ETH Price: $2,999.23 (+7.97%)

Transaction Decoder

Block:
22886989 at Jul-10-2025 06:28:23 AM +UTC
Transaction Fee:
0.00192923666979906 ETH $5.79
Gas Used:
624,444 Gas / 3.089527115 Gwei

Emitted Events:

60 TetherToken.Approval( owner=[Receiver] 0x04334e2d54bc794adc9d06f5ec46a130dc15ed19, spender=L1ChugSplashProxy, value=20000000 )
61 TetherToken.Transfer( from=[Receiver] 0x04334e2d54bc794adc9d06f5ec46a130dc15ed19, to=L1ChugSplashProxy, value=20000000 )
62 L1ChugSplashProxy.0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396( 0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396, 0x000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 0x000000000000000000000000f1b50ed67a9e2cc94ad3c477779e2d4cbfff9029, 0x00000000000000000000000004334e2d54bc794adc9d06f5ec46a130dc15ed19, 00000000000000000000000004334e2d54bc794adc9d06f5ec46a130dc15ed19, 0000000000000000000000000000000000000000000000000000000001312d00, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
63 L1ChugSplashProxy.0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf( 0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf, 0x000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 0x000000000000000000000000f1b50ed67a9e2cc94ad3c477779e2d4cbfff9029, 0x00000000000000000000000004334e2d54bc794adc9d06f5ec46a130dc15ed19, 00000000000000000000000004334e2d54bc794adc9d06f5ec46a130dc15ed19, 0000000000000000000000000000000000000000000000000000000001312d00, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
64 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x0000000000000000000000009ab007862d3a03f70e07b7f01183934b485d3fa8, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 000000000000000000000000000000000000000000000000000000000000024d, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000007832e00d764ad0b00010000000000000000000000000000000000, 000000000000000000000004cf0000000000000000000000002171e6d3b7964f, a9654ce41da8a8ffaff2cc70be00000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000030d4000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000001040166a07a000000000000000000000000f1b50e, d67a9e2cc94ad3c477779e2d4cbfff9029000000000000000000000000dac17f, 958d2ee523a2206206994597c13d831ec700000000000000000000000004334e, 2d54bc794adc9d06f5ec46a130dc15ed1900000000000000000000000004334e, 2d54bc794adc9d06f5ec46a130dc15ed19000000000000000000000000000000, 0000000000000000000000000001312d00000000000000000000000000000000, 00000000000000000000000000000000c0000000000000000000000000000000, 000000000000000000000000000000000b737570657262726964676500000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
65 ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 0000000000000000000000002171e6d3b7964fa9654ce41da8a8ffaff2cc70be, 0000000000000000000000000000000000000000000000000000000000000080, 00010000000000000000000000000000000000000000000000000000000004cf, 0000000000000000000000000000000000000000000000000000000000030d40, 0000000000000000000000000000000000000000000000000000000000000104, 0166a07a000000000000000000000000f1b50ed67a9e2cc94ad3c477779e2d4c, bfff9029000000000000000000000000dac17f958d2ee523a2206206994597c1, 3d831ec700000000000000000000000004334e2d54bc794adc9d06f5ec46a130, dc15ed1900000000000000000000000004334e2d54bc794adc9d06f5ec46a130, dc15ed1900000000000000000000000000000000000000000000000000000000, 01312d0000000000000000000000000000000000000000000000000000000000, 000000c000000000000000000000000000000000000000000000000000000000, 0000000b73757065726272696467650000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
66 ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x0000000000000000000000002171e6d3b7964fa9654ce41da8a8ffaff2cc70be, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x04334E2d...0dc15ED19
0.039283042936197711 Eth
Nonce: 233
0.037353806266398651 Eth
Nonce: 235
0.00192923666979906From: 0 To: 22892026855592066050609947431602401211538835161166308139
0x2171E6d3...ff2Cc70be
(Titan Builder)
44.13136470624273221 Eth44.13261359424273221 Eth0.001248888
0x899F0786...b485d2e97
0xdAC17F95...13D831ec7
0xe7Aa79B5...d3BDA8bD3

Execution Trace

0x04334e2d54bc794adc9d06f5ec46a130dc15ed19.e9ae5c53( )
  • TetherToken.approve( _spender=0x2171E6d3B7964fA9654Ce41dA8a8fFAff2Cc70be, _value=20000000 )
  • L1ChugSplashProxy.838b2520( )
    • ProxyAdmin.STATICCALL( )
    • L1StandardBridge.depositERC20To( _l1Token=0xdAC17F958D2ee523a2206206994597C13D831ec7, _l2Token=0xF1B50eD67A9e2CC94Ad3c477779E2d4cBfFf9029, _to=0x04334E2d54BC794aDc9d06F5ec46A130dc15ED19, _amount=20000000, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
      • TetherToken.01ffc9a7( )
      • TetherToken.01ffc9a7( )
      • TetherToken.transferFrom( _from=0x04334E2d54BC794aDc9d06F5ec46A130dc15ED19, _to=0x2171E6d3B7964fA9654Ce41dA8a8fFAff2Cc70be, _value=20000000 )
      • ResolvedDelegateProxy.3dbb202b( )
        • AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x21971eCC803C30A181ee111803253C869083baF1 )
        • L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x0166A07A000000000000000000000000F1B50ED67A9E2CC94AD3C477779E2D4CBFFF9029000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC700000000000000000000000004334E2D54BC794ADC9D06F5EC46A130DC15ED1900000000000000000000000004334E2D54BC794ADC9D06F5EC46A130DC15ED190000000000000000000000000000000000000000000000000000000001312D0000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B7375706572627269646765000000000000000000000000000000000000000000, _minGasLimit=200000 )
          • Proxy.STATICCALL( )
            • SystemConfig.DELEGATECALL( )
            • Proxy.e9e05c42( )
              • OptimismPortal2.depositTransaction( _to=0x4200000000000000000000000000000000000007, _value=0, _gasLimit=492334, _isCreation=False, _data=0xD764AD0B00010000000000000000000000000000000000000000000000000000000004CF0000000000000000000000002171E6D3B7964FA9654CE41DA8A8FFAFF2CC70BE000000000000000000000000420000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030D4000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000001040166A07A000000000000000000000000F1B50ED67A9E2CC94AD3C477779E2D4CBFFF9029000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC700000000000000000000000004334E2D54BC794ADC9D06F5EC46A130DC15ED1900000000000000000000000004334E2D54BC794ADC9D06F5EC46A130DC15ED190000000000000000000000000000000000000000000000000000000001312D0000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B737570657262726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
                File 1 of 11: TetherToken
                pragma solidity ^0.4.17;
                
                /**
                 * @title SafeMath
                 * @dev Math operations with safety checks that throw on error
                 */
                library SafeMath {
                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        uint256 c = a * b;
                        assert(c / a == b);
                        return c;
                    }
                
                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                        // assert(b > 0); // Solidity automatically throws when dividing by 0
                        uint256 c = a / b;
                        // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                        return c;
                    }
                
                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        assert(b <= a);
                        return a - b;
                    }
                
                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                        uint256 c = a + b;
                        assert(c >= a);
                        return c;
                    }
                }
                
                /**
                 * @title Ownable
                 * @dev The Ownable contract has an owner address, and provides basic authorization control
                 * functions, this simplifies the implementation of "user permissions".
                 */
                contract Ownable {
                    address public owner;
                
                    /**
                      * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                      * account.
                      */
                    function Ownable() public {
                        owner = msg.sender;
                    }
                
                    /**
                      * @dev Throws if called by any account other than the owner.
                      */
                    modifier onlyOwner() {
                        require(msg.sender == owner);
                        _;
                    }
                
                    /**
                    * @dev Allows the current owner to transfer control of the contract to a newOwner.
                    * @param newOwner The address to transfer ownership to.
                    */
                    function transferOwnership(address newOwner) public onlyOwner {
                        if (newOwner != address(0)) {
                            owner = newOwner;
                        }
                    }
                
                }
                
                /**
                 * @title ERC20Basic
                 * @dev Simpler version of ERC20 interface
                 * @dev see https://github.com/ethereum/EIPs/issues/20
                 */
                contract ERC20Basic {
                    uint public _totalSupply;
                    function totalSupply() public constant returns (uint);
                    function balanceOf(address who) public constant returns (uint);
                    function transfer(address to, uint value) public;
                    event Transfer(address indexed from, address indexed to, uint value);
                }
                
                /**
                 * @title ERC20 interface
                 * @dev see https://github.com/ethereum/EIPs/issues/20
                 */
                contract ERC20 is ERC20Basic {
                    function allowance(address owner, address spender) public constant returns (uint);
                    function transferFrom(address from, address to, uint value) public;
                    function approve(address spender, uint value) public;
                    event Approval(address indexed owner, address indexed spender, uint value);
                }
                
                /**
                 * @title Basic token
                 * @dev Basic version of StandardToken, with no allowances.
                 */
                contract BasicToken is Ownable, ERC20Basic {
                    using SafeMath for uint;
                
                    mapping(address => uint) public balances;
                
                    // additional variables for use if transaction fees ever became necessary
                    uint public basisPointsRate = 0;
                    uint public maximumFee = 0;
                
                    /**
                    * @dev Fix for the ERC20 short address attack.
                    */
                    modifier onlyPayloadSize(uint size) {
                        require(!(msg.data.length < size + 4));
                        _;
                    }
                
                    /**
                    * @dev transfer token for a specified address
                    * @param _to The address to transfer to.
                    * @param _value The amount to be transferred.
                    */
                    function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                        uint fee = (_value.mul(basisPointsRate)).div(10000);
                        if (fee > maximumFee) {
                            fee = maximumFee;
                        }
                        uint sendAmount = _value.sub(fee);
                        balances[msg.sender] = balances[msg.sender].sub(_value);
                        balances[_to] = balances[_to].add(sendAmount);
                        if (fee > 0) {
                            balances[owner] = balances[owner].add(fee);
                            Transfer(msg.sender, owner, fee);
                        }
                        Transfer(msg.sender, _to, sendAmount);
                    }
                
                    /**
                    * @dev Gets the balance of the specified address.
                    * @param _owner The address to query the the balance of.
                    * @return An uint representing the amount owned by the passed address.
                    */
                    function balanceOf(address _owner) public constant returns (uint balance) {
                        return balances[_owner];
                    }
                
                }
                
                /**
                 * @title Standard ERC20 token
                 *
                 * @dev Implementation of the basic standard token.
                 * @dev https://github.com/ethereum/EIPs/issues/20
                 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
                 */
                contract StandardToken is BasicToken, ERC20 {
                
                    mapping (address => mapping (address => uint)) public allowed;
                
                    uint public constant MAX_UINT = 2**256 - 1;
                
                    /**
                    * @dev Transfer tokens from one address to another
                    * @param _from address The address which you want to send tokens from
                    * @param _to address The address which you want to transfer to
                    * @param _value uint the amount of tokens to be transferred
                    */
                    function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                        var _allowance = allowed[_from][msg.sender];
                
                        // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                        // if (_value > _allowance) throw;
                
                        uint fee = (_value.mul(basisPointsRate)).div(10000);
                        if (fee > maximumFee) {
                            fee = maximumFee;
                        }
                        if (_allowance < MAX_UINT) {
                            allowed[_from][msg.sender] = _allowance.sub(_value);
                        }
                        uint sendAmount = _value.sub(fee);
                        balances[_from] = balances[_from].sub(_value);
                        balances[_to] = balances[_to].add(sendAmount);
                        if (fee > 0) {
                            balances[owner] = balances[owner].add(fee);
                            Transfer(_from, owner, fee);
                        }
                        Transfer(_from, _to, sendAmount);
                    }
                
                    /**
                    * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                    * @param _spender The address which will spend the funds.
                    * @param _value The amount of tokens to be spent.
                    */
                    function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                
                        // To change the approve amount you first have to reduce the addresses`
                        //  allowance to zero by calling `approve(_spender, 0)` if it is not
                        //  already 0 to mitigate the race condition described here:
                        //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                        require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
                
                        allowed[msg.sender][_spender] = _value;
                        Approval(msg.sender, _spender, _value);
                    }
                
                    /**
                    * @dev Function to check the amount of tokens than an owner allowed to a spender.
                    * @param _owner address The address which owns the funds.
                    * @param _spender address The address which will spend the funds.
                    * @return A uint specifying the amount of tokens still available for the spender.
                    */
                    function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                        return allowed[_owner][_spender];
                    }
                
                }
                
                
                /**
                 * @title Pausable
                 * @dev Base contract which allows children to implement an emergency stop mechanism.
                 */
                contract Pausable is Ownable {
                  event Pause();
                  event Unpause();
                
                  bool public paused = false;
                
                
                  /**
                   * @dev Modifier to make a function callable only when the contract is not paused.
                   */
                  modifier whenNotPaused() {
                    require(!paused);
                    _;
                  }
                
                  /**
                   * @dev Modifier to make a function callable only when the contract is paused.
                   */
                  modifier whenPaused() {
                    require(paused);
                    _;
                  }
                
                  /**
                   * @dev called by the owner to pause, triggers stopped state
                   */
                  function pause() onlyOwner whenNotPaused public {
                    paused = true;
                    Pause();
                  }
                
                  /**
                   * @dev called by the owner to unpause, returns to normal state
                   */
                  function unpause() onlyOwner whenPaused public {
                    paused = false;
                    Unpause();
                  }
                }
                
                contract BlackList is Ownable, BasicToken {
                
                    /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                    function getBlackListStatus(address _maker) external constant returns (bool) {
                        return isBlackListed[_maker];
                    }
                
                    function getOwner() external constant returns (address) {
                        return owner;
                    }
                
                    mapping (address => bool) public isBlackListed;
                    
                    function addBlackList (address _evilUser) public onlyOwner {
                        isBlackListed[_evilUser] = true;
                        AddedBlackList(_evilUser);
                    }
                
                    function removeBlackList (address _clearedUser) public onlyOwner {
                        isBlackListed[_clearedUser] = false;
                        RemovedBlackList(_clearedUser);
                    }
                
                    function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                        require(isBlackListed[_blackListedUser]);
                        uint dirtyFunds = balanceOf(_blackListedUser);
                        balances[_blackListedUser] = 0;
                        _totalSupply -= dirtyFunds;
                        DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                    }
                
                    event DestroyedBlackFunds(address _blackListedUser, uint _balance);
                
                    event AddedBlackList(address _user);
                
                    event RemovedBlackList(address _user);
                
                }
                
                contract UpgradedStandardToken is StandardToken{
                    // those methods are called by the legacy contract
                    // and they must ensure msg.sender to be the contract address
                    function transferByLegacy(address from, address to, uint value) public;
                    function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                    function approveByLegacy(address from, address spender, uint value) public;
                }
                
                contract TetherToken is Pausable, StandardToken, BlackList {
                
                    string public name;
                    string public symbol;
                    uint public decimals;
                    address public upgradedAddress;
                    bool public deprecated;
                
                    //  The contract can be initialized with a number of tokens
                    //  All the tokens are deposited to the owner address
                    //
                    // @param _balance Initial supply of the contract
                    // @param _name Token Name
                    // @param _symbol Token symbol
                    // @param _decimals Token decimals
                    function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                        _totalSupply = _initialSupply;
                        name = _name;
                        symbol = _symbol;
                        decimals = _decimals;
                        balances[owner] = _initialSupply;
                        deprecated = false;
                    }
                
                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                    function transfer(address _to, uint _value) public whenNotPaused {
                        require(!isBlackListed[msg.sender]);
                        if (deprecated) {
                            return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                        } else {
                            return super.transfer(_to, _value);
                        }
                    }
                
                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                    function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                        require(!isBlackListed[_from]);
                        if (deprecated) {
                            return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                        } else {
                            return super.transferFrom(_from, _to, _value);
                        }
                    }
                
                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                    function balanceOf(address who) public constant returns (uint) {
                        if (deprecated) {
                            return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                        } else {
                            return super.balanceOf(who);
                        }
                    }
                
                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                    function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                        if (deprecated) {
                            return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                        } else {
                            return super.approve(_spender, _value);
                        }
                    }
                
                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                    function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                        if (deprecated) {
                            return StandardToken(upgradedAddress).allowance(_owner, _spender);
                        } else {
                            return super.allowance(_owner, _spender);
                        }
                    }
                
                    // deprecate current contract in favour of a new one
                    function deprecate(address _upgradedAddress) public onlyOwner {
                        deprecated = true;
                        upgradedAddress = _upgradedAddress;
                        Deprecate(_upgradedAddress);
                    }
                
                    // deprecate current contract if favour of a new one
                    function totalSupply() public constant returns (uint) {
                        if (deprecated) {
                            return StandardToken(upgradedAddress).totalSupply();
                        } else {
                            return _totalSupply;
                        }
                    }
                
                    // Issue a new amount of tokens
                    // these tokens are deposited into the owner address
                    //
                    // @param _amount Number of tokens to be issued
                    function issue(uint amount) public onlyOwner {
                        require(_totalSupply + amount > _totalSupply);
                        require(balances[owner] + amount > balances[owner]);
                
                        balances[owner] += amount;
                        _totalSupply += amount;
                        Issue(amount);
                    }
                
                    // Redeem tokens.
                    // These tokens are withdrawn from the owner address
                    // if the balance must be enough to cover the redeem
                    // or the call will fail.
                    // @param _amount Number of tokens to be issued
                    function redeem(uint amount) public onlyOwner {
                        require(_totalSupply >= amount);
                        require(balances[owner] >= amount);
                
                        _totalSupply -= amount;
                        balances[owner] -= amount;
                        Redeem(amount);
                    }
                
                    function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                        // Ensure transparency by hardcoding limit beyond which fees can never be added
                        require(newBasisPoints < 20);
                        require(newMaxFee < 50);
                
                        basisPointsRate = newBasisPoints;
                        maximumFee = newMaxFee.mul(10**decimals);
                
                        Params(basisPointsRate, maximumFee);
                    }
                
                    // Called when new token are issued
                    event Issue(uint amount);
                
                    // Called when tokens are redeemed
                    event Redeem(uint amount);
                
                    // Called when contract is deprecated
                    event Deprecate(address newAddress);
                
                    // Called if contract ever adds fees
                    event Params(uint feeBasisPoints, uint maxFee);
                }

                File 2 of 11: L1ChugSplashProxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title IL1ChugSplashDeployer
                 */
                interface IL1ChugSplashDeployer {
                    function isUpgrading() external view returns (bool);
                }
                /**
                 * @custom:legacy
                 * @title L1ChugSplashProxy
                 * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
                 *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
                 *
                 *         Note for future developers: do NOT make anything in this contract 'public' unless you
                 *         know what you're doing. Anything public can potentially have a function signature that
                 *         conflicts with a signature attached to the implementation contract. Public functions
                 *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
                 *         reason not to have that modifier. And there almost certainly is not a good reason to not
                 *         have that modifier. Beware!
                 */
                contract L1ChugSplashProxy {
                    /**
                     * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                     *         contract, the appended bytecode will be deployed as given.
                     */
                    bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice Blocks a function from being called when the parent signals that the system should
                     *         be paused via an isUpgrading function.
                     */
                    modifier onlyWhenNotPaused() {
                        address owner = _getOwner();
                        // We do a low-level call because there's no guarantee that the owner actually *is* an
                        // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                        // it turns out that it isn't the right type of contract.
                        (bool success, bytes memory returndata) = owner.staticcall(
                            abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                        );
                        // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                        // can just continue as normal. We also expect that the return value is exactly 32 bytes
                        // long. If this isn't the case then we can safely ignore the result.
                        if (success && returndata.length == 32) {
                            // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                            // case that the isUpgrading function returned something other than 0 or 1. But we only
                            // really care about the case where this value is 0 (= false).
                            uint256 ret = abi.decode(returndata, (uint256));
                            require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                        }
                        _;
                    }
                    /**
                     * @notice Makes a proxy call instead of triggering the given function when the caller is
                     *         either the owner or the zero address. Caller can only ever be the zero address if
                     *         this function is being called off-chain via eth_call, which is totally fine and can
                     *         be convenient for client-side tooling. Avoids situations where the proxy and
                     *         implementation share a sighash and the proxy function ends up being called instead
                     *         of the implementation one.
                     *
                     *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                     *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                     *         real context then we have much bigger problems. Primary reason to include this
                     *         additional allowed sender is because the owner address can be changed dynamically
                     *         and we do not want clients to have to keep track of the current owner in order to
                     *         make an eth_call that doesn't trigger the proxied contract.
                     */
                    // slither-disable-next-line incorrect-modifier
                    modifier proxyCallIfNotOwner() {
                        if (msg.sender == _getOwner() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @param _owner Address of the initial contract owner.
                     */
                    constructor(address _owner) {
                        _setOwner(_owner);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Sets the code that should be running behind this proxy.
                     *
                     *         Note: This scheme is a bit different from the standard proxy scheme where one would
                     *         typically deploy the code separately and then set the implementation address. We're
                     *         doing it this way because it gives us a lot more freedom on the client side. Can
                     *         only be triggered by the contract owner.
                     *
                     * @param _code New contract code to run inside this contract.
                     */
                    function setCode(bytes memory _code) external proxyCallIfNotOwner {
                        // Get the code hash of the current implementation.
                        address implementation = _getImplementation();
                        // If the code hash matches the new implementation then we return early.
                        if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                            return;
                        }
                        // Create the deploycode by appending the magic prefix.
                        bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                        // Deploy the code and set the new implementation address.
                        address newImplementation;
                        assembly {
                            newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                        }
                        // Check that the code was actually deployed correctly. I'm not sure if you can ever
                        // actually fail this check. Should only happen if the contract creation from above runs
                        // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                        // should be doing this check anyway though.
                        require(
                            _getAccountCodeHash(newImplementation) == keccak256(_code),
                            "L1ChugSplashProxy: code was not correctly deployed"
                        );
                        _setImplementation(newImplementation);
                    }
                    /**
                     * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                     *         perform upgrades in a more transparent way. Only callable by the owner.
                     *
                     * @param _key   Storage key to modify.
                     * @param _value New value for the storage key.
                     */
                    function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                        assembly {
                            sstore(_key, _value)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function setOwner(address _owner) external proxyCallIfNotOwner {
                        _setOwner(_owner);
                    }
                    /**
                     * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                     *         making an eth_call and setting the "from" address to address(0).
                     *
                     * @return Owner address.
                     */
                    function getOwner() external proxyCallIfNotOwner returns (address) {
                        return _getOwner();
                    }
                    /**
                     * @notice Queries the implementation address. Can only be called by the owner OR by making an
                     *         eth_call and setting the "from" address to address(0).
                     *
                     * @return Implementation address.
                     */
                    function getImplementation() external proxyCallIfNotOwner returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function _setOwner(address _owner) internal {
                        assembly {
                            sstore(OWNER_KEY, _owner)
                        }
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal onlyWhenNotPaused {
                        address implementation = _getImplementation();
                        require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address implementation;
                        assembly {
                            implementation := sload(IMPLEMENTATION_KEY)
                        }
                        return implementation;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getOwner() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                    /**
                     * @notice Gets the code hash for a given account.
                     *
                     * @param _account Address of the account to get a code hash for.
                     *
                     * @return Code hash for the account.
                     */
                    function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                        bytes32 codeHash;
                        assembly {
                            codeHash := extcodehash(_account)
                        }
                        return codeHash;
                    }
                }
                

                File 3 of 11: Proxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Constants } from "../libraries/Constants.sol";
                /// @title Proxy
                /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                ///         if the caller is address(0), meaning that the call originated from an off-chain
                ///         simulation.
                contract Proxy {
                    /// @notice An event that is emitted each time the implementation is changed. This event is part
                    ///         of the EIP-1967 specification.
                    /// @param implementation The address of the implementation contract
                    event Upgraded(address indexed implementation);
                    /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                    ///         EIP-1967 specification.
                    /// @param previousAdmin The previous owner of the contract
                    /// @param newAdmin      The new owner of the contract
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                    ///         eth_call to interact with this proxy without needing to use low-level storage
                    ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                    ///         normal EVM execution.
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                    ///         EIP-1967 admin storage slot so that accidental storage collision with the
                    ///         implementation is not possible.
                    /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                    ///               transparent proxy interface.
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /// @notice Set the implementation contract address. The code at the given address will execute
                    ///         when this contract is called.
                    /// @param _implementation Address of the implementation contract.
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                    ///         atomic execution of initialization-based upgrades.
                    /// @param _implementation Address of the implementation contract.
                    /// @param _data           Calldata to delegatecall the new implementation with.
                    function upgradeToAndCall(
                        address _implementation,
                        bytes calldata _data
                    )
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                    /// @param _admin New owner of the proxy contract.
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /// @notice Gets the owner of the proxy contract.
                    /// @return Owner address.
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    //// @notice Queries the implementation address.
                    /// @return Implementation address.
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /// @notice Sets the implementation address.
                    /// @param _implementation New implementation address.
                    function _setImplementation(address _implementation) internal {
                        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                        assembly {
                            sstore(proxyImplementation, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /// @notice Changes the owner of the proxy contract.
                    /// @param _admin New owner of the proxy contract.
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                        assembly {
                            sstore(proxyOwner, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /// @notice Performs the proxy call via a delegatecall.
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) { revert(0x0, returndatasize()) }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /// @notice Queries the implementation address.
                    /// @return Implementation address.
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                        assembly {
                            impl := sload(proxyImplementation)
                        }
                        return impl;
                    }
                    /// @notice Queries the owner of the proxy contract.
                    /// @return Owner address.
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                        assembly {
                            owner := sload(proxyOwner)
                        }
                        return owner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { ResourceMetering } from "../L1/ResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
                import { Burn } from "../libraries/Burn.sol";
                import { Arithmetic } from "../libraries/Arithmetic.sol";
                /// @custom:upgradeable
                /// @title ResourceMetering
                /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
                ///         updates automatically based on current demand.
                abstract contract ResourceMetering is Initializable {
                    /// @notice Represents the various parameters that control the way in which resources are
                    ///         metered. Corresponds to the EIP-1559 resource metering system.
                    /// @custom:field prevBaseFee   Base fee from the previous block(s).
                    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                    ///         market. These values should be set with care as it is possible to set them in
                    ///         a way that breaks the deposit gas market. The target resource limit is defined as
                    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                    ///         single word. There is additional space for additions in the future.
                    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                    ///                                            can be purchased per block.
                    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                    ///                                            the resource limit.
                    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                    ///                                            value.
                    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                    ///                                            transaction. This should be set to the same
                    ///                                            number that the op-node sets as the gas limit
                    ///                                            for the system transaction.
                    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                    ///                                            value.
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    /// @notice EIP-1559 style gas parameters.
                    ResourceParams public params;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    uint256[48] private __gap;
                    /// @notice Meters access to a function based an amount of a requested resource.
                    /// @param _amount Amount of the resource requested.
                    modifier metered(uint64 _amount) {
                        // Record initial gas amount so we can refund for it later.
                        uint256 initialGas = gasleft();
                        // Run the underlying function.
                        _;
                        // Run the metering function.
                        _metered(_amount, initialGas);
                    }
                    /// @notice An internal function that holds all of the logic for metering a resource.
                    /// @param _amount     Amount of the resource requested.
                    /// @param _initialGas The amount of gas before any modifier execution.
                    function _metered(uint64 _amount, uint256 _initialGas) internal {
                        // Update block number and base fee if necessary.
                        uint256 blockDiff = block.number - params.prevBlockNum;
                        ResourceConfig memory config = _resourceConfig();
                        int256 targetResourceLimit =
                            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                        if (blockDiff > 0) {
                            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                            // at which deposits can be created and therefore limit the potential for deposits to
                            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                            // Update base fee by adding the base fee delta and clamp the resulting value between
                            // min and max.
                            int256 newBaseFee = Arithmetic.clamp({
                                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                            // If we skipped more than one block, we also need to account for every empty block.
                            // Empty block means there was no demand for deposits in that block, so we should
                            // reflect this lack of demand in the fee.
                            if (blockDiff > 1) {
                                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                                // between min and max.
                                newBaseFee = Arithmetic.clamp({
                                    _value: Arithmetic.cdexp({
                                        _coefficient: newBaseFee,
                                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                        _exponent: int256(blockDiff - 1)
                                    }),
                                    _min: int256(uint256(config.minimumBaseFee)),
                                    _max: int256(uint256(config.maximumBaseFee))
                                });
                            }
                            // Update new base fee, reset bought gas, and update block number.
                            params.prevBaseFee = uint128(uint256(newBaseFee));
                            params.prevBoughtGas = 0;
                            params.prevBlockNum = uint64(block.number);
                        }
                        // Make sure we can actually buy the resource amount requested by the user.
                        params.prevBoughtGas += _amount;
                        require(
                            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                            "ResourceMetering: cannot buy more gas than available gas limit"
                        );
                        // Determine the amount of ETH to be paid.
                        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                        // during any 1 day period in the last 5 years, so should be fine.
                        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                        // Give the user a refund based on the amount of gas they used to do all of the work up to
                        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                        // effectively like a dynamic stipend (with a minimum value).
                        uint256 usedGas = _initialGas - gasleft();
                        if (gasCost > usedGas) {
                            Burn.gas(gasCost - usedGas);
                        }
                    }
                    /// @notice Virtual function that returns the resource config.
                    ///         Contracts that inherit this contract must implement this function.
                    /// @return ResourceConfig
                    function _resourceConfig() internal virtual returns (ResourceConfig memory);
                    /// @notice Sets initial resource parameter values.
                    ///         This function must either be called by the initializer function of an upgradeable
                    ///         child contract.
                    // solhint-disable-next-line func-name-mixedcase
                    function __ResourceMetering_init() internal onlyInitializing {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library Math {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`.
                        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1;
                        uint256 x = a;
                        if (x >> 128 > 0) {
                            x >>= 128;
                            result <<= 64;
                        }
                        if (x >> 64 > 0) {
                            x >>= 64;
                            result <<= 32;
                        }
                        if (x >> 32 > 0) {
                            x >>= 32;
                            result <<= 16;
                        }
                        if (x >> 16 > 0) {
                            x >>= 16;
                            result <<= 8;
                        }
                        if (x >> 8 > 0) {
                            x >>= 8;
                            result <<= 4;
                        }
                        if (x >> 4 > 0) {
                            x >>= 4;
                            result <<= 2;
                        }
                        if (x >> 2 > 0) {
                            result <<= 1;
                        }
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        uint256 result = sqrt(a);
                        if (rounding == Rounding.Up && result * result < a) {
                            result += 1;
                        }
                        return result;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /// @title Burn
                /// @notice Utilities for burning stuff.
                library Burn {
                    /// @notice Burns a given amount of ETH.
                    /// @param _amount Amount of ETH to burn.
                    function eth(uint256 _amount) internal {
                        new Burner{ value: _amount }();
                    }
                    /// @notice Burns a given amount of gas.
                    /// @param _amount Amount of gas to burn.
                    function gas(uint256 _amount) internal view {
                        uint256 i = 0;
                        uint256 initialGas = gasleft();
                        while (initialGas - gasleft() < _amount) {
                            ++i;
                        }
                    }
                }
                /// @title Burner
                /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
                ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
                ///         from the circulating supply.
                contract Burner {
                    constructor() payable {
                        selfdestruct(payable(address(this)));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
                import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
                /// @title Arithmetic
                /// @notice Even more math than before.
                library Arithmetic {
                    /// @notice Clamps a value between a minimum and maximum.
                    /// @param _value The value to clamp.
                    /// @param _min   The minimum value.
                    /// @param _max   The maximum value.
                    /// @return The clamped value.
                    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                        return SignedMath.min(SignedMath.max(_value, _min), _max);
                    }
                    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                    ///         Returns the result of: c * (1 - 1/d)^exp.
                    /// @param _coefficient Coefficient of the function.
                    /// @param _denominator Fractional denominator.
                    /// @param _exponent    Power function exponent.
                    /// @return Result of c * (1 - 1/d)^exp.
                    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard signed math utilities missing in the Solidity language.
                 */
                library SignedMath {
                    /**
                     * @dev Returns the largest of two signed numbers.
                     */
                    function max(int256 a, int256 b) internal pure returns (int256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two signed numbers.
                     */
                    function min(int256 a, int256 b) internal pure returns (int256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two signed numbers without overflow.
                     * The result is rounded towards zero.
                     */
                    function average(int256 a, int256 b) internal pure returns (int256) {
                        // Formula from the book "Hacker's Delight"
                        int256 x = (a & b) + ((a ^ b) >> 1);
                        return x + (int256(uint256(x) >> 255) & (a ^ b));
                    }
                    /**
                     * @dev Returns the absolute unsigned value of a signed value.
                     */
                    function abs(int256 n) internal pure returns (uint256) {
                        unchecked {
                            // must be unchecked in order to support `n = type(int256).min`
                            return uint256(n >= 0 ? n : -n);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.8.0;
                /// @notice Arithmetic library with operations for fixed-point numbers.
                /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                library FixedPointMathLib {
                    /*//////////////////////////////////////////////////////////////
                                    SIMPLIFIED FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                    }
                    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                    }
                    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                    }
                    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                    }
                    function powWad(int256 x, int256 y) internal pure returns (int256) {
                        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                    }
                    function expWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            // When the result is < 0.5 we return zero. This happens when
                            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                            if (x <= -42139678854452767551) return 0;
                            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                            // for more intermediate precision and a binary basis. This base conversion
                            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                            x = (x << 78) / 5**18;
                            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                            x = x - k * 54916777467707473351141471128;
                            // k is in the range [-61, 195].
                            // Evaluate using a (6, 7)-term rational approximation.
                            // p is made monic, we'll multiply by a scale factor later.
                            int256 y = x + 1346386616545796478920950773328;
                            y = ((y * x) >> 96) + 57155421227552351082224309758442;
                            int256 p = y + x - 94201549194550492254356042504812;
                            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                            p = p * x + (4385272521454847904659076985693276 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            int256 q = x - 2855989394907223263936484059900;
                            q = ((q * x) >> 96) + 50020603652535783019961831881945;
                            q = ((q * x) >> 96) - 533845033583426703283633433725380;
                            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                            q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial won't have zeros in the domain as all its roots are complex.
                                // No scaling is necessary because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r should be in the range (0.09, 0.25) * 2**96.
                            // We now need to multiply r by:
                            // * the scale factor s = ~6.031367120.
                            // * the 2**k factor from the range reduction.
                            // * the 1e18 / 2**96 factor for base conversion.
                            // We do this all at once, with an intermediate result in 2**213
                            // basis, so the final right shift is always by a positive amount.
                            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                        }
                    }
                    function lnWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            require(x > 0, "UNDEFINED");
                            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                            // We do this by multiplying by 2**96 / 10**18. But since
                            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                            // and add ln(2**96 / 10**18) at the end.
                            // Reduce range of x to (1, 2) * 2**96
                            // ln(2^k * x) = k * ln(2) + ln(x)
                            int256 k = int256(log2(uint256(x))) - 96;
                            x <<= uint256(159 - k);
                            x = int256(uint256(x) >> 159);
                            // Evaluate using a (8, 8)-term rational approximation.
                            // p is made monic, we will multiply by a scale factor later.
                            int256 p = x + 3273285459638523848632254066296;
                            p = ((p * x) >> 96) + 24828157081833163892658089445524;
                            p = ((p * x) >> 96) + 43456485725739037958740375743393;
                            p = ((p * x) >> 96) - 11111509109440967052023855526967;
                            p = ((p * x) >> 96) - 45023709667254063763336534515857;
                            p = ((p * x) >> 96) - 14706773417378608786704636184526;
                            p = p * x - (795164235651350426258249787498 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            // q is monic by convention.
                            int256 q = x + 5573035233440673466300451813936;
                            q = ((q * x) >> 96) + 71694874799317883764090561454958;
                            q = ((q * x) >> 96) + 283447036172924575727196451306956;
                            q = ((q * x) >> 96) + 401686690394027663651624208769553;
                            q = ((q * x) >> 96) + 204048457590392012362485061816622;
                            q = ((q * x) >> 96) + 31853899698501571402653359427138;
                            q = ((q * x) >> 96) + 909429971244387300277376558375;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial is known not to have zeros in the domain.
                                // No scaling required because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r is in the range (0, 0.125) * 2**96
                            // Finalization, we need to:
                            // * multiply by the scale factor s = 5.549…
                            // * add ln(2**96 / 10**18)
                            // * add k * ln(2)
                            // * multiply by 10**18 / 2**96 = 5**18 >> 78
                            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                            r *= 1677202110996718588342820967067443963516166;
                            // add ln(2) * k * 5e18 * 2**192
                            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                            // add ln(2**96 / 10**18) * 5e18 * 2**192
                            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                            // base conversion: mul 2**18 / 2**192
                            r >>= 174;
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                    LOW LEVEL FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    function mulDivDown(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // Divide z by the denominator.
                            z := div(z, denominator)
                        }
                    }
                    function mulDivUp(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // First, divide z - 1 by the denominator and add 1.
                            // We allow z - 1 to underflow if z is 0, because we multiply the
                            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                        }
                    }
                    function rpow(
                        uint256 x,
                        uint256 n,
                        uint256 scalar
                    ) internal pure returns (uint256 z) {
                        assembly {
                            switch x
                            case 0 {
                                switch n
                                case 0 {
                                    // 0 ** 0 = 1
                                    z := scalar
                                }
                                default {
                                    // 0 ** n = 0
                                    z := 0
                                }
                            }
                            default {
                                switch mod(n, 2)
                                case 0 {
                                    // If n is even, store scalar in z for now.
                                    z := scalar
                                }
                                default {
                                    // If n is odd, store x in z for now.
                                    z := x
                                }
                                // Shifting right by 1 is like dividing by 2.
                                let half := shr(1, scalar)
                                for {
                                    // Shift n right by 1 before looping to halve it.
                                    n := shr(1, n)
                                } n {
                                    // Shift n right by 1 each iteration to halve it.
                                    n := shr(1, n)
                                } {
                                    // Revert immediately if x ** 2 would overflow.
                                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                                    if shr(128, x) {
                                        revert(0, 0)
                                    }
                                    // Store x squared.
                                    let xx := mul(x, x)
                                    // Round to the nearest number.
                                    let xxRound := add(xx, half)
                                    // Revert if xx + half overflowed.
                                    if lt(xxRound, xx) {
                                        revert(0, 0)
                                    }
                                    // Set x to scaled xxRound.
                                    x := div(xxRound, scalar)
                                    // If n is even:
                                    if mod(n, 2) {
                                        // Compute z * x.
                                        let zx := mul(z, x)
                                        // If z * x overflowed:
                                        if iszero(eq(div(zx, x), z)) {
                                            // Revert if x is non-zero.
                                            if iszero(iszero(x)) {
                                                revert(0, 0)
                                            }
                                        }
                                        // Round to the nearest number.
                                        let zxRound := add(zx, half)
                                        // Revert if zx + half overflowed.
                                        if lt(zxRound, zx) {
                                            revert(0, 0)
                                        }
                                        // Return properly scaled zxRound.
                                        z := div(zxRound, scalar)
                                    }
                                }
                            }
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                        GENERAL NUMBER UTILITIES
                    //////////////////////////////////////////////////////////////*/
                    function sqrt(uint256 x) internal pure returns (uint256 z) {
                        assembly {
                            let y := x // We start y at x, which will help us make our initial estimate.
                            z := 181 // The "correct" value is 1, but this saves a multiplication later.
                            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                            // We check y >= 2^(k + 8) but shift right by k bits
                            // each branch to ensure that if x >= 256, then y >= 256.
                            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                                y := shr(128, y)
                                z := shl(64, z)
                            }
                            if iszero(lt(y, 0x1000000000000000000)) {
                                y := shr(64, y)
                                z := shl(32, z)
                            }
                            if iszero(lt(y, 0x10000000000)) {
                                y := shr(32, y)
                                z := shl(16, z)
                            }
                            if iszero(lt(y, 0x1000000)) {
                                y := shr(16, y)
                                z := shl(8, z)
                            }
                            // Goal was to get z*z*y within a small factor of x. More iterations could
                            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                            // That's not possible if x < 256 but we can just verify those cases exhaustively.
                            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                            // There is no overflow risk here since y < 2^136 after the first branch above.
                            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            // If x+1 is a perfect square, the Babylonian method cycles between
                            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                            z := sub(z, lt(div(x, z), z))
                        }
                    }
                    function log2(uint256 x) internal pure returns (uint256 r) {
                        require(x > 0, "UNDEFINED");
                        assembly {
                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            r := or(r, shl(2, lt(0xf, shr(r, x))))
                            r := or(r, shl(1, lt(0x3, shr(r, x))))
                            r := or(r, lt(0x1, shr(r, x)))
                        }
                    }
                }
                

                File 4 of 11: ResolvedDelegateProxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { AddressManager } from "./AddressManager.sol";
                /**
                 * @custom:legacy
                 * @title ResolvedDelegateProxy
                 * @notice ResolvedDelegateProxy is a legacy proxy contract that makes use of the AddressManager to
                 *         resolve the implementation address. We're maintaining this contract for backwards
                 *         compatibility so we can manage all legacy proxies where necessary.
                 */
                contract ResolvedDelegateProxy {
                    /**
                     * @notice Mapping used to store the implementation name that corresponds to this contract. A
                     *         mapping was originally used as a way to bypass the same issue normally solved by
                     *         storing the implementation address in a specific storage slot that does not conflict
                     *         with any other storage slot. Generally NOT a safe solution but works as long as the
                     *         implementation does not also keep a mapping in the first storage slot.
                     */
                    mapping(address => string) private implementationName;
                    /**
                     * @notice Mapping used to store the address of the AddressManager contract where the
                     *         implementation address will be resolved from. Same concept here as with the above
                     *         mapping. Also generally unsafe but fine if the implementation doesn't keep a mapping
                     *         in the second storage slot.
                     */
                    mapping(address => AddressManager) private addressManager;
                    /**
                     * @param _addressManager  Address of the AddressManager.
                     * @param _implementationName implementationName of the contract to proxy to.
                     */
                    constructor(AddressManager _addressManager, string memory _implementationName) {
                        addressManager[address(this)] = _addressManager;
                        implementationName[address(this)] = _implementationName;
                    }
                    /**
                     * @notice Fallback, performs a delegatecall to the resolved implementation address.
                     */
                    // solhint-disable-next-line no-complex-fallback
                    fallback() external payable {
                        address target = addressManager[address(this)].getAddress(
                            (implementationName[address(this)])
                        );
                        require(target != address(0), "ResolvedDelegateProxy: target address must be initialized");
                        // slither-disable-next-line controlled-delegatecall
                        (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                        if (success == true) {
                            assembly {
                                return(add(returndata, 0x20), mload(returndata))
                            }
                        } else {
                            assembly {
                                revert(add(returndata, 0x20), mload(returndata))
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @custom:legacy
                 * @title AddressManager
                 * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
                 *         system to manage a registry of string names to addresses. We now use a more standard
                 *         proxy system instead, but this contract is still necessary for backwards compatibility
                 *         with several older contracts.
                 */
                contract AddressManager is Ownable {
                    /**
                     * @notice Mapping of the hashes of string names to addresses.
                     */
                    mapping(bytes32 => address) private addresses;
                    /**
                     * @notice Emitted when an address is modified in the registry.
                     *
                     * @param name       String name being set in the registry.
                     * @param newAddress Address set for the given name.
                     * @param oldAddress Address that was previously set for the given name.
                     */
                    event AddressSet(string indexed name, address newAddress, address oldAddress);
                    /**
                     * @notice Changes the address associated with a particular name.
                     *
                     * @param _name    String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(_name, _address, oldAddress);
                    }
                    /**
                     * @notice Retrieves the address associated with a given name.
                     *
                     * @param _name Name to retrieve an address for.
                     *
                     * @return Address associated with the given name.
                     */
                    function getAddress(string memory _name) external view returns (address) {
                        return addresses[_getNameHash(_name)];
                    }
                    /**
                     * @notice Computes the hash of a name.
                     *
                     * @param _name Name to compute a hash for.
                     *
                     * @return Hash of the given name.
                     */
                    function _getNameHash(string memory _name) internal pure returns (bytes32) {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                

                File 5 of 11: ProxyAdmin
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @custom:legacy
                 * @title AddressManager
                 * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
                 *         system to manage a registry of string names to addresses. We now use a more standard
                 *         proxy system instead, but this contract is still necessary for backwards compatibility
                 *         with several older contracts.
                 */
                contract AddressManager is Ownable {
                    /**
                     * @notice Mapping of the hashes of string names to addresses.
                     */
                    mapping(bytes32 => address) private addresses;
                    /**
                     * @notice Emitted when an address is modified in the registry.
                     *
                     * @param name       String name being set in the registry.
                     * @param newAddress Address set for the given name.
                     * @param oldAddress Address that was previously set for the given name.
                     */
                    event AddressSet(string indexed name, address newAddress, address oldAddress);
                    /**
                     * @notice Changes the address associated with a particular name.
                     *
                     * @param _name    String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(_name, _address, oldAddress);
                    }
                    /**
                     * @notice Retrieves the address associated with a given name.
                     *
                     * @param _name Name to retrieve an address for.
                     *
                     * @return Address associated with the given name.
                     */
                    function getAddress(string memory _name) external view returns (address) {
                        return addresses[_getNameHash(_name)];
                    }
                    /**
                     * @notice Computes the hash of a name.
                     *
                     * @param _name Name to compute a hash for.
                     *
                     * @return Hash of the given name.
                     */
                    function _getNameHash(string memory _name) internal pure returns (bytes32) {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title IL1ChugSplashDeployer
                 */
                interface IL1ChugSplashDeployer {
                    function isUpgrading() external view returns (bool);
                }
                /**
                 * @custom:legacy
                 * @title L1ChugSplashProxy
                 * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
                 *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
                 *
                 *         Note for future developers: do NOT make anything in this contract 'public' unless you
                 *         know what you're doing. Anything public can potentially have a function signature that
                 *         conflicts with a signature attached to the implementation contract. Public functions
                 *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
                 *         reason not to have that modifier. And there almost certainly is not a good reason to not
                 *         have that modifier. Beware!
                 */
                contract L1ChugSplashProxy {
                    /**
                     * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                     *         contract, the appended bytecode will be deployed as given.
                     */
                    bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice Blocks a function from being called when the parent signals that the system should
                     *         be paused via an isUpgrading function.
                     */
                    modifier onlyWhenNotPaused() {
                        address owner = _getOwner();
                        // We do a low-level call because there's no guarantee that the owner actually *is* an
                        // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                        // it turns out that it isn't the right type of contract.
                        (bool success, bytes memory returndata) = owner.staticcall(
                            abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                        );
                        // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                        // can just continue as normal. We also expect that the return value is exactly 32 bytes
                        // long. If this isn't the case then we can safely ignore the result.
                        if (success && returndata.length == 32) {
                            // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                            // case that the isUpgrading function returned something other than 0 or 1. But we only
                            // really care about the case where this value is 0 (= false).
                            uint256 ret = abi.decode(returndata, (uint256));
                            require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                        }
                        _;
                    }
                    /**
                     * @notice Makes a proxy call instead of triggering the given function when the caller is
                     *         either the owner or the zero address. Caller can only ever be the zero address if
                     *         this function is being called off-chain via eth_call, which is totally fine and can
                     *         be convenient for client-side tooling. Avoids situations where the proxy and
                     *         implementation share a sighash and the proxy function ends up being called instead
                     *         of the implementation one.
                     *
                     *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                     *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                     *         real context then we have much bigger problems. Primary reason to include this
                     *         additional allowed sender is because the owner address can be changed dynamically
                     *         and we do not want clients to have to keep track of the current owner in order to
                     *         make an eth_call that doesn't trigger the proxied contract.
                     */
                    // slither-disable-next-line incorrect-modifier
                    modifier proxyCallIfNotOwner() {
                        if (msg.sender == _getOwner() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @param _owner Address of the initial contract owner.
                     */
                    constructor(address _owner) {
                        _setOwner(_owner);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Sets the code that should be running behind this proxy.
                     *
                     *         Note: This scheme is a bit different from the standard proxy scheme where one would
                     *         typically deploy the code separately and then set the implementation address. We're
                     *         doing it this way because it gives us a lot more freedom on the client side. Can
                     *         only be triggered by the contract owner.
                     *
                     * @param _code New contract code to run inside this contract.
                     */
                    function setCode(bytes memory _code) external proxyCallIfNotOwner {
                        // Get the code hash of the current implementation.
                        address implementation = _getImplementation();
                        // If the code hash matches the new implementation then we return early.
                        if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                            return;
                        }
                        // Create the deploycode by appending the magic prefix.
                        bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                        // Deploy the code and set the new implementation address.
                        address newImplementation;
                        assembly {
                            newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                        }
                        // Check that the code was actually deployed correctly. I'm not sure if you can ever
                        // actually fail this check. Should only happen if the contract creation from above runs
                        // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                        // should be doing this check anyway though.
                        require(
                            _getAccountCodeHash(newImplementation) == keccak256(_code),
                            "L1ChugSplashProxy: code was not correctly deployed"
                        );
                        _setImplementation(newImplementation);
                    }
                    /**
                     * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                     *         perform upgrades in a more transparent way. Only callable by the owner.
                     *
                     * @param _key   Storage key to modify.
                     * @param _value New value for the storage key.
                     */
                    function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                        assembly {
                            sstore(_key, _value)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function setOwner(address _owner) external proxyCallIfNotOwner {
                        _setOwner(_owner);
                    }
                    /**
                     * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                     *         making an eth_call and setting the "from" address to address(0).
                     *
                     * @return Owner address.
                     */
                    function getOwner() external proxyCallIfNotOwner returns (address) {
                        return _getOwner();
                    }
                    /**
                     * @notice Queries the implementation address. Can only be called by the owner OR by making an
                     *         eth_call and setting the "from" address to address(0).
                     *
                     * @return Implementation address.
                     */
                    function getImplementation() external proxyCallIfNotOwner returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function _setOwner(address _owner) internal {
                        assembly {
                            sstore(OWNER_KEY, _owner)
                        }
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal onlyWhenNotPaused {
                        address implementation = _getImplementation();
                        require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address implementation;
                        assembly {
                            implementation := sload(IMPLEMENTATION_KEY)
                        }
                        return implementation;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getOwner() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                    /**
                     * @notice Gets the code hash for a given account.
                     *
                     * @param _account Address of the account to get a code hash for.
                     *
                     * @return Code hash for the account.
                     */
                    function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                        bytes32 codeHash;
                        assembly {
                            codeHash := extcodehash(_account)
                        }
                        return codeHash;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title Proxy
                 * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                 *         if the caller is address(0), meaning that the call originated from an off-chain
                 *         simulation.
                 */
                contract Proxy {
                    /**
                     * @notice The storage slot that holds the address of the implementation.
                     *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice The storage slot that holds the address of the owner.
                     *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice An event that is emitted each time the implementation is changed. This event is part
                     *         of the EIP-1967 specification.
                     *
                     * @param implementation The address of the implementation contract
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                     *         EIP-1967 specification.
                     *
                     * @param previousAdmin The previous owner of the contract
                     * @param newAdmin      The new owner of the contract
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                     *         eth_call to interact with this proxy without needing to use low-level storage
                     *         inspection. We assume that nobody is able to trigger calls from address(0) during
                     *         normal EVM execution.
                     */
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                     *         EIP-1967 admin storage slot so that accidental storage collision with the
                     *         implementation is not possible.
                     *
                     * @param _admin Address of the initial contract admin. Admin as the ability to access the
                     *               transparent proxy interface.
                     */
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Set the implementation contract address. The code at the given address will execute
                     *         when this contract is called.
                     *
                     * @param _implementation Address of the implementation contract.
                     */
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /**
                     * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                     *         atomic execution of initialization-based upgrades.
                     *
                     * @param _implementation Address of the implementation contract.
                     * @param _data           Calldata to delegatecall the new implementation with.
                     */
                    function upgradeToAndCall(address _implementation, bytes calldata _data)
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /**
                     * @notice Gets the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        assembly {
                            sstore(OWNER_KEY, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        assembly {
                            impl := sload(IMPLEMENTATION_KEY)
                        }
                        return impl;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                import { Proxy } from "./Proxy.sol";
                import { AddressManager } from "../legacy/AddressManager.sol";
                import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
                /**
                 * @title IStaticERC1967Proxy
                 * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
                 */
                interface IStaticERC1967Proxy {
                    function implementation() external view returns (address);
                    function admin() external view returns (address);
                }
                /**
                 * @title IStaticL1ChugSplashProxy
                 * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
                 */
                interface IStaticL1ChugSplashProxy {
                    function getImplementation() external view returns (address);
                    function getOwner() external view returns (address);
                }
                /**
                 * @title ProxyAdmin
                 * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
                 *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
                 *         with the various types of proxies that have been deployed by Optimism in the past.
                 */
                contract ProxyAdmin is Ownable {
                    /**
                     * @notice The proxy types that the ProxyAdmin can manage.
                     *
                     * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
                     * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
                     * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
                     */
                    enum ProxyType {
                        ERC1967,
                        CHUGSPLASH,
                        RESOLVED
                    }
                    /**
                     * @notice A mapping of proxy types, used for backwards compatibility.
                     */
                    mapping(address => ProxyType) public proxyType;
                    /**
                     * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
                     *         manually kept up to date with changes in the AddressManager for this contract
                     *         to be able to work as an admin for the ResolvedDelegateProxy type.
                     */
                    mapping(address => string) public implementationName;
                    /**
                     * @notice The address of the address manager, this is required to manage the
                     *         ResolvedDelegateProxy type.
                     */
                    AddressManager public addressManager;
                    /**
                     * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
                     */
                    bool internal upgrading;
                    /**
                     * @param _owner Address of the initial owner of this contract.
                     */
                    constructor(address _owner) Ownable() {
                        _transferOwnership(_owner);
                    }
                    /**
                     * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
                     *         proxy types.
                     *
                     * @param _address Address of the proxy.
                     * @param _type    Type of the proxy.
                     */
                    function setProxyType(address _address, ProxyType _type) external onlyOwner {
                        proxyType[_address] = _type;
                    }
                    /**
                     * @notice Sets the implementation name for a given address. Only required for
                     *         ResolvedDelegateProxy type proxies that have an implementation name.
                     *
                     * @param _address Address of the ResolvedDelegateProxy.
                     * @param _name    Name of the implementation for the proxy.
                     */
                    function setImplementationName(address _address, string memory _name) external onlyOwner {
                        implementationName[_address] = _name;
                    }
                    /**
                     * @notice Set the address of the AddressManager. This is required to manage legacy
                     *         ResolvedDelegateProxy type proxy contracts.
                     *
                     * @param _address Address of the AddressManager.
                     */
                    function setAddressManager(AddressManager _address) external onlyOwner {
                        addressManager = _address;
                    }
                    /**
                     * @custom:legacy
                     * @notice Set an address in the address manager. Since only the owner of the AddressManager
                     *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
                     *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
                     *
                     * @param _name    Name to set within the AddressManager.
                     * @param _address Address to attach to the given name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        addressManager.setAddress(_name, _address);
                    }
                    /**
                     * @custom:legacy
                     * @notice Set the upgrading status for the Chugsplash proxy type.
                     *
                     * @param _upgrading Whether or not the system is upgrading.
                     */
                    function setUpgrading(bool _upgrading) external onlyOwner {
                        upgrading = _upgrading;
                    }
                    /**
                     * @custom:legacy
                     * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
                     *
                     * @return Whether or not there is an upgrade going on. May not actually tell you whether an
                     *         upgrade is going on, since we don't currently plan to use this variable for anything
                     *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
                     */
                    function isUpgrading() external view returns (bool) {
                        return upgrading;
                    }
                    /**
                     * @notice Returns the implementation of the given proxy address.
                     *
                     * @param _proxy Address of the proxy to get the implementation of.
                     *
                     * @return Address of the implementation of the proxy.
                     */
                    function getProxyImplementation(address _proxy) external view returns (address) {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            return IStaticERC1967Proxy(_proxy).implementation();
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                        } else if (ptype == ProxyType.RESOLVED) {
                            return addressManager.getAddress(implementationName[_proxy]);
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Returns the admin of the given proxy address.
                     *
                     * @param _proxy Address of the proxy to get the admin of.
                     *
                     * @return Address of the admin of the proxy.
                     */
                    function getProxyAdmin(address payable _proxy) external view returns (address) {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            return IStaticERC1967Proxy(_proxy).admin();
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            return IStaticL1ChugSplashProxy(_proxy).getOwner();
                        } else if (ptype == ProxyType.RESOLVED) {
                            return addressManager.owner();
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Updates the admin of the given proxy address.
                     *
                     * @param _proxy    Address of the proxy to update.
                     * @param _newAdmin Address of the new proxy admin.
                     */
                    function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).changeAdmin(_newAdmin);
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                        } else if (ptype == ProxyType.RESOLVED) {
                            addressManager.transferOwnership(_newAdmin);
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Changes a proxy's implementation contract.
                     *
                     * @param _proxy          Address of the proxy to upgrade.
                     * @param _implementation Address of the new implementation address.
                     */
                    function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).upgradeTo(_implementation);
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            L1ChugSplashProxy(_proxy).setStorage(
                                // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                                bytes32(uint256(uint160(_implementation)))
                            );
                        } else if (ptype == ProxyType.RESOLVED) {
                            string memory name = implementationName[_proxy];
                            addressManager.setAddress(name, _implementation);
                        } else {
                            // It should not be possible to retrieve a ProxyType value which is not matched by
                            // one of the previous conditions.
                            assert(false);
                        }
                    }
                    /**
                     * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
                     *         with some given data. Useful for atomic upgrade-and-initialize calls.
                     *
                     * @param _proxy          Address of the proxy to upgrade.
                     * @param _implementation Address of the new implementation address.
                     * @param _data           Data to trigger the new implementation with.
                     */
                    function upgradeAndCall(
                        address payable _proxy,
                        address _implementation,
                        bytes memory _data
                    ) external payable onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                        } else {
                            // reverts if proxy type is unknown
                            upgrade(_proxy, _implementation);
                            (bool success, ) = _proxy.call{ value: msg.value }(_data);
                            require(success, "ProxyAdmin: call to proxy after upgrade failed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                

                File 6 of 11: L1StandardBridge
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { StandardBridge } from "src/universal/StandardBridge.sol";
                // Libraries
                import { Predeploys } from "src/libraries/Predeploys.sol";
                // Interfaces
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                import { ICrossDomainMessenger } from "src/universal/interfaces/ICrossDomainMessenger.sol";
                import { ISuperchainConfig } from "src/L1/interfaces/ISuperchainConfig.sol";
                import { ISystemConfig } from "src/L1/interfaces/ISystemConfig.sol";
                /// @custom:proxied true
                /// @title L1StandardBridge
                /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
                ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
                ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
                ///         stored within this contract. After Bedrock, ETH is instead stored inside the
                ///         OptimismPortal contract.
                ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
                ///         of some token types that may not be properly supported by this contract include, but are
                ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
                contract L1StandardBridge is StandardBridge, ISemver {
                    /// @custom:legacy
                    /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
                    /// @param from      Address of the depositor.
                    /// @param to        Address of the recipient on L2.
                    /// @param amount    Amount of ETH deposited.
                    /// @param extraData Extra data attached to the deposit.
                    event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @custom:legacy
                    /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
                    /// @param from      Address of the withdrawer.
                    /// @param to        Address of the recipient on L1.
                    /// @param amount    Amount of ETH withdrawn.
                    /// @param extraData Extra data attached to the withdrawal.
                    event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @custom:legacy
                    /// @notice Emitted whenever an ERC20 deposit is initiated.
                    /// @param l1Token   Address of the token on L1.
                    /// @param l2Token   Address of the corresponding token on L2.
                    /// @param from      Address of the depositor.
                    /// @param to        Address of the recipient on L2.
                    /// @param amount    Amount of the ERC20 deposited.
                    /// @param extraData Extra data attached to the deposit.
                    event ERC20DepositInitiated(
                        address indexed l1Token,
                        address indexed l2Token,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @custom:legacy
                    /// @notice Emitted whenever an ERC20 withdrawal is finalized.
                    /// @param l1Token   Address of the token on L1.
                    /// @param l2Token   Address of the corresponding token on L2.
                    /// @param from      Address of the withdrawer.
                    /// @param to        Address of the recipient on L1.
                    /// @param amount    Amount of the ERC20 withdrawn.
                    /// @param extraData Extra data attached to the withdrawal.
                    event ERC20WithdrawalFinalized(
                        address indexed l1Token,
                        address indexed l2Token,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Semantic version.
                    /// @custom:semver 2.2.1-beta.1
                    string public constant version = "2.2.1-beta.1";
                    /// @notice Address of the SuperchainConfig contract.
                    ISuperchainConfig public superchainConfig;
                    /// @notice Address of the SystemConfig contract.
                    ISystemConfig public systemConfig;
                    /// @notice Constructs the L1StandardBridge contract.
                    constructor() StandardBridge() {
                        initialize({
                            _messenger: ICrossDomainMessenger(address(0)),
                            _superchainConfig: ISuperchainConfig(address(0)),
                            _systemConfig: ISystemConfig(address(0))
                        });
                    }
                    /// @notice Initializer.
                    /// @param _messenger        Contract for the CrossDomainMessenger on this network.
                    /// @param _superchainConfig Contract for the SuperchainConfig on this network.
                    function initialize(
                        ICrossDomainMessenger _messenger,
                        ISuperchainConfig _superchainConfig,
                        ISystemConfig _systemConfig
                    )
                        public
                        initializer
                    {
                        superchainConfig = _superchainConfig;
                        systemConfig = _systemConfig;
                        __StandardBridge_init({
                            _messenger: _messenger,
                            _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                        });
                    }
                    /// @inheritdoc StandardBridge
                    function paused() public view override returns (bool) {
                        return superchainConfig.paused();
                    }
                    /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                    receive() external payable override onlyEOA {
                        _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
                    }
                    /// @inheritdoc StandardBridge
                    function gasPayingToken() internal view override returns (address addr_, uint8 decimals_) {
                        (addr_, decimals_) = systemConfig.gasPayingToken();
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ETH into the sender's account on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                        _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ETH into a target account on L2.
                    ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
                    ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
                    ///         successfully replayed by increasing the amount of gas supplied to the call. If the
                    ///         call will fail for any amount of gas, then the ETH will be locked permanently.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                        _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositERC20(
                        address _l1Token,
                        address _l2Token,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        external
                        virtual
                        onlyEOA
                    {
                        _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositERC20To(
                        address _l1Token,
                        address _l2Token,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        external
                        virtual
                    {
                        _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Finalizes a withdrawal of ETH from L2.
                    /// @param _from      Address of the withdrawer on L2.
                    /// @param _to        Address of the recipient on L1.
                    /// @param _amount    Amount of ETH to withdraw.
                    /// @param _extraData Optional data forwarded from L2.
                    function finalizeETHWithdrawal(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        external
                        payable
                    {
                        finalizeBridgeETH(_from, _to, _amount, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
                    /// @param _l1Token   Address of the token on L1.
                    /// @param _l2Token   Address of the corresponding token on L2.
                    /// @param _from      Address of the withdrawer on L2.
                    /// @param _to        Address of the recipient on L1.
                    /// @param _amount    Amount of the ERC20 to withdraw.
                    /// @param _extraData Optional data forwarded from L2.
                    function finalizeERC20Withdrawal(
                        address _l1Token,
                        address _l2Token,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        external
                    {
                        finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Retrieves the access of the corresponding L2 bridge contract.
                    /// @return Address of the corresponding L2 bridge contract.
                    function l2TokenBridge() external view returns (address) {
                        return address(otherBridge);
                    }
                    /// @notice Internal function for initiating an ETH deposit.
                    /// @param _from        Address of the sender on L1.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                        _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Internal function for initiating an ERC20 deposit.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _from        Address of the sender on L1.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    function _initiateERC20Deposit(
                        address _l1Token,
                        address _l2Token,
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
                    ///         This is necessary for backwards compatibility with the legacy bridge.
                    function _emitETHBridgeInitiated(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                        super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitETHBridgeFinalized(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                        super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitERC20BridgeInitiated(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitERC20BridgeFinalized(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
                import { Address } from "@openzeppelin/contracts/utils/Address.sol";
                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/interfaces/IOptimismMintableERC20.sol";
                import { ICrossDomainMessenger } from "src/universal/interfaces/ICrossDomainMessenger.sol";
                import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                import { Constants } from "src/libraries/Constants.sol";
                /// @custom:upgradeable
                /// @title StandardBridge
                /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
                ///         the core bridging logic, including escrowing tokens that are native to the local chain
                ///         and minting/burning tokens that are native to the remote chain.
                abstract contract StandardBridge is Initializable {
                    using SafeERC20 for IERC20;
                    /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
                    uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
                    /// @custom:legacy
                    /// @custom:spacer messenger
                    /// @notice Spacer for backwards compatibility.
                    bytes30 private spacer_0_2_30;
                    /// @custom:legacy
                    /// @custom:spacer l2TokenBridge
                    /// @notice Spacer for backwards compatibility.
                    address private spacer_1_0_20;
                    /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
                    mapping(address => mapping(address => uint256)) public deposits;
                    /// @notice Messenger contract on this domain.
                    /// @custom:network-specific
                    ICrossDomainMessenger public messenger;
                    /// @notice Corresponding bridge on the other domain.
                    /// @custom:network-specific
                    StandardBridge public otherBridge;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
                    ///         would be a multiple of 50.
                    uint256[45] private __gap;
                    /// @notice Emitted when an ETH bridge is initiated to the other chain.
                    /// @param from      Address of the sender.
                    /// @param to        Address of the receiver.
                    /// @param amount    Amount of ETH sent.
                    /// @param extraData Extra data sent with the transaction.
                    event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @notice Emitted when an ETH bridge is finalized on this chain.
                    /// @param from      Address of the sender.
                    /// @param to        Address of the receiver.
                    /// @param amount    Amount of ETH sent.
                    /// @param extraData Extra data sent with the transaction.
                    event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
                    /// @param localToken  Address of the ERC20 on this chain.
                    /// @param remoteToken Address of the ERC20 on the remote chain.
                    /// @param from        Address of the sender.
                    /// @param to          Address of the receiver.
                    /// @param amount      Amount of the ERC20 sent.
                    /// @param extraData   Extra data sent with the transaction.
                    event ERC20BridgeInitiated(
                        address indexed localToken,
                        address indexed remoteToken,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Emitted when an ERC20 bridge is finalized on this chain.
                    /// @param localToken  Address of the ERC20 on this chain.
                    /// @param remoteToken Address of the ERC20 on the remote chain.
                    /// @param from        Address of the sender.
                    /// @param to          Address of the receiver.
                    /// @param amount      Amount of the ERC20 sent.
                    /// @param extraData   Extra data sent with the transaction.
                    event ERC20BridgeFinalized(
                        address indexed localToken,
                        address indexed remoteToken,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
                    ///         calling code within their constructors, but also doesn't really matter since we're
                    ///         just trying to prevent users accidentally depositing with smart contract wallets.
                    modifier onlyEOA() {
                        require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
                        _;
                    }
                    /// @notice Ensures that the caller is a cross-chain message from the other bridge.
                    modifier onlyOtherBridge() {
                        require(
                            msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                            "StandardBridge: function can only be called from the other bridge"
                        );
                        _;
                    }
                    /// @notice Initializer.
                    /// @param _messenger   Contract for CrossDomainMessenger on this network.
                    /// @param _otherBridge Contract for the other StandardBridge contract.
                    function __StandardBridge_init(
                        ICrossDomainMessenger _messenger,
                        StandardBridge _otherBridge
                    )
                        internal
                        onlyInitializing
                    {
                        messenger = _messenger;
                        otherBridge = _otherBridge;
                    }
                    /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                    ///         Must be implemented by contracts that inherit.
                    receive() external payable virtual;
                    /// @notice Returns the address of the custom gas token and the token's decimals.
                    function gasPayingToken() internal view virtual returns (address, uint8);
                    /// @notice Returns whether the chain uses a custom gas token or not.
                    function isCustomGasToken() internal view returns (bool) {
                        (address token,) = gasPayingToken();
                        return token != Constants.ETHER;
                    }
                    /// @notice Getter for messenger contract.
                    ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
                    /// @return Contract of the messenger on this domain.
                    /// @custom:legacy
                    function MESSENGER() external view returns (ICrossDomainMessenger) {
                        return messenger;
                    }
                    /// @notice Getter for the other bridge contract.
                    ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
                    /// @return Contract of the bridge on the other network.
                    /// @custom:legacy
                    function OTHER_BRIDGE() external view returns (StandardBridge) {
                        return otherBridge;
                    }
                    /// @notice This function should return true if the contract is paused.
                    ///         On L1 this function will check the SuperchainConfig for its paused status.
                    ///         On L2 this function should be a no-op.
                    /// @return Whether or not the contract is paused.
                    function paused() public view virtual returns (bool) {
                        return false;
                    }
                    /// @notice Sends ETH to the sender's address on the other chain.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                        _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
                    ///         smart contract and the call fails, the ETH will be temporarily locked in the
                    ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
                    ///         replayed with any amount of gas (call always reverts), then the ETH will be
                    ///         permanently locked in the StandardBridge on the other chain. ETH will also
                    ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
                    ///         in that case.
                    /// @param _to          Address of the receiver.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                        _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ERC20 tokens to the sender's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        public
                        virtual
                        onlyEOA
                    {
                        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeERC20To(
                        address _localToken,
                        address _remoteToken,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        public
                        virtual
                    {
                        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
                    ///         StandardBridge contract on the remote chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH being bridged.
                    /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
                    ///                   not be triggered with this data, but it will be emitted and can be used
                    ///                   to identify the transaction.
                    function finalizeBridgeETH(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        public
                        payable
                        onlyOtherBridge
                    {
                        require(paused() == false, "StandardBridge: paused");
                        require(isCustomGasToken() == false, "StandardBridge: cannot bridge ETH with custom gas token");
                        require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                        require(_to != address(this), "StandardBridge: cannot send to self");
                        require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                        // Emit the correct events. By default this will be _amount, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                        bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                        require(success, "StandardBridge: ETH transfer failed");
                    }
                    /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
                    ///         StandardBridge contract on the remote chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 being bridged.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function finalizeBridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        public
                        onlyOtherBridge
                    {
                        require(paused() == false, "StandardBridge: paused");
                        if (_isOptimismMintableERC20(_localToken)) {
                            require(
                                _isCorrectTokenPair(_localToken, _remoteToken),
                                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                            );
                            OptimismMintableERC20(_localToken).mint(_to, _amount);
                        } else {
                            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                            IERC20(_localToken).safeTransfer(_to, _amount);
                        }
                        // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of ETH being bridged.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function _initiateBridgeETH(
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        require(isCustomGasToken() == false, "StandardBridge: cannot bridge ETH with custom gas token");
                        require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                        // Emit the correct events. By default this will be _amount, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                        messenger.sendMessage{ value: _amount }({
                            _target: address(otherBridge),
                            _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                            _minGasLimit: _minGasLimit
                        });
                    }
                    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function _initiateBridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        require(msg.value == 0, "StandardBridge: cannot send value");
                        if (_isOptimismMintableERC20(_localToken)) {
                            require(
                                _isCorrectTokenPair(_localToken, _remoteToken),
                                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                            );
                            OptimismMintableERC20(_localToken).burn(_from, _amount);
                        } else {
                            IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                        }
                        // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        messenger.sendMessage({
                            _target: address(otherBridge),
                            _message: abi.encodeWithSelector(
                                this.finalizeBridgeERC20.selector,
                                // Because this call will be executed on the remote chain, we reverse the order of
                                // the remote and local token addresses relative to their order in the
                                // finalizeBridgeERC20 function.
                                _remoteToken,
                                _localToken,
                                _from,
                                _to,
                                _amount,
                                _extraData
                            ),
                            _minGasLimit: _minGasLimit
                        });
                    }
                    /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
                    ///         Just the way we like it.
                    /// @param _token Address of the token to check.
                    /// @return True if the token is an OptimismMintableERC20.
                    function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                        return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                            || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
                    }
                    /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
                    ///         Calls can be saved in the future by combining this logic with
                    ///         `_isOptimismMintableERC20`.
                    /// @param _mintableToken OptimismMintableERC20 to check against.
                    /// @param _otherToken    Pair token to check.
                    /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
                    function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                        if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                            return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                        } else {
                            return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                        }
                    }
                    /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
                    ///         when an ETH bridge is finalized on this chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH sent.
                    /// @param _extraData Extra data sent with the transaction.
                    function _emitETHBridgeInitiated(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
                    ///         ETH bridge is finalized on this chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH sent.
                    /// @param _extraData Extra data sent with the transaction.
                    function _emitETHBridgeFinalized(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
                    ///         event when an ERC20 bridge is initiated to the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the ERC20 on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 sent.
                    /// @param _extraData   Extra data sent with the transaction.
                    function _emitERC20BridgeInitiated(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
                    ///         event when an ERC20 bridge is initiated to the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the ERC20 on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 sent.
                    /// @param _extraData   Extra data sent with the transaction.
                    function _emitERC20BridgeFinalized(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Predeploys
                /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
                //          This excludes the preinstalls (non-protocol contracts).
                library Predeploys {
                    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                    uint256 internal constant PREDEPLOY_COUNT = 2048;
                    /// @custom:legacy
                    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                    ///         L2ToL1MessagePasser contract instead.
                    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                    /// @custom:legacy
                    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                    ///         Not embedded into new OP-Stack chains.
                    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                    /// @custom:legacy
                    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                    /// @notice Address of the canonical WETH contract.
                    address internal constant WETH = 0x4200000000000000000000000000000000000006;
                    /// @notice Address of the L2CrossDomainMessenger predeploy.
                    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                    ///         and helpers for computing the L1 portion of the transaction fee.
                    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                    /// @notice Address of the L2StandardBridge predeploy.
                    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                    //// @notice Address of the SequencerFeeWallet predeploy.
                    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                    /// @notice Address of the OptimismMintableERC20Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                    /// @custom:legacy
                    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                    ///         instead, which exposes more information about the L1 state.
                    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                    /// @notice Address of the L2ERC721Bridge predeploy.
                    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                    /// @notice Address of the L1Block predeploy.
                    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                    /// @notice Address of the L2ToL1MessagePasser predeploy.
                    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                    /// @notice Address of the OptimismMintableERC721Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                    /// @notice Address of the ProxyAdmin predeploy.
                    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                    /// @notice Address of the BaseFeeVault predeploy.
                    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                    /// @notice Address of the L1FeeVault predeploy.
                    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                    /// @notice Address of the SchemaRegistry predeploy.
                    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                    /// @notice Address of the EAS predeploy.
                    address internal constant EAS = 0x4200000000000000000000000000000000000021;
                    /// @notice Address of the GovernanceToken predeploy.
                    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                    /// @custom:legacy
                    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                    ///         can no longer be accessed.
                    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                    /// @notice Address of the CrossL2Inbox predeploy.
                    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                    /// @notice Address of the SuperchainWETH predeploy.
                    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                    /// @notice Address of the ETHLiquidity predeploy.
                    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                    // TODO: Precalculate the address of the implementation contract
                    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                    /// @notice Returns the name of the predeploy at the given address.
                    function getName(address _addr) internal pure returns (string memory out_) {
                        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                        if (_addr == WETH) return "WETH";
                        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                        if (_addr == EAS) return "EAS";
                        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                        revert("Predeploys: unnamed predeploy");
                    }
                    /// @notice Returns true if the predeploy is not proxied.
                    function notProxied(address _addr) internal pure returns (bool) {
                        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                    }
                    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                            || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                            || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER)
                            || (_useInterop && _addr == SUPERCHAIN_WETH) || (_useInterop && _addr == ETH_LIQUIDITY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON);
                    }
                    function isPredeployNamespace(address _addr) internal pure returns (bool) {
                        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                    }
                    /// @notice Function to compute the expected address of the predeploy implementation
                    ///         in the genesis state.
                    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                        require(
                            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                        );
                        return address(
                            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ICrossDomainMessenger {
                    event FailedRelayedMessage(bytes32 indexed msgHash);
                    event Initialized(uint8 version);
                    event RelayedMessage(bytes32 indexed msgHash);
                    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                    event SentMessageExtension1(address indexed sender, uint256 value);
                    function MESSAGE_VERSION() external view returns (uint16);
                    function MIN_GAS_CALLDATA_OVERHEAD() external view returns (uint64);
                    function MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR() external view returns (uint64);
                    function MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR() external view returns (uint64);
                    function OTHER_MESSENGER() external view returns (ICrossDomainMessenger);
                    function RELAY_CALL_OVERHEAD() external view returns (uint64);
                    function RELAY_CONSTANT_OVERHEAD() external view returns (uint64);
                    function RELAY_GAS_CHECK_BUFFER() external view returns (uint64);
                    function RELAY_RESERVED_GAS() external view returns (uint64);
                    function baseGas(bytes memory _message, uint32 _minGasLimit) external pure returns (uint64);
                    function failedMessages(bytes32) external view returns (bool);
                    function messageNonce() external view returns (uint256);
                    function otherMessenger() external view returns (ICrossDomainMessenger);
                    function paused() external view returns (bool);
                    function relayMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _minGasLimit,
                        bytes memory _message
                    )
                        external
                        payable;
                    function sendMessage(address _target, bytes memory _message, uint32 _minGasLimit) external payable;
                    function successfulMessages(bytes32) external view returns (bool);
                    function xDomainMessageSender() external view returns (address);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        GAS_CONFIG,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                        address gasPayingToken;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function gasPayingToken() external view returns (address addr_, uint8 decimals_);
                    function gasPayingTokenName() external view returns (string memory name_);
                    function gasPayingTokenSymbol() external view returns (string memory symbol_);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function isCustomGasToken() external view returns (bool);
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external;
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
                pragma solidity ^0.8.0;
                import "./IERC165.sol";
                /**
                 * @dev Library used to query support of an interface declared via {IERC165}.
                 *
                 * Note that these functions return the actual result of the query: they do not
                 * `revert` if an interface is not supported. It is up to the caller to decide
                 * what to do in these cases.
                 */
                library ERC165Checker {
                    // As per the EIP-165 spec, no interface should ever match 0xffffffff
                    bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
                    /**
                     * @dev Returns true if `account` supports the {IERC165} interface,
                     */
                    function supportsERC165(address account) internal view returns (bool) {
                        // Any contract that implements ERC165 must explicitly indicate support of
                        // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                        return
                            _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                            !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
                    }
                    /**
                     * @dev Returns true if `account` supports the interface defined by
                     * `interfaceId`. Support for {IERC165} itself is queried automatically.
                     *
                     * See {IERC165-supportsInterface}.
                     */
                    function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                        // query support of both ERC165 as per the spec and support of _interfaceId
                        return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
                    }
                    /**
                     * @dev Returns a boolean array where each value corresponds to the
                     * interfaces passed in and whether they're supported or not. This allows
                     * you to batch check interfaces for a contract where your expectation
                     * is that some interfaces may not be supported.
                     *
                     * See {IERC165-supportsInterface}.
                     *
                     * _Available since v3.4._
                     */
                    function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                        internal
                        view
                        returns (bool[] memory)
                    {
                        // an array of booleans corresponding to interfaceIds and whether they're supported or not
                        bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                        // query support of ERC165 itself
                        if (supportsERC165(account)) {
                            // query support of each interface in interfaceIds
                            for (uint256 i = 0; i < interfaceIds.length; i++) {
                                interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                            }
                        }
                        return interfaceIdsSupported;
                    }
                    /**
                     * @dev Returns true if `account` supports all the interfaces defined in
                     * `interfaceIds`. Support for {IERC165} itself is queried automatically.
                     *
                     * Batch-querying can lead to gas savings by skipping repeated checks for
                     * {IERC165} support.
                     *
                     * See {IERC165-supportsInterface}.
                     */
                    function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                        // query support of ERC165 itself
                        if (!supportsERC165(account)) {
                            return false;
                        }
                        // query support of each interface in _interfaceIds
                        for (uint256 i = 0; i < interfaceIds.length; i++) {
                            if (!_supportsERC165Interface(account, interfaceIds[i])) {
                                return false;
                            }
                        }
                        // all interfaces supported
                        return true;
                    }
                    /**
                     * @notice Query if a contract implements an interface, does not check ERC165 support
                     * @param account The address of the contract to query for support of an interface
                     * @param interfaceId The interface identifier, as specified in ERC-165
                     * @return true if the contract at account indicates support of the interface with
                     * identifier interfaceId, false otherwise
                     * @dev Assumes that account contains a contract that supports ERC165, otherwise
                     * the behavior of this method is undefined. This precondition can be checked
                     * with {supportsERC165}.
                     * Interface identification is specified in ERC-165.
                     */
                    function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                        // prepare call
                        bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                        // perform static call
                        bool success;
                        uint256 returnSize;
                        uint256 returnValue;
                        assembly {
                            success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                            returnSize := returndatasize()
                            returnValue := mload(0x00)
                        }
                        return success && returnSize >= 0x20 && returnValue > 0;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../extensions/draft-IERC20Permit.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
                /// @title IOptimismMintableERC20
                /// @notice This interface is available on the OptimismMintableERC20 contract.
                ///         We declare it as a separate interface so that it can be used in
                ///         custom implementations of OptimismMintableERC20.
                interface IOptimismMintableERC20 is IERC165 {
                    function remoteToken() external view returns (address);
                    function bridge() external returns (address);
                    function mint(address _to, uint256 _amount) external;
                    function burn(address _from, uint256 _amount) external;
                }
                /// @custom:legacy
                /// @title ILegacyMintableERC20
                /// @notice This interface was available on the legacy L2StandardERC20 contract.
                ///         It remains available on the OptimismMintableERC20 contract for
                ///         backwards compatibility.
                interface ILegacyMintableERC20 is IERC165 {
                    function l1Token() external view returns (address);
                    function mint(address _to, uint256 _amount) external;
                    function burn(address _from, uint256 _amount) external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
                import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
                import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/interfaces/IOptimismMintableERC20.sol";
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                /// @title OptimismMintableERC20
                /// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
                ///         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
                ///         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
                ///         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
                ///         meant for use on L2.
                contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, ISemver {
                    /// @notice Address of the corresponding version of this token on the remote chain.
                    address public immutable REMOTE_TOKEN;
                    /// @notice Address of the StandardBridge on this network.
                    address public immutable BRIDGE;
                    /// @notice Decimals of the token
                    uint8 private immutable DECIMALS;
                    /// @notice Emitted whenever tokens are minted for an account.
                    /// @param account Address of the account tokens are being minted for.
                    /// @param amount  Amount of tokens minted.
                    event Mint(address indexed account, uint256 amount);
                    /// @notice Emitted whenever tokens are burned from an account.
                    /// @param account Address of the account tokens are being burned from.
                    /// @param amount  Amount of tokens burned.
                    event Burn(address indexed account, uint256 amount);
                    /// @notice A modifier that only allows the bridge to call
                    modifier onlyBridge() {
                        require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
                        _;
                    }
                    /// @notice Semantic version.
                    /// @custom:semver 1.3.1-beta.1
                    string public constant version = "1.3.1-beta.1";
                    /// @param _bridge      Address of the L2 standard bridge.
                    /// @param _remoteToken Address of the corresponding L1 token.
                    /// @param _name        ERC20 name.
                    /// @param _symbol      ERC20 symbol.
                    constructor(
                        address _bridge,
                        address _remoteToken,
                        string memory _name,
                        string memory _symbol,
                        uint8 _decimals
                    )
                        ERC20(_name, _symbol)
                    {
                        REMOTE_TOKEN = _remoteToken;
                        BRIDGE = _bridge;
                        DECIMALS = _decimals;
                    }
                    /// @notice Allows the StandardBridge on this network to mint tokens.
                    /// @param _to     Address to mint tokens to.
                    /// @param _amount Amount of tokens to mint.
                    function mint(
                        address _to,
                        uint256 _amount
                    )
                        external
                        virtual
                        override(IOptimismMintableERC20, ILegacyMintableERC20)
                        onlyBridge
                    {
                        _mint(_to, _amount);
                        emit Mint(_to, _amount);
                    }
                    /// @notice Allows the StandardBridge on this network to burn tokens.
                    /// @param _from   Address to burn tokens from.
                    /// @param _amount Amount of tokens to burn.
                    function burn(
                        address _from,
                        uint256 _amount
                    )
                        external
                        virtual
                        override(IOptimismMintableERC20, ILegacyMintableERC20)
                        onlyBridge
                    {
                        _burn(_from, _amount);
                        emit Burn(_from, _amount);
                    }
                    /// @notice ERC165 interface check function.
                    /// @param _interfaceId Interface ID to check.
                    /// @return Whether or not the interface is supported by this contract.
                    function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
                        bytes4 iface1 = type(IERC165).interfaceId;
                        // Interface corresponding to the legacy L2StandardERC20.
                        bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
                        // Interface corresponding to the updated OptimismMintableERC20 (this contract).
                        bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
                        return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
                    }
                    /// @custom:legacy
                    /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
                    function l1Token() public view returns (address) {
                        return REMOTE_TOKEN;
                    }
                    /// @custom:legacy
                    /// @notice Legacy getter for the bridge. Use BRIDGE going forward.
                    function l2Bridge() public view returns (address) {
                        return BRIDGE;
                    }
                    /// @custom:legacy
                    /// @notice Legacy getter for REMOTE_TOKEN.
                    function remoteToken() public view returns (address) {
                        return REMOTE_TOKEN;
                    }
                    /// @custom:legacy
                    /// @notice Legacy getter for BRIDGE.
                    function bridge() public view returns (address) {
                        return BRIDGE;
                    }
                    /// @dev Returns the number of decimals used to get its user representation.
                    /// For example, if `decimals` equals `2`, a balance of `505` tokens should
                    /// be displayed to a user as `5.05` (`505 / 10 ** 2`).
                    /// NOTE: This information is only used for _display_ purposes: it in
                    /// no way affects any of the arithmetic of the contract, including
                    /// {IERC20-balanceOf} and {IERC20-transfer}.
                    function decimals() public view override returns (uint8) {
                        return DECIMALS;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC165 standard, as defined in the
                 * https://eips.ethereum.org/EIPS/eip-165[EIP].
                 *
                 * Implementers can declare support of contract interfaces, which can then be
                 * queried by others ({ERC165Checker}).
                 *
                 * For an implementation, see {ERC165}.
                 */
                interface IERC165 {
                    /**
                     * @dev Returns true if this contract implements the interface defined by
                     * `interfaceId`. See the corresponding
                     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                     * to learn more about how these ids are created.
                     *
                     * This function call must use less than 30 000 gas.
                     */
                    function supportsInterface(bytes4 interfaceId) external view returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
                pragma solidity ^0.8.0;
                import "./IERC20.sol";
                import "./extensions/IERC20Metadata.sol";
                import "../../utils/Context.sol";
                /**
                 * @dev Implementation of the {IERC20} interface.
                 *
                 * This implementation is agnostic to the way tokens are created. This means
                 * that a supply mechanism has to be added in a derived contract using {_mint}.
                 * For a generic mechanism see {ERC20PresetMinterPauser}.
                 *
                 * TIP: For a detailed writeup see our guide
                 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
                 * to implement supply mechanisms].
                 *
                 * We have followed general OpenZeppelin Contracts guidelines: functions revert
                 * instead returning `false` on failure. This behavior is nonetheless
                 * conventional and does not conflict with the expectations of ERC20
                 * applications.
                 *
                 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
                 * This allows applications to reconstruct the allowance for all accounts just
                 * by listening to said events. Other implementations of the EIP may not emit
                 * these events, as it isn't required by the specification.
                 *
                 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
                 * functions have been added to mitigate the well-known issues around setting
                 * allowances. See {IERC20-approve}.
                 */
                contract ERC20 is Context, IERC20, IERC20Metadata {
                    mapping(address => uint256) private _balances;
                    mapping(address => mapping(address => uint256)) private _allowances;
                    uint256 private _totalSupply;
                    string private _name;
                    string private _symbol;
                    /**
                     * @dev Sets the values for {name} and {symbol}.
                     *
                     * The default value of {decimals} is 18. To select a different value for
                     * {decimals} you should overload it.
                     *
                     * All two of these values are immutable: they can only be set once during
                     * construction.
                     */
                    constructor(string memory name_, string memory symbol_) {
                        _name = name_;
                        _symbol = symbol_;
                    }
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() public view virtual override returns (string memory) {
                        return _name;
                    }
                    /**
                     * @dev Returns the symbol of the token, usually a shorter version of the
                     * name.
                     */
                    function symbol() public view virtual override returns (string memory) {
                        return _symbol;
                    }
                    /**
                     * @dev Returns the number of decimals used to get its user representation.
                     * For example, if `decimals` equals `2`, a balance of `505` tokens should
                     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                     *
                     * Tokens usually opt for a value of 18, imitating the relationship between
                     * Ether and Wei. This is the value {ERC20} uses, unless this function is
                     * overridden;
                     *
                     * NOTE: This information is only used for _display_ purposes: it in
                     * no way affects any of the arithmetic of the contract, including
                     * {IERC20-balanceOf} and {IERC20-transfer}.
                     */
                    function decimals() public view virtual override returns (uint8) {
                        return 18;
                    }
                    /**
                     * @dev See {IERC20-totalSupply}.
                     */
                    function totalSupply() public view virtual override returns (uint256) {
                        return _totalSupply;
                    }
                    /**
                     * @dev See {IERC20-balanceOf}.
                     */
                    function balanceOf(address account) public view virtual override returns (uint256) {
                        return _balances[account];
                    }
                    /**
                     * @dev See {IERC20-transfer}.
                     *
                     * Requirements:
                     *
                     * - `to` cannot be the zero address.
                     * - the caller must have a balance of at least `amount`.
                     */
                    function transfer(address to, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _transfer(owner, to, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-allowance}.
                     */
                    function allowance(address owner, address spender) public view virtual override returns (uint256) {
                        return _allowances[owner][spender];
                    }
                    /**
                     * @dev See {IERC20-approve}.
                     *
                     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                     * `transferFrom`. This is semantically equivalent to an infinite approval.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function approve(address spender, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-transferFrom}.
                     *
                     * Emits an {Approval} event indicating the updated allowance. This is not
                     * required by the EIP. See the note at the beginning of {ERC20}.
                     *
                     * NOTE: Does not update the allowance if the current allowance
                     * is the maximum `uint256`.
                     *
                     * Requirements:
                     *
                     * - `from` and `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     * - the caller must have allowance for ``from``'s tokens of at least
                     * `amount`.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) public virtual override returns (bool) {
                        address spender = _msgSender();
                        _spendAllowance(from, spender, amount);
                        _transfer(from, to, amount);
                        return true;
                    }
                    /**
                     * @dev Atomically increases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, allowance(owner, spender) + addedValue);
                        return true;
                    }
                    /**
                     * @dev Atomically decreases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `spender` must have allowance for the caller of at least
                     * `subtractedValue`.
                     */
                    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        uint256 currentAllowance = allowance(owner, spender);
                        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                        unchecked {
                            _approve(owner, spender, currentAllowance - subtractedValue);
                        }
                        return true;
                    }
                    /**
                     * @dev Moves `amount` of tokens from `from` to `to`.
                     *
                     * This internal function is equivalent to {transfer}, and can be used to
                     * e.g. implement automatic token fees, slashing mechanisms, etc.
                     *
                     * Emits a {Transfer} event.
                     *
                     * Requirements:
                     *
                     * - `from` cannot be the zero address.
                     * - `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     */
                    function _transfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {
                        require(from != address(0), "ERC20: transfer from the zero address");
                        require(to != address(0), "ERC20: transfer to the zero address");
                        _beforeTokenTransfer(from, to, amount);
                        uint256 fromBalance = _balances[from];
                        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                        unchecked {
                            _balances[from] = fromBalance - amount;
                        }
                        _balances[to] += amount;
                        emit Transfer(from, to, amount);
                        _afterTokenTransfer(from, to, amount);
                    }
                    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                     * the total supply.
                     *
                     * Emits a {Transfer} event with `from` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     */
                    function _mint(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: mint to the zero address");
                        _beforeTokenTransfer(address(0), account, amount);
                        _totalSupply += amount;
                        _balances[account] += amount;
                        emit Transfer(address(0), account, amount);
                        _afterTokenTransfer(address(0), account, amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from `account`, reducing the
                     * total supply.
                     *
                     * Emits a {Transfer} event with `to` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     * - `account` must have at least `amount` tokens.
                     */
                    function _burn(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: burn from the zero address");
                        _beforeTokenTransfer(account, address(0), amount);
                        uint256 accountBalance = _balances[account];
                        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                        unchecked {
                            _balances[account] = accountBalance - amount;
                        }
                        _totalSupply -= amount;
                        emit Transfer(account, address(0), amount);
                        _afterTokenTransfer(account, address(0), amount);
                    }
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                     *
                     * This internal function is equivalent to `approve`, and can be used to
                     * e.g. set automatic allowances for certain subsystems, etc.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `owner` cannot be the zero address.
                     * - `spender` cannot be the zero address.
                     */
                    function _approve(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        require(owner != address(0), "ERC20: approve from the zero address");
                        require(spender != address(0), "ERC20: approve to the zero address");
                        _allowances[owner][spender] = amount;
                        emit Approval(owner, spender, amount);
                    }
                    /**
                     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                     *
                     * Does not update the allowance amount in case of infinite allowance.
                     * Revert if not enough allowance is available.
                     *
                     * Might emit an {Approval} event.
                     */
                    function _spendAllowance(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        uint256 currentAllowance = allowance(owner, spender);
                        if (currentAllowance != type(uint256).max) {
                            require(currentAllowance >= amount, "ERC20: insufficient allowance");
                            unchecked {
                                _approve(owner, spender, currentAllowance - amount);
                            }
                        }
                    }
                    /**
                     * @dev Hook that is called before any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * will be transferred to `to`.
                     * - when `from` is zero, `amount` tokens will be minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _beforeTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                    /**
                     * @dev Hook that is called after any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * has been transferred to `to`.
                     * - when `from` is zero, `amount` tokens have been minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _afterTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                /**
                 * @dev Interface for the optional metadata functions from the ERC20 standard.
                 *
                 * _Available since v4.1._
                 */
                interface IERC20Metadata is IERC20 {
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() external view returns (string memory);
                    /**
                     * @dev Returns the symbol of the token.
                     */
                    function symbol() external view returns (string memory);
                    /**
                     * @dev Returns the decimals places of the token.
                     */
                    function decimals() external view returns (uint8);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                

                File 7 of 11: AddressManager
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @custom:legacy
                 * @title AddressManager
                 * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
                 *         system to manage a registry of string names to addresses. We now use a more standard
                 *         proxy system instead, but this contract is still necessary for backwards compatibility
                 *         with several older contracts.
                 */
                contract AddressManager is Ownable {
                    /**
                     * @notice Mapping of the hashes of string names to addresses.
                     */
                    mapping(bytes32 => address) private addresses;
                    /**
                     * @notice Emitted when an address is modified in the registry.
                     *
                     * @param name       String name being set in the registry.
                     * @param newAddress Address set for the given name.
                     * @param oldAddress Address that was previously set for the given name.
                     */
                    event AddressSet(string indexed name, address newAddress, address oldAddress);
                    /**
                     * @notice Changes the address associated with a particular name.
                     *
                     * @param _name    String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(_name, _address, oldAddress);
                    }
                    /**
                     * @notice Retrieves the address associated with a given name.
                     *
                     * @param _name Name to retrieve an address for.
                     *
                     * @return Address associated with the given name.
                     */
                    function getAddress(string memory _name) external view returns (address) {
                        return addresses[_getNameHash(_name)];
                    }
                    /**
                     * @notice Computes the hash of a name.
                     *
                     * @param _name Name to compute a hash for.
                     *
                     * @return Hash of the given name.
                     */
                    function _getNameHash(string memory _name) internal pure returns (bytes32) {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                

                File 8 of 11: L1CrossDomainMessenger
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
                // Libraries
                import { Predeploys } from "src/libraries/Predeploys.sol";
                // Interfaces
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                import { ISuperchainConfig } from "src/L1/interfaces/ISuperchainConfig.sol";
                import { ISystemConfig } from "src/L1/interfaces/ISystemConfig.sol";
                import { IOptimismPortal } from "src/L1/interfaces/IOptimismPortal.sol";
                /// @custom:proxied true
                /// @title L1CrossDomainMessenger
                /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
                ///         for sending and receiving data on the L1 side. Users are encouraged to use this
                ///         interface instead of interacting with lower-level contracts directly.
                contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
                    /// @notice Contract of the SuperchainConfig.
                    ISuperchainConfig public superchainConfig;
                    /// @notice Contract of the OptimismPortal.
                    /// @custom:network-specific
                    IOptimismPortal public portal;
                    /// @notice Address of the SystemConfig contract.
                    ISystemConfig public systemConfig;
                    /// @notice Semantic version.
                    /// @custom:semver 2.4.1-beta.1
                    string public constant version = "2.4.1-beta.1";
                    /// @notice Constructs the L1CrossDomainMessenger contract.
                    constructor() CrossDomainMessenger() {
                        initialize({
                            _superchainConfig: ISuperchainConfig(address(0)),
                            _portal: IOptimismPortal(payable(address(0))),
                            _systemConfig: ISystemConfig(address(0))
                        });
                    }
                    /// @notice Initializes the contract.
                    /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
                    /// @param _portal Contract of the OptimismPortal contract on this network.
                    /// @param _systemConfig Contract of the SystemConfig contract on this network.
                    function initialize(
                        ISuperchainConfig _superchainConfig,
                        IOptimismPortal _portal,
                        ISystemConfig _systemConfig
                    )
                        public
                        initializer
                    {
                        superchainConfig = _superchainConfig;
                        portal = _portal;
                        systemConfig = _systemConfig;
                        __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function gasPayingToken() internal view override returns (address _addr, uint8 _decimals) {
                        (_addr, _decimals) = systemConfig.gasPayingToken();
                    }
                    /// @notice Getter function for the OptimismPortal contract on this chain.
                    ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
                    /// @return Contract of the OptimismPortal on this chain.
                    /// @custom:legacy
                    function PORTAL() external view returns (IOptimismPortal) {
                        return portal;
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                        portal.depositTransaction{ value: _value }({
                            _to: _to,
                            _value: _value,
                            _gasLimit: _gasLimit,
                            _isCreation: false,
                            _data: _data
                        });
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _isOtherMessenger() internal view override returns (bool) {
                        return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _isUnsafeTarget(address _target) internal view override returns (bool) {
                        return _target == address(this) || _target == address(portal);
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function paused() public view override returns (bool) {
                        return superchainConfig.paused();
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                import { Constants } from "src/libraries/Constants.sol";
                /// @custom:legacy
                /// @title CrossDomainMessengerLegacySpacer0
                /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
                ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
                ///         tree of the CrossDomainMessenger.
                contract CrossDomainMessengerLegacySpacer0 {
                    /// @custom:legacy
                    /// @custom:spacer libAddressManager
                    /// @notice Spacer for backwards compatibility.
                    address private spacer_0_0_20;
                }
                /// @custom:legacy
                /// @title CrossDomainMessengerLegacySpacer1
                /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
                ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
                ///         the third contract in the inheritance tree of the CrossDomainMessenger.
                contract CrossDomainMessengerLegacySpacer1 {
                    /// @custom:legacy
                    /// @custom:spacer ContextUpgradable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         ContextUpgradable.
                    uint256[50] private spacer_1_0_1600;
                    /// @custom:legacy
                    /// @custom:spacer OwnableUpgradeable's _owner
                    /// @notice Spacer for backwards compatibility.
                    ///         Come from OpenZeppelin OwnableUpgradeable.
                    address private spacer_51_0_20;
                    /// @custom:legacy
                    /// @custom:spacer OwnableUpgradeable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         OwnableUpgradeable.
                    uint256[49] private spacer_52_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer PausableUpgradable's _paused
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         PausableUpgradable.
                    bool private spacer_101_0_1;
                    /// @custom:legacy
                    /// @custom:spacer PausableUpgradable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         PausableUpgradable.
                    uint256[49] private spacer_102_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                    /// @notice Spacer for backwards compatibility.
                    uint256 private spacer_151_0_32;
                    /// @custom:legacy
                    /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                    /// @notice Spacer for backwards compatibility.
                    uint256[49] private spacer_152_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer blockedMessages
                    /// @notice Spacer for backwards compatibility.
                    mapping(bytes32 => bool) private spacer_201_0_32;
                    /// @custom:legacy
                    /// @custom:spacer relayedMessages
                    /// @notice Spacer for backwards compatibility.
                    mapping(bytes32 => bool) private spacer_202_0_32;
                }
                /// @custom:upgradeable
                /// @title CrossDomainMessenger
                /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
                ///         cross-chain messenger contracts. It's designed to be a universal interface that only
                ///         needs to be extended slightly to provide low-level message passing functionality on each
                ///         chain it's deployed on. Currently only designed for message passing between two paired
                ///         chains and does not support one-to-many interactions.
                ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
                abstract contract CrossDomainMessenger is
                    CrossDomainMessengerLegacySpacer0,
                    Initializable,
                    CrossDomainMessengerLegacySpacer1
                {
                    /// @notice Current message version identifier.
                    uint16 public constant MESSAGE_VERSION = 1;
                    /// @notice Constant overhead added to the base gas for a message.
                    uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                    /// @notice Numerator for dynamic overhead added to the base gas for a message.
                    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                    /// @notice Denominator for dynamic overhead added to the base gas for a message.
                    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                    /// @notice Extra gas added to base gas for each byte of calldata in a message.
                    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                    /// @notice Gas reserved for performing the external call in `relayMessage`.
                    uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                    /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                    uint64 public constant RELAY_RESERVED_GAS = 40_000;
                    /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                    ///         call in `relayMessage`.
                    uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                    /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                    ///         be present in this mapping if it has successfully been relayed on this chain, and
                    ///         can therefore not be relayed again.
                    mapping(bytes32 => bool) public successfulMessages;
                    /// @notice Address of the sender of the currently executing message on the other chain. If the
                    ///         value of this variable is the default value (0x00000000...dead) then no message is
                    ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                    ///         error if this is the case.
                    address internal xDomainMsgSender;
                    /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                    ///         messageNonce getter which will insert the message version into the nonce to give you
                    ///         the actual nonce to be used for the message.
                    uint240 internal msgNonce;
                    /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                    ///         executed at least once. A message will not be present in this mapping if it
                    ///         successfully executed on the first attempt.
                    mapping(bytes32 => bool) public failedMessages;
                    /// @notice CrossDomainMessenger contract on the other chain.
                    /// @custom:network-specific
                    CrossDomainMessenger public otherMessenger;
                    /// @notice Reserve extra slots in the storage layout for future upgrades.
                    ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                    ///         would be 1 plus a multiple of 50.
                    uint256[43] private __gap;
                    /// @notice Emitted whenever a message is sent to the other chain.
                    /// @param target       Address of the recipient of the message.
                    /// @param sender       Address of the sender of the message.
                    /// @param message      Message to trigger the recipient address with.
                    /// @param messageNonce Unique nonce attached to the message.
                    /// @param gasLimit     Minimum gas limit that the message can be executed with.
                    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                    /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                    ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                    /// @param sender Address of the sender of the message.
                    /// @param value  ETH value sent along with the message to the recipient.
                    event SentMessageExtension1(address indexed sender, uint256 value);
                    /// @notice Emitted whenever a message is successfully relayed on this chain.
                    /// @param msgHash Hash of the message that was relayed.
                    event RelayedMessage(bytes32 indexed msgHash);
                    /// @notice Emitted whenever a message fails to be relayed on this chain.
                    /// @param msgHash Hash of the message that failed to be relayed.
                    event FailedRelayedMessage(bytes32 indexed msgHash);
                    /// @notice Sends a message to some target address on the other chain. Note that if the call
                    ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                    ///         permanently locked. The same will occur if the target on the other chain is
                    ///         considered unsafe (see the _isUnsafeTarget() function).
                    /// @param _target      Target contract or wallet address.
                    /// @param _message     Message to trigger the target address with.
                    /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                    function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                        if (isCustomGasToken()) {
                            require(msg.value == 0, "CrossDomainMessenger: cannot send value with custom gas token");
                        }
                        // Triggers a message to the other messenger. Note that the amount of gas provided to the
                        // message is the amount of gas requested by the user PLUS the base gas value. We want to
                        // guarantee the property that the call to the target contract will always have at least
                        // the minimum gas limit specified by the user.
                        _sendMessage({
                            _to: address(otherMessenger),
                            _gasLimit: baseGas(_message, _minGasLimit),
                            _value: msg.value,
                            _data: abi.encodeWithSelector(
                                this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                            )
                        });
                        emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                        emit SentMessageExtension1(msg.sender, msg.value);
                        unchecked {
                            ++msgNonce;
                        }
                    }
                    /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                    ///         be executed via cross-chain call from the other messenger OR if the message was
                    ///         already received once and is currently being replayed.
                    /// @param _nonce       Nonce of the message being relayed.
                    /// @param _sender      Address of the user who sent the message.
                    /// @param _target      Address that the message is targeted at.
                    /// @param _value       ETH value to send with the message.
                    /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                    /// @param _message     Message to send to the target.
                    function relayMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _minGasLimit,
                        bytes calldata _message
                    )
                        external
                        payable
                    {
                        // On L1 this function will check the Portal for its paused status.
                        // On L2 this function should be a no-op, because paused will always return false.
                        require(paused() == false, "CrossDomainMessenger: paused");
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                        // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                        // to check that the legacy version of the message has not already been relayed.
                        if (version == 0) {
                            bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                            require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                        }
                        // We use the v1 message hash as the unique identifier for the message because it commits
                        // to the value and minimum gas limit of the message.
                        bytes32 versionedHash =
                            Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                        if (_isOtherMessenger()) {
                            // These properties should always hold when the message is first submitted (as
                            // opposed to being replayed).
                            assert(msg.value == _value);
                            assert(!failedMessages[versionedHash]);
                        } else {
                            require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                            require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                        }
                        require(
                            _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                        );
                        require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                        // If there is not enough gas left to perform the external call and finish the execution,
                        // return early and assign the message to the failedMessages mapping.
                        // We are asserting that we have enough gas to:
                        // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                        //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                        // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                        //
                        // If `xDomainMsgSender` is not the default L2 sender, this function
                        // is being re-entered. This marks the message as failed to allow it to be replayed.
                        if (
                            !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                                || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                        ) {
                            failedMessages[versionedHash] = true;
                            emit FailedRelayedMessage(versionedHash);
                            // Revert in this case if the transaction was triggered by the estimation address. This
                            // should only be possible during gas estimation or we have bigger problems. Reverting
                            // here will make the behavior of gas estimation change such that the gas limit
                            // computed will be the amount required to relay the message, even if that amount is
                            // greater than the minimum gas limit specified by the user.
                            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                                revert("CrossDomainMessenger: failed to relay message");
                            }
                            return;
                        }
                        xDomainMsgSender = _sender;
                        bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                        if (success) {
                            // This check is identical to one above, but it ensures that the same message cannot be relayed
                            // twice, and adds a layer of protection against rentrancy.
                            assert(successfulMessages[versionedHash] == false);
                            successfulMessages[versionedHash] = true;
                            emit RelayedMessage(versionedHash);
                        } else {
                            failedMessages[versionedHash] = true;
                            emit FailedRelayedMessage(versionedHash);
                            // Revert in this case if the transaction was triggered by the estimation address. This
                            // should only be possible during gas estimation or we have bigger problems. Reverting
                            // here will make the behavior of gas estimation change such that the gas limit
                            // computed will be the amount required to relay the message, even if that amount is
                            // greater than the minimum gas limit specified by the user.
                            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                                revert("CrossDomainMessenger: failed to relay message");
                            }
                        }
                    }
                    /// @notice Retrieves the address of the contract or wallet that initiated the currently
                    ///         executing message on the other chain. Will throw an error if there is no message
                    ///         currently being executed. Allows the recipient of a call to see who triggered it.
                    /// @return Address of the sender of the currently executing message on the other chain.
                    function xDomainMessageSender() external view returns (address) {
                        require(
                            xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                        );
                        return xDomainMsgSender;
                    }
                    /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                    ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                    /// @return CrossDomainMessenger contract on the other chain.
                    /// @custom:legacy
                    function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                        return otherMessenger;
                    }
                    /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                    ///         bytes of the message nonce. Message version allows us to treat messages as having
                    ///         different structures.
                    /// @return Nonce of the next message to be sent, with added message version.
                    function messageNonce() public view returns (uint256) {
                        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                    }
                    /// @notice Computes the amount of gas required to guarantee that a given message will be
                    ///         received on the other chain without running out of gas. Guaranteeing that a message
                    ///         will not run out of gas is important because this ensures that a message can always
                    ///         be replayed on the other chain if it fails to execute completely.
                    /// @param _message     Message to compute the amount of required gas for.
                    /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                    /// @return Amount of gas required to guarantee message receipt.
                    function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
                        return
                        // Constant overhead
                        RELAY_CONSTANT_OVERHEAD
                        // Calldata overhead
                        + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
                        // Dynamic overhead (EIP-150)
                        + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                        // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
                        // factors. (Conservative)
                        + RELAY_CALL_OVERHEAD
                        // Relay reserved gas (to ensure execution of `relayMessage` completes after the
                        // subcontext finishes executing) (Conservative)
                        + RELAY_RESERVED_GAS
                        // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
                        // opcode. (Conservative)
                        + RELAY_GAS_CHECK_BUFFER;
                    }
                    /// @notice Returns the address of the gas token and the token's decimals.
                    function gasPayingToken() internal view virtual returns (address, uint8);
                    /// @notice Returns whether the chain uses a custom gas token or not.
                    function isCustomGasToken() internal view returns (bool) {
                        (address token,) = gasPayingToken();
                        return token != Constants.ETHER;
                    }
                    /// @notice Initializer.
                    /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                    function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                        // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                        // meaning that this is a fresh contract deployment.
                        // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                        // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                        if (xDomainMsgSender == address(0)) {
                            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                        }
                        otherMessenger = _otherMessenger;
                    }
                    /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                    ///         contracts because the logic for this depends on the network where the messenger is
                    ///         being deployed.
                    /// @param _to       Recipient of the message on the other chain.
                    /// @param _gasLimit Minimum gas limit the message can be executed with.
                    /// @param _value    Amount of ETH to send with the message.
                    /// @param _data     Message data.
                    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                    /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                    ///         contracts because the logic for this depends on the network where the messenger is
                    ///         being deployed.
                    /// @return Whether the message is coming from the other messenger.
                    function _isOtherMessenger() internal view virtual returns (bool);
                    /// @notice Checks whether a given call target is a system address that could cause the
                    ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                    ///         addresses. This is ONLY used to prevent the execution of messages to specific
                    ///         system addresses that could cause security issues, e.g., having the
                    ///         CrossDomainMessenger send messages to itself.
                    /// @param _target Address of the contract to check.
                    /// @return Whether or not the address is an unsafe system address.
                    function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                    /// @notice This function should return true if the contract is paused.
                    ///         On L1 this function will check the SuperchainConfig for its paused status.
                    ///         On L2 this function should be a no-op.
                    /// @return Whether or not the contract is paused.
                    function paused() public view virtual returns (bool) {
                        return false;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Predeploys
                /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
                //          This excludes the preinstalls (non-protocol contracts).
                library Predeploys {
                    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                    uint256 internal constant PREDEPLOY_COUNT = 2048;
                    /// @custom:legacy
                    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                    ///         L2ToL1MessagePasser contract instead.
                    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                    /// @custom:legacy
                    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                    ///         Not embedded into new OP-Stack chains.
                    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                    /// @custom:legacy
                    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                    /// @notice Address of the canonical WETH contract.
                    address internal constant WETH = 0x4200000000000000000000000000000000000006;
                    /// @notice Address of the L2CrossDomainMessenger predeploy.
                    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                    ///         and helpers for computing the L1 portion of the transaction fee.
                    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                    /// @notice Address of the L2StandardBridge predeploy.
                    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                    //// @notice Address of the SequencerFeeWallet predeploy.
                    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                    /// @notice Address of the OptimismMintableERC20Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                    /// @custom:legacy
                    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                    ///         instead, which exposes more information about the L1 state.
                    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                    /// @notice Address of the L2ERC721Bridge predeploy.
                    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                    /// @notice Address of the L1Block predeploy.
                    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                    /// @notice Address of the L2ToL1MessagePasser predeploy.
                    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                    /// @notice Address of the OptimismMintableERC721Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                    /// @notice Address of the ProxyAdmin predeploy.
                    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                    /// @notice Address of the BaseFeeVault predeploy.
                    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                    /// @notice Address of the L1FeeVault predeploy.
                    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                    /// @notice Address of the SchemaRegistry predeploy.
                    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                    /// @notice Address of the EAS predeploy.
                    address internal constant EAS = 0x4200000000000000000000000000000000000021;
                    /// @notice Address of the GovernanceToken predeploy.
                    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                    /// @custom:legacy
                    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                    ///         can no longer be accessed.
                    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                    /// @notice Address of the CrossL2Inbox predeploy.
                    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                    /// @notice Address of the SuperchainWETH predeploy.
                    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                    /// @notice Address of the ETHLiquidity predeploy.
                    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                    // TODO: Precalculate the address of the implementation contract
                    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                    /// @notice Returns the name of the predeploy at the given address.
                    function getName(address _addr) internal pure returns (string memory out_) {
                        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                        if (_addr == WETH) return "WETH";
                        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                        if (_addr == EAS) return "EAS";
                        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                        revert("Predeploys: unnamed predeploy");
                    }
                    /// @notice Returns true if the predeploy is not proxied.
                    function notProxied(address _addr) internal pure returns (bool) {
                        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                    }
                    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                            || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                            || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER)
                            || (_useInterop && _addr == SUPERCHAIN_WETH) || (_useInterop && _addr == ETH_LIQUIDITY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON);
                    }
                    function isPredeployNamespace(address _addr) internal pure returns (bool) {
                        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                    }
                    /// @notice Function to compute the expected address of the predeploy implementation
                    ///         in the genesis state.
                    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                        require(
                            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                        );
                        return address(
                            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        GAS_CONFIG,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                        address gasPayingToken;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function gasPayingToken() external view returns (address addr_, uint8 decimals_);
                    function gasPayingTokenName() external view returns (string memory name_);
                    function gasPayingTokenSymbol() external view returns (string memory symbol_);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function isCustomGasToken() external view returns (bool);
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external;
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { ISystemConfig } from "src/L1/interfaces/ISystemConfig.sol";
                import { ISuperchainConfig } from "src/L1/interfaces/ISuperchainConfig.sol";
                import { IL2OutputOracle } from "src/L1/interfaces/IL2OutputOracle.sol";
                interface IOptimismPortal {
                    error BadTarget();
                    error CallPaused();
                    error ContentLengthMismatch();
                    error EmptyItem();
                    error GasEstimation();
                    error InvalidDataRemainder();
                    error InvalidHeader();
                    error LargeCalldata();
                    error NoValue();
                    error NonReentrant();
                    error OnlyCustomGasToken();
                    error OutOfGas();
                    error SmallGasLimit();
                    error TransferFailed();
                    error Unauthorized();
                    error UnexpectedList();
                    error UnexpectedString();
                    event Initialized(uint8 version);
                    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                    event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                    receive() external payable;
                    function balance() external view returns (uint256);
                    function depositERC20Transaction(
                        address _to,
                        uint256 _mint,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        external;
                    function depositTransaction(
                        address _to,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        external
                        payable;
                    function donateETH() external payable;
                    function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
                    function finalizedWithdrawals(bytes32) external view returns (bool);
                    function guardian() external view returns (address);
                    function initialize(
                        IL2OutputOracle _l2Oracle,
                        ISystemConfig _systemConfig,
                        ISuperchainConfig _superchainConfig
                    )
                        external;
                    function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool);
                    function l2Oracle() external view returns (IL2OutputOracle);
                    function l2Sender() external view returns (address);
                    function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                    function paused() external view returns (bool paused_);
                    function proveWithdrawalTransaction(
                        Types.WithdrawalTransaction memory _tx,
                        uint256 _l2OutputIndex,
                        Types.OutputRootProof memory _outputRootProof,
                        bytes[] memory _withdrawalProof
                    )
                        external;
                    function provenWithdrawals(bytes32)
                        external
                        view
                        returns (bytes32 outputRoot, uint128 timestamp, uint128 l2OutputIndex);
                    function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external;
                    function superchainConfig() external view returns (ISuperchainConfig);
                    function systemConfig() external view returns (ISystemConfig);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/AddressUpgradeable.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                /// @title Hashing
                /// @notice Hashing handles Optimism's various different hashing schemes.
                library Hashing {
                    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                    ///         system.
                    /// @param _tx User deposit transaction to hash.
                    /// @return Hash of the RLP encoded L2 deposit transaction.
                    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(Encoding.encodeDepositTransaction(_tx));
                    }
                    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                    ///         of the L2 transaction that corresponds to a deposit is unique and is
                    ///         deterministically generated from L1 transaction data.
                    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                    /// @param _logIndex    The index of the log that created the deposit transaction.
                    /// @return Hash of the deposit transaction's "source hash".
                    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                        return keccak256(abi.encode(bytes32(0), depositId));
                    }
                    /// @notice Hashes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Hashing: unknown cross domain message version");
                        }
                    }
                    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                    }
                    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                    }
                    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                    /// @param _tx Withdrawal transaction to hash.
                    /// @return Hashed withdrawal transaction.
                    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                    }
                    /// @notice Hashes the various elements of an output root proof into an output root hash which
                    ///         can be used to check if the proof is valid.
                    /// @param _outputRootProof Output root proof which should hash to an output root.
                    /// @return Hashed output root proof.
                    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                        return keccak256(
                            abi.encode(
                                _outputRootProof.version,
                                _outputRootProof.stateRoot,
                                _outputRootProof.messagePasserStorageRoot,
                                _outputRootProof.latestBlockhash
                            )
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
                /// @title Encoding
                /// @notice Encoding handles Optimism's various different encoding schemes.
                library Encoding {
                    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                    /// @param _tx User deposit transaction to encode.
                    /// @return RLP encoded L2 deposit transaction.
                    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                        bytes[] memory raw = new bytes[](8);
                        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                        raw[1] = RLPWriter.writeAddress(_tx.from);
                        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                        raw[3] = RLPWriter.writeUint(_tx.mint);
                        raw[4] = RLPWriter.writeUint(_tx.value);
                        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                        raw[6] = RLPWriter.writeBool(false);
                        raw[7] = RLPWriter.writeBytes(_tx.data);
                        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                    }
                    /// @notice Encodes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        (, uint16 version) = decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Encoding: unknown cross domain message version");
                        }
                    }
                    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                    }
                    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        return abi.encodeWithSignature(
                            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                            _nonce,
                            _sender,
                            _target,
                            _value,
                            _gasLimit,
                            _data
                        );
                    }
                    /// @notice Adds a version number into the first two bytes of a message nonce.
                    /// @param _nonce   Message nonce to encode into.
                    /// @param _version Version number to encode into the message nonce.
                    /// @return Message nonce with version encoded into the first two bytes.
                    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                        uint256 nonce;
                        assembly {
                            nonce := or(shl(240, _version), _nonce)
                        }
                        return nonce;
                    }
                    /// @notice Pulls the version out of a version-encoded nonce.
                    /// @param _nonce Message nonce with version encoded into the first two bytes.
                    /// @return Nonce without encoded version.
                    /// @return Version of the message.
                    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                        uint240 nonce;
                        uint16 version;
                        assembly {
                            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                            version := shr(240, _nonce)
                        }
                        return (nonce, version);
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                    /// @param baseFeeScalar       L1 base fee Scalar
                    /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param timestamp           L1 timestamp.
                    /// @param number              L1 blocknumber.
                    /// @param baseFee             L1 base fee.
                    /// @param blobBaseFee         L1 blob base fee.
                    /// @param hash                L1 blockhash.
                    /// @param batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesEcotone(
                        uint32 baseFeeScalar,
                        uint32 blobBaseFeeScalar,
                        uint64 sequenceNumber,
                        uint64 timestamp,
                        uint64 number,
                        uint256 baseFee,
                        uint256 blobBaseFee,
                        bytes32 hash,
                        bytes32 batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                        return abi.encodePacked(
                            functionSignature,
                            baseFeeScalar,
                            blobBaseFeeScalar,
                            sequenceNumber,
                            timestamp,
                            number,
                            baseFee,
                            blobBaseFee,
                            hash,
                            batcherHash
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesIsthmus(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Types
                /// @notice Contains various types used throughout the Optimism contract system.
                library Types {
                    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                    ///         timestamp that the output root is posted. This timestamp is used to verify that the
                    ///         finalization period has passed since the output root was submitted.
                    /// @custom:field outputRoot    Hash of the L2 output.
                    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                    struct OutputProposal {
                        bytes32 outputRoot;
                        uint128 timestamp;
                        uint128 l2BlockNumber;
                    }
                    /// @notice Struct representing the elements that are hashed together to generate an output root
                    ///         which itself represents a snapshot of the L2 state.
                    /// @custom:field version                  Version of the output root.
                    /// @custom:field stateRoot                Root of the state trie at the block of this output.
                    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                    struct OutputRootProof {
                        bytes32 version;
                        bytes32 stateRoot;
                        bytes32 messagePasserStorageRoot;
                        bytes32 latestBlockhash;
                    }
                    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                    ///         user (as opposed to a system deposit transaction generated by the system).
                    /// @custom:field from        Address of the sender of the transaction.
                    /// @custom:field to          Address of the recipient of the transaction.
                    /// @custom:field isCreation  True if the transaction is a contract creation.
                    /// @custom:field value       Value to send to the recipient.
                    /// @custom:field mint        Amount of ETH to mint.
                    /// @custom:field gasLimit    Gas limit of the transaction.
                    /// @custom:field data        Data of the transaction.
                    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                    struct UserDepositTransaction {
                        address from;
                        address to;
                        bool isCreation;
                        uint256 value;
                        uint256 mint;
                        uint64 gasLimit;
                        bytes data;
                        bytes32 l1BlockHash;
                        uint256 logIndex;
                    }
                    /// @notice Struct representing a withdrawal transaction.
                    /// @custom:field nonce    Nonce of the withdrawal transaction
                    /// @custom:field sender   Address of the sender of the transaction.
                    /// @custom:field target   Address of the recipient of the transaction.
                    /// @custom:field value    Value to send to the recipient.
                    /// @custom:field gasLimit Gas limit of the transaction.
                    /// @custom:field data     Data of the transaction.
                    struct WithdrawalTransaction {
                        uint256 nonce;
                        address sender;
                        address target;
                        uint256 value;
                        uint256 gasLimit;
                        bytes data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                interface IL2OutputOracle {
                    event Initialized(uint8 version);
                    event OutputProposed(
                        bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                    );
                    event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                    function CHALLENGER() external view returns (address);
                    function FINALIZATION_PERIOD_SECONDS() external view returns (uint256);
                    function L2_BLOCK_TIME() external view returns (uint256);
                    function PROPOSER() external view returns (address);
                    function SUBMISSION_INTERVAL() external view returns (uint256);
                    function challenger() external view returns (address);
                    function computeL2Timestamp(uint256 _l2BlockNumber) external view returns (uint256);
                    function deleteL2Outputs(uint256 _l2OutputIndex) external;
                    function finalizationPeriodSeconds() external view returns (uint256);
                    function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory);
                    function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory);
                    function getL2OutputIndexAfter(uint256 _l2BlockNumber) external view returns (uint256);
                    function initialize(
                        uint256 _submissionInterval,
                        uint256 _l2BlockTime,
                        uint256 _startingBlockNumber,
                        uint256 _startingTimestamp,
                        address _proposer,
                        address _challenger,
                        uint256 _finalizationPeriodSeconds
                    )
                        external;
                    function l2BlockTime() external view returns (uint256);
                    function latestBlockNumber() external view returns (uint256);
                    function latestOutputIndex() external view returns (uint256);
                    function nextBlockNumber() external view returns (uint256);
                    function nextOutputIndex() external view returns (uint256);
                    function proposeL2Output(
                        bytes32 _outputRoot,
                        uint256 _l2BlockNumber,
                        bytes32 _l1BlockHash,
                        uint256 _l1BlockNumber
                    )
                        external
                        payable;
                    function proposer() external view returns (address);
                    function startingBlockNumber() external view returns (uint256);
                    function startingTimestamp() external view returns (uint256);
                    function submissionInterval() external view returns (uint256);
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library AddressUpgradeable {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
                /// @title RLPWriter
                /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
                ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
                ///         modifications to improve legibility.
                library RLPWriter {
                    /// @notice RLP encodes a byte string.
                    /// @param _in The byte string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        if (_in.length == 1 && uint8(_in[0]) < 128) {
                            out_ = _in;
                        } else {
                            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                        }
                    }
                    /// @notice RLP encodes a list of RLP encoded byte byte strings.
                    /// @param _in The list of RLP encoded byte strings.
                    /// @return list_ The RLP encoded list of items in bytes.
                    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                        list_ = _flatten(_in);
                        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                    }
                    /// @notice RLP encodes a string.
                    /// @param _in The string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeString(string memory _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(bytes(_in));
                    }
                    /// @notice RLP encodes an address.
                    /// @param _in The address to encode.
                    /// @return out_ The RLP encoded address in bytes.
                    function writeAddress(address _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(abi.encodePacked(_in));
                    }
                    /// @notice RLP encodes a uint.
                    /// @param _in The uint256 to encode.
                    /// @return out_ The RLP encoded uint256 in bytes.
                    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(_toBinary(_in));
                    }
                    /// @notice RLP encodes a bool.
                    /// @param _in The bool to encode.
                    /// @return out_ The RLP encoded bool in bytes.
                    function writeBool(bool _in) internal pure returns (bytes memory out_) {
                        out_ = new bytes(1);
                        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                    }
                    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                    /// @param _len    The length of the string or the payload.
                    /// @param _offset 128 if item is string, 192 if item is list.
                    /// @return out_ RLP encoded bytes.
                    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                        if (_len < 56) {
                            out_ = new bytes(1);
                            out_[0] = bytes1(uint8(_len) + uint8(_offset));
                        } else {
                            uint256 lenLen;
                            uint256 i = 1;
                            while (_len / i != 0) {
                                lenLen++;
                                i *= 256;
                            }
                            out_ = new bytes(lenLen + 1);
                            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                            for (i = 1; i <= lenLen; i++) {
                                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                            }
                        }
                    }
                    /// @notice Encode integer in big endian binary form with no leading zeroes.
                    /// @param _x The integer to encode.
                    /// @return out_ RLP encoded bytes.
                    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                        bytes memory b = abi.encodePacked(_x);
                        uint256 i = 0;
                        for (; i < 32; i++) {
                            if (b[i] != 0) {
                                break;
                            }
                        }
                        out_ = new bytes(32 - i);
                        for (uint256 j = 0; j < out_.length; j++) {
                            out_[j] = b[i++];
                        }
                    }
                    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                    /// @notice Copies a piece of memory to another location.
                    /// @param _dest Destination location.
                    /// @param _src  Source location.
                    /// @param _len  Length of memory to copy.
                    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                        uint256 dest = _dest;
                        uint256 src = _src;
                        uint256 len = _len;
                        for (; len >= 32; len -= 32) {
                            assembly {
                                mstore(dest, mload(src))
                            }
                            dest += 32;
                            src += 32;
                        }
                        uint256 mask;
                        unchecked {
                            mask = 256 ** (32 - len) - 1;
                        }
                        assembly {
                            let srcpart := and(mload(src), not(mask))
                            let destpart := and(mload(dest), mask)
                            mstore(dest, or(destpart, srcpart))
                        }
                    }
                    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                    /// @notice Flattens a list of byte strings into one byte string.
                    /// @param _list List of byte strings to flatten.
                    /// @return out_ The flattened byte string.
                    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                        if (_list.length == 0) {
                            return new bytes(0);
                        }
                        uint256 len;
                        uint256 i = 0;
                        for (; i < _list.length; i++) {
                            len += _list[i].length;
                        }
                        out_ = new bytes(len);
                        uint256 flattenedPtr;
                        assembly {
                            flattenedPtr := add(out_, 0x20)
                        }
                        for (i = 0; i < _list.length; i++) {
                            bytes memory item = _list[i];
                            uint256 listPtr;
                            assembly {
                                listPtr := add(item, 0x20)
                            }
                            _memcpy(flattenedPtr, listPtr, item.length);
                            flattenedPtr += _list[i].length;
                        }
                    }
                }
                

                File 9 of 11: Proxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Constants } from "../libraries/Constants.sol";
                /// @title Proxy
                /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                ///         if the caller is address(0), meaning that the call originated from an off-chain
                ///         simulation.
                contract Proxy {
                    /// @notice An event that is emitted each time the implementation is changed. This event is part
                    ///         of the EIP-1967 specification.
                    /// @param implementation The address of the implementation contract
                    event Upgraded(address indexed implementation);
                    /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                    ///         EIP-1967 specification.
                    /// @param previousAdmin The previous owner of the contract
                    /// @param newAdmin      The new owner of the contract
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                    ///         eth_call to interact with this proxy without needing to use low-level storage
                    ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                    ///         normal EVM execution.
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                    ///         EIP-1967 admin storage slot so that accidental storage collision with the
                    ///         implementation is not possible.
                    /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                    ///               transparent proxy interface.
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /// @notice Set the implementation contract address. The code at the given address will execute
                    ///         when this contract is called.
                    /// @param _implementation Address of the implementation contract.
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                    ///         atomic execution of initialization-based upgrades.
                    /// @param _implementation Address of the implementation contract.
                    /// @param _data           Calldata to delegatecall the new implementation with.
                    function upgradeToAndCall(
                        address _implementation,
                        bytes calldata _data
                    )
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                    /// @param _admin New owner of the proxy contract.
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /// @notice Gets the owner of the proxy contract.
                    /// @return Owner address.
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    //// @notice Queries the implementation address.
                    /// @return Implementation address.
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /// @notice Sets the implementation address.
                    /// @param _implementation New implementation address.
                    function _setImplementation(address _implementation) internal {
                        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                        assembly {
                            sstore(proxyImplementation, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /// @notice Changes the owner of the proxy contract.
                    /// @param _admin New owner of the proxy contract.
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                        assembly {
                            sstore(proxyOwner, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /// @notice Performs the proxy call via a delegatecall.
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) { revert(0x0, returndatasize()) }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /// @notice Queries the implementation address.
                    /// @return Implementation address.
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                        assembly {
                            impl := sload(proxyImplementation)
                        }
                        return impl;
                    }
                    /// @notice Queries the owner of the proxy contract.
                    /// @return Owner address.
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                        assembly {
                            owner := sload(proxyOwner)
                        }
                        return owner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { ResourceMetering } from "../L1/ResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
                import { Burn } from "../libraries/Burn.sol";
                import { Arithmetic } from "../libraries/Arithmetic.sol";
                /// @custom:upgradeable
                /// @title ResourceMetering
                /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
                ///         updates automatically based on current demand.
                abstract contract ResourceMetering is Initializable {
                    /// @notice Represents the various parameters that control the way in which resources are
                    ///         metered. Corresponds to the EIP-1559 resource metering system.
                    /// @custom:field prevBaseFee   Base fee from the previous block(s).
                    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                    ///         market. These values should be set with care as it is possible to set them in
                    ///         a way that breaks the deposit gas market. The target resource limit is defined as
                    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                    ///         single word. There is additional space for additions in the future.
                    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                    ///                                            can be purchased per block.
                    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                    ///                                            the resource limit.
                    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                    ///                                            value.
                    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                    ///                                            transaction. This should be set to the same
                    ///                                            number that the op-node sets as the gas limit
                    ///                                            for the system transaction.
                    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                    ///                                            value.
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    /// @notice EIP-1559 style gas parameters.
                    ResourceParams public params;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    uint256[48] private __gap;
                    /// @notice Meters access to a function based an amount of a requested resource.
                    /// @param _amount Amount of the resource requested.
                    modifier metered(uint64 _amount) {
                        // Record initial gas amount so we can refund for it later.
                        uint256 initialGas = gasleft();
                        // Run the underlying function.
                        _;
                        // Run the metering function.
                        _metered(_amount, initialGas);
                    }
                    /// @notice An internal function that holds all of the logic for metering a resource.
                    /// @param _amount     Amount of the resource requested.
                    /// @param _initialGas The amount of gas before any modifier execution.
                    function _metered(uint64 _amount, uint256 _initialGas) internal {
                        // Update block number and base fee if necessary.
                        uint256 blockDiff = block.number - params.prevBlockNum;
                        ResourceConfig memory config = _resourceConfig();
                        int256 targetResourceLimit =
                            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                        if (blockDiff > 0) {
                            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                            // at which deposits can be created and therefore limit the potential for deposits to
                            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                            // Update base fee by adding the base fee delta and clamp the resulting value between
                            // min and max.
                            int256 newBaseFee = Arithmetic.clamp({
                                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                            // If we skipped more than one block, we also need to account for every empty block.
                            // Empty block means there was no demand for deposits in that block, so we should
                            // reflect this lack of demand in the fee.
                            if (blockDiff > 1) {
                                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                                // between min and max.
                                newBaseFee = Arithmetic.clamp({
                                    _value: Arithmetic.cdexp({
                                        _coefficient: newBaseFee,
                                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                        _exponent: int256(blockDiff - 1)
                                    }),
                                    _min: int256(uint256(config.minimumBaseFee)),
                                    _max: int256(uint256(config.maximumBaseFee))
                                });
                            }
                            // Update new base fee, reset bought gas, and update block number.
                            params.prevBaseFee = uint128(uint256(newBaseFee));
                            params.prevBoughtGas = 0;
                            params.prevBlockNum = uint64(block.number);
                        }
                        // Make sure we can actually buy the resource amount requested by the user.
                        params.prevBoughtGas += _amount;
                        require(
                            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                            "ResourceMetering: cannot buy more gas than available gas limit"
                        );
                        // Determine the amount of ETH to be paid.
                        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                        // during any 1 day period in the last 5 years, so should be fine.
                        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                        // Give the user a refund based on the amount of gas they used to do all of the work up to
                        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                        // effectively like a dynamic stipend (with a minimum value).
                        uint256 usedGas = _initialGas - gasleft();
                        if (gasCost > usedGas) {
                            Burn.gas(gasCost - usedGas);
                        }
                    }
                    /// @notice Virtual function that returns the resource config.
                    ///         Contracts that inherit this contract must implement this function.
                    /// @return ResourceConfig
                    function _resourceConfig() internal virtual returns (ResourceConfig memory);
                    /// @notice Sets initial resource parameter values.
                    ///         This function must either be called by the initializer function of an upgradeable
                    ///         child contract.
                    // solhint-disable-next-line func-name-mixedcase
                    function __ResourceMetering_init() internal onlyInitializing {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library Math {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`.
                        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1;
                        uint256 x = a;
                        if (x >> 128 > 0) {
                            x >>= 128;
                            result <<= 64;
                        }
                        if (x >> 64 > 0) {
                            x >>= 64;
                            result <<= 32;
                        }
                        if (x >> 32 > 0) {
                            x >>= 32;
                            result <<= 16;
                        }
                        if (x >> 16 > 0) {
                            x >>= 16;
                            result <<= 8;
                        }
                        if (x >> 8 > 0) {
                            x >>= 8;
                            result <<= 4;
                        }
                        if (x >> 4 > 0) {
                            x >>= 4;
                            result <<= 2;
                        }
                        if (x >> 2 > 0) {
                            result <<= 1;
                        }
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        uint256 result = sqrt(a);
                        if (rounding == Rounding.Up && result * result < a) {
                            result += 1;
                        }
                        return result;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /// @title Burn
                /// @notice Utilities for burning stuff.
                library Burn {
                    /// @notice Burns a given amount of ETH.
                    /// @param _amount Amount of ETH to burn.
                    function eth(uint256 _amount) internal {
                        new Burner{ value: _amount }();
                    }
                    /// @notice Burns a given amount of gas.
                    /// @param _amount Amount of gas to burn.
                    function gas(uint256 _amount) internal view {
                        uint256 i = 0;
                        uint256 initialGas = gasleft();
                        while (initialGas - gasleft() < _amount) {
                            ++i;
                        }
                    }
                }
                /// @title Burner
                /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
                ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
                ///         from the circulating supply.
                contract Burner {
                    constructor() payable {
                        selfdestruct(payable(address(this)));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
                import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
                /// @title Arithmetic
                /// @notice Even more math than before.
                library Arithmetic {
                    /// @notice Clamps a value between a minimum and maximum.
                    /// @param _value The value to clamp.
                    /// @param _min   The minimum value.
                    /// @param _max   The maximum value.
                    /// @return The clamped value.
                    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                        return SignedMath.min(SignedMath.max(_value, _min), _max);
                    }
                    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                    ///         Returns the result of: c * (1 - 1/d)^exp.
                    /// @param _coefficient Coefficient of the function.
                    /// @param _denominator Fractional denominator.
                    /// @param _exponent    Power function exponent.
                    /// @return Result of c * (1 - 1/d)^exp.
                    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard signed math utilities missing in the Solidity language.
                 */
                library SignedMath {
                    /**
                     * @dev Returns the largest of two signed numbers.
                     */
                    function max(int256 a, int256 b) internal pure returns (int256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two signed numbers.
                     */
                    function min(int256 a, int256 b) internal pure returns (int256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two signed numbers without overflow.
                     * The result is rounded towards zero.
                     */
                    function average(int256 a, int256 b) internal pure returns (int256) {
                        // Formula from the book "Hacker's Delight"
                        int256 x = (a & b) + ((a ^ b) >> 1);
                        return x + (int256(uint256(x) >> 255) & (a ^ b));
                    }
                    /**
                     * @dev Returns the absolute unsigned value of a signed value.
                     */
                    function abs(int256 n) internal pure returns (uint256) {
                        unchecked {
                            // must be unchecked in order to support `n = type(int256).min`
                            return uint256(n >= 0 ? n : -n);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.8.0;
                /// @notice Arithmetic library with operations for fixed-point numbers.
                /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                library FixedPointMathLib {
                    /*//////////////////////////////////////////////////////////////
                                    SIMPLIFIED FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                    }
                    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                    }
                    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                    }
                    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                    }
                    function powWad(int256 x, int256 y) internal pure returns (int256) {
                        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                    }
                    function expWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            // When the result is < 0.5 we return zero. This happens when
                            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                            if (x <= -42139678854452767551) return 0;
                            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                            // for more intermediate precision and a binary basis. This base conversion
                            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                            x = (x << 78) / 5**18;
                            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                            x = x - k * 54916777467707473351141471128;
                            // k is in the range [-61, 195].
                            // Evaluate using a (6, 7)-term rational approximation.
                            // p is made monic, we'll multiply by a scale factor later.
                            int256 y = x + 1346386616545796478920950773328;
                            y = ((y * x) >> 96) + 57155421227552351082224309758442;
                            int256 p = y + x - 94201549194550492254356042504812;
                            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                            p = p * x + (4385272521454847904659076985693276 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            int256 q = x - 2855989394907223263936484059900;
                            q = ((q * x) >> 96) + 50020603652535783019961831881945;
                            q = ((q * x) >> 96) - 533845033583426703283633433725380;
                            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                            q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial won't have zeros in the domain as all its roots are complex.
                                // No scaling is necessary because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r should be in the range (0.09, 0.25) * 2**96.
                            // We now need to multiply r by:
                            // * the scale factor s = ~6.031367120.
                            // * the 2**k factor from the range reduction.
                            // * the 1e18 / 2**96 factor for base conversion.
                            // We do this all at once, with an intermediate result in 2**213
                            // basis, so the final right shift is always by a positive amount.
                            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                        }
                    }
                    function lnWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            require(x > 0, "UNDEFINED");
                            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                            // We do this by multiplying by 2**96 / 10**18. But since
                            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                            // and add ln(2**96 / 10**18) at the end.
                            // Reduce range of x to (1, 2) * 2**96
                            // ln(2^k * x) = k * ln(2) + ln(x)
                            int256 k = int256(log2(uint256(x))) - 96;
                            x <<= uint256(159 - k);
                            x = int256(uint256(x) >> 159);
                            // Evaluate using a (8, 8)-term rational approximation.
                            // p is made monic, we will multiply by a scale factor later.
                            int256 p = x + 3273285459638523848632254066296;
                            p = ((p * x) >> 96) + 24828157081833163892658089445524;
                            p = ((p * x) >> 96) + 43456485725739037958740375743393;
                            p = ((p * x) >> 96) - 11111509109440967052023855526967;
                            p = ((p * x) >> 96) - 45023709667254063763336534515857;
                            p = ((p * x) >> 96) - 14706773417378608786704636184526;
                            p = p * x - (795164235651350426258249787498 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            // q is monic by convention.
                            int256 q = x + 5573035233440673466300451813936;
                            q = ((q * x) >> 96) + 71694874799317883764090561454958;
                            q = ((q * x) >> 96) + 283447036172924575727196451306956;
                            q = ((q * x) >> 96) + 401686690394027663651624208769553;
                            q = ((q * x) >> 96) + 204048457590392012362485061816622;
                            q = ((q * x) >> 96) + 31853899698501571402653359427138;
                            q = ((q * x) >> 96) + 909429971244387300277376558375;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial is known not to have zeros in the domain.
                                // No scaling required because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r is in the range (0, 0.125) * 2**96
                            // Finalization, we need to:
                            // * multiply by the scale factor s = 5.549…
                            // * add ln(2**96 / 10**18)
                            // * add k * ln(2)
                            // * multiply by 10**18 / 2**96 = 5**18 >> 78
                            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                            r *= 1677202110996718588342820967067443963516166;
                            // add ln(2) * k * 5e18 * 2**192
                            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                            // add ln(2**96 / 10**18) * 5e18 * 2**192
                            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                            // base conversion: mul 2**18 / 2**192
                            r >>= 174;
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                    LOW LEVEL FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    function mulDivDown(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // Divide z by the denominator.
                            z := div(z, denominator)
                        }
                    }
                    function mulDivUp(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // First, divide z - 1 by the denominator and add 1.
                            // We allow z - 1 to underflow if z is 0, because we multiply the
                            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                        }
                    }
                    function rpow(
                        uint256 x,
                        uint256 n,
                        uint256 scalar
                    ) internal pure returns (uint256 z) {
                        assembly {
                            switch x
                            case 0 {
                                switch n
                                case 0 {
                                    // 0 ** 0 = 1
                                    z := scalar
                                }
                                default {
                                    // 0 ** n = 0
                                    z := 0
                                }
                            }
                            default {
                                switch mod(n, 2)
                                case 0 {
                                    // If n is even, store scalar in z for now.
                                    z := scalar
                                }
                                default {
                                    // If n is odd, store x in z for now.
                                    z := x
                                }
                                // Shifting right by 1 is like dividing by 2.
                                let half := shr(1, scalar)
                                for {
                                    // Shift n right by 1 before looping to halve it.
                                    n := shr(1, n)
                                } n {
                                    // Shift n right by 1 each iteration to halve it.
                                    n := shr(1, n)
                                } {
                                    // Revert immediately if x ** 2 would overflow.
                                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                                    if shr(128, x) {
                                        revert(0, 0)
                                    }
                                    // Store x squared.
                                    let xx := mul(x, x)
                                    // Round to the nearest number.
                                    let xxRound := add(xx, half)
                                    // Revert if xx + half overflowed.
                                    if lt(xxRound, xx) {
                                        revert(0, 0)
                                    }
                                    // Set x to scaled xxRound.
                                    x := div(xxRound, scalar)
                                    // If n is even:
                                    if mod(n, 2) {
                                        // Compute z * x.
                                        let zx := mul(z, x)
                                        // If z * x overflowed:
                                        if iszero(eq(div(zx, x), z)) {
                                            // Revert if x is non-zero.
                                            if iszero(iszero(x)) {
                                                revert(0, 0)
                                            }
                                        }
                                        // Round to the nearest number.
                                        let zxRound := add(zx, half)
                                        // Revert if zx + half overflowed.
                                        if lt(zxRound, zx) {
                                            revert(0, 0)
                                        }
                                        // Return properly scaled zxRound.
                                        z := div(zxRound, scalar)
                                    }
                                }
                            }
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                        GENERAL NUMBER UTILITIES
                    //////////////////////////////////////////////////////////////*/
                    function sqrt(uint256 x) internal pure returns (uint256 z) {
                        assembly {
                            let y := x // We start y at x, which will help us make our initial estimate.
                            z := 181 // The "correct" value is 1, but this saves a multiplication later.
                            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                            // We check y >= 2^(k + 8) but shift right by k bits
                            // each branch to ensure that if x >= 256, then y >= 256.
                            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                                y := shr(128, y)
                                z := shl(64, z)
                            }
                            if iszero(lt(y, 0x1000000000000000000)) {
                                y := shr(64, y)
                                z := shl(32, z)
                            }
                            if iszero(lt(y, 0x10000000000)) {
                                y := shr(32, y)
                                z := shl(16, z)
                            }
                            if iszero(lt(y, 0x1000000)) {
                                y := shr(16, y)
                                z := shl(8, z)
                            }
                            // Goal was to get z*z*y within a small factor of x. More iterations could
                            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                            // That's not possible if x < 256 but we can just verify those cases exhaustively.
                            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                            // There is no overflow risk here since y < 2^136 after the first branch above.
                            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            // If x+1 is a perfect square, the Babylonian method cycles between
                            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                            z := sub(z, lt(div(x, z), z))
                        }
                    }
                    function log2(uint256 x) internal pure returns (uint256 r) {
                        require(x > 0, "UNDEFINED");
                        assembly {
                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            r := or(r, shl(2, lt(0xf, shr(r, x))))
                            r := or(r, shl(1, lt(0x3, shr(r, x))))
                            r := or(r, lt(0x1, shr(r, x)))
                        }
                    }
                }
                

                File 10 of 11: SystemConfig
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
                import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
                // Libraries
                import { Storage } from "src/libraries/Storage.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol";
                // Interfaces
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                import { IOptimismPortal } from "src/L1/interfaces/IOptimismPortal.sol";
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                /// @custom:proxied true
                /// @title SystemConfig
                /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
                ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
                ///         the L2 chain.
                contract SystemConfig is OwnableUpgradeable, ISemver, IGasToken {
                    /// @notice Enum representing different types of updates.
                    /// @custom:value BATCHER              Represents an update to the batcher hash.
                    /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                    /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                    /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                    ///                                    block distrubution.
                    enum UpdateType {
                        BATCHER,
                        GAS_CONFIG,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER
                    }
                    /// @notice Struct representing the addresses of L1 system contracts. These should be the
                    ///         contracts that users interact with (not implementations for proxied contracts)
                    ///         and are network specific.
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                        address gasPayingToken;
                    }
                    /// @notice Version identifier, used for upgrades.
                    uint256 public constant VERSION = 0;
                    /// @notice Storage slot that the unsafe block signer is stored at.
                    ///         Storing it at this deterministic storage slot allows for decoupling the storage
                    ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                    ///         proof to fetch this value.
                    /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                    ///         User input should not be placed in storage in this contract until this migration
                    ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                    ///         but it is better to be safe than sorry.
                    bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                    /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                    bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                        bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                    /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                    bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                    /// @notice Storage slot that the L1StandardBridge address is stored at.
                    bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                    /// @notice Storage slot that the OptimismPortal address is stored at.
                    bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                    /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                    bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                        bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                    /// @notice Storage slot that the batch inbox address is stored at.
                    bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                    /// @notice Storage slot for block at which the op-node can start searching for logs from.
                    bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                    /// @notice Storage slot for the DisputeGameFactory address.
                    bytes32 public constant DISPUTE_GAME_FACTORY_SLOT =
                        bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1);
                    /// @notice The number of decimals that the gas paying token has.
                    uint8 internal constant GAS_PAYING_TOKEN_DECIMALS = 18;
                    /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks
                    ///         on L2 are not too large to process and prove. Over time, this value can be increased as various
                    ///         optimizations and improvements are made to the system at large.
                    uint64 internal constant MAX_GAS_LIMIT = 200_000_000;
                    /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                    ///         Deprecated since the Ecotone network upgrade
                    uint256 public overhead;
                    /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                    ///         The most significant byte is used to determine the version since the
                    ///         Ecotone network upgrade.
                    uint256 public scalar;
                    /// @notice Identifier for the batcher.
                    ///         For version 1 of this configuration, this is represented as an address left-padded
                    ///         with zeros to 32 bytes.
                    bytes32 public batcherHash;
                    /// @notice L2 block gas limit.
                    uint64 public gasLimit;
                    /// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
                    uint32 public basefeeScalar;
                    /// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
                    uint32 public blobbasefeeScalar;
                    /// @notice The configuration for the deposit fee market.
                    ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                    ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                    IResourceMetering.ResourceConfig internal _resourceConfig;
                    /// @notice Emitted when configuration is updated.
                    /// @param version    SystemConfig version.
                    /// @param updateType Type of update.
                    /// @param data       Encoded update data.
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    /// @notice Semantic version.
                    /// @custom:semver 2.3.0-beta.3
                    function version() public pure virtual returns (string memory) {
                        return "2.3.0-beta.3";
                    }
                    /// @notice Constructs the SystemConfig contract. Cannot set
                    ///         the owner to `address(0)` due to the Ownable contract's
                    ///         implementation, so set it to `address(0xdEaD)`
                    /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                    ///         in the singleton and is skipped by initialize when setting the start block.
                    constructor() {
                        Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                        initialize({
                            _owner: address(0xdEaD),
                            _basefeeScalar: 0,
                            _blobbasefeeScalar: 0,
                            _batcherHash: bytes32(0),
                            _gasLimit: 1,
                            _unsafeBlockSigner: address(0),
                            _config: IResourceMetering.ResourceConfig({
                                maxResourceLimit: 1,
                                elasticityMultiplier: 1,
                                baseFeeMaxChangeDenominator: 2,
                                minimumBaseFee: 0,
                                systemTxMaxGas: 0,
                                maximumBaseFee: 0
                            }),
                            _batchInbox: address(0),
                            _addresses: SystemConfig.Addresses({
                                l1CrossDomainMessenger: address(0),
                                l1ERC721Bridge: address(0),
                                l1StandardBridge: address(0),
                                disputeGameFactory: address(0),
                                optimismPortal: address(0),
                                optimismMintableERC20Factory: address(0),
                                gasPayingToken: address(0)
                            })
                        });
                    }
                    /// @notice Initializer.
                    ///         The resource config must be set before the require check.
                    /// @param _owner             Initial owner of the contract.
                    /// @param _basefeeScalar     Initial basefee scalar value.
                    /// @param _blobbasefeeScalar Initial blobbasefee scalar value.
                    /// @param _batcherHash       Initial batcher hash.
                    /// @param _gasLimit          Initial gas limit.
                    /// @param _unsafeBlockSigner Initial unsafe block signer address.
                    /// @param _config            Initial ResourceConfig.
                    /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                    ///                           canonical data.
                    /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        SystemConfig.Addresses memory _addresses
                    )
                        public
                        initializer
                    {
                        __Ownable_init();
                        transferOwnership(_owner);
                        // These are set in ascending order of their UpdateTypes.
                        _setBatcherHash(_batcherHash);
                        _setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar });
                        _setGasLimit(_gasLimit);
                        Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                        Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                        Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                        Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                        Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                        Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory);
                        Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                        Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                        _setStartBlock();
                        _setGasPayingToken(_addresses.gasPayingToken);
                        _setResourceConfig(_config);
                        require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                    }
                    /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                    ///         operate. The L2 gas limit must be larger than or equal to the amount of
                    ///         gas that is allocated for deposits per block plus the amount of gas that
                    ///         is allocated for the system transaction.
                    ///         This function is used to determine if changes to parameters are safe.
                    /// @return uint64 Minimum gas limit.
                    function minimumGasLimit() public view returns (uint64) {
                        return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                    }
                    /// @notice Returns the maximum L2 gas limit that can be safely set for the system to
                    ///         operate. This bound is used to prevent the gas limit from being set too high
                    ///         and causing the system to be unable to process and/or prove L2 blocks.
                    /// @return uint64 Maximum gas limit.
                    function maximumGasLimit() public pure returns (uint64) {
                        return MAX_GAS_LIMIT;
                    }
                    /// @notice High level getter for the unsafe block signer address.
                    ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                    ///         key corresponding to this address.
                    /// @return addr_ Address of the unsafe block signer.
                    function unsafeBlockSigner() public view returns (address addr_) {
                        addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                    }
                    /// @notice Getter for the L1CrossDomainMessenger address.
                    function l1CrossDomainMessenger() external view returns (address addr_) {
                        addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                    }
                    /// @notice Getter for the L1ERC721Bridge address.
                    function l1ERC721Bridge() external view returns (address addr_) {
                        addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                    }
                    /// @notice Getter for the L1StandardBridge address.
                    function l1StandardBridge() external view returns (address addr_) {
                        addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                    }
                    /// @notice Getter for the DisputeGameFactory address.
                    function disputeGameFactory() external view returns (address addr_) {
                        addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT);
                    }
                    /// @notice Getter for the OptimismPortal address.
                    function optimismPortal() public view returns (address addr_) {
                        addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                    }
                    /// @notice Getter for the OptimismMintableERC20Factory address.
                    function optimismMintableERC20Factory() external view returns (address addr_) {
                        addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                    }
                    /// @notice Getter for the BatchInbox address.
                    function batchInbox() external view returns (address addr_) {
                        addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                    }
                    /// @notice Getter for the StartBlock number.
                    function startBlock() external view returns (uint256 startBlock_) {
                        startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                    }
                    /// @notice Getter for the gas paying asset address.
                    function gasPayingToken() public view returns (address addr_, uint8 decimals_) {
                        (addr_, decimals_) = GasPayingToken.getToken();
                    }
                    /// @notice Getter for custom gas token paying networks. Returns true if the
                    ///         network uses a custom gas token.
                    function isCustomGasToken() public view returns (bool) {
                        (address token,) = gasPayingToken();
                        return token != Constants.ETHER;
                    }
                    /// @notice Getter for the gas paying token name.
                    function gasPayingTokenName() external view returns (string memory name_) {
                        name_ = GasPayingToken.getName();
                    }
                    /// @notice Getter for the gas paying token symbol.
                    function gasPayingTokenSymbol() external view returns (string memory symbol_) {
                        symbol_ = GasPayingToken.getSymbol();
                    }
                    /// @notice Internal setter for the gas paying token address, includes validation.
                    ///         The token must not already be set and must be non zero and not the ether address
                    ///         to set the token address. This prevents the token address from being changed
                    ///         and makes it explicitly opt-in to use custom gas token.
                    /// @param _token Address of the gas paying token.
                    function _setGasPayingToken(address _token) internal virtual {
                        if (_token != address(0) && _token != Constants.ETHER && !isCustomGasToken()) {
                            require(
                                ERC20(_token).decimals() == GAS_PAYING_TOKEN_DECIMALS, "SystemConfig: bad decimals of gas paying token"
                            );
                            bytes32 name = GasPayingToken.sanitize(ERC20(_token).name());
                            bytes32 symbol = GasPayingToken.sanitize(ERC20(_token).symbol());
                            // Set the gas paying token in storage and in the OptimismPortal.
                            GasPayingToken.set({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol });
                            IOptimismPortal(payable(optimismPortal())).setGasPayingToken({
                                _token: _token,
                                _decimals: GAS_PAYING_TOKEN_DECIMALS,
                                _name: name,
                                _symbol: symbol
                            });
                        }
                    }
                    /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                    /// @param _unsafeBlockSigner New unsafe block signer address.
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                        _setUnsafeBlockSigner(_unsafeBlockSigner);
                    }
                    /// @notice Updates the unsafe block signer address.
                    /// @param _unsafeBlockSigner New unsafe block signer address.
                    function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                        Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                        bytes memory data = abi.encode(_unsafeBlockSigner);
                        emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                    }
                    /// @notice Updates the batcher hash. Can only be called by the owner.
                    /// @param _batcherHash New batcher hash.
                    function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                        _setBatcherHash(_batcherHash);
                    }
                    /// @notice Internal function for updating the batcher hash.
                    /// @param _batcherHash New batcher hash.
                    function _setBatcherHash(bytes32 _batcherHash) internal {
                        batcherHash = _batcherHash;
                        bytes memory data = abi.encode(_batcherHash);
                        emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                    }
                    /// @notice Updates gas config. Can only be called by the owner.
                    ///         Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade.
                    /// @param _overhead New overhead value.
                    /// @param _scalar   New scalar value.
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                        _setGasConfig(_overhead, _scalar);
                    }
                    /// @notice Internal function for updating the gas config.
                    /// @param _overhead New overhead value.
                    /// @param _scalar   New scalar value.
                    function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                        require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max.");
                        overhead = _overhead;
                        scalar = _scalar;
                        bytes memory data = abi.encode(_overhead, _scalar);
                        emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                    }
                    /// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner.
                    /// @param _basefeeScalar     New basefeeScalar value.
                    /// @param _blobbasefeeScalar New blobbasefeeScalar value.
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner {
                        _setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar);
                    }
                    /// @notice Internal function for updating the fee scalars as of the Ecotone upgrade.
                    /// @param _basefeeScalar     New basefeeScalar value.
                    /// @param _blobbasefeeScalar New blobbasefeeScalar value.
                    function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal {
                        basefeeScalar = _basefeeScalar;
                        blobbasefeeScalar = _blobbasefeeScalar;
                        scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar;
                        bytes memory data = abi.encode(overhead, scalar);
                        emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                    }
                    /// @notice Updates the L2 gas limit. Can only be called by the owner.
                    /// @param _gasLimit New gas limit.
                    function setGasLimit(uint64 _gasLimit) external onlyOwner {
                        _setGasLimit(_gasLimit);
                    }
                    /// @notice Internal function for updating the L2 gas limit.
                    /// @param _gasLimit New gas limit.
                    function _setGasLimit(uint64 _gasLimit) internal {
                        require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                        require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high");
                        gasLimit = _gasLimit;
                        bytes memory data = abi.encode(_gasLimit);
                        emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                    }
                    /// @notice Sets the start block in a backwards compatible way. Proxies
                    ///         that were initialized before the startBlock existed in storage
                    ///         can have their start block set by a user provided override.
                    ///         A start block of 0 indicates that there is no override and the
                    ///         start block will be set by `block.number`.
                    /// @dev    This logic is used to patch legacy deployments with new storage values.
                    ///         Use the override if it is provided as a non zero value and the value
                    ///         has not already been set in storage. Use `block.number` if the value
                    ///         has already been set in storage
                    function _setStartBlock() internal {
                        if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                            Storage.setUint(START_BLOCK_SLOT, block.number);
                        }
                    }
                    /// @notice A getter for the resource config.
                    ///         Ensures that the struct is returned instead of a tuple.
                    /// @return ResourceConfig
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory) {
                        return _resourceConfig;
                    }
                    /// @notice An internal setter for the resource config.
                    ///         Ensures that the config is sane before storing it by checking for invariants.
                    ///         In the future, this method may emit an event that the `op-node` picks up
                    ///         for when the resource config is changed.
                    /// @param _config The new resource config.
                    function _setResourceConfig(IResourceMetering.ResourceConfig memory _config) internal {
                        // Min base fee must be less than or equal to max base fee.
                        require(
                            _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                        );
                        // Base fee change denominator must be greater than 1.
                        require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                        // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                        // The gas limit must be increased before these values can be increased.
                        require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                        // Elasticity multiplier must be greater than 0.
                        require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                        // No precision loss when computing target resource limit.
                        require(
                            ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                                == _config.maxResourceLimit,
                            "SystemConfig: precision loss with target resource limit"
                        );
                        _resourceConfig = _config;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "../utils/ContextUpgradeable.sol";
                import "../proxy/utils/Initializable.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    function __Ownable_init() internal onlyInitializing {
                        __Ownable_init_unchained();
                    }
                    function __Ownable_init_unchained() internal onlyInitializing {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[49] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
                pragma solidity ^0.8.0;
                import "./IERC20.sol";
                import "./extensions/IERC20Metadata.sol";
                import "../../utils/Context.sol";
                /**
                 * @dev Implementation of the {IERC20} interface.
                 *
                 * This implementation is agnostic to the way tokens are created. This means
                 * that a supply mechanism has to be added in a derived contract using {_mint}.
                 * For a generic mechanism see {ERC20PresetMinterPauser}.
                 *
                 * TIP: For a detailed writeup see our guide
                 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
                 * to implement supply mechanisms].
                 *
                 * We have followed general OpenZeppelin Contracts guidelines: functions revert
                 * instead returning `false` on failure. This behavior is nonetheless
                 * conventional and does not conflict with the expectations of ERC20
                 * applications.
                 *
                 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
                 * This allows applications to reconstruct the allowance for all accounts just
                 * by listening to said events. Other implementations of the EIP may not emit
                 * these events, as it isn't required by the specification.
                 *
                 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
                 * functions have been added to mitigate the well-known issues around setting
                 * allowances. See {IERC20-approve}.
                 */
                contract ERC20 is Context, IERC20, IERC20Metadata {
                    mapping(address => uint256) private _balances;
                    mapping(address => mapping(address => uint256)) private _allowances;
                    uint256 private _totalSupply;
                    string private _name;
                    string private _symbol;
                    /**
                     * @dev Sets the values for {name} and {symbol}.
                     *
                     * The default value of {decimals} is 18. To select a different value for
                     * {decimals} you should overload it.
                     *
                     * All two of these values are immutable: they can only be set once during
                     * construction.
                     */
                    constructor(string memory name_, string memory symbol_) {
                        _name = name_;
                        _symbol = symbol_;
                    }
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() public view virtual override returns (string memory) {
                        return _name;
                    }
                    /**
                     * @dev Returns the symbol of the token, usually a shorter version of the
                     * name.
                     */
                    function symbol() public view virtual override returns (string memory) {
                        return _symbol;
                    }
                    /**
                     * @dev Returns the number of decimals used to get its user representation.
                     * For example, if `decimals` equals `2`, a balance of `505` tokens should
                     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                     *
                     * Tokens usually opt for a value of 18, imitating the relationship between
                     * Ether and Wei. This is the value {ERC20} uses, unless this function is
                     * overridden;
                     *
                     * NOTE: This information is only used for _display_ purposes: it in
                     * no way affects any of the arithmetic of the contract, including
                     * {IERC20-balanceOf} and {IERC20-transfer}.
                     */
                    function decimals() public view virtual override returns (uint8) {
                        return 18;
                    }
                    /**
                     * @dev See {IERC20-totalSupply}.
                     */
                    function totalSupply() public view virtual override returns (uint256) {
                        return _totalSupply;
                    }
                    /**
                     * @dev See {IERC20-balanceOf}.
                     */
                    function balanceOf(address account) public view virtual override returns (uint256) {
                        return _balances[account];
                    }
                    /**
                     * @dev See {IERC20-transfer}.
                     *
                     * Requirements:
                     *
                     * - `to` cannot be the zero address.
                     * - the caller must have a balance of at least `amount`.
                     */
                    function transfer(address to, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _transfer(owner, to, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-allowance}.
                     */
                    function allowance(address owner, address spender) public view virtual override returns (uint256) {
                        return _allowances[owner][spender];
                    }
                    /**
                     * @dev See {IERC20-approve}.
                     *
                     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                     * `transferFrom`. This is semantically equivalent to an infinite approval.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function approve(address spender, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-transferFrom}.
                     *
                     * Emits an {Approval} event indicating the updated allowance. This is not
                     * required by the EIP. See the note at the beginning of {ERC20}.
                     *
                     * NOTE: Does not update the allowance if the current allowance
                     * is the maximum `uint256`.
                     *
                     * Requirements:
                     *
                     * - `from` and `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     * - the caller must have allowance for ``from``'s tokens of at least
                     * `amount`.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) public virtual override returns (bool) {
                        address spender = _msgSender();
                        _spendAllowance(from, spender, amount);
                        _transfer(from, to, amount);
                        return true;
                    }
                    /**
                     * @dev Atomically increases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, allowance(owner, spender) + addedValue);
                        return true;
                    }
                    /**
                     * @dev Atomically decreases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `spender` must have allowance for the caller of at least
                     * `subtractedValue`.
                     */
                    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        uint256 currentAllowance = allowance(owner, spender);
                        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                        unchecked {
                            _approve(owner, spender, currentAllowance - subtractedValue);
                        }
                        return true;
                    }
                    /**
                     * @dev Moves `amount` of tokens from `from` to `to`.
                     *
                     * This internal function is equivalent to {transfer}, and can be used to
                     * e.g. implement automatic token fees, slashing mechanisms, etc.
                     *
                     * Emits a {Transfer} event.
                     *
                     * Requirements:
                     *
                     * - `from` cannot be the zero address.
                     * - `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     */
                    function _transfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {
                        require(from != address(0), "ERC20: transfer from the zero address");
                        require(to != address(0), "ERC20: transfer to the zero address");
                        _beforeTokenTransfer(from, to, amount);
                        uint256 fromBalance = _balances[from];
                        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                        unchecked {
                            _balances[from] = fromBalance - amount;
                        }
                        _balances[to] += amount;
                        emit Transfer(from, to, amount);
                        _afterTokenTransfer(from, to, amount);
                    }
                    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                     * the total supply.
                     *
                     * Emits a {Transfer} event with `from` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     */
                    function _mint(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: mint to the zero address");
                        _beforeTokenTransfer(address(0), account, amount);
                        _totalSupply += amount;
                        _balances[account] += amount;
                        emit Transfer(address(0), account, amount);
                        _afterTokenTransfer(address(0), account, amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from `account`, reducing the
                     * total supply.
                     *
                     * Emits a {Transfer} event with `to` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     * - `account` must have at least `amount` tokens.
                     */
                    function _burn(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: burn from the zero address");
                        _beforeTokenTransfer(account, address(0), amount);
                        uint256 accountBalance = _balances[account];
                        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                        unchecked {
                            _balances[account] = accountBalance - amount;
                        }
                        _totalSupply -= amount;
                        emit Transfer(account, address(0), amount);
                        _afterTokenTransfer(account, address(0), amount);
                    }
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                     *
                     * This internal function is equivalent to `approve`, and can be used to
                     * e.g. set automatic allowances for certain subsystems, etc.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `owner` cannot be the zero address.
                     * - `spender` cannot be the zero address.
                     */
                    function _approve(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        require(owner != address(0), "ERC20: approve from the zero address");
                        require(spender != address(0), "ERC20: approve to the zero address");
                        _allowances[owner][spender] = amount;
                        emit Approval(owner, spender, amount);
                    }
                    /**
                     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                     *
                     * Does not update the allowance amount in case of infinite allowance.
                     * Revert if not enough allowance is available.
                     *
                     * Might emit an {Approval} event.
                     */
                    function _spendAllowance(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        uint256 currentAllowance = allowance(owner, spender);
                        if (currentAllowance != type(uint256).max) {
                            require(currentAllowance >= amount, "ERC20: insufficient allowance");
                            unchecked {
                                _approve(owner, spender, currentAllowance - amount);
                            }
                        }
                    }
                    /**
                     * @dev Hook that is called before any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * will be transferred to `to`.
                     * - when `from` is zero, `amount` tokens will be minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _beforeTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                    /**
                     * @dev Hook that is called after any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * has been transferred to `to`.
                     * - when `from` is zero, `amount` tokens have been minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _afterTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Storage
                /// @notice Storage handles reading and writing to arbitary storage locations
                library Storage {
                    /// @notice Returns an address stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getAddress(bytes32 _slot) internal view returns (address addr_) {
                        assembly {
                            addr_ := sload(_slot)
                        }
                    }
                    /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _address The protocol version to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                    ///      in arbitrary storage slots.
                    function setAddress(bytes32 _slot, address _address) internal {
                        assembly {
                            sstore(_slot, _address)
                        }
                    }
                    /// @notice Returns a uint256 stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                    /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _value The protocol version to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setUint(bytes32 _slot, uint256 _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                    /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _value The bytes32 value to store.
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setBytes32(bytes32 _slot, bytes32 _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the bool in.
                    /// @param _value The bool value to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setBool(bytes32 _slot, bool _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Returns a bool stored in an arbitrary storage slot.
                    /// @param _slot The storage slot to retrieve the bool from.
                    function getBool(bytes32 _slot) internal view returns (bool value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Storage } from "src/libraries/Storage.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { LibString } from "@solady/utils/LibString.sol";
                /// @title IGasToken
                /// @notice Implemented by contracts that are aware of the custom gas token used
                ///         by the L2 network.
                interface IGasToken {
                    /// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals.
                    function gasPayingToken() external view returns (address, uint8);
                    /// @notice Returns the gas token name.
                    function gasPayingTokenName() external view returns (string memory);
                    /// @notice Returns the gas token symbol.
                    function gasPayingTokenSymbol() external view returns (string memory);
                    /// @notice Returns true if the network uses a custom gas token.
                    function isCustomGasToken() external view returns (bool);
                }
                /// @title GasPayingToken
                /// @notice Handles reading and writing the custom gas token to storage.
                ///         To be used in any place where gas token information is read or
                ///         written to state. If multiple contracts use this library, the
                ///         values in storage should be kept in sync between them.
                library GasPayingToken {
                    /// @notice The storage slot that contains the address and decimals of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1);
                    /// @notice The storage slot that contains the ERC20 `name()` of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1);
                    /// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT =
                        bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1);
                    /// @notice Reads the gas paying token and its decimals from the magic
                    ///         storage slot. If nothing is set in storage, then the ether
                    ///         address is returned instead.
                    function getToken() internal view returns (address addr_, uint8 decimals_) {
                        bytes32 slot = Storage.getBytes32(GAS_PAYING_TOKEN_SLOT);
                        addr_ = address(uint160(uint256(slot) & uint256(type(uint160).max)));
                        if (addr_ == address(0)) {
                            addr_ = Constants.ETHER;
                            decimals_ = 18;
                        } else {
                            decimals_ = uint8(uint256(slot) >> 160);
                        }
                    }
                    /// @notice Reads the gas paying token's name from the magic storage slot.
                    ///         If nothing is set in storage, then the ether name, 'Ether', is returned instead.
                    function getName() internal view returns (string memory name_) {
                        (address addr,) = getToken();
                        if (addr == Constants.ETHER) {
                            name_ = "Ether";
                        } else {
                            name_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_NAME_SLOT));
                        }
                    }
                    /// @notice Reads the gas paying token's symbol from the magic storage slot.
                    ///         If nothing is set in storage, then the ether symbol, 'ETH', is returned instead.
                    function getSymbol() internal view returns (string memory symbol_) {
                        (address addr,) = getToken();
                        if (addr == Constants.ETHER) {
                            symbol_ = "ETH";
                        } else {
                            symbol_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT));
                        }
                    }
                    /// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot.
                    function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal {
                        Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 | uint256(uint160(_token))));
                        Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name);
                        Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol);
                    }
                    /// @notice Maps a string to a normalized null-terminated small string.
                    function sanitize(string memory _str) internal pure returns (bytes32) {
                        require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes");
                        return LibString.toSmallString(_str);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { ISystemConfig } from "src/L1/interfaces/ISystemConfig.sol";
                import { ISuperchainConfig } from "src/L1/interfaces/ISuperchainConfig.sol";
                import { IL2OutputOracle } from "src/L1/interfaces/IL2OutputOracle.sol";
                interface IOptimismPortal {
                    error BadTarget();
                    error CallPaused();
                    error ContentLengthMismatch();
                    error EmptyItem();
                    error GasEstimation();
                    error InvalidDataRemainder();
                    error InvalidHeader();
                    error LargeCalldata();
                    error NoValue();
                    error NonReentrant();
                    error OnlyCustomGasToken();
                    error OutOfGas();
                    error SmallGasLimit();
                    error TransferFailed();
                    error Unauthorized();
                    error UnexpectedList();
                    error UnexpectedString();
                    event Initialized(uint8 version);
                    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                    event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                    receive() external payable;
                    function balance() external view returns (uint256);
                    function depositERC20Transaction(
                        address _to,
                        uint256 _mint,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        external;
                    function depositTransaction(
                        address _to,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        external
                        payable;
                    function donateETH() external payable;
                    function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
                    function finalizedWithdrawals(bytes32) external view returns (bool);
                    function guardian() external view returns (address);
                    function initialize(
                        IL2OutputOracle _l2Oracle,
                        ISystemConfig _systemConfig,
                        ISuperchainConfig _superchainConfig
                    )
                        external;
                    function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool);
                    function l2Oracle() external view returns (IL2OutputOracle);
                    function l2Sender() external view returns (address);
                    function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                    function paused() external view returns (bool paused_);
                    function proveWithdrawalTransaction(
                        Types.WithdrawalTransaction memory _tx,
                        uint256 _l2OutputIndex,
                        Types.OutputRootProof memory _outputRootProof,
                        bytes[] memory _withdrawalProof
                    )
                        external;
                    function provenWithdrawals(bytes32)
                        external
                        view
                        returns (bytes32 outputRoot, uint128 timestamp, uint128 l2OutputIndex);
                    function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external;
                    function superchainConfig() external view returns (ISuperchainConfig);
                    function systemConfig() external view returns (ISystemConfig);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                import "../proxy/utils/Initializable.sol";
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract ContextUpgradeable is Initializable {
                    function __Context_init() internal onlyInitializing {
                    }
                    function __Context_init_unchained() internal onlyInitializing {
                    }
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[50] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/AddressUpgradeable.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                /**
                 * @dev Interface for the optional metadata functions from the ERC20 standard.
                 *
                 * _Available since v4.1._
                 */
                interface IERC20Metadata is IERC20 {
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() external view returns (string memory);
                    /**
                     * @dev Returns the symbol of the token.
                     */
                    function symbol() external view returns (string memory);
                    /**
                     * @dev Returns the decimals places of the token.
                     */
                    function decimals() external view returns (uint8);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.4;
                /// @notice Library for converting numbers into strings and other string operations.
                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
                /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
                ///
                /// Note:
                /// For performance and bytecode compactness, most of the string operations are restricted to
                /// byte strings (7-bit ASCII), except where otherwise specified.
                /// Usage of byte string operations on charsets with runes spanning two or more bytes
                /// can lead to undefined behavior.
                library LibString {
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                        CUSTOM ERRORS                       */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev The length of the output is too small to contain all the hex digits.
                    error HexLengthInsufficient();
                    /// @dev The length of the string is more than 32 bytes.
                    error TooBigForSmallString();
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                         CONSTANTS                          */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev The constant returned when the `search` is not found in the string.
                    uint256 internal constant NOT_FOUND = type(uint256).max;
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                     DECIMAL OPERATIONS                     */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the base 10 decimal representation of `value`.
                    function toString(uint256 value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                            // We will need 1 word for the trailing zeros padding, 1 word for the length,
                            // and 3 words for a maximum of 78 digits.
                            str := add(mload(0x40), 0x80)
                            // Update the free memory pointer to allocate.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end of the memory to calculate the length later.
                            let end := str
                            let w := not(0) // Tsk.
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let temp := value } 1 {} {
                                str := add(str, w) // `sub(str, 1)`.
                                // Write the character to the pointer.
                                // The ASCII index of the '0' character is 48.
                                mstore8(str, add(48, mod(temp, 10)))
                                // Keep dividing `temp` until zero.
                                temp := div(temp, 10)
                                if iszero(temp) { break }
                            }
                            let length := sub(end, str)
                            // Move the pointer 32 bytes leftwards to make room for the length.
                            str := sub(str, 0x20)
                            // Store the length.
                            mstore(str, length)
                        }
                    }
                    /// @dev Returns the base 10 decimal representation of `value`.
                    function toString(int256 value) internal pure returns (string memory str) {
                        if (value >= 0) {
                            return toString(uint256(value));
                        }
                        unchecked {
                            str = toString(uint256(-value));
                        }
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We still have some spare memory space on the left,
                            // as we have allocated 3 words (96 bytes) for up to 78 digits.
                            let length := mload(str) // Load the string length.
                            mstore(str, 0x2d) // Store the '-' character.
                            str := sub(str, 1) // Move back the string pointer by a byte.
                            mstore(str, add(length, 1)) // Update the string length.
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   HEXADECIMAL OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the hexadecimal representation of `value`,
                    /// left-padded to an input length of `length` bytes.
                    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                    /// giving a total length of `length * 2 + 2` bytes.
                    /// Reverts if `length` is too small for the output to contain all the digits.
                    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value, length);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`,
                    /// left-padded to an input length of `length` bytes.
                    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                    /// giving a total length of `length * 2` bytes.
                    /// Reverts if `length` is too small for the output to contain all the digits.
                    function toHexStringNoPrefix(uint256 value, uint256 length)
                        internal
                        pure
                        returns (string memory str)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                            // We add 0x20 to the total and round down to a multiple of 0x20.
                            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                            // Allocate the memory.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end to calculate the length later.
                            let end := str
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let start := sub(str, add(length, length))
                            let w := not(1) // Tsk.
                            let temp := value
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for {} 1 {} {
                                str := add(str, w) // `sub(str, 2)`.
                                mstore8(add(str, 1), mload(and(temp, 15)))
                                mstore8(str, mload(and(shr(4, temp), 15)))
                                temp := shr(8, temp)
                                if iszero(xor(str, start)) { break }
                            }
                            if temp {
                                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                                revert(0x1c, 0x04)
                            }
                            // Compute the string's length.
                            let strLength := sub(end, str)
                            // Move the pointer and write the length.
                            str := sub(str, 0x20)
                            mstore(str, strLength)
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                    /// As address are 20 bytes long, the output will left-padded to have
                    /// a length of `20 * 2 + 2` bytes.
                    function toHexString(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x".
                    /// The output excludes leading "0" from the `toHexString` output.
                    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
                    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
                    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
                    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                            let strLength := mload(str) // Get the length.
                            str := add(str, o) // Move the pointer, accounting for leading zero.
                            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    /// As address are 20 bytes long, the output will left-padded to have
                    /// a length of `20 * 2` bytes.
                    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                            str := add(mload(0x40), 0x80)
                            // Allocate the memory.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end to calculate the length later.
                            let end := str
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let w := not(1) // Tsk.
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let temp := value } 1 {} {
                                str := add(str, w) // `sub(str, 2)`.
                                mstore8(add(str, 1), mload(and(temp, 15)))
                                mstore8(str, mload(and(shr(4, temp), 15)))
                                temp := shr(8, temp)
                                if iszero(temp) { break }
                            }
                            // Compute the string's length.
                            let strLength := sub(end, str)
                            // Move the pointer and write the length.
                            str := sub(str, 0x20)
                            mstore(str, strLength)
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
                    /// and the alphabets are capitalized conditionally according to
                    /// https://eips.ethereum.org/EIPS/eip-55
                    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                        str = toHexString(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                            let o := add(str, 0x22)
                            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                            let t := shl(240, 136) // `0b10001000 << 240`
                            for { let i := 0 } 1 {} {
                                mstore(add(i, i), mul(t, byte(i, hashed)))
                                i := add(i, 1)
                                if eq(i, 20) { break }
                            }
                            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                            o := add(o, 0x20)
                            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                    function toHexString(address value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            str := mload(0x40)
                            // Allocate the memory.
                            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                            mstore(0x40, add(str, 0x80))
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            str := add(str, 2)
                            mstore(str, 40)
                            let o := add(str, 0x20)
                            mstore(add(o, 40), 0)
                            value := shl(96, value)
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let i := 0 } 1 {} {
                                let p := add(o, add(i, i))
                                let temp := byte(i, value)
                                mstore8(add(p, 1), mload(and(temp, 15)))
                                mstore8(p, mload(shr(4, temp)))
                                i := add(i, 1)
                                if eq(i, 20) { break }
                            }
                        }
                    }
                    /// @dev Returns the hex encoded string from the raw bytes.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexString(bytes memory raw) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(raw);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hex encoded string from the raw bytes.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let length := mload(raw)
                            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                            mstore(str, add(length, length)) // Store the length of the output.
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let o := add(str, 0x20)
                            let end := add(raw, length)
                            for {} iszero(eq(raw, end)) {} {
                                raw := add(raw, 1)
                                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                                o := add(o, 2)
                            }
                            mstore(o, 0) // Zeroize the slot after the string.
                            mstore(0x40, add(o, 0x20)) // Allocate the memory.
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   RUNE STRING OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the number of UTF characters in the string.
                    function runeCount(string memory s) internal pure returns (uint256 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            if mload(s) {
                                mstore(0x00, div(not(0), 255))
                                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                                let o := add(s, 0x20)
                                let end := add(o, mload(s))
                                for { result := 1 } 1 { result := add(result, 1) } {
                                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                                    if iszero(lt(o, end)) { break }
                                }
                            }
                        }
                    }
                    /// @dev Returns if this string is a 7-bit ASCII string.
                    /// (i.e. all characters codes are in [0..127])
                    function is7BitASCII(string memory s) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let mask := shl(7, div(not(0), 255))
                            result := 1
                            let n := mload(s)
                            if n {
                                let o := add(s, 0x20)
                                let end := add(o, n)
                                let last := mload(end)
                                mstore(end, 0)
                                for {} 1 {} {
                                    if and(mask, mload(o)) {
                                        result := 0
                                        break
                                    }
                                    o := add(o, 0x20)
                                    if iszero(lt(o, end)) { break }
                                }
                                mstore(end, last)
                            }
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   BYTE STRING OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    // For performance and bytecode compactness, byte string operations are restricted
                    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
                    // Usage of byte string operations on charsets with runes spanning two or more bytes
                    // can lead to undefined behavior.
                    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
                    function replace(string memory subject, string memory search, string memory replacement)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            let searchLength := mload(search)
                            let replacementLength := mload(replacement)
                            subject := add(subject, 0x20)
                            search := add(search, 0x20)
                            replacement := add(replacement, 0x20)
                            result := add(mload(0x40), 0x20)
                            let subjectEnd := add(subject, subjectLength)
                            if iszero(gt(searchLength, subjectLength)) {
                                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                                let h := 0
                                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(search)
                                for {} 1 {} {
                                    let t := mload(subject)
                                    // Whether the first `searchLength % 32` bytes of
                                    // `subject` and `search` matches.
                                    if iszero(shr(m, xor(t, s))) {
                                        if h {
                                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                                mstore(result, t)
                                                result := add(result, 1)
                                                subject := add(subject, 1)
                                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                                continue
                                            }
                                        }
                                        // Copy the `replacement` one word at a time.
                                        for { let o := 0 } 1 {} {
                                            mstore(add(result, o), mload(add(replacement, o)))
                                            o := add(o, 0x20)
                                            if iszero(lt(o, replacementLength)) { break }
                                        }
                                        result := add(result, replacementLength)
                                        subject := add(subject, searchLength)
                                        if searchLength {
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    mstore(result, t)
                                    result := add(result, 1)
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                }
                            }
                            let resultRemainder := result
                            result := add(mload(0x40), 0x20)
                            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                            // Copy the rest of the string one word at a time.
                            for {} lt(subject, subjectEnd) {} {
                                mstore(resultRemainder, mload(subject))
                                resultRemainder := add(resultRemainder, 0x20)
                                subject := add(subject, 0x20)
                            }
                            result := sub(result, 0x20)
                            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                            mstore(last, 0)
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                            mstore(result, k) // Store the length.
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from left to right, starting from `from`.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function indexOf(string memory subject, string memory search, uint256 from)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for { let subjectLength := mload(subject) } 1 {} {
                                if iszero(mload(search)) {
                                    if iszero(gt(from, subjectLength)) {
                                        result := from
                                        break
                                    }
                                    result := subjectLength
                                    break
                                }
                                let searchLength := mload(search)
                                let subjectStart := add(subject, 0x20)
                                result := not(0) // Initialize to `NOT_FOUND`.
                                subject := add(subjectStart, from)
                                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(add(search, 0x20))
                                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                                if iszero(lt(searchLength, 0x20)) {
                                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                        if iszero(shr(m, xor(mload(subject), s))) {
                                            if eq(keccak256(subject, searchLength), h) {
                                                result := sub(subject, subjectStart)
                                                break
                                            }
                                        }
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, end)) { break }
                                    }
                                    break
                                }
                                for {} 1 {} {
                                    if iszero(shr(m, xor(mload(subject), s))) {
                                        result := sub(subject, subjectStart)
                                        break
                                    }
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, end)) { break }
                                }
                                break
                            }
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from left to right.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function indexOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        result = indexOf(subject, search, 0);
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from right to left, starting from `from`.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function lastIndexOf(string memory subject, string memory search, uint256 from)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for {} 1 {} {
                                result := not(0) // Initialize to `NOT_FOUND`.
                                let searchLength := mload(search)
                                if gt(searchLength, mload(subject)) { break }
                                let w := result
                                let fromMax := sub(mload(subject), searchLength)
                                if iszero(gt(fromMax, from)) { from := fromMax }
                                let end := add(add(subject, 0x20), w)
                                subject := add(add(subject, 0x20), from)
                                if iszero(gt(subject, end)) { break }
                                // As this function is not too often used,
                                // we shall simply use keccak256 for smaller bytecode size.
                                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                    if eq(keccak256(subject, searchLength), h) {
                                        result := sub(subject, add(end, 1))
                                        break
                                    }
                                    subject := add(subject, w) // `sub(subject, 1)`.
                                    if iszero(gt(subject, end)) { break }
                                }
                                break
                            }
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from right to left.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function lastIndexOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        result = lastIndexOf(subject, search, uint256(int256(-1)));
                    }
                    /// @dev Returns true if `search` is found in `subject`, false otherwise.
                    function contains(string memory subject, string memory search) internal pure returns (bool) {
                        return indexOf(subject, search) != NOT_FOUND;
                    }
                    /// @dev Returns whether `subject` starts with `search`.
                    function startsWith(string memory subject, string memory search)
                        internal
                        pure
                        returns (bool result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let searchLength := mload(search)
                            // Just using keccak256 directly is actually cheaper.
                            // forgefmt: disable-next-item
                            result := and(
                                iszero(gt(searchLength, mload(subject))),
                                eq(
                                    keccak256(add(subject, 0x20), searchLength),
                                    keccak256(add(search, 0x20), searchLength)
                                )
                            )
                        }
                    }
                    /// @dev Returns whether `subject` ends with `search`.
                    function endsWith(string memory subject, string memory search)
                        internal
                        pure
                        returns (bool result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let searchLength := mload(search)
                            let subjectLength := mload(subject)
                            // Whether `search` is not longer than `subject`.
                            let withinRange := iszero(gt(searchLength, subjectLength))
                            // Just using keccak256 directly is actually cheaper.
                            // forgefmt: disable-next-item
                            result := and(
                                withinRange,
                                eq(
                                    keccak256(
                                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                        searchLength
                                    ),
                                    keccak256(add(search, 0x20), searchLength)
                                )
                            )
                        }
                    }
                    /// @dev Returns `subject` repeated `times`.
                    function repeat(string memory subject, uint256 times)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            if iszero(or(iszero(times), iszero(subjectLength))) {
                                subject := add(subject, 0x20)
                                result := mload(0x40)
                                let output := add(result, 0x20)
                                for {} 1 {} {
                                    // Copy the `subject` one word at a time.
                                    for { let o := 0 } 1 {} {
                                        mstore(add(output, o), mload(add(subject, o)))
                                        o := add(o, 0x20)
                                        if iszero(lt(o, subjectLength)) { break }
                                    }
                                    output := add(output, subjectLength)
                                    times := sub(times, 1)
                                    if iszero(times) { break }
                                }
                                mstore(output, 0) // Zeroize the slot after the string.
                                let resultLength := sub(output, add(result, 0x20))
                                mstore(result, resultLength) // Store the length.
                                // Allocate the memory.
                                mstore(0x40, add(result, add(resultLength, 0x20)))
                            }
                        }
                    }
                    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
                    /// `start` and `end` are byte offsets.
                    function slice(string memory subject, uint256 start, uint256 end)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            if iszero(gt(subjectLength, end)) { end := subjectLength }
                            if iszero(gt(subjectLength, start)) { start := subjectLength }
                            if lt(start, end) {
                                result := mload(0x40)
                                let resultLength := sub(end, start)
                                mstore(result, resultLength)
                                subject := add(subject, start)
                                let w := not(0x1f)
                                // Copy the `subject` one word at a time, backwards.
                                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                                    mstore(add(result, o), mload(add(subject, o)))
                                    o := add(o, w) // `sub(o, 0x20)`.
                                    if iszero(o) { break }
                                }
                                // Zeroize the slot after the string.
                                mstore(add(add(result, 0x20), resultLength), 0)
                                // Allocate memory for the length and the bytes,
                                // rounded up to a multiple of 32.
                                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                            }
                        }
                    }
                    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
                    /// `start` is a byte offset.
                    function slice(string memory subject, uint256 start)
                        internal
                        pure
                        returns (string memory result)
                    {
                        result = slice(subject, start, uint256(int256(-1)));
                    }
                    /// @dev Returns all the indices of `search` in `subject`.
                    /// The indices are byte offsets.
                    function indicesOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256[] memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            let searchLength := mload(search)
                            if iszero(gt(searchLength, subjectLength)) {
                                subject := add(subject, 0x20)
                                search := add(search, 0x20)
                                result := add(mload(0x40), 0x20)
                                let subjectStart := subject
                                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                                let h := 0
                                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(search)
                                for {} 1 {} {
                                    let t := mload(subject)
                                    // Whether the first `searchLength % 32` bytes of
                                    // `subject` and `search` matches.
                                    if iszero(shr(m, xor(t, s))) {
                                        if h {
                                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                                subject := add(subject, 1)
                                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                                continue
                                            }
                                        }
                                        // Append to `result`.
                                        mstore(result, sub(subject, subjectStart))
                                        result := add(result, 0x20)
                                        // Advance `subject` by `searchLength`.
                                        subject := add(subject, searchLength)
                                        if searchLength {
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                }
                                let resultEnd := result
                                // Assign `result` to the free memory pointer.
                                result := mload(0x40)
                                // Store the length of `result`.
                                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                                // Allocate memory for result.
                                // We allocate one more word, so this array can be recycled for {split}.
                                mstore(0x40, add(resultEnd, 0x20))
                            }
                        }
                    }
                    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
                    function split(string memory subject, string memory delimiter)
                        internal
                        pure
                        returns (string[] memory result)
                    {
                        uint256[] memory indices = indicesOf(subject, delimiter);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let w := not(0x1f)
                            let indexPtr := add(indices, 0x20)
                            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                            mstore(add(indicesEnd, w), mload(subject))
                            mstore(indices, add(mload(indices), 1))
                            let prevIndex := 0
                            for {} 1 {} {
                                let index := mload(indexPtr)
                                mstore(indexPtr, 0x60)
                                if iszero(eq(index, prevIndex)) {
                                    let element := mload(0x40)
                                    let elementLength := sub(index, prevIndex)
                                    mstore(element, elementLength)
                                    // Copy the `subject` one word at a time, backwards.
                                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                        o := add(o, w) // `sub(o, 0x20)`.
                                        if iszero(o) { break }
                                    }
                                    // Zeroize the slot after the string.
                                    mstore(add(add(element, 0x20), elementLength), 0)
                                    // Allocate memory for the length and the bytes,
                                    // rounded up to a multiple of 32.
                                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                                    // Store the `element` into the array.
                                    mstore(indexPtr, element)
                                }
                                prevIndex := add(index, mload(delimiter))
                                indexPtr := add(indexPtr, 0x20)
                                if iszero(lt(indexPtr, indicesEnd)) { break }
                            }
                            result := indices
                            if iszero(mload(delimiter)) {
                                result := add(indices, 0x20)
                                mstore(result, sub(mload(indices), 2))
                            }
                        }
                    }
                    /// @dev Returns a concatenated string of `a` and `b`.
                    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
                    function concat(string memory a, string memory b)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let w := not(0x1f)
                            result := mload(0x40)
                            let aLength := mload(a)
                            // Copy `a` one word at a time, backwards.
                            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                                mstore(add(result, o), mload(add(a, o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            let bLength := mload(b)
                            let output := add(result, aLength)
                            // Copy `b` one word at a time, backwards.
                            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                                mstore(add(output, o), mload(add(b, o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            let totalLength := add(aLength, bLength)
                            let last := add(add(result, 0x20), totalLength)
                            // Zeroize the slot after the string.
                            mstore(last, 0)
                            // Stores the length.
                            mstore(result, totalLength)
                            // Allocate memory for the length and the bytes,
                            // rounded up to a multiple of 32.
                            mstore(0x40, and(add(last, 0x1f), w))
                        }
                    }
                    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function toCase(string memory subject, bool toUpper)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let length := mload(subject)
                            if length {
                                result := add(mload(0x40), 0x20)
                                subject := add(subject, 1)
                                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                                let w := not(0)
                                for { let o := length } 1 {} {
                                    o := add(o, w)
                                    let b := and(0xff, mload(add(subject, o)))
                                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                                    if iszero(o) { break }
                                }
                                result := mload(0x40)
                                mstore(result, length) // Store the length.
                                let last := add(add(result, 0x20), length)
                                mstore(last, 0) // Zeroize the slot after the string.
                                mstore(0x40, add(last, 0x20)) // Allocate the memory.
                            }
                        }
                    }
                    /// @dev Returns a string from a small bytes32 string.
                    /// `s` must be null-terminated, or behavior will be undefined.
                    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := mload(0x40)
                            let n := 0
                            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                            mstore(result, n)
                            let o := add(result, 0x20)
                            mstore(o, s)
                            mstore(add(o, n), 0)
                            mstore(0x40, add(result, 0x40))
                        }
                    }
                    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
                    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                            mstore(0x00, s)
                            mstore(result, 0x00)
                            result := mload(0x00)
                        }
                    }
                    /// @dev Returns the string as a normalized null-terminated small string.
                    function toSmallString(string memory s) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := mload(s)
                            if iszero(lt(result, 33)) {
                                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                                revert(0x1c, 0x04)
                            }
                            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                        }
                    }
                    /// @dev Returns a lowercased copy of the string.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function lower(string memory subject) internal pure returns (string memory result) {
                        result = toCase(subject, false);
                    }
                    /// @dev Returns an UPPERCASED copy of the string.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function upper(string memory subject) internal pure returns (string memory result) {
                        result = toCase(subject, true);
                    }
                    /// @dev Escapes the string to be used within HTML tags.
                    function escapeHTML(string memory s) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let end := add(s, mload(s))
                            result := add(mload(0x40), 0x20)
                            // Store the bytes of the packed offsets and strides into the scratch space.
                            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                            mstore(0x1f, 0x900094)
                            mstore(0x08, 0xc0000000a6ab)
                            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                            for {} iszero(eq(s, end)) {} {
                                s := add(s, 1)
                                let c := and(mload(s), 0xff)
                                // Not in `["\\"","'","&","<",">"]`.
                                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                                    mstore8(result, c)
                                    result := add(result, 1)
                                    continue
                                }
                                let t := shr(248, mload(c))
                                mstore(result, mload(and(t, 0x1f)))
                                result := add(result, shr(5, t))
                            }
                            let last := result
                            mstore(last, 0) // Zeroize the slot after the string.
                            result := mload(0x40)
                            mstore(result, sub(last, add(result, 0x20))) // Store the length.
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        }
                    }
                    /// @dev Escapes the string to be used within double-quotes in a JSON.
                    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
                    function escapeJSON(string memory s, bool addDoubleQuotes)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let end := add(s, mload(s))
                            result := add(mload(0x40), 0x20)
                            if addDoubleQuotes {
                                mstore8(result, 34)
                                result := add(1, result)
                            }
                            // Store "\\\\u0000" in scratch space.
                            // Store "0123456789abcdef" in scratch space.
                            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                            // into the scratch space.
                            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                            // Bitmask for detecting `["\\"","\\\\"]`.
                            let e := or(shl(0x22, 1), shl(0x5c, 1))
                            for {} iszero(eq(s, end)) {} {
                                s := add(s, 1)
                                let c := and(mload(s), 0xff)
                                if iszero(lt(c, 0x20)) {
                                    if iszero(and(shl(c, 1), e)) {
                                        // Not in `["\\"","\\\\"]`.
                                        mstore8(result, c)
                                        result := add(result, 1)
                                        continue
                                    }
                                    mstore8(result, 0x5c) // "\\\\".
                                    mstore8(add(result, 1), c)
                                    result := add(result, 2)
                                    continue
                                }
                                if iszero(and(shl(c, 1), 0x3700)) {
                                    // Not in `["\\b","\\t","\
                ","\\f","\\d"]`.
                                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                                    mstore(result, mload(0x19)) // "\\\\u00XX".
                                    result := add(result, 6)
                                    continue
                                }
                                mstore8(result, 0x5c) // "\\\\".
                                mstore8(add(result, 1), mload(add(c, 8)))
                                result := add(result, 2)
                            }
                            if addDoubleQuotes {
                                mstore8(result, 34)
                                result := add(1, result)
                            }
                            let last := result
                            mstore(last, 0) // Zeroize the slot after the string.
                            result := mload(0x40)
                            mstore(result, sub(last, add(result, 0x20))) // Store the length.
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        }
                    }
                    /// @dev Escapes the string to be used within double-quotes in a JSON.
                    function escapeJSON(string memory s) internal pure returns (string memory result) {
                        result = escapeJSON(s, false);
                    }
                    /// @dev Returns whether `a` equals `b`.
                    function eq(string memory a, string memory b) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                        }
                    }
                    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
                    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // These should be evaluated on compile time, as far as possible.
                            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                            let x := not(or(m, or(b, add(m, and(b, m)))))
                            let r := shl(7, iszero(iszero(shr(128, x))))
                            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            // forgefmt: disable-next-item
                            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                        }
                    }
                    /// @dev Packs a single string with its length into a single word.
                    /// Returns `bytes32(0)` if the length is zero or greater than 31.
                    function packOne(string memory a) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We don't need to zero right pad the string,
                            // since this is our own custom non-standard packing scheme.
                            result :=
                                mul(
                                    // Load the length and the bytes.
                                    mload(add(a, 0x1f)),
                                    // `length != 0 && length < 32`. Abuses underflow.
                                    // Assumes that the length is valid and within the block gas limit.
                                    lt(sub(mload(a), 1), 0x1f)
                                )
                        }
                    }
                    /// @dev Unpacks a string packed using {packOne}.
                    /// Returns the empty string if `packed` is `bytes32(0)`.
                    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
                    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // Grab the free memory pointer.
                            result := mload(0x40)
                            // Allocate 2 words (1 for the length, 1 for the bytes).
                            mstore(0x40, add(result, 0x40))
                            // Zeroize the length slot.
                            mstore(result, 0)
                            // Store the length and bytes.
                            mstore(add(result, 0x1f), packed)
                            // Right pad with zeroes.
                            mstore(add(add(result, 0x20), mload(result)), 0)
                        }
                    }
                    /// @dev Packs two strings with their lengths into a single word.
                    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
                    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let aLength := mload(a)
                            // We don't need to zero right pad the strings,
                            // since this is our own custom non-standard packing scheme.
                            result :=
                                mul(
                                    // Load the length and the bytes of `a` and `b`.
                                    or(
                                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                        mload(sub(add(b, 0x1e), aLength))
                                    ),
                                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                                    // Assumes that the lengths are valid and within the block gas limit.
                                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                                )
                        }
                    }
                    /// @dev Unpacks strings packed using {packTwo}.
                    /// Returns the empty strings if `packed` is `bytes32(0)`.
                    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
                    function unpackTwo(bytes32 packed)
                        internal
                        pure
                        returns (string memory resultA, string memory resultB)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // Grab the free memory pointer.
                            resultA := mload(0x40)
                            resultB := add(resultA, 0x40)
                            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                            mstore(0x40, add(resultB, 0x40))
                            // Zeroize the length slots.
                            mstore(resultA, 0)
                            mstore(resultB, 0)
                            // Store the lengths and bytes.
                            mstore(add(resultA, 0x1f), packed)
                            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                            // Right pad with zeroes.
                            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                        }
                    }
                    /// @dev Directly returns `a` without copying.
                    function directReturn(string memory a) internal pure {
                        assembly {
                            // Assumes that the string does not start from the scratch space.
                            let retStart := sub(a, 0x20)
                            let retSize := add(mload(a), 0x40)
                            // Right pad with zeroes. Just in case the string is produced
                            // by a method that doesn't zero right pad.
                            mstore(add(retStart, retSize), 0)
                            // Store the return offset.
                            mstore(retStart, 0x20)
                            // End the transaction, returning the string.
                            return(retStart, retSize)
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Types
                /// @notice Contains various types used throughout the Optimism contract system.
                library Types {
                    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                    ///         timestamp that the output root is posted. This timestamp is used to verify that the
                    ///         finalization period has passed since the output root was submitted.
                    /// @custom:field outputRoot    Hash of the L2 output.
                    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                    struct OutputProposal {
                        bytes32 outputRoot;
                        uint128 timestamp;
                        uint128 l2BlockNumber;
                    }
                    /// @notice Struct representing the elements that are hashed together to generate an output root
                    ///         which itself represents a snapshot of the L2 state.
                    /// @custom:field version                  Version of the output root.
                    /// @custom:field stateRoot                Root of the state trie at the block of this output.
                    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                    struct OutputRootProof {
                        bytes32 version;
                        bytes32 stateRoot;
                        bytes32 messagePasserStorageRoot;
                        bytes32 latestBlockhash;
                    }
                    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                    ///         user (as opposed to a system deposit transaction generated by the system).
                    /// @custom:field from        Address of the sender of the transaction.
                    /// @custom:field to          Address of the recipient of the transaction.
                    /// @custom:field isCreation  True if the transaction is a contract creation.
                    /// @custom:field value       Value to send to the recipient.
                    /// @custom:field mint        Amount of ETH to mint.
                    /// @custom:field gasLimit    Gas limit of the transaction.
                    /// @custom:field data        Data of the transaction.
                    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                    struct UserDepositTransaction {
                        address from;
                        address to;
                        bool isCreation;
                        uint256 value;
                        uint256 mint;
                        uint64 gasLimit;
                        bytes data;
                        bytes32 l1BlockHash;
                        uint256 logIndex;
                    }
                    /// @notice Struct representing a withdrawal transaction.
                    /// @custom:field nonce    Nonce of the withdrawal transaction
                    /// @custom:field sender   Address of the sender of the transaction.
                    /// @custom:field target   Address of the recipient of the transaction.
                    /// @custom:field value    Value to send to the recipient.
                    /// @custom:field gasLimit Gas limit of the transaction.
                    /// @custom:field data     Data of the transaction.
                    struct WithdrawalTransaction {
                        uint256 nonce;
                        address sender;
                        address target;
                        uint256 value;
                        uint256 gasLimit;
                        bytes data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        GAS_CONFIG,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                        address gasPayingToken;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function gasPayingToken() external view returns (address addr_, uint8 decimals_);
                    function gasPayingTokenName() external view returns (string memory name_);
                    function gasPayingTokenSymbol() external view returns (string memory symbol_);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function isCustomGasToken() external view returns (bool);
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external;
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                interface IL2OutputOracle {
                    event Initialized(uint8 version);
                    event OutputProposed(
                        bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                    );
                    event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                    function CHALLENGER() external view returns (address);
                    function FINALIZATION_PERIOD_SECONDS() external view returns (uint256);
                    function L2_BLOCK_TIME() external view returns (uint256);
                    function PROPOSER() external view returns (address);
                    function SUBMISSION_INTERVAL() external view returns (uint256);
                    function challenger() external view returns (address);
                    function computeL2Timestamp(uint256 _l2BlockNumber) external view returns (uint256);
                    function deleteL2Outputs(uint256 _l2OutputIndex) external;
                    function finalizationPeriodSeconds() external view returns (uint256);
                    function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory);
                    function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory);
                    function getL2OutputIndexAfter(uint256 _l2BlockNumber) external view returns (uint256);
                    function initialize(
                        uint256 _submissionInterval,
                        uint256 _l2BlockTime,
                        uint256 _startingBlockNumber,
                        uint256 _startingTimestamp,
                        address _proposer,
                        address _challenger,
                        uint256 _finalizationPeriodSeconds
                    )
                        external;
                    function l2BlockTime() external view returns (uint256);
                    function latestBlockNumber() external view returns (uint256);
                    function latestOutputIndex() external view returns (uint256);
                    function nextBlockNumber() external view returns (uint256);
                    function nextOutputIndex() external view returns (uint256);
                    function proposeL2Output(
                        bytes32 _outputRoot,
                        uint256 _l2BlockNumber,
                        bytes32 _l1BlockHash,
                        uint256 _l1BlockNumber
                    )
                        external
                        payable;
                    function proposer() external view returns (address);
                    function startingBlockNumber() external view returns (uint256);
                    function startingTimestamp() external view returns (uint256);
                    function submissionInterval() external view returns (uint256);
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library AddressUpgradeable {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                

                File 11 of 11: OptimismPortal2
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                import { ResourceMetering } from "src/L1/ResourceMetering.sol";
                import { L1Block } from "src/L2/L1Block.sol";
                // Libraries
                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
                import { Predeploys } from "src/libraries/Predeploys.sol";
                import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
                import "src/libraries/PortalErrors.sol";
                import "src/dispute/lib/Types.sol";
                // Interfaces
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { ISystemConfig } from "src/L1/interfaces/ISystemConfig.sol";
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                import { ISuperchainConfig } from "src/L1/interfaces/ISuperchainConfig.sol";
                import { IDisputeGameFactory } from "src/dispute/interfaces/IDisputeGameFactory.sol";
                import { IDisputeGame } from "src/dispute/interfaces/IDisputeGame.sol";
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                /// @custom:proxied true
                /// @title OptimismPortal2
                /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
                ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
                ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
                contract OptimismPortal2 is Initializable, ResourceMetering, ISemver {
                    /// @notice Allows for interactions with non standard ERC20 tokens.
                    using SafeERC20 for IERC20;
                    /// @notice Represents a proven withdrawal.
                    /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against.
                    /// @custom:field timestamp        Timestamp at whcih the withdrawal was proven.
                    struct ProvenWithdrawal {
                        IDisputeGame disputeGameProxy;
                        uint64 timestamp;
                    }
                    /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized.
                    uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS;
                    /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be
                    ///         finalized.
                    uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                    /// @notice Version of the deposit event.
                    uint256 internal constant DEPOSIT_VERSION = 0;
                    /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                    uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                    /// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
                    uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
                    /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                    ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                    ///         a call to finalizeWithdrawalTransaction.
                    address public l2Sender;
                    /// @notice A list of withdrawal hashes which have been successfully finalized.
                    mapping(bytes32 => bool) public finalizedWithdrawals;
                    /// @custom:legacy
                    /// @custom:spacer provenWithdrawals
                    /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot.
                    bytes32 private spacer_52_0_32;
                    /// @custom:legacy
                    /// @custom:spacer paused
                    /// @notice Spacer for backwards compatibility.
                    bool private spacer_53_0_1;
                    /// @notice Contract of the Superchain Config.
                    ISuperchainConfig public superchainConfig;
                    /// @custom:legacy
                    /// @custom:spacer l2Oracle
                    /// @notice Spacer taking up the legacy `l2Oracle` address slot.
                    address private spacer_54_0_20;
                    /// @notice Contract of the SystemConfig.
                    /// @custom:network-specific
                    ISystemConfig public systemConfig;
                    /// @notice Address of the DisputeGameFactory.
                    /// @custom:network-specific
                    IDisputeGameFactory public disputeGameFactory;
                    /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data.
                    mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals;
                    /// @notice A mapping of dispute game addresses to whether or not they are blacklisted.
                    mapping(IDisputeGame => bool) public disputeGameBlacklist;
                    /// @notice The game type that the OptimismPortal consults for output proposals.
                    GameType public respectedGameType;
                    /// @notice The timestamp at which the respected game type was last updated.
                    uint64 public respectedGameTypeUpdatedAt;
                    /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the
                    ///         withdrawal. Original OptimismPortal contract only allowed one proof to be submitted
                    ///         for any given withdrawal hash. Fault Proofs version of this contract must allow
                    ///         multiple proofs for the same withdrawal hash to prevent a malicious user from
                    ///         blocking other withdrawals by proving them against invalid proposals. Submitters
                    ///         are tracked in an array to simplify the off-chain process of determining which
                    ///         proof submission should be used when finalizing a withdrawal.
                    mapping(bytes32 => address[]) public proofSubmitters;
                    /// @notice Represents the amount of native asset minted in L2. This may not
                    ///         be 100% accurate due to the ability to send ether to the contract
                    ///         without triggering a deposit transaction. It also is used to prevent
                    ///         overflows for L2 account balances when custom gas tokens are used.
                    ///         It is not safe to trust `ERC20.balanceOf` as it may lie.
                    uint256 internal _balance;
                    /// @notice Emitted when a transaction is deposited from L1 to L2.
                    ///         The parameters of this event are read by the rollup node and used to derive deposit
                    ///         transactions on L2.
                    /// @param from       Address that triggered the deposit transaction.
                    /// @param to         Address that the deposit transaction is directed to.
                    /// @param version    Version of this deposit transaction event.
                    /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                    /// @notice Emitted when a withdrawal transaction is proven.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param from           Address that triggered the withdrawal transaction.
                    /// @param to             Address that the withdrawal transaction is directed to.
                    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                    /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards
                    ///         compatibility for tooling that observes the `WithdrawalProven` event.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param proofSubmitter Address of the proof submitter.
                    event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                    /// @notice Emitted when a withdrawal transaction is finalized.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param success        Whether the withdrawal transaction was successful.
                    event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                    /// @notice Emitted when a dispute game is blacklisted by the Guardian.
                    /// @param disputeGame Address of the dispute game that was blacklisted.
                    event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                    /// @notice Emitted when the Guardian changes the respected game type in the portal.
                    /// @param newGameType The new respected game type.
                    /// @param updatedAt   The timestamp at which the respected game type was updated.
                    event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                    /// @notice Reverts when paused.
                    modifier whenNotPaused() {
                        if (paused()) revert CallPaused();
                        _;
                    }
                    /// @notice Semantic version.
                    /// @custom:semver 3.11.0-beta.4
                    function version() public pure virtual returns (string memory) {
                        return "3.11.0-beta.4";
                    }
                    /// @notice Constructs the OptimismPortal contract.
                    constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) {
                        PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds;
                        DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds;
                        initialize({
                            _disputeGameFactory: IDisputeGameFactory(address(0)),
                            _systemConfig: ISystemConfig(address(0)),
                            _superchainConfig: ISuperchainConfig(address(0)),
                            _initialRespectedGameType: GameType.wrap(0)
                        });
                    }
                    /// @notice Initializer.
                    /// @param _disputeGameFactory Contract of the DisputeGameFactory.
                    /// @param _systemConfig Contract of the SystemConfig.
                    /// @param _superchainConfig Contract of the SuperchainConfig.
                    function initialize(
                        IDisputeGameFactory _disputeGameFactory,
                        ISystemConfig _systemConfig,
                        ISuperchainConfig _superchainConfig,
                        GameType _initialRespectedGameType
                    )
                        public
                        initializer
                    {
                        disputeGameFactory = _disputeGameFactory;
                        systemConfig = _systemConfig;
                        superchainConfig = _superchainConfig;
                        // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the
                        // contract.
                        if (l2Sender == address(0)) {
                            l2Sender = Constants.DEFAULT_L2_SENDER;
                            // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior
                            // to this operation.
                            respectedGameTypeUpdatedAt = uint64(block.timestamp);
                            // Set the initial respected game type
                            respectedGameType = _initialRespectedGameType;
                        }
                        __ResourceMetering_init();
                    }
                    /// @notice Getter for the balance of the contract.
                    function balance() public view returns (uint256) {
                        (address token,) = gasPayingToken();
                        if (token == Constants.ETHER) {
                            return address(this).balance;
                        } else {
                            return _balance;
                        }
                    }
                    /// @notice Getter function for the address of the guardian.
                    ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                    /// @return Address of the guardian.
                    /// @custom:legacy
                    function guardian() public view returns (address) {
                        return superchainConfig.guardian();
                    }
                    /// @notice Getter for the current paused status.
                    function paused() public view returns (bool) {
                        return superchainConfig.paused();
                    }
                    /// @notice Getter for the proof maturity delay.
                    function proofMaturityDelaySeconds() public view returns (uint256) {
                        return PROOF_MATURITY_DELAY_SECONDS;
                    }
                    /// @notice Getter for the dispute game finality delay.
                    function disputeGameFinalityDelaySeconds() public view returns (uint256) {
                        return DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                    }
                    /// @notice Computes the minimum gas limit for a deposit.
                    ///         The minimum gas limit linearly increases based on the size of the calldata.
                    ///         This is to prevent users from creating L2 resource usage without paying for it.
                    ///         This function can be used when interacting with the portal to ensure forwards
                    ///         compatibility.
                    /// @param _byteCount Number of bytes in the calldata.
                    /// @return The minimum gas limit for a deposit.
                    function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                        return _byteCount * 16 + 21000;
                    }
                    /// @notice Accepts value so that users can send ETH directly to this contract and have the
                    ///         funds be deposited to their address on L2. This is intended as a convenience
                    ///         function for EOAs. Contracts should call the depositTransaction() function directly
                    ///         otherwise any deposited funds will be lost due to address aliasing.
                    receive() external payable {
                        depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                    }
                    /// @notice Accepts ETH value without triggering a deposit to L2.
                    ///         This function mainly exists for the sake of the migration between the legacy
                    ///         Optimism system and Bedrock.
                    function donateETH() external payable {
                        // Intentionally empty.
                    }
                    /// @notice Returns the gas paying token and its decimals.
                    function gasPayingToken() internal view returns (address addr_, uint8 decimals_) {
                        (addr_, decimals_) = systemConfig.gasPayingToken();
                    }
                    /// @notice Getter for the resource config.
                    ///         Used internally by the ResourceMetering contract.
                    ///         The SystemConfig is the source of truth for the resource config.
                    /// @return config_ ResourceMetering ResourceConfig
                    function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory config_) {
                        IResourceMetering.ResourceConfig memory config = systemConfig.resourceConfig();
                        assembly ("memory-safe") {
                            config_ := config
                        }
                    }
                    /// @notice Proves a withdrawal transaction.
                    /// @param _tx               Withdrawal transaction to finalize.
                    /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against.
                    /// @param _outputRootProof  Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                    /// @param _withdrawalProof  Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                    function proveWithdrawalTransaction(
                        Types.WithdrawalTransaction memory _tx,
                        uint256 _disputeGameIndex,
                        Types.OutputRootProof calldata _outputRootProof,
                        bytes[] calldata _withdrawalProof
                    )
                        external
                        whenNotPaused
                    {
                        // Prevent users from creating a deposit transaction where this address is the message
                        // sender on L2. Because this is checked here, we do not need to check again in
                        // `finalizeWithdrawalTransaction`.
                        if (_tx.target == address(this)) revert BadTarget();
                        // Fetch the dispute game proxy from the `DisputeGameFactory` contract.
                        (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex);
                        Claim outputRoot = gameProxy.rootClaim();
                        // The game type of the dispute game must be the respected game type.
                        if (gameType.raw() != respectedGameType.raw()) revert InvalidGameType();
                        // Verify that the output root can be generated with the elements in the proof.
                        if (outputRoot.raw() != Hashing.hashOutputRootProof(_outputRootProof)) revert InvalidProof();
                        // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                        // We do not allow for proving withdrawals against dispute games that have resolved against the favor
                        // of the root claim.
                        if (gameProxy.status() == GameStatus.CHALLENGER_WINS) revert InvalidDisputeGame();
                        // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                        // Refer to the Solidity documentation for more information on how storage layouts are
                        // computed for mappings.
                        bytes32 storageKey = keccak256(
                            abi.encode(
                                withdrawalHash,
                                uint256(0) // The withdrawals mapping is at the first slot in the layout.
                            )
                        );
                        // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                        // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                        // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                        // be relayed on L1.
                        if (
                            SecureMerkleTrie.verifyInclusionProof({
                                _key: abi.encode(storageKey),
                                _value: hex"01",
                                _proof: _withdrawalProof,
                                _root: _outputRootProof.messagePasserStorageRoot
                            }) == false
                        ) revert InvalidMerkleProof();
                        // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the
                        // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved
                        // against resolves against the favor of the root claim.
                        provenWithdrawals[withdrawalHash][msg.sender] =
                            ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) });
                        // Emit a `WithdrawalProven` event.
                        emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                        // Emit a `WithdrawalProvenExtension1` event.
                        emit WithdrawalProvenExtension1(withdrawalHash, msg.sender);
                        // Add the proof submitter to the list of proof submitters for this withdrawal hash.
                        proofSubmitters[withdrawalHash].push(msg.sender);
                    }
                    /// @notice Finalizes a withdrawal transaction.
                    /// @param _tx Withdrawal transaction to finalize.
                    function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                        finalizeWithdrawalTransactionExternalProof(_tx, msg.sender);
                    }
                    /// @notice Finalizes a withdrawal transaction, using an external proof submitter.
                    /// @param _tx Withdrawal transaction to finalize.
                    /// @param _proofSubmitter Address of the proof submitter.
                    function finalizeWithdrawalTransactionExternalProof(
                        Types.WithdrawalTransaction memory _tx,
                        address _proofSubmitter
                    )
                        public
                        whenNotPaused
                    {
                        // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                        // than the default value when a withdrawal transaction is being finalized. This check is
                        // a defacto reentrancy guard.
                        if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
                        // Compute the withdrawal hash.
                        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                        // Check that the withdrawal can be finalized.
                        checkWithdrawal(withdrawalHash, _proofSubmitter);
                        // Mark the withdrawal as finalized so it can't be replayed.
                        finalizedWithdrawals[withdrawalHash] = true;
                        // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                        l2Sender = _tx.sender;
                        bool success;
                        (address token,) = gasPayingToken();
                        if (token == Constants.ETHER) {
                            // Trigger the call to the target contract. We use a custom low level method
                            // SafeCall.callWithMinGas to ensure two key properties
                            //   1. Target contracts cannot force this call to run out of gas by returning a very large
                            //      amount of data (and this is OK because we don't care about the returndata here).
                            //   2. The amount of gas provided to the execution context of the target is at least the
                            //      gas limit specified by the user. If there is not enough gas in the current context
                            //      to accomplish this, `callWithMinGas` will revert.
                            success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                        } else {
                            // Cannot call the token contract directly from the portal. This would allow an attacker
                            // to call approve from a withdrawal and drain the balance of the portal.
                            if (_tx.target == token) revert BadTarget();
                            // Only transfer value when a non zero value is specified. This saves gas in the case of
                            // using the standard bridge or arbitrary message passing.
                            if (_tx.value != 0) {
                                // Update the contracts internal accounting of the amount of native asset in L2.
                                _balance -= _tx.value;
                                // Read the balance of the target contract before the transfer so the consistency
                                // of the transfer can be checked afterwards.
                                uint256 startBalance = IERC20(token).balanceOf(address(this));
                                // Transfer the ERC20 balance to the target, accounting for non standard ERC20
                                // implementations that may not return a boolean. This reverts if the low level
                                // call is not successful.
                                IERC20(token).safeTransfer({ to: _tx.target, value: _tx.value });
                                // The balance must be transferred exactly.
                                if (IERC20(token).balanceOf(address(this)) != startBalance - _tx.value) {
                                    revert TransferFailed();
                                }
                            }
                            // Make a call to the target contract only if there is calldata.
                            if (_tx.data.length != 0) {
                                success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, 0, _tx.data);
                            } else {
                                success = true;
                            }
                        }
                        // Reset the l2Sender back to the default value.
                        l2Sender = Constants.DEFAULT_L2_SENDER;
                        // All withdrawals are immediately finalized. Replayability can
                        // be achieved through contracts built on top of this contract
                        emit WithdrawalFinalized(withdrawalHash, success);
                        // Reverting here is useful for determining the exact gas cost to successfully execute the
                        // sub call to the target contract if the minimum gas limit specified by the user would not
                        // be sufficient to execute the sub call.
                        if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) {
                            revert GasEstimation();
                        }
                    }
                    /// @notice Entrypoint to depositing an ERC20 token as a custom gas token.
                    ///         This function depends on a well formed ERC20 token. There are only
                    ///         so many checks that can be done on chain for this so it is assumed
                    ///         that chain operators will deploy chains with well formed ERC20 tokens.
                    /// @param _to         Target address on L2.
                    /// @param _mint       Units of ERC20 token to deposit into L2.
                    /// @param _value      Units of ERC20 token to send on L2 to the recipient.
                    /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                    /// @param _isCreation Whether or not the transaction is a contract creation.
                    /// @param _data       Data to trigger the recipient with.
                    function depositERC20Transaction(
                        address _to,
                        uint256 _mint,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        public
                        metered(_gasLimit)
                    {
                        // Can only be called if an ERC20 token is used for gas paying on L2
                        (address token,) = gasPayingToken();
                        if (token == Constants.ETHER) revert OnlyCustomGasToken();
                        // Gives overflow protection for L2 account balances.
                        _balance += _mint;
                        // Get the balance of the portal before the transfer.
                        uint256 startBalance = IERC20(token).balanceOf(address(this));
                        // Take ownership of the token. It is assumed that the user has given the portal an approval.
                        IERC20(token).safeTransferFrom({ from: msg.sender, to: address(this), value: _mint });
                        // Double check that the portal now has the exact amount of token.
                        if (IERC20(token).balanceOf(address(this)) != startBalance + _mint) {
                            revert TransferFailed();
                        }
                        _depositTransaction({
                            _to: _to,
                            _mint: _mint,
                            _value: _value,
                            _gasLimit: _gasLimit,
                            _isCreation: _isCreation,
                            _data: _data
                        });
                    }
                    /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                    ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                    ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                    ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                    /// @param _to         Target address on L2.
                    /// @param _value      ETH value to send to the recipient.
                    /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                    /// @param _isCreation Whether or not the transaction is a contract creation.
                    /// @param _data       Data to trigger the recipient with.
                    function depositTransaction(
                        address _to,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        public
                        payable
                        metered(_gasLimit)
                    {
                        (address token,) = gasPayingToken();
                        if (token != Constants.ETHER && msg.value != 0) revert NoValue();
                        _depositTransaction({
                            _to: _to,
                            _mint: msg.value,
                            _value: _value,
                            _gasLimit: _gasLimit,
                            _isCreation: _isCreation,
                            _data: _data
                        });
                    }
                    /// @notice Common logic for creating deposit transactions.
                    /// @param _to         Target address on L2.
                    /// @param _mint       Units of asset to deposit into L2.
                    /// @param _value      Units of asset to send on L2 to the recipient.
                    /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                    /// @param _isCreation Whether or not the transaction is a contract creation.
                    /// @param _data       Data to trigger the recipient with.
                    function _depositTransaction(
                        address _to,
                        uint256 _mint,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        internal
                    {
                        // Just to be safe, make sure that people specify address(0) as the target when doing
                        // contract creations.
                        if (_isCreation && _to != address(0)) revert BadTarget();
                        // Prevent depositing transactions that have too small of a gas limit. Users should pay
                        // more for more resource usage.
                        if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                        // Prevent the creation of deposit transactions that have too much calldata. This gives an
                        // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                        // that the transaction can fit into the p2p network policy of 128kb even though deposit
                        // transactions are not gossipped over the p2p network.
                        if (_data.length > 120_000) revert LargeCalldata();
                        // Transform the from-address to its alias if the caller is a contract.
                        address from = msg.sender;
                        if (msg.sender != tx.origin) {
                            from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                        }
                        // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                        // We use opaque data so that we can update the TransactionDeposited event in the future
                        // without breaking the current interface.
                        bytes memory opaqueData = abi.encodePacked(_mint, _value, _gasLimit, _isCreation, _data);
                        // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                        // transaction for this deposit.
                        emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                    }
                    /// @notice Sets the gas paying token for the L2 system. This token is used as the
                    ///         L2 native asset. Only the SystemConfig contract can call this function.
                    function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external {
                        if (msg.sender != address(systemConfig)) revert Unauthorized();
                        // Set L2 deposit gas as used without paying burning gas. Ensures that deposits cannot use too much L2 gas.
                        // This value must be large enough to cover the cost of calling `L1Block.setGasPayingToken`.
                        useGas(SYSTEM_DEPOSIT_GAS_LIMIT);
                        // Emit the special deposit transaction directly that sets the gas paying
                        // token in the L1Block predeploy contract.
                        emit TransactionDeposited(
                            Constants.DEPOSITOR_ACCOUNT,
                            Predeploys.L1_BLOCK_ATTRIBUTES,
                            DEPOSIT_VERSION,
                            abi.encodePacked(
                                uint256(0), // mint
                                uint256(0), // value
                                uint64(SYSTEM_DEPOSIT_GAS_LIMIT), // gasLimit
                                false, // isCreation,
                                abi.encodeCall(L1Block.setGasPayingToken, (_token, _decimals, _name, _symbol))
                            )
                        );
                    }
                    /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly.
                    /// @param _disputeGame Dispute game to blacklist.
                    function blacklistDisputeGame(IDisputeGame _disputeGame) external {
                        if (msg.sender != guardian()) revert Unauthorized();
                        disputeGameBlacklist[_disputeGame] = true;
                        emit DisputeGameBlacklisted(_disputeGame);
                    }
                    /// @notice Sets the respected game type. Changing this value can alter the security properties of the system,
                    ///         depending on the new game's behavior.
                    /// @param _gameType The game type to consult for output proposals.
                    function setRespectedGameType(GameType _gameType) external {
                        if (msg.sender != guardian()) revert Unauthorized();
                        respectedGameType = _gameType;
                        respectedGameTypeUpdatedAt = uint64(block.timestamp);
                        emit RespectedGameTypeSet(_gameType, Timestamp.wrap(respectedGameTypeUpdatedAt));
                    }
                    /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be
                    ///         finalized, and otherwise has no side-effects.
                    /// @param _withdrawalHash Hash of the withdrawal to check.
                    /// @param _proofSubmitter The submitter of the proof for the withdrawal hash
                    function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view {
                        ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter];
                        IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy;
                        // The dispute game must not be blacklisted.
                        if (disputeGameBlacklist[disputeGameProxy]) revert Blacklisted();
                        // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                        // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                        // a timestamp of zero.
                        if (provenWithdrawal.timestamp == 0) revert Unproven();
                        uint64 createdAt = disputeGameProxy.createdAt().raw();
                        // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                        // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of
                        // safety against weird bugs in the proving step.
                        require(
                            provenWithdrawal.timestamp > createdAt,
                            "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp"
                        );
                        // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing.
                        require(
                            block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS,
                            "OptimismPortal: proven withdrawal has not matured yet"
                        );
                        // A proven withdrawal must wait until the dispute game it was proven against has been
                        // resolved in favor of the root claim (the output proposal). This is to prevent users
                        // from finalizing withdrawals proven against non-finalized output roots.
                        if (disputeGameProxy.status() != GameStatus.DEFENDER_WINS) revert ProposalNotValidated();
                        // The game type of the dispute game must be the respected game type. This was also checked in
                        // `proveWithdrawalTransaction`, but we check it again in case the respected game type has changed since
                        // the withdrawal was proven.
                        if (disputeGameProxy.gameType().raw() != respectedGameType.raw()) revert InvalidGameType();
                        // The game must have been created after `respectedGameTypeUpdatedAt`. This is to prevent users from creating
                        // invalid disputes against a deployed game type while the off-chain challenge agents are not watching.
                        require(
                            createdAt >= respectedGameTypeUpdatedAt,
                            "OptimismPortal: dispute game created before respected game type was updated"
                        );
                        // Before a withdrawal can be finalized, the dispute game it was proven against must have been
                        // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual
                        // intervention in the event that a dispute game is resolved incorrectly.
                        require(
                            block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS,
                            "OptimismPortal: output proposal in air-gap"
                        );
                        // Check that this withdrawal has not already been finalized, this is replay protection.
                        if (finalizedWithdrawals[_withdrawalHash]) revert AlreadyFinalized();
                    }
                    /// @notice External getter for the number of proof submitters for a withdrawal hash.
                    /// @param _withdrawalHash Hash of the withdrawal.
                    /// @return The number of proof submitters for the withdrawal hash.
                    function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) {
                        return proofSubmitters[_withdrawalHash].length;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                // Libraries
                import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
                import { Burn } from "src/libraries/Burn.sol";
                import { Arithmetic } from "src/libraries/Arithmetic.sol";
                /// @custom:upgradeable
                /// @title ResourceMetering
                /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
                ///         updates automatically based on current demand.
                abstract contract ResourceMetering is Initializable {
                    /// @notice Error returned when too much gas resource is consumed.
                    error OutOfGas();
                    /// @notice Represents the various parameters that control the way in which resources are
                    ///         metered. Corresponds to the EIP-1559 resource metering system.
                    /// @custom:field prevBaseFee   Base fee from the previous block(s).
                    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                    ///         market. These values should be set with care as it is possible to set them in
                    ///         a way that breaks the deposit gas market. The target resource limit is defined as
                    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                    ///         single word. There is additional space for additions in the future.
                    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                    ///                                            can be purchased per block.
                    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                    ///                                            the resource limit.
                    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                    ///                                            value.
                    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                    ///                                            transaction. This should be set to the same
                    ///                                            number that the op-node sets as the gas limit
                    ///                                            for the system transaction.
                    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                    ///                                            value.
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    /// @notice EIP-1559 style gas parameters.
                    ResourceParams public params;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    uint256[48] private __gap;
                    /// @notice Meters access to a function based an amount of a requested resource.
                    /// @param _amount Amount of the resource requested.
                    modifier metered(uint64 _amount) {
                        // Record initial gas amount so we can refund for it later.
                        uint256 initialGas = gasleft();
                        // Run the underlying function.
                        _;
                        // Run the metering function.
                        _metered(_amount, initialGas);
                    }
                    /// @notice An internal function that holds all of the logic for metering a resource.
                    /// @param _amount     Amount of the resource requested.
                    /// @param _initialGas The amount of gas before any modifier execution.
                    function _metered(uint64 _amount, uint256 _initialGas) internal {
                        // Update block number and base fee if necessary.
                        uint256 blockDiff = block.number - params.prevBlockNum;
                        ResourceConfig memory config = _resourceConfig();
                        int256 targetResourceLimit =
                            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                        if (blockDiff > 0) {
                            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                            // at which deposits can be created and therefore limit the potential for deposits to
                            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                            // Update base fee by adding the base fee delta and clamp the resulting value between
                            // min and max.
                            int256 newBaseFee = Arithmetic.clamp({
                                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                            // If we skipped more than one block, we also need to account for every empty block.
                            // Empty block means there was no demand for deposits in that block, so we should
                            // reflect this lack of demand in the fee.
                            if (blockDiff > 1) {
                                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                                // between min and max.
                                newBaseFee = Arithmetic.clamp({
                                    _value: Arithmetic.cdexp({
                                        _coefficient: newBaseFee,
                                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                        _exponent: int256(blockDiff - 1)
                                    }),
                                    _min: int256(uint256(config.minimumBaseFee)),
                                    _max: int256(uint256(config.maximumBaseFee))
                                });
                            }
                            // Update new base fee, reset bought gas, and update block number.
                            params.prevBaseFee = uint128(uint256(newBaseFee));
                            params.prevBoughtGas = 0;
                            params.prevBlockNum = uint64(block.number);
                        }
                        // Make sure we can actually buy the resource amount requested by the user.
                        params.prevBoughtGas += _amount;
                        if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                            revert OutOfGas();
                        }
                        // Determine the amount of ETH to be paid.
                        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                        // during any 1 day period in the last 5 years, so should be fine.
                        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                        // Give the user a refund based on the amount of gas they used to do all of the work up to
                        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                        // effectively like a dynamic stipend (with a minimum value).
                        uint256 usedGas = _initialGas - gasleft();
                        if (gasCost > usedGas) {
                            Burn.gas(gasCost - usedGas);
                        }
                    }
                    /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
                    ///         when L2 system transactions are generated from L1.
                    /// @param _amount Amount of the L2 gas resource requested.
                    function useGas(uint32 _amount) internal {
                        params.prevBoughtGas += uint64(_amount);
                    }
                    /// @notice Virtual function that returns the resource config.
                    ///         Contracts that inherit this contract must implement this function.
                    /// @return ResourceConfig
                    function _resourceConfig() internal virtual returns (ResourceConfig memory);
                    /// @notice Sets initial resource parameter values.
                    ///         This function must either be called by the initializer function of an upgradeable
                    ///         child contract.
                    function __ResourceMetering_init() internal onlyInitializing {
                        if (params.prevBlockNum == 0) {
                            params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { ISemver } from "src/universal/interfaces/ISemver.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol";
                import "src/libraries/L1BlockErrors.sol";
                /// @custom:proxied true
                /// @custom:predeploy 0x4200000000000000000000000000000000000015
                /// @title L1Block
                /// @notice The L1Block predeploy gives users access to information about the last known L1 block.
                ///         Values within this contract are updated once per epoch (every L1 block) and can only be
                ///         set by the "depositor" account, a special system address. Depositor account transactions
                ///         are created by the protocol whenever we move to a new epoch.
                contract L1Block is ISemver, IGasToken {
                    /// @notice Event emitted when the gas paying token is set.
                    event GasPayingTokenSet(address indexed token, uint8 indexed decimals, bytes32 name, bytes32 symbol);
                    /// @notice Address of the special depositor account.
                    function DEPOSITOR_ACCOUNT() public pure returns (address addr_) {
                        addr_ = Constants.DEPOSITOR_ACCOUNT;
                    }
                    /// @notice The latest L1 block number known by the L2 system.
                    uint64 public number;
                    /// @notice The latest L1 timestamp known by the L2 system.
                    uint64 public timestamp;
                    /// @notice The latest L1 base fee.
                    uint256 public basefee;
                    /// @notice The latest L1 blockhash.
                    bytes32 public hash;
                    /// @notice The number of L2 blocks in the same epoch.
                    uint64 public sequenceNumber;
                    /// @notice The scalar value applied to the L1 blob base fee portion of the blob-capable L1 cost func.
                    uint32 public blobBaseFeeScalar;
                    /// @notice The scalar value applied to the L1 base fee portion of the blob-capable L1 cost func.
                    uint32 public baseFeeScalar;
                    /// @notice The versioned hash to authenticate the batcher by.
                    bytes32 public batcherHash;
                    /// @notice The overhead value applied to the L1 portion of the transaction fee.
                    /// @custom:legacy
                    uint256 public l1FeeOverhead;
                    /// @notice The scalar value applied to the L1 portion of the transaction fee.
                    /// @custom:legacy
                    uint256 public l1FeeScalar;
                    /// @notice The latest L1 blob base fee.
                    uint256 public blobBaseFee;
                    /// @custom:semver 1.5.1-beta.1
                    function version() public pure virtual returns (string memory) {
                        return "1.5.1-beta.1";
                    }
                    /// @notice Returns the gas paying token, its decimals, name and symbol.
                    ///         If nothing is set in state, then it means ether is used.
                    function gasPayingToken() public view returns (address addr_, uint8 decimals_) {
                        (addr_, decimals_) = GasPayingToken.getToken();
                    }
                    /// @notice Returns the gas paying token name.
                    ///         If nothing is set in state, then it means ether is used.
                    function gasPayingTokenName() public view returns (string memory name_) {
                        name_ = GasPayingToken.getName();
                    }
                    /// @notice Returns the gas paying token symbol.
                    ///         If nothing is set in state, then it means ether is used.
                    function gasPayingTokenSymbol() public view returns (string memory symbol_) {
                        symbol_ = GasPayingToken.getSymbol();
                    }
                    /// @notice Getter for custom gas token paying networks. Returns true if the
                    ///         network uses a custom gas token.
                    function isCustomGasToken() public view returns (bool) {
                        (address token,) = gasPayingToken();
                        return token != Constants.ETHER;
                    }
                    /// @custom:legacy
                    /// @notice Updates the L1 block values.
                    /// @param _number         L1 blocknumber.
                    /// @param _timestamp      L1 timestamp.
                    /// @param _basefee        L1 basefee.
                    /// @param _hash           L1 blockhash.
                    /// @param _sequenceNumber Number of L2 blocks since epoch start.
                    /// @param _batcherHash    Versioned hash to authenticate batcher by.
                    /// @param _l1FeeOverhead  L1 fee overhead.
                    /// @param _l1FeeScalar    L1 fee scalar.
                    function setL1BlockValues(
                        uint64 _number,
                        uint64 _timestamp,
                        uint256 _basefee,
                        bytes32 _hash,
                        uint64 _sequenceNumber,
                        bytes32 _batcherHash,
                        uint256 _l1FeeOverhead,
                        uint256 _l1FeeScalar
                    )
                        external
                    {
                        require(msg.sender == DEPOSITOR_ACCOUNT(), "L1Block: only the depositor account can set L1 block values");
                        number = _number;
                        timestamp = _timestamp;
                        basefee = _basefee;
                        hash = _hash;
                        sequenceNumber = _sequenceNumber;
                        batcherHash = _batcherHash;
                        l1FeeOverhead = _l1FeeOverhead;
                        l1FeeScalar = _l1FeeScalar;
                    }
                    /// @notice Updates the L1 block values for an Ecotone upgraded chain.
                    /// Params are packed and passed in as raw msg.data instead of ABI to reduce calldata size.
                    /// Params are expected to be in the following order:
                    ///   1. _baseFeeScalar      L1 base fee scalar
                    ///   2. _blobBaseFeeScalar  L1 blob base fee scalar
                    ///   3. _sequenceNumber     Number of L2 blocks since epoch start.
                    ///   4. _timestamp          L1 timestamp.
                    ///   5. _number             L1 blocknumber.
                    ///   6. _basefee            L1 base fee.
                    ///   7. _blobBaseFee        L1 blob base fee.
                    ///   8. _hash               L1 blockhash.
                    ///   9. _batcherHash        Versioned hash to authenticate batcher by.
                    function setL1BlockValuesEcotone() public {
                        _setL1BlockValuesEcotone();
                    }
                    /// @notice Updates the L1 block values for an Ecotone upgraded chain.
                    /// Params are packed and passed in as raw msg.data instead of ABI to reduce calldata size.
                    /// Params are expected to be in the following order:
                    ///   1. _baseFeeScalar      L1 base fee scalar
                    ///   2. _blobBaseFeeScalar  L1 blob base fee scalar
                    ///   3. _sequenceNumber     Number of L2 blocks since epoch start.
                    ///   4. _timestamp          L1 timestamp.
                    ///   5. _number             L1 blocknumber.
                    ///   6. _basefee            L1 base fee.
                    ///   7. _blobBaseFee        L1 blob base fee.
                    ///   8. _hash               L1 blockhash.
                    ///   9. _batcherHash        Versioned hash to authenticate batcher by.
                    function _setL1BlockValuesEcotone() internal {
                        address depositor = DEPOSITOR_ACCOUNT();
                        assembly {
                            // Revert if the caller is not the depositor account.
                            if xor(caller(), depositor) {
                                mstore(0x00, 0x3cc50b45) // 0x3cc50b45 is the 4-byte selector of "NotDepositor()"
                                revert(0x1C, 0x04) // returns the stored 4-byte selector from above
                            }
                            // sequencenum (uint64), blobBaseFeeScalar (uint32), baseFeeScalar (uint32)
                            sstore(sequenceNumber.slot, shr(128, calldataload(4)))
                            // number (uint64) and timestamp (uint64)
                            sstore(number.slot, shr(128, calldataload(20)))
                            sstore(basefee.slot, calldataload(36)) // uint256
                            sstore(blobBaseFee.slot, calldataload(68)) // uint256
                            sstore(hash.slot, calldataload(100)) // bytes32
                            sstore(batcherHash.slot, calldataload(132)) // bytes32
                        }
                    }
                    /// @notice Sets the gas paying token for the L2 system. Can only be called by the special
                    ///         depositor account. This function is not called on every L2 block but instead
                    ///         only called by specially crafted L1 deposit transactions.
                    function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external {
                        if (msg.sender != DEPOSITOR_ACCOUNT()) revert NotDepositor();
                        GasPayingToken.set({ _token: _token, _decimals: _decimals, _name: _name, _symbol: _symbol });
                        emit GasPayingTokenSet({ token: _token, decimals: _decimals, name: _name, symbol: _symbol });
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../extensions/draft-IERC20Permit.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Types
                /// @notice Contains various types used throughout the Optimism contract system.
                library Types {
                    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                    ///         timestamp that the output root is posted. This timestamp is used to verify that the
                    ///         finalization period has passed since the output root was submitted.
                    /// @custom:field outputRoot    Hash of the L2 output.
                    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                    struct OutputProposal {
                        bytes32 outputRoot;
                        uint128 timestamp;
                        uint128 l2BlockNumber;
                    }
                    /// @notice Struct representing the elements that are hashed together to generate an output root
                    ///         which itself represents a snapshot of the L2 state.
                    /// @custom:field version                  Version of the output root.
                    /// @custom:field stateRoot                Root of the state trie at the block of this output.
                    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                    struct OutputRootProof {
                        bytes32 version;
                        bytes32 stateRoot;
                        bytes32 messagePasserStorageRoot;
                        bytes32 latestBlockhash;
                    }
                    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                    ///         user (as opposed to a system deposit transaction generated by the system).
                    /// @custom:field from        Address of the sender of the transaction.
                    /// @custom:field to          Address of the recipient of the transaction.
                    /// @custom:field isCreation  True if the transaction is a contract creation.
                    /// @custom:field value       Value to send to the recipient.
                    /// @custom:field mint        Amount of ETH to mint.
                    /// @custom:field gasLimit    Gas limit of the transaction.
                    /// @custom:field data        Data of the transaction.
                    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                    struct UserDepositTransaction {
                        address from;
                        address to;
                        bool isCreation;
                        uint256 value;
                        uint256 mint;
                        uint64 gasLimit;
                        bytes data;
                        bytes32 l1BlockHash;
                        uint256 logIndex;
                    }
                    /// @notice Struct representing a withdrawal transaction.
                    /// @custom:field nonce    Nonce of the withdrawal transaction
                    /// @custom:field sender   Address of the sender of the transaction.
                    /// @custom:field target   Address of the recipient of the transaction.
                    /// @custom:field value    Value to send to the recipient.
                    /// @custom:field gasLimit Gas limit of the transaction.
                    /// @custom:field data     Data of the transaction.
                    struct WithdrawalTransaction {
                        uint256 nonce;
                        address sender;
                        address target;
                        uint256 value;
                        uint256 gasLimit;
                        bytes data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                /// @title Hashing
                /// @notice Hashing handles Optimism's various different hashing schemes.
                library Hashing {
                    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                    ///         system.
                    /// @param _tx User deposit transaction to hash.
                    /// @return Hash of the RLP encoded L2 deposit transaction.
                    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(Encoding.encodeDepositTransaction(_tx));
                    }
                    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                    ///         of the L2 transaction that corresponds to a deposit is unique and is
                    ///         deterministically generated from L1 transaction data.
                    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                    /// @param _logIndex    The index of the log that created the deposit transaction.
                    /// @return Hash of the deposit transaction's "source hash".
                    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                        return keccak256(abi.encode(bytes32(0), depositId));
                    }
                    /// @notice Hashes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Hashing: unknown cross domain message version");
                        }
                    }
                    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                    }
                    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                    }
                    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                    /// @param _tx Withdrawal transaction to hash.
                    /// @return Hashed withdrawal transaction.
                    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                    }
                    /// @notice Hashes the various elements of an output root proof into an output root hash which
                    ///         can be used to check if the proof is valid.
                    /// @param _outputRootProof Output root proof which should hash to an output root.
                    /// @return Hashed output root proof.
                    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                        return keccak256(
                            abi.encode(
                                _outputRootProof.version,
                                _outputRootProof.stateRoot,
                                _outputRootProof.messagePasserStorageRoot,
                                _outputRootProof.latestBlockhash
                            )
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { MerkleTrie } from "./MerkleTrie.sol";
                /// @title SecureMerkleTrie
                /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
                ///         keys. Ethereum's state trie hashes input keys before storing them.
                library SecureMerkleTrie {
                    /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                    /// @param _key   Key of the node to search for, as a hex string.
                    /// @param _value Value of the node to search for, as a hex string.
                    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                    ///               nodes that make a path down to the target node.
                    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                    ///               correctly constructed.
                    /// @return valid_ Whether or not the proof is valid.
                    function verifyInclusionProof(
                        bytes memory _key,
                        bytes memory _value,
                        bytes[] memory _proof,
                        bytes32 _root
                    )
                        internal
                        pure
                        returns (bool valid_)
                    {
                        bytes memory key = _getSecureKey(_key);
                        valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                    }
                    /// @notice Retrieves the value associated with a given key.
                    /// @param _key   Key to search for, as hex bytes.
                    /// @param _proof Merkle trie inclusion proof for the key.
                    /// @param _root  Known root of the Merkle trie.
                    /// @return value_ Value of the key if it exists.
                    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                        bytes memory key = _getSecureKey(_key);
                        value_ = MerkleTrie.get(key, _proof, _root);
                    }
                    /// @notice Computes the hashed version of the input key.
                    /// @param _key Key to hash.
                    /// @return hash_ Hashed version of the key.
                    function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                        hash_ = abi.encodePacked(keccak256(_key));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Predeploys
                /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
                //          This excludes the preinstalls (non-protocol contracts).
                library Predeploys {
                    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                    uint256 internal constant PREDEPLOY_COUNT = 2048;
                    /// @custom:legacy
                    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                    ///         L2ToL1MessagePasser contract instead.
                    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                    /// @custom:legacy
                    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                    ///         Not embedded into new OP-Stack chains.
                    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                    /// @custom:legacy
                    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                    /// @notice Address of the canonical WETH contract.
                    address internal constant WETH = 0x4200000000000000000000000000000000000006;
                    /// @notice Address of the L2CrossDomainMessenger predeploy.
                    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                    ///         and helpers for computing the L1 portion of the transaction fee.
                    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                    /// @notice Address of the L2StandardBridge predeploy.
                    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                    //// @notice Address of the SequencerFeeWallet predeploy.
                    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                    /// @notice Address of the OptimismMintableERC20Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                    /// @custom:legacy
                    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                    ///         instead, which exposes more information about the L1 state.
                    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                    /// @notice Address of the L2ERC721Bridge predeploy.
                    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                    /// @notice Address of the L1Block predeploy.
                    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                    /// @notice Address of the L2ToL1MessagePasser predeploy.
                    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                    /// @notice Address of the OptimismMintableERC721Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                    /// @notice Address of the ProxyAdmin predeploy.
                    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                    /// @notice Address of the BaseFeeVault predeploy.
                    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                    /// @notice Address of the L1FeeVault predeploy.
                    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                    /// @notice Address of the SchemaRegistry predeploy.
                    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                    /// @notice Address of the EAS predeploy.
                    address internal constant EAS = 0x4200000000000000000000000000000000000021;
                    /// @notice Address of the GovernanceToken predeploy.
                    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                    /// @custom:legacy
                    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                    ///         can no longer be accessed.
                    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                    /// @notice Address of the CrossL2Inbox predeploy.
                    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                    /// @notice Address of the SuperchainWETH predeploy.
                    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                    /// @notice Address of the ETHLiquidity predeploy.
                    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                    // TODO: Precalculate the address of the implementation contract
                    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                    /// @notice Returns the name of the predeploy at the given address.
                    function getName(address _addr) internal pure returns (string memory out_) {
                        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                        if (_addr == WETH) return "WETH";
                        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                        if (_addr == EAS) return "EAS";
                        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                        revert("Predeploys: unnamed predeploy");
                    }
                    /// @notice Returns true if the predeploy is not proxied.
                    function notProxied(address _addr) internal pure returns (bool) {
                        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                    }
                    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                            || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                            || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER)
                            || (_useInterop && _addr == SUPERCHAIN_WETH) || (_useInterop && _addr == ETH_LIQUIDITY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY)
                            || (_useInterop && _addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON);
                    }
                    function isPredeployNamespace(address _addr) internal pure returns (bool) {
                        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                    }
                    /// @notice Function to compute the expected address of the predeploy implementation
                    ///         in the genesis state.
                    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                        require(
                            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                        );
                        return address(
                            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                        );
                    }
                }
                // SPDX-License-Identifier: Apache-2.0
                /*
                 * Copyright 2019-2021, Offchain Labs, Inc.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 *    http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity ^0.8.0;
                library AddressAliasHelper {
                    uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                    /// @notice Utility function that converts the address in the L1 that submitted a tx to
                    /// the inbox to the msg.sender viewed in the L2
                    /// @param l1Address the address in the L1 that triggered the tx to L2
                    /// @return l2Address L2 address as viewed in msg.sender
                    function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                        unchecked {
                            l2Address = address(uint160(l1Address) + offset);
                        }
                    }
                    /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                    /// address in the L1 that submitted a tx to the inbox
                    /// @param l2Address L2 address as viewed in msg.sender
                    /// @return l1Address the address in the L1 that triggered the tx to L2
                    function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                        unchecked {
                            l1Address = address(uint160(l2Address) - offset);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @notice Error for when a deposit or withdrawal is to a bad target.
                error BadTarget();
                /// @notice Error for when a deposit has too much calldata.
                error LargeCalldata();
                /// @notice Error for when a deposit has too small of a gas limit.
                error SmallGasLimit();
                /// @notice Error for when a withdrawal transfer fails.
                error TransferFailed();
                /// @notice Error for when a method is called that only works when using a custom gas token.
                error OnlyCustomGasToken();
                /// @notice Error for when a method cannot be called with non zero CALLVALUE.
                error NoValue();
                /// @notice Error for an unauthorized CALLER.
                error Unauthorized();
                /// @notice Error for when a method cannot be called when paused. This could be renamed
                ///         to `Paused` in the future, but it collides with the `Paused` event.
                error CallPaused();
                /// @notice Error for special gas estimation.
                error GasEstimation();
                /// @notice Error for when a method is being reentered.
                error NonReentrant();
                /// @notice Error for invalid proof.
                error InvalidProof();
                /// @notice Error for invalid game type.
                error InvalidGameType();
                /// @notice Error for an invalid dispute game.
                error InvalidDisputeGame();
                /// @notice Error for an invalid merkle proof.
                error InvalidMerkleProof();
                /// @notice Error for when a dispute game has been blacklisted.
                error Blacklisted();
                /// @notice Error for when trying to withdrawal without first proven.
                error Unproven();
                /// @notice Error for when a proposal is not validated.
                error ProposalNotValidated();
                /// @notice Error for when a withdrawal has already been finalized.
                error AlreadyFinalized();
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                import "src/dispute/lib/LibUDT.sol";
                /// @notice The current status of the dispute game.
                enum GameStatus {
                    // The game is currently in progress, and has not been resolved.
                    IN_PROGRESS,
                    // The game has concluded, and the `rootClaim` was challenged successfully.
                    CHALLENGER_WINS,
                    // The game has concluded, and the `rootClaim` could not be contested.
                    DEFENDER_WINS
                }
                /// @notice Represents an L2 output root and the L2 block number at which it was generated.
                /// @custom:field root The output root.
                /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
                struct OutputRoot {
                    Hash root;
                    uint256 l2BlockNumber;
                }
                /// @title GameTypes
                /// @notice A library that defines the IDs of games that can be played.
                library GameTypes {
                    /// @dev A dispute game type the uses the cannon vm.
                    GameType internal constant CANNON = GameType.wrap(0);
                    /// @dev A permissioned dispute game type the uses the cannon vm.
                    GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                    /// @notice A dispute game type the uses the asterisc VM
                    GameType internal constant ASTERISC = GameType.wrap(2);
                    /// @notice A dispute game type with short game duration for testing withdrawals.
                    ///         Not intended for production use.
                    GameType internal constant FAST = GameType.wrap(254);
                    /// @notice A dispute game type that uses an alphabet vm.
                    ///         Not intended for production use.
                    GameType internal constant ALPHABET = GameType.wrap(255);
                }
                /// @title VMStatuses
                /// @notice Named type aliases for the various valid VM status bytes.
                library VMStatuses {
                    /// @notice The VM has executed successfully and the outcome is valid.
                    VMStatus internal constant VALID = VMStatus.wrap(0);
                    /// @notice The VM has executed successfully and the outcome is invalid.
                    VMStatus internal constant INVALID = VMStatus.wrap(1);
                    /// @notice The VM has paniced.
                    VMStatus internal constant PANIC = VMStatus.wrap(2);
                    /// @notice The VM execution is still in progress.
                    VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
                }
                /// @title LocalPreimageKey
                /// @notice Named type aliases for local `PreimageOracle` key identifiers.
                library LocalPreimageKey {
                    /// @notice The identifier for the L1 head hash.
                    uint256 internal constant L1_HEAD_HASH = 0x01;
                    /// @notice The identifier for the starting output root.
                    uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                    /// @notice The identifier for the disputed output root.
                    uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                    /// @notice The identifier for the disputed L2 block number.
                    uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                    /// @notice The identifier for the chain ID.
                    uint256 internal constant CHAIN_ID = 0x05;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        GAS_CONFIG,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                        address gasPayingToken;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function gasPayingToken() external view returns (address addr_, uint8 decimals_);
                    function gasPayingTokenName() external view returns (string memory name_);
                    function gasPayingTokenSymbol() external view returns (string memory symbol_);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function isCustomGasToken() external view returns (bool);
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external;
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IDisputeGame } from "./IDisputeGame.sol";
                import "src/dispute/lib/Types.sol";
                /// @title IDisputeGameFactory
                /// @notice The interface for a DisputeGameFactory contract.
                interface IDisputeGameFactory {
                    /// @notice Emitted when a new dispute game is created
                    /// @param disputeProxy The address of the dispute game proxy
                    /// @param gameType The type of the dispute game proxy's implementation
                    /// @param rootClaim The root claim of the dispute game
                    event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                    /// @notice Emitted when a new game implementation added to the factory
                    /// @param impl The implementation contract for the given `GameType`.
                    /// @param gameType The type of the DisputeGame.
                    event ImplementationSet(address indexed impl, GameType indexed gameType);
                    /// @notice Emitted when a game type's initialization bond is updated
                    /// @param gameType The type of the DisputeGame.
                    /// @param newBond The new bond (in wei) for initializing the game type.
                    event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                    /// @notice Information about a dispute game found in a `findLatestGames` search.
                    struct GameSearchResult {
                        uint256 index;
                        GameId metadata;
                        Timestamp timestamp;
                        Claim rootClaim;
                        bytes extraData;
                    }
                    /// @notice The total number of dispute games created by this factory.
                    /// @return gameCount_ The total number of dispute games created by this factory.
                    function gameCount() external view returns (uint256 gameCount_);
                    /// @notice `games` queries an internal mapping that maps the hash of
                    ///         `gameType ++ rootClaim ++ extraData` to the deployed `DisputeGame` clone.
                    /// @dev `++` equates to concatenation.
                    /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation
                    /// @param _rootClaim The root claim of the DisputeGame.
                    /// @param _extraData Any extra data that should be provided to the created dispute game.
                    /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
                    ///         Returns `address(0)` if nonexistent.
                    /// @return timestamp_ The timestamp of the creation of the dispute game.
                    function games(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes calldata _extraData
                    )
                        external
                        view
                        returns (IDisputeGame proxy_, Timestamp timestamp_);
                    /// @notice `gameAtIndex` returns the dispute game contract address and its creation timestamp
                    ///          at the given index. Each created dispute game increments the underlying index.
                    /// @param _index The index of the dispute game.
                    /// @return gameType_ The type of the DisputeGame - used to decide the proxy implementation.
                    /// @return timestamp_ The timestamp of the creation of the dispute game.
                    /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
                    ///         Returns `address(0)` if nonexistent.
                    function gameAtIndex(uint256 _index)
                        external
                        view
                        returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                    /// @notice `gameImpls` is a mapping that maps `GameType`s to their respective
                    ///         `IDisputeGame` implementations.
                    /// @param _gameType The type of the dispute game.
                    /// @return impl_ The address of the implementation of the game type.
                    ///         Will be cloned on creation of a new dispute game with the given `gameType`.
                    function gameImpls(GameType _gameType) external view returns (IDisputeGame impl_);
                    /// @notice Returns the required bonds for initializing a dispute game of the given type.
                    /// @param _gameType The type of the dispute game.
                    /// @return bond_ The required bond for initializing a dispute game of the given type.
                    function initBonds(GameType _gameType) external view returns (uint256 bond_);
                    /// @notice Creates a new DisputeGame proxy contract.
                    /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation.
                    /// @param _rootClaim The root claim of the DisputeGame.
                    /// @param _extraData Any extra data that should be provided to the created dispute game.
                    /// @return proxy_ The address of the created DisputeGame proxy.
                    function create(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes calldata _extraData
                    )
                        external
                        payable
                        returns (IDisputeGame proxy_);
                    /// @notice Sets the implementation contract for a specific `GameType`.
                    /// @dev May only be called by the `owner`.
                    /// @param _gameType The type of the DisputeGame.
                    /// @param _impl The implementation contract for the given `GameType`.
                    function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                    /// @notice Sets the bond (in wei) for initializing a game type.
                    /// @dev May only be called by the `owner`.
                    /// @param _gameType The type of the DisputeGame.
                    /// @param _initBond The bond (in wei) for initializing a game type.
                    function setInitBond(GameType _gameType, uint256 _initBond) external;
                    /// @notice Returns a unique identifier for the given dispute game parameters.
                    /// @dev Hashes the concatenation of `gameType . rootClaim . extraData`
                    ///      without expanding memory.
                    /// @param _gameType The type of the DisputeGame.
                    /// @param _rootClaim The root claim of the DisputeGame.
                    /// @param _extraData Any extra data that should be provided to the created dispute game.
                    /// @return uuid_ The unique identifier for the given dispute game parameters.
                    function getGameUUID(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        pure
                        returns (Hash uuid_);
                    /// @notice Finds the `_n` most recent `GameId`'s of type `_gameType` starting at `_start`. If there are less than
                    ///         `_n` games of type `_gameType` starting at `_start`, then the returned array will be shorter than `_n`.
                    /// @param _gameType The type of game to find.
                    /// @param _start The index to start the reverse search from.
                    /// @param _n The number of games to find.
                    function findLatestGames(
                        GameType _gameType,
                        uint256 _start,
                        uint256 _n
                    )
                        external
                        view
                        returns (GameSearchResult[] memory games_);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IInitializable } from "src/dispute/interfaces/IInitializable.sol";
                import "src/dispute/lib/Types.sol";
                /// @title IDisputeGame
                /// @notice The generic interface for a DisputeGame contract.
                interface IDisputeGame is IInitializable {
                    /// @notice Emitted when the game is resolved.
                    /// @param status The status of the game after resolution.
                    event Resolved(GameStatus indexed status);
                    /// @notice Returns the timestamp that the DisputeGame contract was created at.
                    /// @return createdAt_ The timestamp that the DisputeGame contract was created at.
                    function createdAt() external view returns (Timestamp createdAt_);
                    /// @notice Returns the timestamp that the DisputeGame contract was resolved at.
                    /// @return resolvedAt_ The timestamp that the DisputeGame contract was resolved at.
                    function resolvedAt() external view returns (Timestamp resolvedAt_);
                    /// @notice Returns the current status of the game.
                    /// @return status_ The current status of the game.
                    function status() external view returns (GameStatus status_);
                    /// @notice Getter for the game type.
                    /// @dev The reference impl should be entirely different depending on the type (fault, validity)
                    ///      i.e. The game type should indicate the security model.
                    /// @return gameType_ The type of proof system being used.
                    function gameType() external view returns (GameType gameType_);
                    /// @notice Getter for the creator of the dispute game.
                    /// @dev `clones-with-immutable-args` argument #1
                    /// @return creator_ The creator of the dispute game.
                    function gameCreator() external pure returns (address creator_);
                    /// @notice Getter for the root claim.
                    /// @dev `clones-with-immutable-args` argument #2
                    /// @return rootClaim_ The root claim of the DisputeGame.
                    function rootClaim() external pure returns (Claim rootClaim_);
                    /// @notice Getter for the parent hash of the L1 block when the dispute game was created.
                    /// @dev `clones-with-immutable-args` argument #3
                    /// @return l1Head_ The parent hash of the L1 block when the dispute game was created.
                    function l1Head() external pure returns (Hash l1Head_);
                    /// @notice Getter for the extra data.
                    /// @dev `clones-with-immutable-args` argument #4
                    /// @return extraData_ Any extra data supplied to the dispute game contract by the creator.
                    function extraData() external pure returns (bytes memory extraData_);
                    /// @notice If all necessary information has been gathered, this function should mark the game
                    ///         status as either `CHALLENGER_WINS` or `DEFENDER_WINS` and return the status of
                    ///         the resolved game. It is at this stage that the bonds should be awarded to the
                    ///         necessary parties.
                    /// @dev May only be called if the `status` is `IN_PROGRESS`.
                    /// @return status_ The status of the game after resolution.
                    function resolve() external returns (GameStatus status_);
                    /// @notice A compliant implementation of this interface should return the components of the
                    ///         game UUID's preimage provided in the cwia payload. The preimage of the UUID is
                    ///         constructed as `keccak256(gameType . rootClaim . extraData)` where `.` denotes
                    ///         concatenation.
                    /// @return gameType_ The type of proof system being used.
                    /// @return rootClaim_ The root claim of the DisputeGame.
                    /// @return extraData_ Any extra data supplied to the dispute game contract by the creator.
                    function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library Math {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`.
                        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1;
                        uint256 x = a;
                        if (x >> 128 > 0) {
                            x >>= 128;
                            result <<= 64;
                        }
                        if (x >> 64 > 0) {
                            x >>= 64;
                            result <<= 32;
                        }
                        if (x >> 32 > 0) {
                            x >>= 32;
                            result <<= 16;
                        }
                        if (x >> 16 > 0) {
                            x >>= 16;
                            result <<= 8;
                        }
                        if (x >> 8 > 0) {
                            x >>= 8;
                            result <<= 4;
                        }
                        if (x >> 4 > 0) {
                            x >>= 4;
                            result <<= 2;
                        }
                        if (x >> 2 > 0) {
                            result <<= 1;
                        }
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        uint256 result = sqrt(a);
                        if (rounding == Rounding.Up && result * result < a) {
                            result += 1;
                        }
                        return result;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /// @title Burn
                /// @notice Utilities for burning stuff.
                library Burn {
                    /// @notice Burns a given amount of ETH.
                    /// @param _amount Amount of ETH to burn.
                    function eth(uint256 _amount) internal {
                        new Burner{ value: _amount }();
                    }
                    /// @notice Burns a given amount of gas.
                    /// @param _amount Amount of gas to burn.
                    function gas(uint256 _amount) internal view {
                        uint256 i = 0;
                        uint256 initialGas = gasleft();
                        while (initialGas - gasleft() < _amount) {
                            ++i;
                        }
                    }
                }
                /// @title Burner
                /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
                ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
                ///         from the circulating supply.
                contract Burner {
                    constructor() payable {
                        selfdestruct(payable(address(this)));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
                import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
                /// @title Arithmetic
                /// @notice Even more math than before.
                library Arithmetic {
                    /// @notice Clamps a value between a minimum and maximum.
                    /// @param _value The value to clamp.
                    /// @param _min   The minimum value.
                    /// @param _max   The maximum value.
                    /// @return The clamped value.
                    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                        return SignedMath.min(SignedMath.max(_value, _min), _max);
                    }
                    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                    ///         Returns the result of: c * (1 - 1/d)^exp.
                    /// @param _coefficient Coefficient of the function.
                    /// @param _denominator Fractional denominator.
                    /// @param _exponent    Power function exponent.
                    /// @return Result of c * (1 - 1/d)^exp.
                    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Storage } from "src/libraries/Storage.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { LibString } from "@solady/utils/LibString.sol";
                /// @title IGasToken
                /// @notice Implemented by contracts that are aware of the custom gas token used
                ///         by the L2 network.
                interface IGasToken {
                    /// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals.
                    function gasPayingToken() external view returns (address, uint8);
                    /// @notice Returns the gas token name.
                    function gasPayingTokenName() external view returns (string memory);
                    /// @notice Returns the gas token symbol.
                    function gasPayingTokenSymbol() external view returns (string memory);
                    /// @notice Returns true if the network uses a custom gas token.
                    function isCustomGasToken() external view returns (bool);
                }
                /// @title GasPayingToken
                /// @notice Handles reading and writing the custom gas token to storage.
                ///         To be used in any place where gas token information is read or
                ///         written to state. If multiple contracts use this library, the
                ///         values in storage should be kept in sync between them.
                library GasPayingToken {
                    /// @notice The storage slot that contains the address and decimals of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1);
                    /// @notice The storage slot that contains the ERC20 `name()` of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1);
                    /// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token
                    bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT =
                        bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1);
                    /// @notice Reads the gas paying token and its decimals from the magic
                    ///         storage slot. If nothing is set in storage, then the ether
                    ///         address is returned instead.
                    function getToken() internal view returns (address addr_, uint8 decimals_) {
                        bytes32 slot = Storage.getBytes32(GAS_PAYING_TOKEN_SLOT);
                        addr_ = address(uint160(uint256(slot) & uint256(type(uint160).max)));
                        if (addr_ == address(0)) {
                            addr_ = Constants.ETHER;
                            decimals_ = 18;
                        } else {
                            decimals_ = uint8(uint256(slot) >> 160);
                        }
                    }
                    /// @notice Reads the gas paying token's name from the magic storage slot.
                    ///         If nothing is set in storage, then the ether name, 'Ether', is returned instead.
                    function getName() internal view returns (string memory name_) {
                        (address addr,) = getToken();
                        if (addr == Constants.ETHER) {
                            name_ = "Ether";
                        } else {
                            name_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_NAME_SLOT));
                        }
                    }
                    /// @notice Reads the gas paying token's symbol from the magic storage slot.
                    ///         If nothing is set in storage, then the ether symbol, 'ETH', is returned instead.
                    function getSymbol() internal view returns (string memory symbol_) {
                        (address addr,) = getToken();
                        if (addr == Constants.ETHER) {
                            symbol_ = "ETH";
                        } else {
                            symbol_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT));
                        }
                    }
                    /// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot.
                    function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal {
                        Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 | uint256(uint160(_token))));
                        Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name);
                        Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol);
                    }
                    /// @notice Maps a string to a normalized null-terminated small string.
                    function sanitize(string memory _str) internal pure returns (bytes32) {
                        require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes");
                        return LibString.toSmallString(_str);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @notice Error returns when a non-depositor account tries to set L1 block values.
                error NotDepositor();
                /// @notice Error when a non-cross L2 Inbox sender tries to call the `isDeposit()` method.
                error NotCrossL2Inbox();
                /// @notice Error when a chain ID is not in the interop dependency set.
                error NotDependency();
                /// @notice Error when the interop dependency set size is too large.
                error DependencySetSizeTooLarge();
                /// @notice Error when a chain ID already in the interop dependency set is attempted to be added.
                error AlreadyDependency();
                /// @notice Error when the chain's chain ID is attempted to be removed from the interop dependency set.
                error CantRemovedDependency();
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
                /// @title Encoding
                /// @notice Encoding handles Optimism's various different encoding schemes.
                library Encoding {
                    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                    /// @param _tx User deposit transaction to encode.
                    /// @return RLP encoded L2 deposit transaction.
                    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                        bytes[] memory raw = new bytes[](8);
                        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                        raw[1] = RLPWriter.writeAddress(_tx.from);
                        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                        raw[3] = RLPWriter.writeUint(_tx.mint);
                        raw[4] = RLPWriter.writeUint(_tx.value);
                        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                        raw[6] = RLPWriter.writeBool(false);
                        raw[7] = RLPWriter.writeBytes(_tx.data);
                        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                    }
                    /// @notice Encodes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        (, uint16 version) = decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Encoding: unknown cross domain message version");
                        }
                    }
                    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                    }
                    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        return abi.encodeWithSignature(
                            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                            _nonce,
                            _sender,
                            _target,
                            _value,
                            _gasLimit,
                            _data
                        );
                    }
                    /// @notice Adds a version number into the first two bytes of a message nonce.
                    /// @param _nonce   Message nonce to encode into.
                    /// @param _version Version number to encode into the message nonce.
                    /// @return Message nonce with version encoded into the first two bytes.
                    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                        uint256 nonce;
                        assembly {
                            nonce := or(shl(240, _version), _nonce)
                        }
                        return nonce;
                    }
                    /// @notice Pulls the version out of a version-encoded nonce.
                    /// @param _nonce Message nonce with version encoded into the first two bytes.
                    /// @return Nonce without encoded version.
                    /// @return Version of the message.
                    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                        uint240 nonce;
                        uint16 version;
                        assembly {
                            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                            version := shr(240, _nonce)
                        }
                        return (nonce, version);
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                    /// @param baseFeeScalar       L1 base fee Scalar
                    /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param timestamp           L1 timestamp.
                    /// @param number              L1 blocknumber.
                    /// @param baseFee             L1 base fee.
                    /// @param blobBaseFee         L1 blob base fee.
                    /// @param hash                L1 blockhash.
                    /// @param batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesEcotone(
                        uint32 baseFeeScalar,
                        uint32 blobBaseFeeScalar,
                        uint64 sequenceNumber,
                        uint64 timestamp,
                        uint64 number,
                        uint256 baseFee,
                        uint256 blobBaseFee,
                        bytes32 hash,
                        bytes32 batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                        return abi.encodePacked(
                            functionSignature,
                            baseFeeScalar,
                            blobBaseFeeScalar,
                            sequenceNumber,
                            timestamp,
                            number,
                            baseFee,
                            blobBaseFee,
                            hash,
                            batcherHash
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesIsthmus(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Bytes } from "../Bytes.sol";
                import { RLPReader } from "../rlp/RLPReader.sol";
                /// @title MerkleTrie
                /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
                ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
                ///         trie radix constant to support other trie radixes.
                library MerkleTrie {
                    /// @notice Struct representing a node in the trie.
                    /// @custom:field encoded The RLP-encoded node.
                    /// @custom:field decoded The RLP-decoded node.
                    struct TrieNode {
                        bytes encoded;
                        RLPReader.RLPItem[] decoded;
                    }
                    /// @notice Determines the number of elements per branch node.
                    uint256 internal constant TREE_RADIX = 16;
                    /// @notice Branch nodes have TREE_RADIX elements and one value element.
                    uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                    /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                    uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                    /// @notice Prefix for even-nibbled extension node paths.
                    uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                    /// @notice Prefix for odd-nibbled extension node paths.
                    uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                    /// @notice Prefix for even-nibbled leaf node paths.
                    uint8 internal constant PREFIX_LEAF_EVEN = 2;
                    /// @notice Prefix for odd-nibbled leaf node paths.
                    uint8 internal constant PREFIX_LEAF_ODD = 3;
                    /// @notice Verifies a proof that a given key/value pair is present in the trie.
                    /// @param _key   Key of the node to search for, as a hex string.
                    /// @param _value Value of the node to search for, as a hex string.
                    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                    ///               nodes that make a path down to the target node.
                    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                    ///               correctly constructed.
                    /// @return valid_ Whether or not the proof is valid.
                    function verifyInclusionProof(
                        bytes memory _key,
                        bytes memory _value,
                        bytes[] memory _proof,
                        bytes32 _root
                    )
                        internal
                        pure
                        returns (bool valid_)
                    {
                        valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                    }
                    /// @notice Retrieves the value associated with a given key.
                    /// @param _key   Key to search for, as hex bytes.
                    /// @param _proof Merkle trie inclusion proof for the key.
                    /// @param _root  Known root of the Merkle trie.
                    /// @return value_ Value of the key if it exists.
                    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                        require(_key.length > 0, "MerkleTrie: empty key");
                        TrieNode[] memory proof = _parseProof(_proof);
                        bytes memory key = Bytes.toNibbles(_key);
                        bytes memory currentNodeID = abi.encodePacked(_root);
                        uint256 currentKeyIndex = 0;
                        // Proof is top-down, so we start at the first element (root).
                        for (uint256 i = 0; i < proof.length; i++) {
                            TrieNode memory currentNode = proof[i];
                            // Key index should never exceed total key length or we'll be out of bounds.
                            require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                            if (currentKeyIndex == 0) {
                                // First proof element is always the root node.
                                require(
                                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                    "MerkleTrie: invalid root hash"
                                );
                            } else if (currentNode.encoded.length >= 32) {
                                // Nodes 32 bytes or larger are hashed inside branch nodes.
                                require(
                                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                    "MerkleTrie: invalid large internal hash"
                                );
                            } else {
                                // Nodes smaller than 32 bytes aren't hashed.
                                require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                            }
                            if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                                if (currentKeyIndex == key.length) {
                                    // Value is the last element of the decoded list (for branch nodes). There's
                                    // some ambiguity in the Merkle trie specification because bytes(0) is a
                                    // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                    // even when the value wasn't explicitly placed there. Geth treats a value of
                                    // bytes(0) as "key does not exist" and so we do the same.
                                    value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                    // Extra proof elements are not allowed.
                                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                    return value_;
                                } else {
                                    // We're not at the end of the key yet.
                                    // Figure out what the next node ID should be and continue.
                                    uint8 branchKey = uint8(key[currentKeyIndex]);
                                    RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                    currentNodeID = _getNodeID(nextNode);
                                    currentKeyIndex += 1;
                                }
                            } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                                bytes memory path = _getNodePath(currentNode);
                                uint8 prefix = uint8(path[0]);
                                uint8 offset = 2 - (prefix % 2);
                                bytes memory pathRemainder = Bytes.slice(path, offset);
                                bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                                uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                                // Whether this is a leaf node or an extension node, the path remainder MUST be a
                                // prefix of the key remainder (or be equal to the key remainder) or the proof is
                                // considered invalid.
                                require(
                                    pathRemainder.length == sharedNibbleLength,
                                    "MerkleTrie: path remainder must share all nibbles with key"
                                );
                                if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                    // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                    // the key remainder must be exactly equal to the path remainder. We already
                                    // did the necessary byte comparison, so it's more efficient here to check that
                                    // the key remainder length equals the shared nibble length, which implies
                                    // equality with the path remainder (since we already did the same check with
                                    // the path remainder and the shared nibble length).
                                    require(
                                        keyRemainder.length == sharedNibbleLength,
                                        "MerkleTrie: key remainder must be identical to path remainder"
                                    );
                                    // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                    // state trie. Empty values are not allowed in the state trie, so we can safely
                                    // say that if the value is empty, the key should not exist and the proof is
                                    // invalid.
                                    value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                    // Extra proof elements are not allowed.
                                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                    return value_;
                                } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                    // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                    // in the proof and increment the key index by the length of the path remainder
                                    // which is equal to the shared nibble length.
                                    currentNodeID = _getNodeID(currentNode.decoded[1]);
                                    currentKeyIndex += sharedNibbleLength;
                                } else {
                                    revert("MerkleTrie: received a node with an unknown prefix");
                                }
                            } else {
                                revert("MerkleTrie: received an unparseable node");
                            }
                        }
                        revert("MerkleTrie: ran out of proof elements");
                    }
                    /// @notice Parses an array of proof elements into a new array that contains both the original
                    ///         encoded element and the RLP-decoded element.
                    /// @param _proof Array of proof elements to parse.
                    /// @return proof_ Proof parsed into easily accessible structs.
                    function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                        uint256 length = _proof.length;
                        proof_ = new TrieNode[](length);
                        for (uint256 i = 0; i < length;) {
                            proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                    ///         specification, but nodes < 32 bytes are not actually hashed.
                    /// @param _node Node to pull an ID for.
                    /// @return id_ ID for the node, depending on the size of its contents.
                    function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                        id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                    }
                    /// @notice Gets the path for a leaf or extension node.
                    /// @param _node Node to get a path for.
                    /// @return nibbles_ Node path, converted to an array of nibbles.
                    function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                        nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                    }
                    /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                    /// @param _a First nibble array.
                    /// @param _b Second nibble array.
                    /// @return shared_ Number of shared nibbles.
                    function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                        uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                        for (; shared_ < max && _a[shared_] == _b[shared_];) {
                            unchecked {
                                ++shared_;
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                import "src/dispute/lib/LibPosition.sol";
                using LibClaim for Claim global;
                using LibHash for Hash global;
                using LibDuration for Duration global;
                using LibClock for Clock global;
                using LibGameId for GameId global;
                using LibTimestamp for Timestamp global;
                using LibVMStatus for VMStatus global;
                using LibGameType for GameType global;
                /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
                /// @dev The packed layout of this type is as follows:
                /// ┌────────────┬────────────────┐
                /// │    Bits    │     Value      │
                /// ├────────────┼────────────────┤
                /// │ [0, 64)    │ Duration       │
                /// │ [64, 128)  │ Timestamp      │
                /// └────────────┴────────────────┘
                type Clock is uint128;
                /// @title LibClock
                /// @notice This library contains helper functions for working with the `Clock` type.
                library LibClock {
                    /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                    /// @param _duration The `Duration` to pack into the `Clock` type.
                    /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                    /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                    function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                        assembly {
                            clock_ := or(shl(0x40, _duration), _timestamp)
                        }
                    }
                    /// @notice Pull the `Duration` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Duration` out of.
                    /// @return duration_ The `Duration` pulled out of `_clock`.
                    function duration(Clock _clock) internal pure returns (Duration duration_) {
                        // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                        assembly {
                            duration_ := shr(0x40, _clock)
                        }
                    }
                    /// @notice Pull the `Timestamp` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                    /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                    function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                        // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                        // only the `timestamp`.
                        assembly {
                            timestamp_ := shr(0xC0, shl(0xC0, _clock))
                        }
                    }
                    /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                    /// @param _clock The `Clock` type to get the value of.
                    /// @return clock_ The value of the `Clock` type as a uint128 type.
                    function raw(Clock _clock) internal pure returns (uint128 clock_) {
                        assembly {
                            clock_ := _clock
                        }
                    }
                }
                /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
                /// @dev The packed layout of this type is as follows:
                /// ┌───────────┬───────────┐
                /// │   Bits    │   Value   │
                /// ├───────────┼───────────┤
                /// │ [0, 32)   │ Game Type │
                /// │ [32, 96)  │ Timestamp │
                /// │ [96, 256) │ Address   │
                /// └───────────┴───────────┘
                type GameId is bytes32;
                /// @title LibGameId
                /// @notice Utility functions for packing and unpacking GameIds.
                library LibGameId {
                    /// @notice Packs values into a 32 byte GameId type.
                    /// @param _gameType The game type.
                    /// @param _timestamp The timestamp of the game's creation.
                    /// @param _gameProxy The game proxy address.
                    /// @return gameId_ The packed GameId.
                    function pack(
                        GameType _gameType,
                        Timestamp _timestamp,
                        address _gameProxy
                    )
                        internal
                        pure
                        returns (GameId gameId_)
                    {
                        assembly {
                            gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                        }
                    }
                    /// @notice Unpacks values from a 32 byte GameId type.
                    /// @param _gameId The packed GameId.
                    /// @return gameType_ The game type.
                    /// @return timestamp_ The timestamp of the game's creation.
                    /// @return gameProxy_ The game proxy address.
                    function unpack(GameId _gameId)
                        internal
                        pure
                        returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                    {
                        assembly {
                            gameType_ := shr(224, _gameId)
                            timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                            gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                        }
                    }
                }
                /// @notice A claim represents an MPT root representing the state of the fault proof program.
                type Claim is bytes32;
                /// @title LibClaim
                /// @notice This library contains helper functions for working with the `Claim` type.
                library LibClaim {
                    /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                    /// @param _claim The `Claim` type to get the value of.
                    /// @return claim_ The value of the `Claim` type as a bytes32 type.
                    function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                        assembly {
                            claim_ := _claim
                        }
                    }
                    /// @notice Hashes a claim and a position together.
                    /// @param _claim A Claim type.
                    /// @param _position The position of `claim`.
                    /// @param _challengeIndex The index of the claim being moved against.
                    /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                    function hashClaimPos(
                        Claim _claim,
                        Position _position,
                        uint256 _challengeIndex
                    )
                        internal
                        pure
                        returns (Hash claimHash_)
                    {
                        assembly {
                            mstore(0x00, _claim)
                            mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                            claimHash_ := keccak256(0x00, 0x40)
                        }
                    }
                }
                /// @notice A dedicated duration type.
                /// @dev Unit: seconds
                type Duration is uint64;
                /// @title LibDuration
                /// @notice This library contains helper functions for working with the `Duration` type.
                library LibDuration {
                    /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                    /// @param _duration The `Duration` type to get the value of.
                    /// @return duration_ The value of the `Duration` type as a uint64 type.
                    function raw(Duration _duration) internal pure returns (uint64 duration_) {
                        assembly {
                            duration_ := _duration
                        }
                    }
                }
                /// @notice A custom type for a generic hash.
                type Hash is bytes32;
                /// @title LibHash
                /// @notice This library contains helper functions for working with the `Hash` type.
                library LibHash {
                    /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                    /// @param _hash The `Hash` type to get the value of.
                    /// @return hash_ The value of the `Hash` type as a bytes32 type.
                    function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                        assembly {
                            hash_ := _hash
                        }
                    }
                }
                /// @notice A dedicated timestamp type.
                type Timestamp is uint64;
                /// @title LibTimestamp
                /// @notice This library contains helper functions for working with the `Timestamp` type.
                library LibTimestamp {
                    /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                    /// @param _timestamp The `Timestamp` type to get the value of.
                    /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                    function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                        assembly {
                            timestamp_ := _timestamp
                        }
                    }
                }
                /// @notice A `VMStatus` represents the status of a VM execution.
                type VMStatus is uint8;
                /// @title LibVMStatus
                /// @notice This library contains helper functions for working with the `VMStatus` type.
                library LibVMStatus {
                    /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                    /// @param _vmstatus The `VMStatus` type to get the value of.
                    /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                    function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                        assembly {
                            vmstatus_ := _vmstatus
                        }
                    }
                }
                /// @notice A `GameType` represents the type of game being played.
                type GameType is uint32;
                /// @title LibGameType
                /// @notice This library contains helper functions for working with the `GameType` type.
                library LibGameType {
                    /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                    /// @param _gametype The `GameType` type to get the value of.
                    /// @return gametype_ The value of the `GameType` type as a uint32 type.
                    function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                        assembly {
                            gametype_ := _gametype
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title IInitializable
                /// @notice An interface for initializable contracts.
                interface IInitializable {
                    /// @notice Initializes the contract.
                    /// @dev This function may only be called once.
                    function initialize() external payable;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard signed math utilities missing in the Solidity language.
                 */
                library SignedMath {
                    /**
                     * @dev Returns the largest of two signed numbers.
                     */
                    function max(int256 a, int256 b) internal pure returns (int256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two signed numbers.
                     */
                    function min(int256 a, int256 b) internal pure returns (int256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two signed numbers without overflow.
                     * The result is rounded towards zero.
                     */
                    function average(int256 a, int256 b) internal pure returns (int256) {
                        // Formula from the book "Hacker's Delight"
                        int256 x = (a & b) + ((a ^ b) >> 1);
                        return x + (int256(uint256(x) >> 255) & (a ^ b));
                    }
                    /**
                     * @dev Returns the absolute unsigned value of a signed value.
                     */
                    function abs(int256 n) internal pure returns (uint256) {
                        unchecked {
                            // must be unchecked in order to support `n = type(int256).min`
                            return uint256(n >= 0 ? n : -n);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.8.0;
                /// @notice Arithmetic library with operations for fixed-point numbers.
                /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                library FixedPointMathLib {
                    /*//////////////////////////////////////////////////////////////
                                    SIMPLIFIED FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                    }
                    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                    }
                    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                    }
                    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                    }
                    function powWad(int256 x, int256 y) internal pure returns (int256) {
                        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                    }
                    function expWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            // When the result is < 0.5 we return zero. This happens when
                            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                            if (x <= -42139678854452767551) return 0;
                            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                            // for more intermediate precision and a binary basis. This base conversion
                            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                            x = (x << 78) / 5**18;
                            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                            x = x - k * 54916777467707473351141471128;
                            // k is in the range [-61, 195].
                            // Evaluate using a (6, 7)-term rational approximation.
                            // p is made monic, we'll multiply by a scale factor later.
                            int256 y = x + 1346386616545796478920950773328;
                            y = ((y * x) >> 96) + 57155421227552351082224309758442;
                            int256 p = y + x - 94201549194550492254356042504812;
                            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                            p = p * x + (4385272521454847904659076985693276 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            int256 q = x - 2855989394907223263936484059900;
                            q = ((q * x) >> 96) + 50020603652535783019961831881945;
                            q = ((q * x) >> 96) - 533845033583426703283633433725380;
                            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                            q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial won't have zeros in the domain as all its roots are complex.
                                // No scaling is necessary because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r should be in the range (0.09, 0.25) * 2**96.
                            // We now need to multiply r by:
                            // * the scale factor s = ~6.031367120.
                            // * the 2**k factor from the range reduction.
                            // * the 1e18 / 2**96 factor for base conversion.
                            // We do this all at once, with an intermediate result in 2**213
                            // basis, so the final right shift is always by a positive amount.
                            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                        }
                    }
                    function lnWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            require(x > 0, "UNDEFINED");
                            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                            // We do this by multiplying by 2**96 / 10**18. But since
                            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                            // and add ln(2**96 / 10**18) at the end.
                            // Reduce range of x to (1, 2) * 2**96
                            // ln(2^k * x) = k * ln(2) + ln(x)
                            int256 k = int256(log2(uint256(x))) - 96;
                            x <<= uint256(159 - k);
                            x = int256(uint256(x) >> 159);
                            // Evaluate using a (8, 8)-term rational approximation.
                            // p is made monic, we will multiply by a scale factor later.
                            int256 p = x + 3273285459638523848632254066296;
                            p = ((p * x) >> 96) + 24828157081833163892658089445524;
                            p = ((p * x) >> 96) + 43456485725739037958740375743393;
                            p = ((p * x) >> 96) - 11111509109440967052023855526967;
                            p = ((p * x) >> 96) - 45023709667254063763336534515857;
                            p = ((p * x) >> 96) - 14706773417378608786704636184526;
                            p = p * x - (795164235651350426258249787498 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            // q is monic by convention.
                            int256 q = x + 5573035233440673466300451813936;
                            q = ((q * x) >> 96) + 71694874799317883764090561454958;
                            q = ((q * x) >> 96) + 283447036172924575727196451306956;
                            q = ((q * x) >> 96) + 401686690394027663651624208769553;
                            q = ((q * x) >> 96) + 204048457590392012362485061816622;
                            q = ((q * x) >> 96) + 31853899698501571402653359427138;
                            q = ((q * x) >> 96) + 909429971244387300277376558375;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial is known not to have zeros in the domain.
                                // No scaling required because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r is in the range (0, 0.125) * 2**96
                            // Finalization, we need to:
                            // * multiply by the scale factor s = 5.549…
                            // * add ln(2**96 / 10**18)
                            // * add k * ln(2)
                            // * multiply by 10**18 / 2**96 = 5**18 >> 78
                            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                            r *= 1677202110996718588342820967067443963516166;
                            // add ln(2) * k * 5e18 * 2**192
                            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                            // add ln(2**96 / 10**18) * 5e18 * 2**192
                            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                            // base conversion: mul 2**18 / 2**192
                            r >>= 174;
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                    LOW LEVEL FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    function mulDivDown(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // Divide z by the denominator.
                            z := div(z, denominator)
                        }
                    }
                    function mulDivUp(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // First, divide z - 1 by the denominator and add 1.
                            // We allow z - 1 to underflow if z is 0, because we multiply the
                            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                        }
                    }
                    function rpow(
                        uint256 x,
                        uint256 n,
                        uint256 scalar
                    ) internal pure returns (uint256 z) {
                        assembly {
                            switch x
                            case 0 {
                                switch n
                                case 0 {
                                    // 0 ** 0 = 1
                                    z := scalar
                                }
                                default {
                                    // 0 ** n = 0
                                    z := 0
                                }
                            }
                            default {
                                switch mod(n, 2)
                                case 0 {
                                    // If n is even, store scalar in z for now.
                                    z := scalar
                                }
                                default {
                                    // If n is odd, store x in z for now.
                                    z := x
                                }
                                // Shifting right by 1 is like dividing by 2.
                                let half := shr(1, scalar)
                                for {
                                    // Shift n right by 1 before looping to halve it.
                                    n := shr(1, n)
                                } n {
                                    // Shift n right by 1 each iteration to halve it.
                                    n := shr(1, n)
                                } {
                                    // Revert immediately if x ** 2 would overflow.
                                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                                    if shr(128, x) {
                                        revert(0, 0)
                                    }
                                    // Store x squared.
                                    let xx := mul(x, x)
                                    // Round to the nearest number.
                                    let xxRound := add(xx, half)
                                    // Revert if xx + half overflowed.
                                    if lt(xxRound, xx) {
                                        revert(0, 0)
                                    }
                                    // Set x to scaled xxRound.
                                    x := div(xxRound, scalar)
                                    // If n is even:
                                    if mod(n, 2) {
                                        // Compute z * x.
                                        let zx := mul(z, x)
                                        // If z * x overflowed:
                                        if iszero(eq(div(zx, x), z)) {
                                            // Revert if x is non-zero.
                                            if iszero(iszero(x)) {
                                                revert(0, 0)
                                            }
                                        }
                                        // Round to the nearest number.
                                        let zxRound := add(zx, half)
                                        // Revert if zx + half overflowed.
                                        if lt(zxRound, zx) {
                                            revert(0, 0)
                                        }
                                        // Return properly scaled zxRound.
                                        z := div(zxRound, scalar)
                                    }
                                }
                            }
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                        GENERAL NUMBER UTILITIES
                    //////////////////////////////////////////////////////////////*/
                    function sqrt(uint256 x) internal pure returns (uint256 z) {
                        assembly {
                            let y := x // We start y at x, which will help us make our initial estimate.
                            z := 181 // The "correct" value is 1, but this saves a multiplication later.
                            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                            // We check y >= 2^(k + 8) but shift right by k bits
                            // each branch to ensure that if x >= 256, then y >= 256.
                            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                                y := shr(128, y)
                                z := shl(64, z)
                            }
                            if iszero(lt(y, 0x1000000000000000000)) {
                                y := shr(64, y)
                                z := shl(32, z)
                            }
                            if iszero(lt(y, 0x10000000000)) {
                                y := shr(32, y)
                                z := shl(16, z)
                            }
                            if iszero(lt(y, 0x1000000)) {
                                y := shr(16, y)
                                z := shl(8, z)
                            }
                            // Goal was to get z*z*y within a small factor of x. More iterations could
                            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                            // That's not possible if x < 256 but we can just verify those cases exhaustively.
                            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                            // There is no overflow risk here since y < 2^136 after the first branch above.
                            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            // If x+1 is a perfect square, the Babylonian method cycles between
                            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                            z := sub(z, lt(div(x, z), z))
                        }
                    }
                    function log2(uint256 x) internal pure returns (uint256 r) {
                        require(x > 0, "UNDEFINED");
                        assembly {
                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            r := or(r, shl(2, lt(0xf, shr(r, x))))
                            r := or(r, shl(1, lt(0x3, shr(r, x))))
                            r := or(r, lt(0x1, shr(r, x)))
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Storage
                /// @notice Storage handles reading and writing to arbitary storage locations
                library Storage {
                    /// @notice Returns an address stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getAddress(bytes32 _slot) internal view returns (address addr_) {
                        assembly {
                            addr_ := sload(_slot)
                        }
                    }
                    /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _address The protocol version to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                    ///      in arbitrary storage slots.
                    function setAddress(bytes32 _slot, address _address) internal {
                        assembly {
                            sstore(_slot, _address)
                        }
                    }
                    /// @notice Returns a uint256 stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                    /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _value The protocol version to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setUint(bytes32 _slot, uint256 _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                    ///         These storage slots decouple the storage layout from
                    ///         solc's automation.
                    /// @param _slot The storage slot to retrieve the address from.
                    function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                    /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the address in.
                    /// @param _value The bytes32 value to store.
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setBytes32(bytes32 _slot, bytes32 _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                    /// @param _slot The storage slot to store the bool in.
                    /// @param _value The bool value to store
                    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                    ///      in arbitrary storage slots.
                    function setBool(bytes32 _slot, bool _value) internal {
                        assembly {
                            sstore(_slot, _value)
                        }
                    }
                    /// @notice Returns a bool stored in an arbitrary storage slot.
                    /// @param _slot The storage slot to retrieve the bool from.
                    function getBool(bytes32 _slot) internal view returns (bool value_) {
                        assembly {
                            value_ := sload(_slot)
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.4;
                /// @notice Library for converting numbers into strings and other string operations.
                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
                /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
                ///
                /// Note:
                /// For performance and bytecode compactness, most of the string operations are restricted to
                /// byte strings (7-bit ASCII), except where otherwise specified.
                /// Usage of byte string operations on charsets with runes spanning two or more bytes
                /// can lead to undefined behavior.
                library LibString {
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                        CUSTOM ERRORS                       */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev The length of the output is too small to contain all the hex digits.
                    error HexLengthInsufficient();
                    /// @dev The length of the string is more than 32 bytes.
                    error TooBigForSmallString();
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                         CONSTANTS                          */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev The constant returned when the `search` is not found in the string.
                    uint256 internal constant NOT_FOUND = type(uint256).max;
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                     DECIMAL OPERATIONS                     */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the base 10 decimal representation of `value`.
                    function toString(uint256 value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                            // We will need 1 word for the trailing zeros padding, 1 word for the length,
                            // and 3 words for a maximum of 78 digits.
                            str := add(mload(0x40), 0x80)
                            // Update the free memory pointer to allocate.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end of the memory to calculate the length later.
                            let end := str
                            let w := not(0) // Tsk.
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let temp := value } 1 {} {
                                str := add(str, w) // `sub(str, 1)`.
                                // Write the character to the pointer.
                                // The ASCII index of the '0' character is 48.
                                mstore8(str, add(48, mod(temp, 10)))
                                // Keep dividing `temp` until zero.
                                temp := div(temp, 10)
                                if iszero(temp) { break }
                            }
                            let length := sub(end, str)
                            // Move the pointer 32 bytes leftwards to make room for the length.
                            str := sub(str, 0x20)
                            // Store the length.
                            mstore(str, length)
                        }
                    }
                    /// @dev Returns the base 10 decimal representation of `value`.
                    function toString(int256 value) internal pure returns (string memory str) {
                        if (value >= 0) {
                            return toString(uint256(value));
                        }
                        unchecked {
                            str = toString(uint256(-value));
                        }
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We still have some spare memory space on the left,
                            // as we have allocated 3 words (96 bytes) for up to 78 digits.
                            let length := mload(str) // Load the string length.
                            mstore(str, 0x2d) // Store the '-' character.
                            str := sub(str, 1) // Move back the string pointer by a byte.
                            mstore(str, add(length, 1)) // Update the string length.
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   HEXADECIMAL OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the hexadecimal representation of `value`,
                    /// left-padded to an input length of `length` bytes.
                    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                    /// giving a total length of `length * 2 + 2` bytes.
                    /// Reverts if `length` is too small for the output to contain all the digits.
                    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value, length);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`,
                    /// left-padded to an input length of `length` bytes.
                    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                    /// giving a total length of `length * 2` bytes.
                    /// Reverts if `length` is too small for the output to contain all the digits.
                    function toHexStringNoPrefix(uint256 value, uint256 length)
                        internal
                        pure
                        returns (string memory str)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                            // We add 0x20 to the total and round down to a multiple of 0x20.
                            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                            // Allocate the memory.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end to calculate the length later.
                            let end := str
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let start := sub(str, add(length, length))
                            let w := not(1) // Tsk.
                            let temp := value
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for {} 1 {} {
                                str := add(str, w) // `sub(str, 2)`.
                                mstore8(add(str, 1), mload(and(temp, 15)))
                                mstore8(str, mload(and(shr(4, temp), 15)))
                                temp := shr(8, temp)
                                if iszero(xor(str, start)) { break }
                            }
                            if temp {
                                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                                revert(0x1c, 0x04)
                            }
                            // Compute the string's length.
                            let strLength := sub(end, str)
                            // Move the pointer and write the length.
                            str := sub(str, 0x20)
                            mstore(str, strLength)
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                    /// As address are 20 bytes long, the output will left-padded to have
                    /// a length of `20 * 2 + 2` bytes.
                    function toHexString(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x".
                    /// The output excludes leading "0" from the `toHexString` output.
                    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
                    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
                    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
                    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                            let strLength := mload(str) // Get the length.
                            str := add(str, o) // Move the pointer, accounting for leading zero.
                            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    /// As address are 20 bytes long, the output will left-padded to have
                    /// a length of `20 * 2` bytes.
                    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                            str := add(mload(0x40), 0x80)
                            // Allocate the memory.
                            mstore(0x40, add(str, 0x20))
                            // Zeroize the slot after the string.
                            mstore(str, 0)
                            // Cache the end to calculate the length later.
                            let end := str
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let w := not(1) // Tsk.
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let temp := value } 1 {} {
                                str := add(str, w) // `sub(str, 2)`.
                                mstore8(add(str, 1), mload(and(temp, 15)))
                                mstore8(str, mload(and(shr(4, temp), 15)))
                                temp := shr(8, temp)
                                if iszero(temp) { break }
                            }
                            // Compute the string's length.
                            let strLength := sub(end, str)
                            // Move the pointer and write the length.
                            str := sub(str, 0x20)
                            mstore(str, strLength)
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
                    /// and the alphabets are capitalized conditionally according to
                    /// https://eips.ethereum.org/EIPS/eip-55
                    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                        str = toHexString(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                            let o := add(str, 0x22)
                            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                            let t := shl(240, 136) // `0b10001000 << 240`
                            for { let i := 0 } 1 {} {
                                mstore(add(i, i), mul(t, byte(i, hashed)))
                                i := add(i, 1)
                                if eq(i, 20) { break }
                            }
                            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                            o := add(o, 0x20)
                            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                    function toHexString(address value) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(value);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hexadecimal representation of `value`.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            str := mload(0x40)
                            // Allocate the memory.
                            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                            mstore(0x40, add(str, 0x80))
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            str := add(str, 2)
                            mstore(str, 40)
                            let o := add(str, 0x20)
                            mstore(add(o, 40), 0)
                            value := shl(96, value)
                            // We write the string from rightmost digit to leftmost digit.
                            // The following is essentially a do-while loop that also handles the zero case.
                            for { let i := 0 } 1 {} {
                                let p := add(o, add(i, i))
                                let temp := byte(i, value)
                                mstore8(add(p, 1), mload(and(temp, 15)))
                                mstore8(p, mload(shr(4, temp)))
                                i := add(i, 1)
                                if eq(i, 20) { break }
                            }
                        }
                    }
                    /// @dev Returns the hex encoded string from the raw bytes.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexString(bytes memory raw) internal pure returns (string memory str) {
                        str = toHexStringNoPrefix(raw);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let strLength := add(mload(str), 2) // Compute the length.
                            mstore(str, 0x3078) // Write the "0x" prefix.
                            str := sub(str, 2) // Move the pointer.
                            mstore(str, strLength) // Write the length.
                        }
                    }
                    /// @dev Returns the hex encoded string from the raw bytes.
                    /// The output is encoded using 2 hexadecimal digits per byte.
                    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let length := mload(raw)
                            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                            mstore(str, add(length, length)) // Store the length of the output.
                            // Store "0123456789abcdef" in scratch space.
                            mstore(0x0f, 0x30313233343536373839616263646566)
                            let o := add(str, 0x20)
                            let end := add(raw, length)
                            for {} iszero(eq(raw, end)) {} {
                                raw := add(raw, 1)
                                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                                o := add(o, 2)
                            }
                            mstore(o, 0) // Zeroize the slot after the string.
                            mstore(0x40, add(o, 0x20)) // Allocate the memory.
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   RUNE STRING OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    /// @dev Returns the number of UTF characters in the string.
                    function runeCount(string memory s) internal pure returns (uint256 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            if mload(s) {
                                mstore(0x00, div(not(0), 255))
                                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                                let o := add(s, 0x20)
                                let end := add(o, mload(s))
                                for { result := 1 } 1 { result := add(result, 1) } {
                                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                                    if iszero(lt(o, end)) { break }
                                }
                            }
                        }
                    }
                    /// @dev Returns if this string is a 7-bit ASCII string.
                    /// (i.e. all characters codes are in [0..127])
                    function is7BitASCII(string memory s) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let mask := shl(7, div(not(0), 255))
                            result := 1
                            let n := mload(s)
                            if n {
                                let o := add(s, 0x20)
                                let end := add(o, n)
                                let last := mload(end)
                                mstore(end, 0)
                                for {} 1 {} {
                                    if and(mask, mload(o)) {
                                        result := 0
                                        break
                                    }
                                    o := add(o, 0x20)
                                    if iszero(lt(o, end)) { break }
                                }
                                mstore(end, last)
                            }
                        }
                    }
                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                    /*                   BYTE STRING OPERATIONS                   */
                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                    // For performance and bytecode compactness, byte string operations are restricted
                    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
                    // Usage of byte string operations on charsets with runes spanning two or more bytes
                    // can lead to undefined behavior.
                    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
                    function replace(string memory subject, string memory search, string memory replacement)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            let searchLength := mload(search)
                            let replacementLength := mload(replacement)
                            subject := add(subject, 0x20)
                            search := add(search, 0x20)
                            replacement := add(replacement, 0x20)
                            result := add(mload(0x40), 0x20)
                            let subjectEnd := add(subject, subjectLength)
                            if iszero(gt(searchLength, subjectLength)) {
                                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                                let h := 0
                                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(search)
                                for {} 1 {} {
                                    let t := mload(subject)
                                    // Whether the first `searchLength % 32` bytes of
                                    // `subject` and `search` matches.
                                    if iszero(shr(m, xor(t, s))) {
                                        if h {
                                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                                mstore(result, t)
                                                result := add(result, 1)
                                                subject := add(subject, 1)
                                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                                continue
                                            }
                                        }
                                        // Copy the `replacement` one word at a time.
                                        for { let o := 0 } 1 {} {
                                            mstore(add(result, o), mload(add(replacement, o)))
                                            o := add(o, 0x20)
                                            if iszero(lt(o, replacementLength)) { break }
                                        }
                                        result := add(result, replacementLength)
                                        subject := add(subject, searchLength)
                                        if searchLength {
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    mstore(result, t)
                                    result := add(result, 1)
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                }
                            }
                            let resultRemainder := result
                            result := add(mload(0x40), 0x20)
                            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                            // Copy the rest of the string one word at a time.
                            for {} lt(subject, subjectEnd) {} {
                                mstore(resultRemainder, mload(subject))
                                resultRemainder := add(resultRemainder, 0x20)
                                subject := add(subject, 0x20)
                            }
                            result := sub(result, 0x20)
                            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                            mstore(last, 0)
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                            mstore(result, k) // Store the length.
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from left to right, starting from `from`.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function indexOf(string memory subject, string memory search, uint256 from)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for { let subjectLength := mload(subject) } 1 {} {
                                if iszero(mload(search)) {
                                    if iszero(gt(from, subjectLength)) {
                                        result := from
                                        break
                                    }
                                    result := subjectLength
                                    break
                                }
                                let searchLength := mload(search)
                                let subjectStart := add(subject, 0x20)
                                result := not(0) // Initialize to `NOT_FOUND`.
                                subject := add(subjectStart, from)
                                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(add(search, 0x20))
                                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                                if iszero(lt(searchLength, 0x20)) {
                                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                        if iszero(shr(m, xor(mload(subject), s))) {
                                            if eq(keccak256(subject, searchLength), h) {
                                                result := sub(subject, subjectStart)
                                                break
                                            }
                                        }
                                        subject := add(subject, 1)
                                        if iszero(lt(subject, end)) { break }
                                    }
                                    break
                                }
                                for {} 1 {} {
                                    if iszero(shr(m, xor(mload(subject), s))) {
                                        result := sub(subject, subjectStart)
                                        break
                                    }
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, end)) { break }
                                }
                                break
                            }
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from left to right.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function indexOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        result = indexOf(subject, search, 0);
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from right to left, starting from `from`.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function lastIndexOf(string memory subject, string memory search, uint256 from)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for {} 1 {} {
                                result := not(0) // Initialize to `NOT_FOUND`.
                                let searchLength := mload(search)
                                if gt(searchLength, mload(subject)) { break }
                                let w := result
                                let fromMax := sub(mload(subject), searchLength)
                                if iszero(gt(fromMax, from)) { from := fromMax }
                                let end := add(add(subject, 0x20), w)
                                subject := add(add(subject, 0x20), from)
                                if iszero(gt(subject, end)) { break }
                                // As this function is not too often used,
                                // we shall simply use keccak256 for smaller bytecode size.
                                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                    if eq(keccak256(subject, searchLength), h) {
                                        result := sub(subject, add(end, 1))
                                        break
                                    }
                                    subject := add(subject, w) // `sub(subject, 1)`.
                                    if iszero(gt(subject, end)) { break }
                                }
                                break
                            }
                        }
                    }
                    /// @dev Returns the byte index of the first location of `search` in `subject`,
                    /// searching from right to left.
                    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                    function lastIndexOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256 result)
                    {
                        result = lastIndexOf(subject, search, uint256(int256(-1)));
                    }
                    /// @dev Returns true if `search` is found in `subject`, false otherwise.
                    function contains(string memory subject, string memory search) internal pure returns (bool) {
                        return indexOf(subject, search) != NOT_FOUND;
                    }
                    /// @dev Returns whether `subject` starts with `search`.
                    function startsWith(string memory subject, string memory search)
                        internal
                        pure
                        returns (bool result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let searchLength := mload(search)
                            // Just using keccak256 directly is actually cheaper.
                            // forgefmt: disable-next-item
                            result := and(
                                iszero(gt(searchLength, mload(subject))),
                                eq(
                                    keccak256(add(subject, 0x20), searchLength),
                                    keccak256(add(search, 0x20), searchLength)
                                )
                            )
                        }
                    }
                    /// @dev Returns whether `subject` ends with `search`.
                    function endsWith(string memory subject, string memory search)
                        internal
                        pure
                        returns (bool result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let searchLength := mload(search)
                            let subjectLength := mload(subject)
                            // Whether `search` is not longer than `subject`.
                            let withinRange := iszero(gt(searchLength, subjectLength))
                            // Just using keccak256 directly is actually cheaper.
                            // forgefmt: disable-next-item
                            result := and(
                                withinRange,
                                eq(
                                    keccak256(
                                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                        searchLength
                                    ),
                                    keccak256(add(search, 0x20), searchLength)
                                )
                            )
                        }
                    }
                    /// @dev Returns `subject` repeated `times`.
                    function repeat(string memory subject, uint256 times)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            if iszero(or(iszero(times), iszero(subjectLength))) {
                                subject := add(subject, 0x20)
                                result := mload(0x40)
                                let output := add(result, 0x20)
                                for {} 1 {} {
                                    // Copy the `subject` one word at a time.
                                    for { let o := 0 } 1 {} {
                                        mstore(add(output, o), mload(add(subject, o)))
                                        o := add(o, 0x20)
                                        if iszero(lt(o, subjectLength)) { break }
                                    }
                                    output := add(output, subjectLength)
                                    times := sub(times, 1)
                                    if iszero(times) { break }
                                }
                                mstore(output, 0) // Zeroize the slot after the string.
                                let resultLength := sub(output, add(result, 0x20))
                                mstore(result, resultLength) // Store the length.
                                // Allocate the memory.
                                mstore(0x40, add(result, add(resultLength, 0x20)))
                            }
                        }
                    }
                    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
                    /// `start` and `end` are byte offsets.
                    function slice(string memory subject, uint256 start, uint256 end)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            if iszero(gt(subjectLength, end)) { end := subjectLength }
                            if iszero(gt(subjectLength, start)) { start := subjectLength }
                            if lt(start, end) {
                                result := mload(0x40)
                                let resultLength := sub(end, start)
                                mstore(result, resultLength)
                                subject := add(subject, start)
                                let w := not(0x1f)
                                // Copy the `subject` one word at a time, backwards.
                                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                                    mstore(add(result, o), mload(add(subject, o)))
                                    o := add(o, w) // `sub(o, 0x20)`.
                                    if iszero(o) { break }
                                }
                                // Zeroize the slot after the string.
                                mstore(add(add(result, 0x20), resultLength), 0)
                                // Allocate memory for the length and the bytes,
                                // rounded up to a multiple of 32.
                                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                            }
                        }
                    }
                    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
                    /// `start` is a byte offset.
                    function slice(string memory subject, uint256 start)
                        internal
                        pure
                        returns (string memory result)
                    {
                        result = slice(subject, start, uint256(int256(-1)));
                    }
                    /// @dev Returns all the indices of `search` in `subject`.
                    /// The indices are byte offsets.
                    function indicesOf(string memory subject, string memory search)
                        internal
                        pure
                        returns (uint256[] memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let subjectLength := mload(subject)
                            let searchLength := mload(search)
                            if iszero(gt(searchLength, subjectLength)) {
                                subject := add(subject, 0x20)
                                search := add(search, 0x20)
                                result := add(mload(0x40), 0x20)
                                let subjectStart := subject
                                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                                let h := 0
                                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                let s := mload(search)
                                for {} 1 {} {
                                    let t := mload(subject)
                                    // Whether the first `searchLength % 32` bytes of
                                    // `subject` and `search` matches.
                                    if iszero(shr(m, xor(t, s))) {
                                        if h {
                                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                                subject := add(subject, 1)
                                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                                continue
                                            }
                                        }
                                        // Append to `result`.
                                        mstore(result, sub(subject, subjectStart))
                                        result := add(result, 0x20)
                                        // Advance `subject` by `searchLength`.
                                        subject := add(subject, searchLength)
                                        if searchLength {
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, subjectSearchEnd)) { break }
                                }
                                let resultEnd := result
                                // Assign `result` to the free memory pointer.
                                result := mload(0x40)
                                // Store the length of `result`.
                                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                                // Allocate memory for result.
                                // We allocate one more word, so this array can be recycled for {split}.
                                mstore(0x40, add(resultEnd, 0x20))
                            }
                        }
                    }
                    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
                    function split(string memory subject, string memory delimiter)
                        internal
                        pure
                        returns (string[] memory result)
                    {
                        uint256[] memory indices = indicesOf(subject, delimiter);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let w := not(0x1f)
                            let indexPtr := add(indices, 0x20)
                            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                            mstore(add(indicesEnd, w), mload(subject))
                            mstore(indices, add(mload(indices), 1))
                            let prevIndex := 0
                            for {} 1 {} {
                                let index := mload(indexPtr)
                                mstore(indexPtr, 0x60)
                                if iszero(eq(index, prevIndex)) {
                                    let element := mload(0x40)
                                    let elementLength := sub(index, prevIndex)
                                    mstore(element, elementLength)
                                    // Copy the `subject` one word at a time, backwards.
                                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                        o := add(o, w) // `sub(o, 0x20)`.
                                        if iszero(o) { break }
                                    }
                                    // Zeroize the slot after the string.
                                    mstore(add(add(element, 0x20), elementLength), 0)
                                    // Allocate memory for the length and the bytes,
                                    // rounded up to a multiple of 32.
                                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                                    // Store the `element` into the array.
                                    mstore(indexPtr, element)
                                }
                                prevIndex := add(index, mload(delimiter))
                                indexPtr := add(indexPtr, 0x20)
                                if iszero(lt(indexPtr, indicesEnd)) { break }
                            }
                            result := indices
                            if iszero(mload(delimiter)) {
                                result := add(indices, 0x20)
                                mstore(result, sub(mload(indices), 2))
                            }
                        }
                    }
                    /// @dev Returns a concatenated string of `a` and `b`.
                    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
                    function concat(string memory a, string memory b)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let w := not(0x1f)
                            result := mload(0x40)
                            let aLength := mload(a)
                            // Copy `a` one word at a time, backwards.
                            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                                mstore(add(result, o), mload(add(a, o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            let bLength := mload(b)
                            let output := add(result, aLength)
                            // Copy `b` one word at a time, backwards.
                            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                                mstore(add(output, o), mload(add(b, o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            let totalLength := add(aLength, bLength)
                            let last := add(add(result, 0x20), totalLength)
                            // Zeroize the slot after the string.
                            mstore(last, 0)
                            // Stores the length.
                            mstore(result, totalLength)
                            // Allocate memory for the length and the bytes,
                            // rounded up to a multiple of 32.
                            mstore(0x40, and(add(last, 0x1f), w))
                        }
                    }
                    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function toCase(string memory subject, bool toUpper)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let length := mload(subject)
                            if length {
                                result := add(mload(0x40), 0x20)
                                subject := add(subject, 1)
                                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                                let w := not(0)
                                for { let o := length } 1 {} {
                                    o := add(o, w)
                                    let b := and(0xff, mload(add(subject, o)))
                                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                                    if iszero(o) { break }
                                }
                                result := mload(0x40)
                                mstore(result, length) // Store the length.
                                let last := add(add(result, 0x20), length)
                                mstore(last, 0) // Zeroize the slot after the string.
                                mstore(0x40, add(last, 0x20)) // Allocate the memory.
                            }
                        }
                    }
                    /// @dev Returns a string from a small bytes32 string.
                    /// `s` must be null-terminated, or behavior will be undefined.
                    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := mload(0x40)
                            let n := 0
                            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                            mstore(result, n)
                            let o := add(result, 0x20)
                            mstore(o, s)
                            mstore(add(o, n), 0)
                            mstore(0x40, add(result, 0x40))
                        }
                    }
                    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
                    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                            mstore(0x00, s)
                            mstore(result, 0x00)
                            result := mload(0x00)
                        }
                    }
                    /// @dev Returns the string as a normalized null-terminated small string.
                    function toSmallString(string memory s) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := mload(s)
                            if iszero(lt(result, 33)) {
                                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                                revert(0x1c, 0x04)
                            }
                            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                        }
                    }
                    /// @dev Returns a lowercased copy of the string.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function lower(string memory subject) internal pure returns (string memory result) {
                        result = toCase(subject, false);
                    }
                    /// @dev Returns an UPPERCASED copy of the string.
                    /// WARNING! This function is only compatible with 7-bit ASCII strings.
                    function upper(string memory subject) internal pure returns (string memory result) {
                        result = toCase(subject, true);
                    }
                    /// @dev Escapes the string to be used within HTML tags.
                    function escapeHTML(string memory s) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let end := add(s, mload(s))
                            result := add(mload(0x40), 0x20)
                            // Store the bytes of the packed offsets and strides into the scratch space.
                            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                            mstore(0x1f, 0x900094)
                            mstore(0x08, 0xc0000000a6ab)
                            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                            for {} iszero(eq(s, end)) {} {
                                s := add(s, 1)
                                let c := and(mload(s), 0xff)
                                // Not in `["\\"","'","&","<",">"]`.
                                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                                    mstore8(result, c)
                                    result := add(result, 1)
                                    continue
                                }
                                let t := shr(248, mload(c))
                                mstore(result, mload(and(t, 0x1f)))
                                result := add(result, shr(5, t))
                            }
                            let last := result
                            mstore(last, 0) // Zeroize the slot after the string.
                            result := mload(0x40)
                            mstore(result, sub(last, add(result, 0x20))) // Store the length.
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        }
                    }
                    /// @dev Escapes the string to be used within double-quotes in a JSON.
                    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
                    function escapeJSON(string memory s, bool addDoubleQuotes)
                        internal
                        pure
                        returns (string memory result)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let end := add(s, mload(s))
                            result := add(mload(0x40), 0x20)
                            if addDoubleQuotes {
                                mstore8(result, 34)
                                result := add(1, result)
                            }
                            // Store "\\\\u0000" in scratch space.
                            // Store "0123456789abcdef" in scratch space.
                            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                            // into the scratch space.
                            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                            // Bitmask for detecting `["\\"","\\\\"]`.
                            let e := or(shl(0x22, 1), shl(0x5c, 1))
                            for {} iszero(eq(s, end)) {} {
                                s := add(s, 1)
                                let c := and(mload(s), 0xff)
                                if iszero(lt(c, 0x20)) {
                                    if iszero(and(shl(c, 1), e)) {
                                        // Not in `["\\"","\\\\"]`.
                                        mstore8(result, c)
                                        result := add(result, 1)
                                        continue
                                    }
                                    mstore8(result, 0x5c) // "\\\\".
                                    mstore8(add(result, 1), c)
                                    result := add(result, 2)
                                    continue
                                }
                                if iszero(and(shl(c, 1), 0x3700)) {
                                    // Not in `["\\b","\\t","\
                ","\\f","\\d"]`.
                                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                                    mstore(result, mload(0x19)) // "\\\\u00XX".
                                    result := add(result, 6)
                                    continue
                                }
                                mstore8(result, 0x5c) // "\\\\".
                                mstore8(add(result, 1), mload(add(c, 8)))
                                result := add(result, 2)
                            }
                            if addDoubleQuotes {
                                mstore8(result, 34)
                                result := add(1, result)
                            }
                            let last := result
                            mstore(last, 0) // Zeroize the slot after the string.
                            result := mload(0x40)
                            mstore(result, sub(last, add(result, 0x20))) // Store the length.
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        }
                    }
                    /// @dev Escapes the string to be used within double-quotes in a JSON.
                    function escapeJSON(string memory s) internal pure returns (string memory result) {
                        result = escapeJSON(s, false);
                    }
                    /// @dev Returns whether `a` equals `b`.
                    function eq(string memory a, string memory b) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                        }
                    }
                    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
                    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // These should be evaluated on compile time, as far as possible.
                            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                            let x := not(or(m, or(b, add(m, and(b, m)))))
                            let r := shl(7, iszero(iszero(shr(128, x))))
                            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            // forgefmt: disable-next-item
                            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                        }
                    }
                    /// @dev Packs a single string with its length into a single word.
                    /// Returns `bytes32(0)` if the length is zero or greater than 31.
                    function packOne(string memory a) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // We don't need to zero right pad the string,
                            // since this is our own custom non-standard packing scheme.
                            result :=
                                mul(
                                    // Load the length and the bytes.
                                    mload(add(a, 0x1f)),
                                    // `length != 0 && length < 32`. Abuses underflow.
                                    // Assumes that the length is valid and within the block gas limit.
                                    lt(sub(mload(a), 1), 0x1f)
                                )
                        }
                    }
                    /// @dev Unpacks a string packed using {packOne}.
                    /// Returns the empty string if `packed` is `bytes32(0)`.
                    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
                    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // Grab the free memory pointer.
                            result := mload(0x40)
                            // Allocate 2 words (1 for the length, 1 for the bytes).
                            mstore(0x40, add(result, 0x40))
                            // Zeroize the length slot.
                            mstore(result, 0)
                            // Store the length and bytes.
                            mstore(add(result, 0x1f), packed)
                            // Right pad with zeroes.
                            mstore(add(add(result, 0x20), mload(result)), 0)
                        }
                    }
                    /// @dev Packs two strings with their lengths into a single word.
                    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
                    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            let aLength := mload(a)
                            // We don't need to zero right pad the strings,
                            // since this is our own custom non-standard packing scheme.
                            result :=
                                mul(
                                    // Load the length and the bytes of `a` and `b`.
                                    or(
                                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                        mload(sub(add(b, 0x1e), aLength))
                                    ),
                                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                                    // Assumes that the lengths are valid and within the block gas limit.
                                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                                )
                        }
                    }
                    /// @dev Unpacks strings packed using {packTwo}.
                    /// Returns the empty strings if `packed` is `bytes32(0)`.
                    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
                    function unpackTwo(bytes32 packed)
                        internal
                        pure
                        returns (string memory resultA, string memory resultB)
                    {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // Grab the free memory pointer.
                            resultA := mload(0x40)
                            resultB := add(resultA, 0x40)
                            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                            mstore(0x40, add(resultB, 0x40))
                            // Zeroize the length slots.
                            mstore(resultA, 0)
                            mstore(resultB, 0)
                            // Store the lengths and bytes.
                            mstore(add(resultA, 0x1f), packed)
                            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                            // Right pad with zeroes.
                            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                        }
                    }
                    /// @dev Directly returns `a` without copying.
                    function directReturn(string memory a) internal pure {
                        assembly {
                            // Assumes that the string does not start from the scratch space.
                            let retStart := sub(a, 0x20)
                            let retSize := add(mload(a), 0x40)
                            // Right pad with zeroes. Just in case the string is produced
                            // by a method that doesn't zero right pad.
                            mstore(add(retStart, retSize), 0)
                            // Store the return offset.
                            mstore(retStart, 0x20)
                            // End the transaction, returning the string.
                            return(retStart, retSize)
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
                /// @title RLPWriter
                /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
                ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
                ///         modifications to improve legibility.
                library RLPWriter {
                    /// @notice RLP encodes a byte string.
                    /// @param _in The byte string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        if (_in.length == 1 && uint8(_in[0]) < 128) {
                            out_ = _in;
                        } else {
                            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                        }
                    }
                    /// @notice RLP encodes a list of RLP encoded byte byte strings.
                    /// @param _in The list of RLP encoded byte strings.
                    /// @return list_ The RLP encoded list of items in bytes.
                    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                        list_ = _flatten(_in);
                        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                    }
                    /// @notice RLP encodes a string.
                    /// @param _in The string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeString(string memory _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(bytes(_in));
                    }
                    /// @notice RLP encodes an address.
                    /// @param _in The address to encode.
                    /// @return out_ The RLP encoded address in bytes.
                    function writeAddress(address _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(abi.encodePacked(_in));
                    }
                    /// @notice RLP encodes a uint.
                    /// @param _in The uint256 to encode.
                    /// @return out_ The RLP encoded uint256 in bytes.
                    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(_toBinary(_in));
                    }
                    /// @notice RLP encodes a bool.
                    /// @param _in The bool to encode.
                    /// @return out_ The RLP encoded bool in bytes.
                    function writeBool(bool _in) internal pure returns (bytes memory out_) {
                        out_ = new bytes(1);
                        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                    }
                    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                    /// @param _len    The length of the string or the payload.
                    /// @param _offset 128 if item is string, 192 if item is list.
                    /// @return out_ RLP encoded bytes.
                    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                        if (_len < 56) {
                            out_ = new bytes(1);
                            out_[0] = bytes1(uint8(_len) + uint8(_offset));
                        } else {
                            uint256 lenLen;
                            uint256 i = 1;
                            while (_len / i != 0) {
                                lenLen++;
                                i *= 256;
                            }
                            out_ = new bytes(lenLen + 1);
                            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                            for (i = 1; i <= lenLen; i++) {
                                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                            }
                        }
                    }
                    /// @notice Encode integer in big endian binary form with no leading zeroes.
                    /// @param _x The integer to encode.
                    /// @return out_ RLP encoded bytes.
                    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                        bytes memory b = abi.encodePacked(_x);
                        uint256 i = 0;
                        for (; i < 32; i++) {
                            if (b[i] != 0) {
                                break;
                            }
                        }
                        out_ = new bytes(32 - i);
                        for (uint256 j = 0; j < out_.length; j++) {
                            out_[j] = b[i++];
                        }
                    }
                    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                    /// @notice Copies a piece of memory to another location.
                    /// @param _dest Destination location.
                    /// @param _src  Source location.
                    /// @param _len  Length of memory to copy.
                    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                        uint256 dest = _dest;
                        uint256 src = _src;
                        uint256 len = _len;
                        for (; len >= 32; len -= 32) {
                            assembly {
                                mstore(dest, mload(src))
                            }
                            dest += 32;
                            src += 32;
                        }
                        uint256 mask;
                        unchecked {
                            mask = 256 ** (32 - len) - 1;
                        }
                        assembly {
                            let srcpart := and(mload(src), not(mask))
                            let destpart := and(mload(dest), mask)
                            mstore(dest, or(destpart, srcpart))
                        }
                    }
                    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                    /// @notice Flattens a list of byte strings into one byte string.
                    /// @param _list List of byte strings to flatten.
                    /// @return out_ The flattened byte string.
                    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                        if (_list.length == 0) {
                            return new bytes(0);
                        }
                        uint256 len;
                        uint256 i = 0;
                        for (; i < _list.length; i++) {
                            len += _list[i].length;
                        }
                        out_ = new bytes(len);
                        uint256 flattenedPtr;
                        assembly {
                            flattenedPtr := add(out_, 0x20)
                        }
                        for (i = 0; i < _list.length; i++) {
                            bytes memory item = _list[i];
                            uint256 listPtr;
                            assembly {
                                listPtr := add(item, 0x20)
                            }
                            _memcpy(flattenedPtr, listPtr, item.length);
                            flattenedPtr += _list[i].length;
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Bytes
                /// @notice Bytes is a library for manipulating byte arrays.
                library Bytes {
                    /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                    /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                    ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                    ///         bytes than exist in the array.
                    /// @param _bytes Byte array to slice.
                    /// @param _start Starting index of the slice.
                    /// @param _length Length of the slice.
                    /// @return Slice of the input byte array.
                    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                        unchecked {
                            require(_length + 31 >= _length, "slice_overflow");
                            require(_start + _length >= _start, "slice_overflow");
                            require(_bytes.length >= _start + _length, "slice_outOfBounds");
                        }
                        bytes memory tempBytes;
                        assembly {
                            switch iszero(_length)
                            case 0 {
                                // Get a location of some free memory and store it in tempBytes as
                                // Solidity does for memory variables.
                                tempBytes := mload(0x40)
                                // The first word of the slice result is potentially a partial
                                // word read from the original array. To read it, we calculate
                                // the length of that partial word and start copying that many
                                // bytes into the array. The first word we copy will start with
                                // data we don't care about, but the last `lengthmod` bytes will
                                // land at the beginning of the contents of the new array. When
                                // we're done copying, we overwrite the full first word with
                                // the actual length of the slice.
                                let lengthmod := and(_length, 31)
                                // The multiplication in the next line is necessary
                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                // the following copy loop was copying the origin's length
                                // and then ending prematurely not copying everything it should.
                                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                let end := add(mc, _length)
                                for {
                                    // The multiplication in the next line has the same exact purpose
                                    // as the one above.
                                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                } lt(mc, end) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } { mstore(mc, mload(cc)) }
                                mstore(tempBytes, _length)
                                //update free-memory pointer
                                //allocating the array padded to 32 bytes like the compiler does now
                                mstore(0x40, and(add(mc, 31), not(31)))
                            }
                            //if we want a zero-length slice let's just return a zero-length array
                            default {
                                tempBytes := mload(0x40)
                                //zero out the 32 bytes slice we are about to return
                                //we need to do it because Solidity does not garbage collect
                                mstore(tempBytes, 0)
                                mstore(0x40, add(tempBytes, 0x20))
                            }
                        }
                        return tempBytes;
                    }
                    /// @notice Slices a byte array with a given starting index up to the end of the original byte
                    ///         array. Returns a new array rathern than a pointer to the original.
                    /// @param _bytes Byte array to slice.
                    /// @param _start Starting index of the slice.
                    /// @return Slice of the input byte array.
                    function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                        if (_start >= _bytes.length) {
                            return bytes("");
                        }
                        return slice(_bytes, _start, _bytes.length - _start);
                    }
                    /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                    ///         Resulting nibble array will be exactly twice as long as the input byte array.
                    /// @param _bytes Input byte array to convert.
                    /// @return Resulting nibble array.
                    function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                        bytes memory _nibbles;
                        assembly {
                            // Grab a free memory offset for the new array
                            _nibbles := mload(0x40)
                            // Load the length of the passed bytes array from memory
                            let bytesLength := mload(_bytes)
                            // Calculate the length of the new nibble array
                            // This is the length of the input array times 2
                            let nibblesLength := shl(0x01, bytesLength)
                            // Update the free memory pointer to allocate memory for the new array.
                            // To do this, we add the length of the new array + 32 bytes for the array length
                            // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                            mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                            // Store the length of the new array in memory
                            mstore(_nibbles, nibblesLength)
                            // Store the memory offset of the _bytes array's contents on the stack
                            let bytesStart := add(_bytes, 0x20)
                            // Store the memory offset of the nibbles array's contents on the stack
                            let nibblesStart := add(_nibbles, 0x20)
                            // Loop through each byte in the input array
                            for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                                // Get the starting offset of the next 2 bytes in the nibbles array
                                let offset := add(nibblesStart, shl(0x01, i))
                                // Load the byte at the current index within the `_bytes` array
                                let b := byte(0x00, mload(add(bytesStart, i)))
                                // Pull out the first nibble and store it in the new array
                                mstore8(offset, shr(0x04, b))
                                // Pull out the second nibble and store it in the new array
                                mstore8(add(offset, 0x01), and(b, 0x0F))
                            }
                        }
                        return _nibbles;
                    }
                    /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                    /// @param _bytes First byte array to compare.
                    /// @param _other Second byte array to compare.
                    /// @return True if the two byte arrays are equal, false otherwise.
                    function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                        return keccak256(_bytes) == keccak256(_other);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.8;
                import "./RLPErrors.sol";
                /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
                /// @title RLPReader
                /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
                ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
                ///         various tweaks to improve readability.
                library RLPReader {
                    /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                    type MemoryPointer is uint256;
                    /// @notice RLP item types.
                    /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                    /// @custom:value LIST_ITEM Represents an RLP list item.
                    enum RLPItemType {
                        DATA_ITEM,
                        LIST_ITEM
                    }
                    /// @notice Struct representing an RLP item.
                    /// @custom:field length Length of the RLP item.
                    /// @custom:field ptr    Pointer to the RLP item in memory.
                    struct RLPItem {
                        uint256 length;
                        MemoryPointer ptr;
                    }
                    /// @notice Max list length that this library will accept.
                    uint256 internal constant MAX_LIST_LENGTH = 32;
                    /// @notice Converts bytes to a reference to memory position and length.
                    /// @param _in Input bytes to convert.
                    /// @return out_ Output memory reference.
                    function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                        // Empty arrays are not RLP items.
                        if (_in.length == 0) revert EmptyItem();
                        MemoryPointer ptr;
                        assembly {
                            ptr := add(_in, 32)
                        }
                        out_ = RLPItem({ length: _in.length, ptr: ptr });
                    }
                    /// @notice Reads an RLP list value into a list of RLP items.
                    /// @param _in RLP list value.
                    /// @return out_ Decoded RLP list items.
                    function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                        (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                        if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                        if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                        // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                        // writing to the length. Since we can't know the number of RLP items without looping over
                        // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                        // simply set a reasonable maximum list length and decrease the size before we finish.
                        out_ = new RLPItem[](MAX_LIST_LENGTH);
                        uint256 itemCount = 0;
                        uint256 offset = listOffset;
                        while (offset < _in.length) {
                            (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                                RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                            );
                            // We don't need to check itemCount < out.length explicitly because Solidity already
                            // handles this check on our behalf, we'd just be wasting gas.
                            out_[itemCount] = RLPItem({
                                length: itemLength + itemOffset,
                                ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                            });
                            itemCount += 1;
                            offset += itemOffset + itemLength;
                        }
                        // Decrease the array size to match the actual item count.
                        assembly {
                            mstore(out_, itemCount)
                        }
                    }
                    /// @notice Reads an RLP list value into a list of RLP items.
                    /// @param _in RLP list value.
                    /// @return out_ Decoded RLP list items.
                    function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                        out_ = readList(toRLPItem(_in));
                    }
                    /// @notice Reads an RLP bytes value into bytes.
                    /// @param _in RLP bytes value.
                    /// @return out_ Decoded bytes.
                    function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                        (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                        if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                        if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                        out_ = _copy(_in.ptr, itemOffset, itemLength);
                    }
                    /// @notice Reads an RLP bytes value into bytes.
                    /// @param _in RLP bytes value.
                    /// @return out_ Decoded bytes.
                    function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        out_ = readBytes(toRLPItem(_in));
                    }
                    /// @notice Reads the raw bytes of an RLP item.
                    /// @param _in RLP item to read.
                    /// @return out_ Raw RLP bytes.
                    function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                        out_ = _copy(_in.ptr, 0, _in.length);
                    }
                    /// @notice Decodes the length of an RLP item.
                    /// @param _in RLP item to decode.
                    /// @return offset_ Offset of the encoded data.
                    /// @return length_ Length of the encoded data.
                    /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                    function _decodeLength(RLPItem memory _in)
                        private
                        pure
                        returns (uint256 offset_, uint256 length_, RLPItemType type_)
                    {
                        // Short-circuit if there's nothing to decode, note that we perform this check when
                        // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                        // that function and create an RLP item directly. So we need to check this anyway.
                        if (_in.length == 0) revert EmptyItem();
                        MemoryPointer ptr = _in.ptr;
                        uint256 prefix;
                        assembly {
                            prefix := byte(0, mload(ptr))
                        }
                        if (prefix <= 0x7f) {
                            // Single byte.
                            return (0, 1, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xb7) {
                            // Short string.
                            // slither-disable-next-line variable-scope
                            uint256 strLen = prefix - 0x80;
                            if (_in.length <= strLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                            return (1, strLen, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xbf) {
                            // Long string.
                            uint256 lenOfStrLen = prefix - 0xb7;
                            if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (firstByteOfContent == 0x00) revert InvalidHeader();
                            uint256 strLen;
                            assembly {
                                strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                            }
                            if (strLen <= 55) revert InvalidHeader();
                            if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                            return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xf7) {
                            // Short list.
                            // slither-disable-next-line variable-scope
                            uint256 listLen = prefix - 0xc0;
                            if (_in.length <= listLen) revert ContentLengthMismatch();
                            return (1, listLen, RLPItemType.LIST_ITEM);
                        } else {
                            // Long list.
                            uint256 lenOfListLen = prefix - 0xf7;
                            if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (firstByteOfContent == 0x00) revert InvalidHeader();
                            uint256 listLen;
                            assembly {
                                listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                            }
                            if (listLen <= 55) revert InvalidHeader();
                            if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                            return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                        }
                    }
                    /// @notice Copies the bytes from a memory location.
                    /// @param _src    Pointer to the location to read from.
                    /// @param _offset Offset to start reading from.
                    /// @param _length Number of bytes to read.
                    /// @return out_ Copied bytes.
                    function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                        out_ = new bytes(_length);
                        if (_length == 0) {
                            return out_;
                        }
                        // Mostly based on Solidity's copy_memory_to_memory:
                        // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                        uint256 src = MemoryPointer.unwrap(_src) + _offset;
                        assembly {
                            let dest := add(out_, 32)
                            let i := 0
                            for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                            if gt(i, _length) { mstore(add(dest, _length), 0) }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                using LibPosition for Position global;
                /// @notice A `Position` represents a position of a claim within the game tree.
                /// @dev This is represented as a "generalized index" where the high-order bit
                /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
                /// a unique identifier for each node in the tree. Mathematically, it is calculated
                /// as 2^{depth} + indexAtDepth.
                type Position is uint128;
                /// @title LibPosition
                /// @notice This library contains helper functions for working with the `Position` type.
                library LibPosition {
                    /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                    ///         its behavior within this library, can safely support.
                    uint8 internal constant MAX_POSITION_BITLEN = 126;
                    /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                    /// @param _depth The depth of the position.
                    /// @param _indexAtDepth The index at the depth of the position.
                    /// @return position_ The computed generalized index.
                    function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                        assembly {
                            // gindex = 2^{_depth} + _indexAtDepth
                            position_ := add(shl(_depth, 1), _indexAtDepth)
                        }
                    }
                    /// @notice Pulls the `depth` out of a `Position` type.
                    /// @param _position The generalized index to get the `depth` of.
                    /// @return depth_ The `depth` of the `position` gindex.
                    /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                    function depth(Position _position) internal pure returns (uint8 depth_) {
                        // Return the most significant bit offset, which signifies the depth of the gindex.
                        assembly {
                            depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                            depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                            // For the remaining 32 bits, use a De Bruijn lookup.
                            _position := shr(depth_, _position)
                            _position := or(_position, shr(1, _position))
                            _position := or(_position, shr(2, _position))
                            _position := or(_position, shr(4, _position))
                            _position := or(_position, shr(8, _position))
                            _position := or(_position, shr(16, _position))
                            depth_ :=
                                or(
                                    depth_,
                                    byte(
                                        shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                        0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                    )
                                )
                        }
                    }
                    /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                    ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                    ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                    ///         and the `indexAtDepth` = 0.
                    /// @param _position The generalized index to get the `indexAtDepth` of.
                    /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                    function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                        // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                        // leaving only the `indexAtDepth`.
                        uint256 msb = depth(_position);
                        assembly {
                            indexAtDepth_ := sub(_position, shl(msb, 1))
                        }
                    }
                    /// @notice Get the left child of `_position`.
                    /// @param _position The position to get the left position of.
                    /// @return left_ The position to the left of `position`.
                    function left(Position _position) internal pure returns (Position left_) {
                        assembly {
                            left_ := shl(1, _position)
                        }
                    }
                    /// @notice Get the right child of `_position`
                    /// @param _position The position to get the right position of.
                    /// @return right_ The position to the right of `position`.
                    function right(Position _position) internal pure returns (Position right_) {
                        assembly {
                            right_ := or(1, shl(1, _position))
                        }
                    }
                    /// @notice Get the parent position of `_position`.
                    /// @param _position The position to get the parent position of.
                    /// @return parent_ The parent position of `position`.
                    function parent(Position _position) internal pure returns (Position parent_) {
                        assembly {
                            parent_ := shr(1, _position)
                        }
                    }
                    /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                    ///         calling `right` on a position until the maximum depth is reached.
                    /// @param _position The position to get the relative deepest, right most gindex of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                    function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                        }
                    }
                    /// @notice Get the deepest, right most trace index relative to the `position`. This is
                    ///         equivalent to calling `right` on a position until the maximum depth is reached and
                    ///         then finding its index at depth.
                    /// @param _position The position to get the relative trace index of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return traceIndex_ The trace index relative to the `position`.
                    function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index.
                    /// @param _position The position to get the highest ancestor of.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                        // Create a field with only the lowest unset bit of `_position` set.
                        Position lsb;
                        assembly {
                            lsb := and(not(_position), add(_position, 1))
                        }
                        // Find the index of the lowest unset bit within the field.
                        uint256 msb = depth(lsb);
                        // The highest ancestor that commits to the same trace index is the original position
                        // shifted right by the index of the lowest unset bit.
                        assembly {
                            let a := shr(msb, _position)
                            // Bound the ancestor to the minimum gindex, 1.
                            ancestor_ := or(a, iszero(a))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index, while still being below `_upperBoundExclusive`.
                    /// @param _position The position to get the highest ancestor of.
                    /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                    ///                             to not escape a sub-tree.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestorBounded(
                        Position _position,
                        uint256 _upperBoundExclusive
                    )
                        internal
                        pure
                        returns (Position ancestor_)
                    {
                        // This function only works for positions that are below the upper bound.
                        if (_position.depth() <= _upperBoundExclusive) {
                            assembly {
                                // Revert with `ClaimAboveSplit()`
                                mstore(0x00, 0xb34b5c22)
                                revert(0x1C, 0x04)
                            }
                        }
                        // Grab the global trace ancestor.
                        ancestor_ = traceAncestor(_position);
                        // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                        // This should be a special case that only covers positions that commit to the final leaf
                        // in a sub-tree.
                        if (ancestor_.depth() <= _upperBoundExclusive) {
                            ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                        }
                    }
                    /// @notice Get the move position of `_position`, which is the left child of:
                    ///         1. `_position` if `_isAttack` is true.
                    ///         2. `_position | 1` if `_isAttack` is false.
                    /// @param _position The position to get the relative attack/defense position of.
                    /// @param _isAttack Whether or not the move is an attack move.
                    /// @return move_ The move position relative to `position`.
                    function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                        assembly {
                            move_ := shl(1, or(iszero(_isAttack), _position))
                        }
                    }
                    /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                    /// @param _position The position to get the value of.
                    /// @return raw_ The value of the `position` as a uint128 type.
                    function raw(Position _position) internal pure returns (uint128 raw_) {
                        assembly {
                            raw_ := _position
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @notice The length of an RLP item must be greater than zero to be decodable
                error EmptyItem();
                /// @notice The decoded item type for list is not a list item
                error UnexpectedString();
                /// @notice The RLP item has an invalid data remainder
                error InvalidDataRemainder();
                /// @notice Decoded item type for bytes is not a string item
                error UnexpectedList();
                /// @notice The length of the content must be greater than the RLP item length
                error ContentLengthMismatch();
                /// @notice Invalid RLP header for RLP item
                error InvalidHeader();