrowCaps[i];
                emit NewBorrowCap(cTokens[i], newBorrowCaps[i]);
            }
        }
        /**
         * @notice Admin function to change the Borrow Cap Guardian
         * @param newBorrowCapGuardian The address of the new Borrow Cap Guardian
         */
        function _setBorrowCapGuardian(address newBorrowCapGuardian) external {
            require(msg.sender == admin, "only admin can set borrow cap guardian");
            // Save current value for inclusion in log
            address oldBorrowCapGuardian = borrowCapGuardian;
            // Store borrowCapGuardian with value newBorrowCapGuardian
            borrowCapGuardian = newBorrowCapGuardian;
            // Emit NewBorrowCapGuardian(OldBorrowCapGuardian, NewBorrowCapGuardian)
            emit NewBorrowCapGuardian(oldBorrowCapGuardian, newBorrowCapGuardian);
        }
        /**
         * @notice Admin function to change the Pause Guardian
         * @param newPauseGuardian The address of the new Pause Guardian
         * @return uint 0=success, otherwise a failure. (See enum Error for details)
         */
        function _setPauseGuardian(address newPauseGuardian) public returns (uint) {
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PAUSE_GUARDIAN_OWNER_CHECK);
            }
            // Save current value for inclusion in log
            address oldPauseGuardian = pauseGuardian;
            // Store pauseGuardian with value newPauseGuardian
            pauseGuardian = newPauseGuardian;
            // Emit NewPauseGuardian(OldPauseGuardian, NewPauseGuardian)
            emit NewPauseGuardian(oldPauseGuardian, pauseGuardian);
            return uint(Error.NO_ERROR);
        }
        function _setMintPaused(CToken cToken, bool state) public returns (bool) {
            require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
            require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
            require(msg.sender == admin || state == true, "only admin can unpause");
            mintGuardianPaused[address(cToken)] = state;
            emit ActionPaused(cToken, "Mint", state);
            return state;
        }
        function _setBorrowPaused(CToken cToken, bool state) public returns (bool) {
            require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
            require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
            require(msg.sender == admin || state == true, "only admin can unpause");
            borrowGuardianPaused[address(cToken)] = state;
            emit ActionPaused(cToken, "Borrow", state);
            return state;
        }
        function _setTransferPaused(bool state) public returns (bool) {
            require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
            require(msg.sender == admin || state == true, "only admin can unpause");
            transferGuardianPaused = state;
            emit ActionPaused("Transfer", state);
            return state;
        }
        function _setSeizePaused(bool state) public returns (bool) {
            require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
            require(msg.sender == admin || state == true, "only admin can unpause");
            seizeGuardianPaused = state;
            emit ActionPaused("Seize", state);
            return state;
        }
        function _become(Unitroller unitroller) public {
            require(msg.sender == unitroller.admin(), "only unitroller admin can change brains");
            require(unitroller._acceptImplementation() == 0, "change not authorized");
        }
        /**
         * @notice Checks caller is admin, or this contract is becoming the new implementation
         */
        function adminOrInitializing() internal view returns (bool) {
            return msg.sender == admin || msg.sender == comptrollerImplementation;
        }
        /*** Comp Distribution ***/
        /**
         * @notice Recalculate and update COMP speeds for all COMP markets
         */
        function refreshCompSpeeds() public {
            require(msg.sender == tx.origin, "only externally owned accounts may refresh speeds");
            refreshCompSpeedsInternal();
        }
        function refreshCompSpeedsInternal() internal {
            CToken[] memory allMarkets_ = allMarkets;
            for (uint i = 0; i < allMarkets_.length; i++) {
                CToken cToken = allMarkets_[i];
                Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
                updateCompSupplyIndex(address(cToken));
                updateCompBorrowIndex(address(cToken), borrowIndex);
            }
            Exp memory totalUtility = Exp({mantissa: 0});
            Exp[] memory utilities = new Exp[](allMarkets_.length);
            for (uint i = 0; i < allMarkets_.length; i++) {
                CToken cToken = allMarkets_[i];
                if (markets[address(cToken)].isComped) {
                    Exp memory assetPrice = Exp({mantissa: oracle.getUnderlyingPrice(cToken)});
                    Exp memory utility = mul_(assetPrice, cToken.totalBorrows());
                    utilities[i] = utility;
                    totalUtility = add_(totalUtility, utility);
                }
            }
            for (uint i = 0; i < allMarkets_.length; i++) {
                CToken cToken = allMarkets[i];
                uint newSpeed = totalUtility.mantissa > 0 ? mul_(compRate, div_(utilities[i], totalUtility)) : 0;
                compSpeeds[address(cToken)] = newSpeed;
                emit CompSpeedUpdated(cToken, newSpeed);
            }
        }
        /**
         * @notice Accrue COMP to the market by updating the supply index
         * @param cToken The market whose supply index to update
         */
        function updateCompSupplyIndex(address cToken) internal {
            CompMarketState storage supplyState = compSupplyState[cToken];
            uint supplySpeed = compSpeeds[cToken];
            uint blockNumber = getBlockNumber();
            uint deltaBlocks = sub_(blockNumber, uint(supplyState.block));
            if (deltaBlocks > 0 && supplySpeed > 0) {
                uint supplyTokens = CToken(cToken).totalSupply();
                uint compAccrued = mul_(deltaBlocks, supplySpeed);
                Double memory ratio = supplyTokens > 0 ? fraction(compAccrued, supplyTokens) : Double({mantissa: 0});
                Double memory index = add_(Double({mantissa: supplyState.index}), ratio);
                compSupplyState[cToken] = CompMarketState({
                    index: safe224(index.mantissa, "new index exceeds 224 bits"),
                    block: safe32(blockNumber, "block number exceeds 32 bits")
                });
            } else if (deltaBlocks > 0) {
                supplyState.block = safe32(blockNumber, "block number exceeds 32 bits");
            }
        }
        /**
         * @notice Accrue COMP to the market by updating the borrow index
         * @param cToken The market whose borrow index to update
         */
        function updateCompBorrowIndex(address cToken, Exp memory marketBorrowIndex) internal {
            CompMarketState storage borrowState = compBorrowState[cToken];
            uint borrowSpeed = compSpeeds[cToken];
            uint blockNumber = getBlockNumber();
            uint deltaBlocks = sub_(blockNumber, uint(borrowState.block));
            if (deltaBlocks > 0 && borrowSpeed > 0) {
                uint borrowAmount = div_(CToken(cToken).totalBorrows(), marketBorrowIndex);
                uint compAccrued = mul_(deltaBlocks, borrowSpeed);
                Double memory ratio = borrowAmount > 0 ? fraction(compAccrued, borrowAmount) : Double({mantissa: 0});
                Double memory index = add_(Double({mantissa: borrowState.index}), ratio);
                compBorrowState[cToken] = CompMarketState({
                    index: safe224(index.mantissa, "new index exceeds 224 bits"),
                    block: safe32(blockNumber, "block number exceeds 32 bits")
                });
            } else if (deltaBlocks > 0) {
                borrowState.block = safe32(blockNumber, "block number exceeds 32 bits");
            }
        }
        /**
         * @notice Calculate COMP accrued by a supplier and possibly transfer it to them
         * @param cToken The market in which the supplier is interacting
         * @param supplier The address of the supplier to distribute COMP to
         */
        function distributeSupplierComp(address cToken, address supplier, bool distributeAll) internal {
            CompMarketState storage supplyState = compSupplyState[cToken];
            Double memory supplyIndex = Double({mantissa: supplyState.index});
            Double memory supplierIndex = Double({mantissa: compSupplierIndex[cToken][supplier]});
            compSupplierIndex[cToken][supplier] = supplyIndex.mantissa;
            if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) {
                supplierIndex.mantissa = compInitialIndex;
            }
            Double memory deltaIndex = sub_(supplyIndex, supplierIndex);
            uint supplierTokens = CToken(cToken).balanceOf(supplier);
            uint supplierDelta = mul_(supplierTokens, deltaIndex);
            uint supplierAccrued = add_(compAccrued[supplier], supplierDelta);
            compAccrued[supplier] = transferComp(supplier, supplierAccrued, distributeAll ? 0 : compClaimThreshold);
            emit DistributedSupplierComp(CToken(cToken), supplier, supplierDelta, supplyIndex.mantissa);
        }
        /**
         * @notice Calculate COMP accrued by a borrower and possibly transfer it to them
         * @dev Borrowers will not begin to accrue until after the first interaction with the protocol.
         * @param cToken The market in which the borrower is interacting
         * @param borrower The address of the borrower to distribute COMP to
         */
        function distributeBorrowerComp(address cToken, address borrower, Exp memory marketBorrowIndex, bool distributeAll) internal {
            CompMarketState storage borrowState = compBorrowState[cToken];
            Double memory borrowIndex = Double({mantissa: borrowState.index});
            Double memory borrowerIndex = Double({mantissa: compBorrowerIndex[cToken][borrower]});
            compBorrowerIndex[cToken][borrower] = borrowIndex.mantissa;
            if (borrowerIndex.mantissa > 0) {
                Double memory deltaIndex = sub_(borrowIndex, borrowerIndex);
                uint borrowerAmount = div_(CToken(cToken).borrowBalanceStored(borrower), marketBorrowIndex);
                uint borrowerDelta = mul_(borrowerAmount, deltaIndex);
                uint borrowerAccrued = add_(compAccrued[borrower], borrowerDelta);
                compAccrued[borrower] = transferComp(borrower, borrowerAccrued, distributeAll ? 0 : compClaimThreshold);
                emit DistributedBorrowerComp(CToken(cToken), borrower, borrowerDelta, borrowIndex.mantissa);
            }
        }
        /**
         * @notice Transfer COMP to the user, if they are above the threshold
         * @dev Note: If there is not enough COMP, we do not perform the transfer all.
         * @param user The address of the user to transfer COMP to
         * @param userAccrued The amount of COMP to (possibly) transfer
         * @return The amount of COMP which was NOT transferred to the user
         */
        function transferComp(address user, uint userAccrued, uint threshold) internal returns (uint) {
            if (userAccrued >= threshold && userAccrued > 0) {
                Comp comp = Comp(getCompAddress());
                uint compRemaining = comp.balanceOf(address(this));
                if (userAccrued <= compRemaining) {
                    comp.transfer(user, userAccrued);
                    return 0;
                }
            }
            return userAccrued;
        }
        /**
         * @notice Claim all the comp accrued by holder in all markets
         * @param holder The address to claim COMP for
         */
        function claimComp(address holder) public {
            return claimComp(holder, allMarkets);
        }
        /**
         * @notice Claim all the comp accrued by holder in the specified markets
         * @param holder The address to claim COMP for
         * @param cTokens The list of markets to claim COMP in
         */
        function claimComp(address holder, CToken[] memory cTokens) public {
            address[] memory holders = new address[](1);
            holders[0] = holder;
            claimComp(holders, cTokens, true, true);
        }
        /**
         * @notice Claim all comp accrued by the holders
         * @param holders The addresses to claim COMP for
         * @param cTokens The list of markets to claim COMP in
         * @param borrowers Whether or not to claim COMP earned by borrowing
         * @param suppliers Whether or not to claim COMP earned by supplying
         */
        function claimComp(address[] memory holders, CToken[] memory cTokens, bool borrowers, bool suppliers) public {
            for (uint i = 0; i < cTokens.length; i++) {
                CToken cToken = cTokens[i];
                require(markets[address(cToken)].isListed, "market must be listed");
                if (borrowers == true) {
                    Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
                    updateCompBorrowIndex(address(cToken), borrowIndex);
                    for (uint j = 0; j < holders.length; j++) {
                        distributeBorrowerComp(address(cToken), holders[j], borrowIndex, true);
                    }
                }
                if (suppliers == true) {
                    updateCompSupplyIndex(address(cToken));
                    for (uint j = 0; j < holders.length; j++) {
                        distributeSupplierComp(address(cToken), holders[j], true);
                    }
                }
            }
        }
        /*** Comp Distribution Admin ***/
        /**
         * @notice Set the amount of COMP distributed per block
         * @param compRate_ The amount of COMP wei per block to distribute
         */
        function _setCompRate(uint compRate_) public {
            require(adminOrInitializing(), "only admin can change comp rate");
            uint oldRate = compRate;
            compRate = compRate_;
            emit NewCompRate(oldRate, compRate_);
            refreshCompSpeedsInternal();
        }
        /**
         * @notice Add markets to compMarkets, allowing them to earn COMP in the flywheel
         * @param cTokens The addresses of the markets to add
         */
        function _addCompMarkets(address[] memory cTokens) public {
            require(adminOrInitializing(), "only admin can add comp market");
            for (uint i = 0; i < cTokens.length; i++) {
                _addCompMarketInternal(cTokens[i]);
            }
            refreshCompSpeedsInternal();
        }
        function _addCompMarketInternal(address cToken) internal {
            Market storage market = markets[cToken];
            require(market.isListed == true, "comp market is not listed");
            require(market.isComped == false, "comp market already added");
            market.isComped = true;
            emit MarketComped(CToken(cToken), true);
            if (compSupplyState[cToken].index == 0 && compSupplyState[cToken].block == 0) {
                compSupplyState[cToken] = CompMarketState({
                    index: compInitialIndex,
                    block: safe32(getBlockNumber(), "block number exceeds 32 bits")
                });
            }
            if (compBorrowState[cToken].index == 0 && compBorrowState[cToken].block == 0) {
                compBorrowState[cToken] = CompMarketState({
                    index: compInitialIndex,
                    block: safe32(getBlockNumber(), "block number exceeds 32 bits")
                });
            }
        }
        /**
         * @notice Remove a market from compMarkets, preventing it from earning COMP in the flywheel
         * @param cToken The address of the market to drop
         */
        function _dropCompMarket(address cToken) public {
            require(msg.sender == admin, "only admin can drop comp market");
            Market storage market = markets[cToken];
            require(market.isComped == true, "market is not a comp market");
            market.isComped = false;
            emit MarketComped(CToken(cToken), false);
            refreshCompSpeedsInternal();
        }
        /**
         * @notice Return all of the markets
         * @dev The automatic getter may be used to access an individual market.
         * @return The list of market addresses
         */
        function getAllMarkets() public view returns (CToken[] memory) {
            return allMarkets;
        }
        function getBlockNumber() public view returns (uint) {
            return block.number;
        }
        /**
         * @notice Return the address of the COMP token
         * @return The address of COMP
         */
        function getCompAddress() public view returns (address) {
            return 0xc00e94Cb662C3520282E6f5717214004A7f26888;
        }
    }
    pragma solidity ^0.5.16;
    contract ComptrollerInterface {
        /// @notice Indicator that this is a Comptroller contract (for inspection)
        bool public constant isComptroller = true;
        /*** Assets You Are In ***/
        function enterMarkets(address[] calldata cTokens) external returns (uint[] memory);
        function exitMarket(address cToken) external returns (uint);
        /*** Policy Hooks ***/
        function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint);
        function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external;
        function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint);
        function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external;
        function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint);
        function borrowVerify(address cToken, address borrower, uint borrowAmount) external;
        function repayBorrowAllowed(
            address cToken,
            address payer,
            address borrower,
            uint repayAmount) external returns (uint);
        function repayBorrowVerify(
            address cToken,
            address payer,
            address borrower,
            uint repayAmount,
            uint borrowerIndex) external;
        function liquidateBorrowAllowed(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint repayAmount) external returns (uint);
        function liquidateBorrowVerify(
            address cTokenBorrowed,
            address cTokenCollateral,
            address liquidator,
            address borrower,
            uint repayAmount,
            uint seizeTokens) external;
        function seizeAllowed(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external returns (uint);
        function seizeVerify(
            address cTokenCollateral,
            address cTokenBorrowed,
            address liquidator,
            address borrower,
            uint seizeTokens) external;
        function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint);
        function transferVerify(address cToken, address src, address dst, uint transferTokens) external;
        /*** Liquidity/Liquidation Calculations ***/
        function liquidateCalculateSeizeTokens(
            address cTokenBorrowed,
            address cTokenCollateral,
            uint repayAmount) external view returns (uint, uint);
    }
    pragma solidity ^0.5.16;
    import "./CToken.sol";
    import "./PriceOracle.sol";
    contract UnitrollerAdminStorage {
        /**
        * @notice Administrator for this contract
        */
        address public admin;
        /**
        * @notice Pending administrator for this contract
        */
        address public pendingAdmin;
        /**
        * @notice Active brains of Unitroller
        */
        address public comptrollerImplementation;
        /**
        * @notice Pending brains of Unitroller
        */
        address public pendingComptrollerImplementation;
    }
    contract ComptrollerV1Storage is UnitrollerAdminStorage {
        /**
         * @notice Oracle which gives the price of any given asset
         */
        PriceOracle public oracle;
        /**
         * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
         */
        uint public closeFactorMantissa;
        /**
         * @notice Multiplier representing the discount on collateral that a liquidator receives
         */
        uint public liquidationIncentiveMantissa;
        /**
         * @notice Max number of assets a single account can participate in (borrow or use as collateral)
         */
        uint public maxAssets;
        /**
         * @notice Per-account mapping of "assets you are in", capped by maxAssets
         */
        mapping(address => CToken[]) public accountAssets;
    }
    contract ComptrollerV2Storage is ComptrollerV1Storage {
        struct Market {
            /// @notice Whether or not this market is listed
            bool isListed;
            /**
             * @notice Multiplier representing the most one can borrow against their collateral in this market.
             *  For instance, 0.9 to allow borrowing 90% of collateral value.
             *  Must be between 0 and 1, and stored as a mantissa.
             */
            uint collateralFactorMantissa;
            /// @notice Per-market mapping of "accounts in this asset"
            mapping(address => bool) accountMembership;
            /// @notice Whether or not this market receives COMP
            bool isComped;
        }
        /**
         * @notice Official mapping of cTokens -> Market metadata
         * @dev Used e.g. to determine if a market is supported
         */
        mapping(address => Market) public markets;
        /**
         * @notice The Pause Guardian can pause certain actions as a safety mechanism.
         *  Actions which allow users to remove their own assets cannot be paused.
         *  Liquidation / seizing / transfer can only be paused globally, not by market.
         */
        address public pauseGuardian;
        bool public _mintGuardianPaused;
        bool public _borrowGuardianPaused;
        bool public transferGuardianPaused;
        bool public seizeGuardianPaused;
        mapping(address => bool) public mintGuardianPaused;
        mapping(address => bool) public borrowGuardianPaused;
    }
    contract ComptrollerV3Storage is ComptrollerV2Storage {
        struct CompMarketState {
            /// @notice The market's last updated compBorrowIndex or compSupplyIndex
            uint224 index;
            /// @notice The block number the index was last updated at
            uint32 block;
        }
        /// @notice A list of all markets
        CToken[] public allMarkets;
        /// @notice The rate at which the flywheel distributes COMP, per block
        uint public compRate;
        /// @notice The portion of compRate that each market currently receives
        mapping(address => uint) public compSpeeds;
        /// @notice The COMP market supply state for each market
        mapping(address => CompMarketState) public compSupplyState;
        /// @notice The COMP market borrow state for each market
        mapping(address => CompMarketState) public compBorrowState;
        /// @notice The COMP borrow index for each market for each supplier as of the last time they accrued COMP
        mapping(address => mapping(address => uint)) public compSupplierIndex;
        /// @notice The COMP borrow index for each market for each borrower as of the last time they accrued COMP
        mapping(address => mapping(address => uint)) public compBorrowerIndex;
        /// @notice The COMP accrued but not yet transferred to each user
        mapping(address => uint) public compAccrued;
    }
    contract ComptrollerV4Storage is ComptrollerV3Storage {
        // @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market.
        address public borrowCapGuardian;
        // @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing.
        mapping(address => uint) public borrowCaps;
    }
    pragma solidity ^0.5.16;
    /**
     * @title ERC 20 Token Standard Interface
     *  https://eips.ethereum.org/EIPS/eip-20
     */
    interface EIP20Interface {
        function name() external view returns (string memory);
        function symbol() external view returns (string memory);
        function decimals() external view returns (uint8);
        /**
          * @notice Get the total number of tokens in circulation
          * @return The supply of tokens
          */
        function totalSupply() external view returns (uint256);
        /**
         * @notice Gets the balance of the specified address
         * @param owner The address from which the balance will be retrieved
         * @return The balance
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        /**
          * @notice Transfer `amount` tokens from `msg.sender` to `dst`
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          * @return Whether or not the transfer succeeded
          */
        function transfer(address dst, uint256 amount) external returns (bool success);
        /**
          * @notice Transfer `amount` tokens from `src` to `dst`
          * @param src The address of the source account
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          * @return Whether or not the transfer succeeded
          */
        function transferFrom(address src, address dst, uint256 amount) external returns (bool success);
        /**
          * @notice Approve `spender` to transfer up to `amount` from `src`
          * @dev This will overwrite the approval amount for `spender`
          *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
          * @param spender The address of the account which may transfer tokens
          * @param amount The number of tokens that are approved (-1 means infinite)
          * @return Whether or not the approval succeeded
          */
        function approve(address spender, uint256 amount) external returns (bool success);
        /**
          * @notice Get the current allowance from `owner` for `spender`
          * @param owner The address of the account which owns the tokens to be spent
          * @param spender The address of the account which may transfer tokens
          * @return The number of tokens allowed to be spent (-1 means infinite)
          */
        function allowance(address owner, address spender) external view returns (uint256 remaining);
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
    }
    pragma solidity ^0.5.16;
    /**
     * @title EIP20NonStandardInterface
     * @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
     *  See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    interface EIP20NonStandardInterface {
        /**
         * @notice Get the total number of tokens in circulation
         * @return The supply of tokens
         */
        function totalSupply() external view returns (uint256);
        /**
         * @notice Gets the balance of the specified address
         * @param owner The address from which the balance will be retrieved
         * @return The balance
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        ///
        /// !!!!!!!!!!!!!!
        /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
        /// !!!!!!!!!!!!!!
        ///
        /**
          * @notice Transfer `amount` tokens from `msg.sender` to `dst`
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          */
        function transfer(address dst, uint256 amount) external;
        ///
        /// !!!!!!!!!!!!!!
        /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
        /// !!!!!!!!!!!!!!
        ///
        /**
          * @notice Transfer `amount` tokens from `src` to `dst`
          * @param src The address of the source account
          * @param dst The address of the destination account
          * @param amount The number of tokens to transfer
          */
        function transferFrom(address src, address dst, uint256 amount) external;
        /**
          * @notice Approve `spender` to transfer up to `amount` from `src`
          * @dev This will overwrite the approval amount for `spender`
          *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
          * @param spender The address of the account which may transfer tokens
          * @param amount The number of tokens that are approved
          * @return Whether or not the approval succeeded
          */
        function approve(address spender, uint256 amount) external returns (bool success);
        /**
          * @notice Get the current allowance from `owner` for `spender`
          * @param owner The address of the account which owns the tokens to be spent
          * @param spender The address of the account which may transfer tokens
          * @return The number of tokens allowed to be spent
          */
        function allowance(address owner, address spender) external view returns (uint256 remaining);
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
    }
    pragma solidity ^0.5.16;
    contract ComptrollerErrorReporter {
        enum Error {
            NO_ERROR,
            UNAUTHORIZED,
            COMPTROLLER_MISMATCH,
            INSUFFICIENT_SHORTFALL,
            INSUFFICIENT_LIQUIDITY,
            INVALID_CLOSE_FACTOR,
            INVALID_COLLATERAL_FACTOR,
            INVALID_LIQUIDATION_INCENTIVE,
            MARKET_NOT_ENTERED, // no longer possible
            MARKET_NOT_LISTED,
            MARKET_ALREADY_LISTED,
            MATH_ERROR,
            NONZERO_BORROW_BALANCE,
            PRICE_ERROR,
            REJECTION,
            SNAPSHOT_ERROR,
            TOO_MANY_ASSETS,
            TOO_MUCH_REPAY
        }
        enum FailureInfo {
            ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
            ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
            EXIT_MARKET_BALANCE_OWED,
            EXIT_MARKET_REJECTION,
            SET_CLOSE_FACTOR_OWNER_CHECK,
            SET_CLOSE_FACTOR_VALIDATION,
            SET_COLLATERAL_FACTOR_OWNER_CHECK,
            SET_COLLATERAL_FACTOR_NO_EXISTS,
            SET_COLLATERAL_FACTOR_VALIDATION,
            SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
            SET_IMPLEMENTATION_OWNER_CHECK,
            SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
            SET_LIQUIDATION_INCENTIVE_VALIDATION,
            SET_MAX_ASSETS_OWNER_CHECK,
            SET_PENDING_ADMIN_OWNER_CHECK,
            SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
            SET_PRICE_ORACLE_OWNER_CHECK,
            SUPPORT_MARKET_EXISTS,
            SUPPORT_MARKET_OWNER_CHECK,
            SET_PAUSE_GUARDIAN_OWNER_CHECK
        }
        /**
          * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
          * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
          **/
        event Failure(uint error, uint info, uint detail);
        /**
          * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
          */
        function fail(Error err, FailureInfo info) internal returns (uint) {
            emit Failure(uint(err), uint(info), 0);
            return uint(err);
        }
        /**
          * @dev use this when reporting an opaque error from an upgradeable collaborator contract
          */
        function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
            emit Failure(uint(err), uint(info), opaqueError);
            return uint(err);
        }
    }
    contract TokenErrorReporter {
        enum Error {
            NO_ERROR,
            UNAUTHORIZED,
            BAD_INPUT,
            COMPTROLLER_REJECTION,
            COMPTROLLER_CALCULATION_ERROR,
            INTEREST_RATE_MODEL_ERROR,
            INVALID_ACCOUNT_PAIR,
            INVALID_CLOSE_AMOUNT_REQUESTED,
            INVALID_COLLATERAL_FACTOR,
            MATH_ERROR,
            MARKET_NOT_FRESH,
            MARKET_NOT_LISTED,
            TOKEN_INSUFFICIENT_ALLOWANCE,
            TOKEN_INSUFFICIENT_BALANCE,
            TOKEN_INSUFFICIENT_CASH,
            TOKEN_TRANSFER_IN_FAILED,
            TOKEN_TRANSFER_OUT_FAILED
        }
        /*
         * Note: FailureInfo (but not Error) is kept in alphabetical order
         *       This is because FailureInfo grows significantly faster, and
         *       the order of Error has some meaning, while the order of FailureInfo
         *       is entirely arbitrary.
         */
        enum FailureInfo {
            ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
            ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED,
            ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED,
            ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED,
            ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED,
            BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
            BORROW_ACCRUE_INTEREST_FAILED,
            BORROW_CASH_NOT_AVAILABLE,
            BORROW_FRESHNESS_CHECK,
            BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
            BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
            BORROW_MARKET_NOT_LISTED,
            BORROW_COMPTROLLER_REJECTION,
            LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
            LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
            LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
            LIQUIDATE_COMPTROLLER_REJECTION,
            LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
            LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
            LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
            LIQUIDATE_FRESHNESS_CHECK,
            LIQUIDATE_LIQUIDATOR_IS_BORROWER,
            LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
            LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED,
            LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED,
            LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
            LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
            LIQUIDATE_SEIZE_TOO_MUCH,
            MINT_ACCRUE_INTEREST_FAILED,
            MINT_COMPTROLLER_REJECTION,
            MINT_EXCHANGE_CALCULATION_FAILED,
            MINT_EXCHANGE_RATE_READ_FAILED,
            MINT_FRESHNESS_CHECK,
            MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
            MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
            MINT_TRANSFER_IN_FAILED,
            MINT_TRANSFER_IN_NOT_POSSIBLE,
            REDEEM_ACCRUE_INTEREST_FAILED,
            REDEEM_COMPTROLLER_REJECTION,
            REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,
            REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,
            REDEEM_EXCHANGE_RATE_READ_FAILED,
            REDEEM_FRESHNESS_CHECK,
            REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
            REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
            REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
            REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
            REDUCE_RESERVES_ADMIN_CHECK,
            REDUCE_RESERVES_CASH_NOT_AVAILABLE,
            REDUCE_RESERVES_FRESH_CHECK,
            REDUCE_RESERVES_VALIDATION,
            REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
            REPAY_BORROW_ACCRUE_INTEREST_FAILED,
            REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_COMPTROLLER_REJECTION,
            REPAY_BORROW_FRESHNESS_CHECK,
            REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
            REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
            SET_COLLATERAL_FACTOR_OWNER_CHECK,
            SET_COLLATERAL_FACTOR_VALIDATION,
            SET_COMPTROLLER_OWNER_CHECK,
            SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
            SET_INTEREST_RATE_MODEL_FRESH_CHECK,
            SET_INTEREST_RATE_MODEL_OWNER_CHECK,
            SET_MAX_ASSETS_OWNER_CHECK,
            SET_ORACLE_MARKET_NOT_LISTED,
            SET_PENDING_ADMIN_OWNER_CHECK,
            SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
            SET_RESERVE_FACTOR_ADMIN_CHECK,
            SET_RESERVE_FACTOR_FRESH_CHECK,
            SET_RESERVE_FACTOR_BOUNDS_CHECK,
            TRANSFER_COMPTROLLER_REJECTION,
            TRANSFER_NOT_ALLOWED,
            TRANSFER_NOT_ENOUGH,
            TRANSFER_TOO_MUCH,
            ADD_RESERVES_ACCRUE_INTEREST_FAILED,
            ADD_RESERVES_FRESH_CHECK,
            ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE
        }
        /**
          * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
          * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
          **/
        event Failure(uint error, uint info, uint detail);
        /**
          * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
          */
        function fail(Error err, FailureInfo info) internal returns (uint) {
            emit Failure(uint(err), uint(info), 0);
            return uint(err);
        }
        /**
          * @dev use this when reporting an opaque error from an upgradeable collaborator contract
          */
        function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
            emit Failure(uint(err), uint(info), opaqueError);
            return uint(err);
        }
    }pragma solidity ^0.5.16;
    import "./CarefulMath.sol";
    /**
     * @title Exponential module for storing fixed-precision decimals
     * @author Compound
     * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
     *         Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
     *         `Exp({mantissa: 5100000000000000000})`.
     */
    contract Exponential is CarefulMath {
        uint constant expScale = 1e18;
        uint constant doubleScale = 1e36;
        uint constant halfExpScale = expScale/2;
        uint constant mantissaOne = expScale;
        struct Exp {
            uint mantissa;
        }
        struct Double {
            uint mantissa;
        }
        /**
         * @dev Creates an exponential from numerator and denominator values.
         *      Note: Returns an error if (`num` * 10e18) > MAX_INT,
         *            or if `denom` is zero.
         */
        function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint scaledNumerator) = mulUInt(num, expScale);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            (MathError err1, uint rational) = divUInt(scaledNumerator, denom);
            if (err1 != MathError.NO_ERROR) {
                return (err1, Exp({mantissa: 0}));
            }
            return (MathError.NO_ERROR, Exp({mantissa: rational}));
        }
        /**
         * @dev Adds two exponentials, returning a new exponential.
         */
        function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            (MathError error, uint result) = addUInt(a.mantissa, b.mantissa);
            return (error, Exp({mantissa: result}));
        }
        /**
         * @dev Subtracts two exponentials, returning a new exponential.
         */
        function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            (MathError error, uint result) = subUInt(a.mantissa, b.mantissa);
            return (error, Exp({mantissa: result}));
        }
        /**
         * @dev Multiply an Exp by a scalar, returning a new Exp.
         */
        function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
        }
        /**
         * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
         */
        function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {
            (MathError err, Exp memory product) = mulScalar(a, scalar);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
            return (MathError.NO_ERROR, truncate(product));
        }
        /**
         * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
         */
        function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {
            (MathError err, Exp memory product) = mulScalar(a, scalar);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
            return addUInt(truncate(product), addend);
        }
        /**
         * @dev Divide an Exp by a scalar, returning a new Exp.
         */
        function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
        }
        /**
         * @dev Divide a scalar by an Exp, returning a new Exp.
         */
        function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {
            /*
              We are doing this as:
              getExp(mulUInt(expScale, scalar), divisor.mantissa)
              How it works:
              Exp = a / b;
              Scalar = s;
              `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
            */
            (MathError err0, uint numerator) = mulUInt(expScale, scalar);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            return getExp(numerator, divisor.mantissa);
        }
        /**
         * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
         */
        function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {
            (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
            if (err != MathError.NO_ERROR) {
                return (err, 0);
            }
            return (MathError.NO_ERROR, truncate(fraction));
        }
        /**
         * @dev Multiplies two exponentials, returning a new exponential.
         */
        function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
            if (err0 != MathError.NO_ERROR) {
                return (err0, Exp({mantissa: 0}));
            }
            // We add half the scale before dividing so that we get rounding instead of truncation.
            //  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
            // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
            (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
            if (err1 != MathError.NO_ERROR) {
                return (err1, Exp({mantissa: 0}));
            }
            (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);
            // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
            assert(err2 == MathError.NO_ERROR);
            return (MathError.NO_ERROR, Exp({mantissa: product}));
        }
        /**
         * @dev Multiplies two exponentials given their mantissas, returning a new exponential.
         */
        function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {
            return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
        }
        /**
         * @dev Multiplies three exponentials, returning a new exponential.
         */
        function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {
            (MathError err, Exp memory ab) = mulExp(a, b);
            if (err != MathError.NO_ERROR) {
                return (err, ab);
            }
            return mulExp(ab, c);
        }
        /**
         * @dev Divides two exponentials, returning a new exponential.
         *     (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
         *  which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
         */
        function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
            return getExp(a.mantissa, b.mantissa);
        }
        /**
         * @dev Truncates the given exp to a whole number value.
         *      For example, truncate(Exp{mantissa: 15 * expScale}) = 15
         */
        function truncate(Exp memory exp) pure internal returns (uint) {
            // Note: We are not using careful math here as we're performing a division that cannot fail
            return exp.mantissa / expScale;
        }
        /**
         * @dev Checks if first Exp is less than second Exp.
         */
        function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
            return left.mantissa < right.mantissa;
        }
        /**
         * @dev Checks if left Exp <= right Exp.
         */
        function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
            return left.mantissa <= right.mantissa;
        }
        /**
         * @dev Checks if left Exp > right Exp.
         */
        function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
            return left.mantissa > right.mantissa;
        }
        /**
         * @dev returns true if Exp is exactly zero
         */
        function isZeroExp(Exp memory value) pure internal returns (bool) {
            return value.mantissa == 0;
        }
        function safe224(uint n, string memory errorMessage) pure internal returns (uint224) {
            require(n < 2**224, errorMessage);
            return uint224(n);
        }
        function safe32(uint n, string memory errorMessage) pure internal returns (uint32) {
            require(n < 2**32, errorMessage);
            return uint32(n);
        }
        function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
            return Exp({mantissa: add_(a.mantissa, b.mantissa)});
        }
        function add_(Double memory a, Double memory b) pure internal returns (Double memory) {
            return Double({mantissa: add_(a.mantissa, b.mantissa)});
        }
        function add_(uint a, uint b) pure internal returns (uint) {
            return add_(a, b, "addition overflow");
        }
        function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
            uint c = a + b;
            require(c >= a, errorMessage);
            return c;
        }
        function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
            return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
        }
        function sub_(Double memory a, Double memory b) pure internal returns (Double memory) {
            return Double({mantissa: sub_(a.mantissa, b.mantissa)});
        }
        function sub_(uint a, uint b) pure internal returns (uint) {
            return sub_(a, b, "subtraction underflow");
        }
        function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
            require(b <= a, errorMessage);
            return a - b;
        }
        function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
            return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
        }
        function mul_(Exp memory a, uint b) pure internal returns (Exp memory) {
            return Exp({mantissa: mul_(a.mantissa, b)});
        }
        function mul_(uint a, Exp memory b) pure internal returns (uint) {
            return mul_(a, b.mantissa) / expScale;
        }
        function mul_(Double memory a, Double memory b) pure internal returns (Double memory) {
            return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
        }
        function mul_(Double memory a, uint b) pure internal returns (Double memory) {
            return Double({mantissa: mul_(a.mantissa, b)});
        }
        function mul_(uint a, Double memory b) pure internal returns (uint) {
            return mul_(a, b.mantissa) / doubleScale;
        }
        function mul_(uint a, uint b) pure internal returns (uint) {
            return mul_(a, b, "multiplication overflow");
        }
        function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
            if (a == 0 || b == 0) {
                return 0;
            }
            uint c = a * b;
            require(c / a == b, errorMessage);
            return c;
        }
        function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
            return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
        }
        function div_(Exp memory a, uint b) pure internal returns (Exp memory) {
            return Exp({mantissa: div_(a.mantissa, b)});
        }
        function div_(uint a, Exp memory b) pure internal returns (uint) {
            return div_(mul_(a, expScale), b.mantissa);
        }
        function div_(Double memory a, Double memory b) pure internal returns (Double memory) {
            return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
        }
        function div_(Double memory a, uint b) pure internal returns (Double memory) {
            return Double({mantissa: div_(a.mantissa, b)});
        }
        function div_(uint a, Double memory b) pure internal returns (uint) {
            return div_(mul_(a, doubleScale), b.mantissa);
        }
        function div_(uint a, uint b) pure internal returns (uint) {
            return div_(a, b, "divide by zero");
        }
        function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
            require(b > 0, errorMessage);
            return a / b;
        }
        function fraction(uint a, uint b) pure internal returns (Double memory) {
            return Double({mantissa: div_(mul_(a, doubleScale), b)});
        }
    }
    pragma solidity ^0.5.16;
    pragma experimental ABIEncoderV2;
    contract Comp {
        /// @notice EIP-20 token name for this token
        string public constant name = "Compound";
        /// @notice EIP-20 token symbol for this token
        string public constant symbol = "COMP";
        /// @notice EIP-20 token decimals for this token
        uint8 public constant decimals = 18;
        /// @notice Total number of tokens in circulation
        uint public constant totalSupply = 10000000e18; // 10 million Comp
        /// @notice Allowance amounts on behalf of others
        mapping (address => mapping (address => uint96)) internal allowances;
        /// @notice Official record of token balances for each account
        mapping (address => uint96) internal balances;
        /// @notice A record of each accounts delegate
        mapping (address => address) public delegates;
        /// @notice A checkpoint for marking number of votes from a given block
        struct Checkpoint {
            uint32 fromBlock;
            uint96 votes;
        }
        /// @notice A record of votes checkpoints for each account, by index
        mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
        /// @notice The number of checkpoints for each account
        mapping (address => uint32) public numCheckpoints;
        /// @notice The EIP-712 typehash for the contract's domain
        bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
        /// @notice The EIP-712 typehash for the delegation struct used by the contract
        bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
        /// @notice A record of states for signing / validating signatures
        mapping (address => uint) public nonces;
        /// @notice An event thats emitted when an account changes its delegate
        event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
        /// @notice An event thats emitted when a delegate account's vote balance changes
        event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
        /// @notice The standard EIP-20 transfer event
        event Transfer(address indexed from, address indexed to, uint256 amount);
        /// @notice The standard EIP-20 approval event
        event Approval(address indexed owner, address indexed spender, uint256 amount);
        /**
         * @notice Construct a new Comp token
         * @param account The initial account to grant all the tokens
         */
        constructor(address account) public {
            balances[account] = uint96(totalSupply);
            emit Transfer(address(0), account, totalSupply);
        }
        /**
         * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
         * @param account The address of the account holding the funds
         * @param spender The address of the account spending the funds
         * @return The number of tokens approved
         */
        function allowance(address account, address spender) external view returns (uint) {
            return allowances[account][spender];
        }
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint rawAmount) external returns (bool) {
            uint96 amount;
            if (rawAmount == uint(-1)) {
                amount = uint96(-1);
            } else {
                amount = safe96(rawAmount, "Comp::approve: amount exceeds 96 bits");
            }
            allowances[msg.sender][spender] = amount;
            emit Approval(msg.sender, spender, amount);
            return true;
        }
        /**
         * @notice Get the number of tokens held by the `account`
         * @param account The address of the account to get the balance of
         * @return The number of tokens held
         */
        function balanceOf(address account) external view returns (uint) {
            return balances[account];
        }
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint rawAmount) external returns (bool) {
            uint96 amount = safe96(rawAmount, "Comp::transfer: amount exceeds 96 bits");
            _transferTokens(msg.sender, dst, amount);
            return true;
        }
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(address src, address dst, uint rawAmount) external returns (bool) {
            address spender = msg.sender;
            uint96 spenderAllowance = allowances[src][spender];
            uint96 amount = safe96(rawAmount, "Comp::approve: amount exceeds 96 bits");
            if (spender != src && spenderAllowance != uint96(-1)) {
                uint96 newAllowance = sub96(spenderAllowance, amount, "Comp::transferFrom: transfer amount exceeds spender allowance");
                allowances[src][spender] = newAllowance;
                emit Approval(src, spender, newAllowance);
            }
            _transferTokens(src, dst, amount);
            return true;
        }
        /**
         * @notice Delegate votes from `msg.sender` to `delegatee`
         * @param delegatee The address to delegate votes to
         */
        function delegate(address delegatee) public {
            return _delegate(msg.sender, delegatee);
        }
        /**
         * @notice Delegates votes from signatory to `delegatee`
         * @param delegatee The address to delegate votes to
         * @param nonce The contract state required to match the signature
         * @param expiry The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) public {
            bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
            bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
            bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
            address signatory = ecrecover(digest, v, r, s);
            require(signatory != address(0), "Comp::delegateBySig: invalid signature");
            require(nonce == nonces[signatory]++, "Comp::delegateBySig: invalid nonce");
            require(now <= expiry, "Comp::delegateBySig: signature expired");
            return _delegate(signatory, delegatee);
        }
        /**
         * @notice Gets the current votes balance for `account`
         * @param account The address to get votes balance
         * @return The number of current votes for `account`
         */
        function getCurrentVotes(address account) external view returns (uint96) {
            uint32 nCheckpoints = numCheckpoints[account];
            return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
        }
        /**
         * @notice Determine the prior number of votes for an account as of a block number
         * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
         * @param account The address of the account to check
         * @param blockNumber The block number to get the vote balance at
         * @return The number of votes the account had as of the given block
         */
        function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {
            require(blockNumber < block.number, "Comp::getPriorVotes: not yet determined");
            uint32 nCheckpoints = numCheckpoints[account];
            if (nCheckpoints == 0) {
                return 0;
            }
            // First check most recent balance
            if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
                return checkpoints[account][nCheckpoints - 1].votes;
            }
            // Next check implicit zero balance
            if (checkpoints[account][0].fromBlock > blockNumber) {
                return 0;
            }
            uint32 lower = 0;
            uint32 upper = nCheckpoints - 1;
            while (upper > lower) {
                uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
                Checkpoint memory cp = checkpoints[account][center];
                if (cp.fromBlock == blockNumber) {
                    return cp.votes;
                } else if (cp.fromBlock < blockNumber) {
                    lower = center;
                } else {
                    upper = center - 1;
                }
            }
            return checkpoints[account][lower].votes;
        }
        function _delegate(address delegator, address delegatee) internal {
            address currentDelegate = delegates[delegator];
            uint96 delegatorBalance = balances[delegator];
            delegates[delegator] = delegatee;
            emit DelegateChanged(delegator, currentDelegate, delegatee);
            _moveDelegates(currentDelegate, delegatee, delegatorBalance);
        }
        function _transferTokens(address src, address dst, uint96 amount) internal {
            require(src != address(0), "Comp::_transferTokens: cannot transfer from the zero address");
            require(dst != address(0), "Comp::_transferTokens: cannot transfer to the zero address");
            balances[src] = sub96(balances[src], amount, "Comp::_transferTokens: transfer amount exceeds balance");
            balances[dst] = add96(balances[dst], amount, "Comp::_transferTokens: transfer amount overflows");
            emit Transfer(src, dst, amount);
            _moveDelegates(delegates[src], delegates[dst], amount);
        }
        function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
            if (srcRep != dstRep && amount > 0) {
                if (srcRep != address(0)) {
                    uint32 srcRepNum = numCheckpoints[srcRep];
                    uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                    uint96 srcRepNew = sub96(srcRepOld, amount, "Comp::_moveVotes: vote amount underflows");
                    _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
                }
                if (dstRep != address(0)) {
                    uint32 dstRepNum = numCheckpoints[dstRep];
                    uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                    uint96 dstRepNew = add96(dstRepOld, amount, "Comp::_moveVotes: vote amount overflows");
                    _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
                }
            }
        }
        function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
          uint32 blockNumber = safe32(block.number, "Comp::_writeCheckpoint: block number exceeds 32 bits");
          if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
              checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
          } else {
              checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
              numCheckpoints[delegatee] = nCheckpoints + 1;
          }
          emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
        }
        function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
            require(n < 2**32, errorMessage);
            return uint32(n);
        }
        function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {
            require(n < 2**96, errorMessage);
            return uint96(n);
        }
        function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            uint96 c = a + b;
            require(c >= a, errorMessage);
            return c;
        }
        function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            require(b <= a, errorMessage);
            return a - b;
        }
        function getChainId() internal pure returns (uint) {
            uint256 chainId;
            assembly { chainId := chainid() }
            return chainId;
        }
    }
    pragma solidity ^0.5.16;
    /**
      * @title Compound's InterestRateModel Interface
      * @author Compound
      */
    contract InterestRateModel {
        /// @notice Indicator that this is an InterestRateModel contract (for inspection)
        bool public constant isInterestRateModel = true;
        /**
          * @notice Calculates the current borrow interest rate per block
          * @param cash The total amount of cash the market has
          * @param borrows The total amount of borrows the market has outstanding
          * @param reserves The total amnount of reserves the market has
          * @return The borrow rate per block (as a percentage, and scaled by 1e18)
          */
        function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint);
        /**
          * @notice Calculates the current supply interest rate per block
          * @param cash The total amount of cash the market has
          * @param borrows The total amount of borrows the market has outstanding
          * @param reserves The total amnount of reserves the market has
          * @param reserveFactorMantissa The current reserve factor the market has
          * @return The supply rate per block (as a percentage, and scaled by 1e18)
          */
        function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) external view returns (uint);
    }
    pragma solidity ^0.5.16;
    import "./CToken.sol";
    contract PriceOracle {
        /// @notice Indicator that this is a PriceOracle contract (for inspection)
        bool public constant isPriceOracle = true;
        /**
          * @notice Get the underlying price of a cToken asset
          * @param cToken The cToken to get the underlying price of
          * @return The underlying asset price mantissa (scaled by 1e18).
          *  Zero means the price is unavailable.
          */
        function getUnderlyingPrice(CToken cToken) external view returns (uint);
    }
    pragma solidity ^0.5.16;
    import "./ErrorReporter.sol";
    import "./ComptrollerStorage.sol";
    /**
     * @title ComptrollerCore
     * @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`.
     * CTokens should reference this contract as their comptroller.
     */
    contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {
        /**
          * @notice Emitted when pendingComptrollerImplementation is changed
          */
        event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);
        /**
          * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated
          */
        event NewImplementation(address oldImplementation, address newImplementation);
        /**
          * @notice Emitted when pendingAdmin is changed
          */
        event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
        /**
          * @notice Emitted when pendingAdmin is accepted, which means admin is updated
          */
        event NewAdmin(address oldAdmin, address newAdmin);
        constructor() public {
            // Set admin to caller
            admin = msg.sender;
        }
        /*** Admin Functions ***/
        function _setPendingImplementation(address newPendingImplementation) public returns (uint) {
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);
            }
            address oldPendingImplementation = pendingComptrollerImplementation;
            pendingComptrollerImplementation = newPendingImplementation;
            emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
            return uint(Error.NO_ERROR);
        }
        /**
        * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation
        * @dev Admin function for new implementation to accept it's role as implementation
        * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
        */
        function _acceptImplementation() public returns (uint) {
            // Check caller is pendingImplementation and pendingImplementation ≠ address(0)
            if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);
            }
            // Save current values for inclusion in log
            address oldImplementation = comptrollerImplementation;
            address oldPendingImplementation = pendingComptrollerImplementation;
            comptrollerImplementation = pendingComptrollerImplementation;
            pendingComptrollerImplementation = address(0);
            emit NewImplementation(oldImplementation, comptrollerImplementation);
            emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
          * @param newPendingAdmin New pending admin.
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _setPendingAdmin(address newPendingAdmin) public returns (uint) {
            // Check caller = admin
            if (msg.sender != admin) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
            }
            // Save current value, if any, for inclusion in log
            address oldPendingAdmin = pendingAdmin;
            // Store pendingAdmin with value newPendingAdmin
            pendingAdmin = newPendingAdmin;
            // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
            emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
            return uint(Error.NO_ERROR);
        }
        /**
          * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
          * @dev Admin function for pending admin to accept role and update admin
          * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
          */
        function _acceptAdmin() public returns (uint) {
            // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
            if (msg.sender != pendingAdmin || msg.sender == address(0)) {
                return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
            }
            // Save current values for inclusion in log
            address oldAdmin = admin;
            address oldPendingAdmin = pendingAdmin;
            // Store admin with value pendingAdmin
            admin = pendingAdmin;
            // Clear the pending value
            pendingAdmin = address(0);
            emit NewAdmin(oldAdmin, admin);
            emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
            return uint(Error.NO_ERROR);
        }
        /**
         * @dev Delegates execution to an implementation contract.
         * It returns to the external caller whatever the implementation returns
         * or forwards reverts.
         */
        function () payable external {
            // delegate all other functions to current implementation
            (bool success, ) = comptrollerImplementation.delegatecall(msg.data);
            assembly {
                  let free_mem_ptr := mload(0x40)
                  returndatacopy(free_mem_ptr, 0, returndatasize)
                  switch success
                  case 0 { revert(free_mem_ptr, returndatasize) }
                  default { return(free_mem_ptr, returndatasize) }
            }
        }
    }