ETH Price: $2,754.90 (+4.11%)

Transaction Decoder

Block:
16811405 at Mar-12-2023 10:39:23 AM +UTC
Transaction Fee:
0.002454402838294767 ETH $6.76
Gas Used:
144,789 Gas / 16.951583603 Gwei

Emitted Events:

256 CanonicalTransactionChain.TransactionEnqueued( _l1TxOrigin=0x36BDE71C...4f7AB70B2, _target=0x42000000...000000007, _gasLimit=1920000, _data=0xCBD4ECE900000000000000000000000083F6244BD87662118D96D9A6D44F09DFFF14B30E00000000000000000000000064E5A143A3775A500BF19E609E1A74A5CBC3BB2A0000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000004D1A000000000000000000000000000000000000000000000000000000000000000C4CC29A306000000000000000000000000F4811A621203A64D43CD38DB71AF70BBC33224F000000000000000000000000000000000000000000000000000B1A2BC2EC5000000000000000000000000000000000000000000000000000000B09F04A69CE4C1000000000000000000000000000000000000000000000000000000006416E643000000000000000000000000710BDA329B2A6224E4B44833DE30F38E7F81D564000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, _queueIndex=315808, _timestamp=1678617563 )
257 Lib_ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x00000000000000000000000083f6244bd87662118d96d9a6d44f09dfff14b30e, 00000000000000000000000064e5a143a3775a500bf19e609e1a74a5cbc3bb2a, 0000000000000000000000000000000000000000000000000000000000000080, 000000000000000000000000000000000000000000000000000000000004d1a0, 00000000000000000000000000000000000000000000000000000000001d4c00, 00000000000000000000000000000000000000000000000000000000000000c4, cc29a306000000000000000000000000f4811a621203a64d43cd38db71af70bb, c33224f000000000000000000000000000000000000000000000000000b1a2bc, 2ec5000000000000000000000000000000000000000000000000000000b09f04, a69ce4c100000000000000000000000000000000000000000000000000000000, 6416e643000000000000000000000000710bda329b2a6224e4b44833de30f38e, 7f81d56400000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
258 L1_ETH_Bridge.TransferSentToL2( chainId=10, recipient=[Sender] 0xf4811a621203a64d43cd38db71af70bbc33224f0, amount=50000000000000000, amountOutMin=49714438225061057, deadline=1679222339, relayer=0x710bDa32...E7f81d564, relayerFee=0 )

Account State Difference:

  Address   Before After State Difference Code
0x5E4e6592...0D24E9dD2
(Optimism: Canonical Transaction Chain)
(builder0x69)
2.081883504468376864 Eth2.081897983368376864 Eth0.0000144789
0xb8901acB...02919727f
(Hop Protocol: Ethereum Bridge)
16,151.562829818684009748 Eth16,151.612829818684009748 Eth0.05
0xf4811a62...bc33224F0
0.321755670872916346 Eth
Nonce: 5
0.269301268034621579 Eth
Nonce: 6
0.052454402838294767

Execution Trace

ETH 0.05 L1_ETH_Bridge.sendToL2( chainId=10, recipient=0xf4811a621203A64D43CD38dB71af70bbc33224F0, amount=50000000000000000, amountOutMin=49714438225061057, deadline=1679222339, relayer=0x710bDa329b2a6224E4B44833DE30F38E7f81d564, relayerFee=0 )
  • OptimismMessengerWrapper.sendCrossDomainMessage( _calldata=0xCC29A306000000000000000000000000F4811A621203A64D43CD38DB71AF70BBC33224F000000000000000000000000000000000000000000000000000B1A2BC2EC5000000000000000000000000000000000000000000000000000000B09F04A69CE4C1000000000000000000000000000000000000000000000000000000006416E643000000000000000000000000710BDA329B2A6224E4B44833DE30F38E7F81D5640000000000000000000000000000000000000000000000000000000000000000 )
    • Lib_ResolvedDelegateProxy.3dbb202b( )
      • Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0xd9166833FF12A5F900ccfBf2c8B62a90F1Ca1FD5 )
      • L1CrossDomainMessenger.sendMessage( _target=0x83f6244Bd87662118d96D9a6D44f09dffF14b30E, _message=0xCC29A306000000000000000000000000F4811A621203A64D43CD38DB71AF70BBC33224F000000000000000000000000000000000000000000000000000B1A2BC2EC5000000000000000000000000000000000000000000000000000000B09F04A69CE4C1000000000000000000000000000000000000000000000000000000006416E643000000000000000000000000710BDA329B2A6224E4B44833DE30F38E7F81D5640000000000000000000000000000000000000000000000000000000000000000, _gasLimit=1920000 )
        • Lib_AddressManager.getAddress( _name=CanonicalTransactionChain ) => ( 0x5E4e65926BA27467555EB562121fac00D24E9dD2 )
        • CanonicalTransactionChain.STATICCALL( )
        • CanonicalTransactionChain.enqueue( _target=0x4200000000000000000000000000000000000007, _gasLimit=1920000, _data=0xCBD4ECE900000000000000000000000083F6244BD87662118D96D9A6D44F09DFFF14B30E00000000000000000000000064E5A143A3775A500BF19E609E1A74A5CBC3BB2A0000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000004D1A000000000000000000000000000000000000000000000000000000000000000C4CC29A306000000000000000000000000F4811A621203A64D43CD38DB71AF70BBC33224F000000000000000000000000000000000000000000000000000B1A2BC2EC5000000000000000000000000000000000000000000000000000000B09F04A69CE4C1000000000000000000000000000000000000000000000000000000006416E643000000000000000000000000710BDA329B2A6224E4B44833DE30F38E7F81D564000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
          sendToL2[L1_Bridge (ln:107)]
          File 1 of 6: L1_ETH_Bridge
          // SPDX-License-Identifier: MIT
          pragma solidity 0.6.12;
          pragma experimental ABIEncoderV2;
          import "./L1_Bridge.sol";
          /**
           * @dev A L1_Bridge that uses an ETH as the canonical token
           */
          contract L1_ETH_Bridge is L1_Bridge {
              constructor (address[] memory bonders, address _governance) public L1_Bridge(bonders, _governance) {}
              /* ========== Override Functions ========== */
              function _transferFromBridge(address recipient, uint256 amount) internal override {
                  (bool success, ) = recipient.call{value: amount}(new bytes(0));
                  require(success, 'L1_ETH_BRG: ETH transfer failed');
              }
              function _transferToBridge(address /*from*/, uint256 amount) internal override {
                  require(msg.value == amount, "L1_ETH_BRG: Value does not match amount");
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.6.12;
          pragma experimental ABIEncoderV2;
          import "./Bridge.sol";
          import "../interfaces/IMessengerWrapper.sol";
          /**
           * @dev L1_Bridge is responsible for the bonding and challenging of TransferRoots. All TransferRoots
           * originate in the L1_Bridge through `bondTransferRoot` and are propagated up to destination L2s.
           */
          abstract contract L1_Bridge is Bridge {
              struct TransferBond {
                  address bonder;
                  uint256 createdAt;
                  uint256 totalAmount;
                  uint256 challengeStartTime;
                  address challenger;
                  bool challengeResolved;
              }
              /* ========== State ========== */
              mapping(uint256 => mapping(bytes32 => uint256)) public transferRootCommittedAt;
              mapping(bytes32 => TransferBond) public transferBonds;
              mapping(uint256 => mapping(address => uint256)) public timeSlotToAmountBonded;
              mapping(uint256 => uint256) public chainBalance;
              /* ========== Config State ========== */
              address public governance;
              mapping(uint256 => IMessengerWrapper) public crossDomainMessengerWrappers;
              mapping(uint256 => bool) public isChainIdPaused;
              uint256 public challengePeriod = 1 days;
              uint256 public challengeResolutionPeriod = 10 days;
              uint256 public minTransferRootBondDelay = 15 minutes;
              
              uint256 public constant CHALLENGE_AMOUNT_DIVISOR = 10;
              uint256 public constant TIME_SLOT_SIZE = 4 hours;
              /* ========== Events ========== */
              event TransferSentToL2(
                  uint256 indexed chainId,
                  address indexed recipient,
                  uint256 amount,
                  uint256 amountOutMin,
                  uint256 deadline,
                  address indexed relayer,
                  uint256 relayerFee
              );
              event TransferRootBonded (
                  bytes32 indexed root,
                  uint256 amount
              );
              event TransferRootConfirmed(
                  uint256 indexed originChainId,
                  uint256 indexed destinationChainId,
                  bytes32 indexed rootHash,
                  uint256 totalAmount
              );
              event TransferBondChallenged(
                  bytes32 indexed transferRootId,
                  bytes32 indexed rootHash,
                  uint256 originalAmount
              );
              event ChallengeResolved(
                  bytes32 indexed transferRootId,
                  bytes32 indexed rootHash,
                  uint256 originalAmount
              );
              /* ========== Modifiers ========== */
              modifier onlyL2Bridge(uint256 chainId) {
                  IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                  messengerWrapper.verifySender(msg.sender, msg.data);
                  _;
              }
              constructor (address[] memory bonders, address _governance) public Bridge(bonders) {
                  governance = _governance;
              }
              /* ========== Send Functions ========== */
              /**
               * @notice `amountOutMin` and `deadline` should be 0 when no swap is intended at the destination.
               * @notice `amount` is the total amount the user wants to send including the relayer fee
               * @dev Send tokens to a supported layer-2 to mint hToken and optionally swap the hToken in the
               * AMM at the destination.
               * @param chainId The chainId of the destination chain
               * @param recipient The address receiving funds at the destination
               * @param amount The amount being sent
               * @param amountOutMin The minimum amount received after attempting to swap in the destination
               * AMM market. 0 if no swap is intended.
               * @param deadline The deadline for swapping in the destination AMM market. 0 if no
               * swap is intended.
               * @param relayer The address of the relayer at the destination.
               * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`.
               */
              function sendToL2(
                  uint256 chainId,
                  address recipient,
                  uint256 amount,
                  uint256 amountOutMin,
                  uint256 deadline,
                  address relayer,
                  uint256 relayerFee
              )
                  external
                  payable
              {
                  IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                  require(messengerWrapper != IMessengerWrapper(0), "L1_BRG: chainId not supported");
                  require(isChainIdPaused[chainId] == false, "L1_BRG: Sends to this chainId are paused");
                  require(amount > 0, "L1_BRG: Must transfer a non-zero amount");
                  require(amount >= relayerFee, "L1_BRG: Relayer fee cannot exceed amount");
                  _transferToBridge(msg.sender, amount);
                  bytes memory message = abi.encodeWithSignature(
                      "distribute(address,uint256,uint256,uint256,address,uint256)",
                      recipient,
                      amount,
                      amountOutMin,
                      deadline,
                      relayer,
                      relayerFee
                  );
                  chainBalance[chainId] = chainBalance[chainId].add(amount);
                  messengerWrapper.sendCrossDomainMessage(message);
                  emit TransferSentToL2(
                      chainId,
                      recipient,
                      amount,
                      amountOutMin,
                      deadline,
                      relayer,
                      relayerFee
                  );
              }
              /* ========== TransferRoot Functions ========== */
              /**
               * @dev Setting a TransferRoot is a two step process.
               * @dev   1. The TransferRoot is bonded with `bondTransferRoot`. Withdrawals can now begin on L1
               * @dev      and recipient L2's
               * @dev   2. The TransferRoot is confirmed after `confirmTransferRoot` is called by the l2 bridge
               * @dev      where the TransferRoot originated.
               */
              /**
               * @dev Used by the Bonder to bond a TransferRoot and propagate it up to destination L2s
               * @param rootHash The Merkle root of the TransferRoot Merkle tree
               * @param destinationChainId The id of the destination chain
               * @param totalAmount The amount destined for the destination chain
               */
              function bondTransferRoot(
                  bytes32 rootHash,
                  uint256 destinationChainId,
                  uint256 totalAmount
              )
                  external
                  onlyBonder
                  requirePositiveBalance
              {
                  bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                  require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot has already been confirmed");
                  require(transferBonds[transferRootId].createdAt == 0, "L1_BRG: TransferRoot has already been bonded");
                  uint256 currentTimeSlot = getTimeSlot(block.timestamp);
                  uint256 bondAmount = getBondForTransferAmount(totalAmount);
                  timeSlotToAmountBonded[currentTimeSlot][msg.sender] = timeSlotToAmountBonded[currentTimeSlot][msg.sender].add(bondAmount);
                  transferBonds[transferRootId] = TransferBond(
                      msg.sender,
                      block.timestamp,
                      totalAmount,
                      uint256(0),
                      address(0),
                      false
                  );
                  _distributeTransferRoot(rootHash, destinationChainId, totalAmount);
                  emit TransferRootBonded(rootHash, totalAmount);
              }
              /**
               * @dev Used by an L2 bridge to confirm a TransferRoot via cross-domain message. Once a TransferRoot
               * has been confirmed, any challenge against that TransferRoot can be resolved as unsuccessful.
               * @param originChainId The id of the origin chain
               * @param rootHash The Merkle root of the TransferRoot Merkle tree
               * @param destinationChainId The id of the destination chain
               * @param totalAmount The amount destined for each destination chain
               * @param rootCommittedAt The block timestamp when the TransferRoot was committed on its origin chain
               */
              function confirmTransferRoot(
                  uint256 originChainId,
                  bytes32 rootHash,
                  uint256 destinationChainId,
                  uint256 totalAmount,
                  uint256 rootCommittedAt
              )
                  external
                  onlyL2Bridge(originChainId)
              {
                  bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                  require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot already confirmed");
                  require(rootCommittedAt > 0, "L1_BRG: rootCommittedAt must be greater than 0");
                  transferRootCommittedAt[destinationChainId][transferRootId] = rootCommittedAt;
                  chainBalance[originChainId] = chainBalance[originChainId].sub(totalAmount, "L1_BRG: Amount exceeds chainBalance. This indicates a layer-2 failure.");
                  // If the TransferRoot was never bonded, distribute the TransferRoot.
                  TransferBond storage transferBond = transferBonds[transferRootId];
                  if (transferBond.createdAt == 0) {
                      _distributeTransferRoot(rootHash, destinationChainId, totalAmount);
                  }
                  emit TransferRootConfirmed(originChainId, destinationChainId, rootHash, totalAmount);
              }
              function _distributeTransferRoot(
                  bytes32 rootHash,
                  uint256 chainId,
                  uint256 totalAmount
              )
                  internal
              {
                  // Set TransferRoot on recipient Bridge
                  if (chainId == getChainId()) {
                      // Set L1 TransferRoot
                      _setTransferRoot(rootHash, totalAmount);
                  } else {
                      chainBalance[chainId] = chainBalance[chainId].add(totalAmount);
                      IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                      require(messengerWrapper != IMessengerWrapper(0), "L1_BRG: chainId not supported");
                      // Set L2 TransferRoot
                      bytes memory setTransferRootMessage = abi.encodeWithSignature(
                          "setTransferRoot(bytes32,uint256)",
                          rootHash,
                          totalAmount
                      );
                      messengerWrapper.sendCrossDomainMessage(setTransferRootMessage);
                  }
              }
              /* ========== External TransferRoot Challenges ========== */
              /**
               * @dev Challenge a TransferRoot believed to be fraudulent
               * @param rootHash The Merkle root of the TransferRoot Merkle tree
               * @param originalAmount The total amount bonded for this TransferRoot
               * @param destinationChainId The id of the destination chain
               */
              function challengeTransferBond(bytes32 rootHash, uint256 originalAmount, uint256 destinationChainId) external payable {
                  bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                  TransferBond storage transferBond = transferBonds[transferRootId];
                  require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot has already been confirmed");
                  require(transferBond.createdAt != 0, "L1_BRG: TransferRoot has not been bonded");
                  uint256 challengePeriodEnd = transferBond.createdAt.add(challengePeriod);
                  require(challengePeriodEnd >= block.timestamp, "L1_BRG: TransferRoot cannot be challenged after challenge period");
                  require(transferBond.challengeStartTime == 0, "L1_BRG: TransferRoot already challenged");
                  transferBond.challengeStartTime = block.timestamp;
                  transferBond.challenger = msg.sender;
                  // Move amount from timeSlotToAmountBonded to debit
                  uint256 timeSlot = getTimeSlot(transferBond.createdAt);
                  uint256 bondAmount = getBondForTransferAmount(originalAmount);
                  address bonder = transferBond.bonder;
                  timeSlotToAmountBonded[timeSlot][bonder] = timeSlotToAmountBonded[timeSlot][bonder].sub(bondAmount);
                  _addDebit(transferBond.bonder, bondAmount);
                  // Get stake for challenge
                  uint256 challengeStakeAmount = getChallengeAmountForTransferAmount(originalAmount);
                  _transferToBridge(msg.sender, challengeStakeAmount);
                  emit TransferBondChallenged(transferRootId, rootHash, originalAmount);
              }
              /**
               * @dev Resolve a challenge after the `challengeResolutionPeriod` has passed
               * @param rootHash The Merkle root of the TransferRoot Merkle tree
               * @param originalAmount The total amount originally bonded for this TransferRoot
               * @param destinationChainId The id of the destination chain
               */
              function resolveChallenge(bytes32 rootHash, uint256 originalAmount, uint256 destinationChainId) external {
                  bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                  TransferBond storage transferBond = transferBonds[transferRootId];
                  require(transferBond.challengeStartTime != 0, "L1_BRG: TransferRoot has not been challenged");
                  require(block.timestamp > transferBond.challengeStartTime.add(challengeResolutionPeriod), "L1_BRG: Challenge period has not ended");
                  require(transferBond.challengeResolved == false, "L1_BRG: TransferRoot already resolved");
                  transferBond.challengeResolved = true;
                  uint256 challengeStakeAmount = getChallengeAmountForTransferAmount(originalAmount);
                  if (transferRootCommittedAt[destinationChainId][transferRootId] > 0) {
                      // Invalid challenge
                      if (transferBond.createdAt > transferRootCommittedAt[destinationChainId][transferRootId].add(minTransferRootBondDelay)) {
                          // Credit the bonder back with the bond amount plus the challenger's stake
                          _addCredit(transferBond.bonder, getBondForTransferAmount(originalAmount).add(challengeStakeAmount));
                      } else {
                          // If the TransferRoot was bonded before it was committed, the challenger and Bonder
                          // get their stake back. This discourages Bonders from tricking challengers into
                          // challenging a valid TransferRoots that haven't yet been committed. It also ensures
                          // that Bonders are not punished if a TransferRoot is bonded too soon in error.
                          // Return the challenger's stake
                          _addCredit(transferBond.challenger, challengeStakeAmount);
                          // Credit the bonder back with the bond amount
                          _addCredit(transferBond.bonder, getBondForTransferAmount(originalAmount));
                      }
                  } else {
                      // Valid challenge
                      // Burn 25% of the challengers stake
                      _transferFromBridge(address(0xdead), challengeStakeAmount.mul(1).div(4));
                      // Reward challenger with the remaining 75% of their stake plus 100% of the Bonder's stake
                      _addCredit(transferBond.challenger, challengeStakeAmount.mul(7).div(4));
                  }
                  emit ChallengeResolved(transferRootId, rootHash, originalAmount);
              }
              /* ========== Override Functions ========== */
              function _additionalDebit(address bonder) internal view override returns (uint256) {
                  uint256 currentTimeSlot = getTimeSlot(block.timestamp);
                  uint256 bonded = 0;
                  uint256 numTimeSlots = challengePeriod / TIME_SLOT_SIZE;
                  for (uint256 i = 0; i < numTimeSlots; i++) {
                      bonded = bonded.add(timeSlotToAmountBonded[currentTimeSlot - i][bonder]);
                  }
                  return bonded;
              }
              function _requireIsGovernance() internal override {
                  require(governance == msg.sender, "L1_BRG: Caller is not the owner");
              }
              /* ========== External Config Management Setters ========== */
              function setGovernance(address _newGovernance) external onlyGovernance {
                  require(_newGovernance != address(0), "L1_BRG: _newGovernance cannot be address(0)");
                  governance = _newGovernance;
              }
              function setCrossDomainMessengerWrapper(uint256 chainId, IMessengerWrapper _crossDomainMessengerWrapper) external onlyGovernance {
                  crossDomainMessengerWrappers[chainId] = _crossDomainMessengerWrapper;
              }
              function setChainIdDepositsPaused(uint256 chainId, bool isPaused) external onlyGovernance {
                  isChainIdPaused[chainId] = isPaused;
              }
              function setChallengePeriod(uint256 _challengePeriod) external onlyGovernance {
                  require(_challengePeriod % TIME_SLOT_SIZE == 0, "L1_BRG: challengePeriod must be divisible by TIME_SLOT_SIZE");
                  challengePeriod = _challengePeriod;
              }
              function setChallengeResolutionPeriod(uint256 _challengeResolutionPeriod) external onlyGovernance {
                  challengeResolutionPeriod = _challengeResolutionPeriod;
              }
              function setMinTransferRootBondDelay(uint256 _minTransferRootBondDelay) external onlyGovernance {
                  minTransferRootBondDelay = _minTransferRootBondDelay;
              }
              /* ========== Public Getters ========== */
              function getBondForTransferAmount(uint256 amount) public pure returns (uint256) {
                  // Bond covers amount plus a bounty to pay a potential challenger
                  return amount.add(getChallengeAmountForTransferAmount(amount));
              }
              function getChallengeAmountForTransferAmount(uint256 amount) public pure returns (uint256) {
                  // Bond covers amount plus a bounty to pay a potential challenger
                  return amount.div(CHALLENGE_AMOUNT_DIVISOR);
              }
              function getTimeSlot(uint256 time) public pure returns (uint256) {
                  return time / TIME_SLOT_SIZE;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.6.12;
          pragma experimental ABIEncoderV2;
          import "./Accounting.sol";
          import "../libraries/Lib_MerkleTree.sol";
          /**
           * @dev Bridge extends the accounting system and encapsulates the logic that is shared by both the
           * L1 and L2 Bridges. It allows to TransferRoots to be set by parent contracts and for those
           * TransferRoots to be withdrawn against. It also allows the bonder to bond and withdraw Transfers
           * directly through `bondWithdrawal` and then settle those bonds against their TransferRoot once it
           * has been set.
           */
          abstract contract Bridge is Accounting {
              using Lib_MerkleTree for bytes32;
              struct TransferRoot {
                  uint256 total;
                  uint256 amountWithdrawn;
                  uint256 createdAt;
              }
              /* ========== Events ========== */
              event Withdrew(
                  bytes32 indexed transferId,
                  address indexed recipient,
                  uint256 amount,
                  bytes32 transferNonce
              );
              event WithdrawalBonded(
                  bytes32 indexed transferId,
                  uint256 amount
              );
              event WithdrawalBondSettled(
                  address indexed bonder,
                  bytes32 indexed transferId,
                  bytes32 indexed rootHash
              );
              event MultipleWithdrawalsSettled(
                  address indexed bonder,
                  bytes32 indexed rootHash,
                  uint256 totalBondsSettled
              );
              event TransferRootSet(
                  bytes32 indexed rootHash,
                  uint256 totalAmount
              );
              /* ========== State ========== */
              mapping(bytes32 => TransferRoot) private _transferRoots;
              mapping(bytes32 => bool) private _spentTransferIds;
              mapping(address => mapping(bytes32 => uint256)) private _bondedWithdrawalAmounts;
              uint256 constant RESCUE_DELAY = 8 weeks;
              constructor(address[] memory bonders) public Accounting(bonders) {}
              /* ========== Public Getters ========== */
              /**
               * @dev Get the hash that represents an individual Transfer.
               * @param chainId The id of the destination chain
               * @param recipient The address receiving the Transfer
               * @param amount The amount being transferred including the `_bonderFee`
               * @param transferNonce Used to avoid transferId collisions
               * @param bonderFee The amount paid to the address that withdraws the Transfer
               * @param amountOutMin The minimum amount received after attempting to swap in the destination
               * AMM market. 0 if no swap is intended.
               * @param deadline The deadline for swapping in the destination AMM market. 0 if no
               * swap is intended.
               */
              function getTransferId(
                  uint256 chainId,
                  address recipient,
                  uint256 amount,
                  bytes32 transferNonce,
                  uint256 bonderFee,
                  uint256 amountOutMin,
                  uint256 deadline
              )
                  public
                  pure
                  returns (bytes32)
              {
                  return keccak256(abi.encode(
                      chainId,
                      recipient,
                      amount,
                      transferNonce,
                      bonderFee,
                      amountOutMin,
                      deadline
                  ));
              }
              /**
               * @notice getChainId can be overridden by subclasses if needed for compatibility or testing purposes.
               * @dev Get the current chainId
               * @return chainId The current chainId
               */
              function getChainId() public virtual view returns (uint256 chainId) {
                  this; // Silence state mutability warning without generating any additional byte code
                  assembly {
                      chainId := chainid()
                  }
              }
              /**
               * @dev Get the TransferRoot id for a given rootHash and totalAmount
               * @param rootHash The Merkle root of the TransferRoot
               * @param totalAmount The total of all Transfers in the TransferRoot
               * @return The calculated transferRootId
               */
              function getTransferRootId(bytes32 rootHash, uint256 totalAmount) public pure returns (bytes32) {
                  return keccak256(abi.encodePacked(rootHash, totalAmount));
              }
              /**
               * @dev Get the TransferRoot for a given rootHash and totalAmount
               * @param rootHash The Merkle root of the TransferRoot
               * @param totalAmount The total of all Transfers in the TransferRoot
               * @return The TransferRoot with the calculated transferRootId
               */
              function getTransferRoot(bytes32 rootHash, uint256 totalAmount) public view returns (TransferRoot memory) {
                  return _transferRoots[getTransferRootId(rootHash, totalAmount)];
              }
              /**
               * @dev Get the amount bonded for the withdrawal of a transfer
               * @param bonder The Bonder of the withdrawal
               * @param transferId The Transfer's unique identifier
               * @return The amount bonded for a Transfer withdrawal
               */
              function getBondedWithdrawalAmount(address bonder, bytes32 transferId) external view returns (uint256) {
                  return _bondedWithdrawalAmounts[bonder][transferId];
              }
              /**
               * @dev Get the spent status of a transfer ID
               * @param transferId The transfer's unique identifier
               * @return True if the transferId has been spent
               */
              function isTransferIdSpent(bytes32 transferId) external view returns (bool) {
                  return _spentTransferIds[transferId];
              }
              /* ========== User/Relayer External Functions ========== */
              /**
               * @notice Can be called by anyone (recipient or relayer)
               * @dev Withdraw a Transfer from its destination bridge
               * @param recipient The address receiving the Transfer
               * @param amount The amount being transferred including the `_bonderFee`
               * @param transferNonce Used to avoid transferId collisions
               * @param bonderFee The amount paid to the address that withdraws the Transfer
               * @param amountOutMin The minimum amount received after attempting to swap in the destination
               * AMM market. 0 if no swap is intended. (only used to calculate `transferId` in this function)
               * @param deadline The deadline for swapping in the destination AMM market. 0 if no
               * swap is intended. (only used to calculate `transferId` in this function)
               * @param rootHash The Merkle root of the TransferRoot
               * @param transferRootTotalAmount The total amount being transferred in a TransferRoot
               * @param transferIdTreeIndex The index of the transferId in the Merkle tree
               * @param siblings The siblings of the transferId in the Merkle tree
               * @param totalLeaves The total number of leaves in the Merkle tree
               */
              function withdraw(
                  address recipient,
                  uint256 amount,
                  bytes32 transferNonce,
                  uint256 bonderFee,
                  uint256 amountOutMin,
                  uint256 deadline,
                  bytes32 rootHash,
                  uint256 transferRootTotalAmount,
                  uint256 transferIdTreeIndex,
                  bytes32[] calldata siblings,
                  uint256 totalLeaves
              )
                  external
                  nonReentrant
              {
                  bytes32 transferId = getTransferId(
                      getChainId(),
                      recipient,
                      amount,
                      transferNonce,
                      bonderFee,
                      amountOutMin,
                      deadline
                  );
                  require(
                      rootHash.verify(
                          transferId,
                          transferIdTreeIndex,
                          siblings,
                          totalLeaves
                      )
                  , "BRG: Invalid transfer proof");
                  bytes32 transferRootId = getTransferRootId(rootHash, transferRootTotalAmount);
                  _addToAmountWithdrawn(transferRootId, amount);
                  _fulfillWithdraw(transferId, recipient, amount, uint256(0));
                  emit Withdrew(transferId, recipient, amount, transferNonce);
              }
              /**
               * @dev Allows the bonder to bond individual withdrawals before their TransferRoot has been committed.
               * @param recipient The address receiving the Transfer
               * @param amount The amount being transferred including the `_bonderFee`
               * @param transferNonce Used to avoid transferId collisions
               * @param bonderFee The amount paid to the address that withdraws the Transfer
               */
              function bondWithdrawal(
                  address recipient,
                  uint256 amount,
                  bytes32 transferNonce,
                  uint256 bonderFee
              )
                  external
                  onlyBonder
                  requirePositiveBalance
                  nonReentrant
              {
                  bytes32 transferId = getTransferId(
                      getChainId(),
                      recipient,
                      amount,
                      transferNonce,
                      bonderFee,
                      0,
                      0
                  );
                  _bondWithdrawal(transferId, amount);
                  _fulfillWithdraw(transferId, recipient, amount, bonderFee);
              }
              /**
               * @dev Refunds the Bonder's stake from a bonded withdrawal and counts that withdrawal against
               * its TransferRoot.
               * @param bonder The Bonder of the withdrawal
               * @param transferId The Transfer's unique identifier
               * @param rootHash The Merkle root of the TransferRoot
               * @param transferRootTotalAmount The total amount being transferred in a TransferRoot
               * @param transferIdTreeIndex The index of the transferId in the Merkle tree
               * @param siblings The siblings of the transferId in the Merkle tree
               * @param totalLeaves The total number of leaves in the Merkle tree
               */
              function settleBondedWithdrawal(
                  address bonder,
                  bytes32 transferId,
                  bytes32 rootHash,
                  uint256 transferRootTotalAmount,
                  uint256 transferIdTreeIndex,
                  bytes32[] calldata siblings,
                  uint256 totalLeaves
              )
                  external
              {
                  require(
                      rootHash.verify(
                          transferId,
                          transferIdTreeIndex,
                          siblings,
                          totalLeaves
                      )
                  , "BRG: Invalid transfer proof");
                  bytes32 transferRootId = getTransferRootId(rootHash, transferRootTotalAmount);
                  uint256 amount = _bondedWithdrawalAmounts[bonder][transferId];
                  require(amount > 0, "L2_BRG: transferId has no bond");
                  _bondedWithdrawalAmounts[bonder][transferId] = 0;
                  _addToAmountWithdrawn(transferRootId, amount);
                  _addCredit(bonder, amount);
                  emit WithdrawalBondSettled(bonder, transferId, rootHash);
              }
              /**
               * @dev Refunds the Bonder for all withdrawals that they bonded in a TransferRoot.
               * @param bonder The address of the Bonder being refunded
               * @param transferIds All transferIds in the TransferRoot in order
               * @param totalAmount The totalAmount of the TransferRoot
               */
              function settleBondedWithdrawals(
                  address bonder,
                  // transferIds _must_ be calldata or it will be mutated by Lib_MerkleTree.getMerkleRoot
                  bytes32[] calldata transferIds,
                  uint256 totalAmount
              )
                  external
              {
                  bytes32 rootHash = Lib_MerkleTree.getMerkleRoot(transferIds);
                  bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                  uint256 totalBondsSettled = 0;
                  for(uint256 i = 0; i < transferIds.length; i++) {
                      uint256 transferBondAmount = _bondedWithdrawalAmounts[bonder][transferIds[i]];
                      if (transferBondAmount > 0) {
                          totalBondsSettled = totalBondsSettled.add(transferBondAmount);
                          _bondedWithdrawalAmounts[bonder][transferIds[i]] = 0;
                      }
                  }
                  _addToAmountWithdrawn(transferRootId, totalBondsSettled);
                  _addCredit(bonder, totalBondsSettled);
                  emit MultipleWithdrawalsSettled(bonder, rootHash, totalBondsSettled);
              }
              /* ========== External TransferRoot Rescue ========== */
              /**
               * @dev Allows governance to withdraw the remaining amount from a TransferRoot after the rescue delay has passed.
               * @param rootHash the Merkle root of the TransferRoot
               * @param originalAmount The TransferRoot's recorded total
               * @param recipient The address receiving the remaining balance
               */
              function rescueTransferRoot(bytes32 rootHash, uint256 originalAmount, address recipient) external onlyGovernance {
                  bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                  TransferRoot memory transferRoot = getTransferRoot(rootHash, originalAmount);
                  require(transferRoot.createdAt != 0, "BRG: TransferRoot not found");
                  assert(transferRoot.total == originalAmount);
                  uint256 rescueDelayEnd = transferRoot.createdAt.add(RESCUE_DELAY);
                  require(block.timestamp >= rescueDelayEnd, "BRG: TransferRoot cannot be rescued before the Rescue Delay");
                  uint256 remainingAmount = transferRoot.total.sub(transferRoot.amountWithdrawn);
                  _addToAmountWithdrawn(transferRootId, remainingAmount);
                  _transferFromBridge(recipient, remainingAmount);
              }
              /* ========== Internal Functions ========== */
              function _markTransferSpent(bytes32 transferId) internal {
                  require(!_spentTransferIds[transferId], "BRG: The transfer has already been withdrawn");
                  _spentTransferIds[transferId] = true;
              }
              function _addToAmountWithdrawn(bytes32 transferRootId, uint256 amount) internal {
                  TransferRoot storage transferRoot = _transferRoots[transferRootId];
                  require(transferRoot.total > 0, "BRG: Transfer root not found");
                  uint256 newAmountWithdrawn = transferRoot.amountWithdrawn.add(amount);
                  require(newAmountWithdrawn <= transferRoot.total, "BRG: Withdrawal exceeds TransferRoot total");
                  transferRoot.amountWithdrawn = newAmountWithdrawn;
              }
              function _setTransferRoot(bytes32 rootHash, uint256 totalAmount) internal {
                  bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                  require(_transferRoots[transferRootId].total == 0, "BRG: Transfer root already set");
                  require(totalAmount > 0, "BRG: Cannot set TransferRoot totalAmount of 0");
                  _transferRoots[transferRootId] = TransferRoot(totalAmount, 0, block.timestamp);
                  emit TransferRootSet(rootHash, totalAmount);
              }
              function _bondWithdrawal(bytes32 transferId, uint256 amount) internal {
                  require(_bondedWithdrawalAmounts[msg.sender][transferId] == 0, "BRG: Withdrawal has already been bonded");
                  _addDebit(msg.sender, amount);
                  _bondedWithdrawalAmounts[msg.sender][transferId] = amount;
                  emit WithdrawalBonded(transferId, amount);
              }
              /* ========== Private Functions ========== */
              /// @dev Completes the Transfer, distributes the Bonder fee and marks the Transfer as spent.
              function _fulfillWithdraw(
                  bytes32 transferId,
                  address recipient,
                  uint256 amount,
                  uint256 bonderFee
              ) private {
                  _markTransferSpent(transferId);
                  _transferFromBridge(recipient, amount.sub(bonderFee));
                  if (bonderFee > 0) {
                      _transferFromBridge(msg.sender, bonderFee);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.12 <0.8.0;
          pragma experimental ABIEncoderV2;
          interface IMessengerWrapper {
              function sendCrossDomainMessage(bytes memory _calldata) external;
              function verifySender(address l1BridgeCaller, bytes memory _data) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.6.12;
          pragma experimental ABIEncoderV2;
          import "@openzeppelin/contracts/math/SafeMath.sol";
          import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
          /**
           * @dev Accounting is an abstract contract that encapsulates the most critical logic in the Hop contracts.
           * The accounting system works by using two balances that can only increase `_credit` and `_debit`.
           * A bonder's available balance is the total credit minus the total debit. The contract exposes
           * two external functions that allows a bonder to stake and unstake and exposes two internal
           * functions to its child contracts that allow the child contract to add to the credit 
           * and debit balance. In addition, child contracts can override `_additionalDebit` to account
           * for any additional debit balance in an alternative way. Lastly, it exposes a modifier,
           * `requirePositiveBalance`, that can be used by child contracts to ensure the bonder does not
           * use more than its available stake.
           */
          abstract contract Accounting is ReentrancyGuard {
              using SafeMath for uint256;
              mapping(address => bool) private _isBonder;
              mapping(address => uint256) private _credit;
              mapping(address => uint256) private _debit;
              event Stake (
                  address indexed account,
                  uint256 amount
              );
              event Unstake (
                  address indexed account,
                  uint256 amount
              );
              event BonderAdded (
                  address indexed newBonder
              );
              event BonderRemoved (
                  address indexed previousBonder
              );
              /* ========== Modifiers ========== */
              modifier onlyBonder {
                  require(_isBonder[msg.sender], "ACT: Caller is not bonder");
                  _;
              }
              modifier onlyGovernance {
                  _requireIsGovernance();
                  _;
              }
              /// @dev Used by parent contract to ensure that the Bonder is solvent at the end of the transaction.
              modifier requirePositiveBalance {
                  _;
                  require(getCredit(msg.sender) >= getDebitAndAdditionalDebit(msg.sender), "ACT: Not enough available credit");
              }
              /// @dev Sets the Bonder addresses
              constructor(address[] memory bonders) public {
                  for (uint256 i = 0; i < bonders.length; i++) {
                      require(_isBonder[bonders[i]] == false, "ACT: Cannot add duplicate bonder");
                      _isBonder[bonders[i]] = true;
                      emit BonderAdded(bonders[i]);
                  }
              }
              /* ========== Virtual functions ========== */
              /**
               * @dev The following functions are overridden in L1_Bridge and L2_Bridge
               */
              function _transferFromBridge(address recipient, uint256 amount) internal virtual;
              function _transferToBridge(address from, uint256 amount) internal virtual;
              function _requireIsGovernance() internal virtual;
              /**
               * @dev This function can be optionally overridden by a parent contract to track any additional
               * debit balance in an alternative way.
               */
              function _additionalDebit(address /*bonder*/) internal view virtual returns (uint256) {
                  this; // Silence state mutability warning without generating any additional byte code
                  return 0;
              }
              /* ========== Public/external getters ========== */
              /**
               * @dev Check if address is a Bonder
               * @param maybeBonder The address being checked
               * @return true if address is a Bonder
               */
              function getIsBonder(address maybeBonder) public view returns (bool) {
                  return _isBonder[maybeBonder];
              }
              /**
               * @dev Get the Bonder's credit balance
               * @param bonder The owner of the credit balance being checked
               * @return The credit balance for the Bonder
               */
              function getCredit(address bonder) public view returns (uint256) {
                  return _credit[bonder];
              }
              /**
               * @dev Gets the debit balance tracked by `_debit` and does not include `_additionalDebit()`
               * @param bonder The owner of the debit balance being checked
               * @return The debit amount for the Bonder
               */
              function getRawDebit(address bonder) external view returns (uint256) {
                  return _debit[bonder];
              }
              /**
               * @dev Get the Bonder's total debit
               * @param bonder The owner of the debit balance being checked
               * @return The Bonder's total debit balance
               */
              function getDebitAndAdditionalDebit(address bonder) public view returns (uint256) {
                  return _debit[bonder].add(_additionalDebit(bonder));
              }
              /* ========== Bonder external functions ========== */
              /** 
               * @dev Allows the Bonder to deposit tokens and increase its credit balance
               * @param bonder The address being staked on
               * @param amount The amount being staked
               */
              function stake(address bonder, uint256 amount) external payable nonReentrant {
                  require(_isBonder[bonder] == true, "ACT: Address is not bonder");
                  _transferToBridge(msg.sender, amount);
                  _addCredit(bonder, amount);
                  emit Stake(bonder, amount);
              }
              /**
               * @dev Allows the caller to withdraw any available balance and add to their debit balance
               * @param amount The amount being unstaked
               */
              function unstake(uint256 amount) external requirePositiveBalance nonReentrant {
                  _addDebit(msg.sender, amount);
                  _transferFromBridge(msg.sender, amount);
                  emit Unstake(msg.sender, amount);
              }
              /**
               * @dev Add Bonder to allowlist
               * @param bonder The address being added as a Bonder
               */
              function addBonder(address bonder) external onlyGovernance {
                  require(_isBonder[bonder] == false, "ACT: Address is already bonder");
                  _isBonder[bonder] = true;
                  emit BonderAdded(bonder);
              }
              /**
               * @dev Remove Bonder from allowlist
               * @param bonder The address being removed as a Bonder
               */
              function removeBonder(address bonder) external onlyGovernance {
                  require(_isBonder[bonder] == true, "ACT: Address is not bonder");
                  _isBonder[bonder] = false;
                  emit BonderRemoved(bonder);
              }
              /* ========== Internal functions ========== */
              function _addCredit(address bonder, uint256 amount) internal {
                  _credit[bonder] = _credit[bonder].add(amount);
              }
              function _addDebit(address bonder, uint256 amount) internal {
                  _debit[bonder] = _debit[bonder].add(amount);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.8.0;
          /**
           * @title Lib_MerkleTree
           * @author River Keefer
           */
          library Lib_MerkleTree {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Calculates a merkle root for a list of 32-byte leaf hashes.  WARNING: If the number
               * of leaves passed in is not a power of two, it pads out the tree with zero hashes.
               * If you do not know the original length of elements for the tree you are verifying,
               * then this may allow empty leaves past _elements.length to pass a verification check down the line.
               * Note that the _elements argument is modified, therefore it must not be used again afterwards
               * @param _elements Array of hashes from which to generate a merkle root.
               * @return Merkle root of the leaves, with zero hashes for non-powers-of-two (see above).
               */
              function getMerkleRoot(
                  bytes32[] memory _elements
              )
                  internal
                  pure
                  returns (
                      bytes32
                  )
              {
                  require(
                      _elements.length > 0,
                      "Lib_MerkleTree: Must provide at least one leaf hash."
                  );
                  if (_elements.length == 1) {
                      return _elements[0];
                  }
                  uint256[16] memory defaults = [
                      0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563,
                      0x633dc4d7da7256660a892f8f1604a44b5432649cc8ec5cb3ced4c4e6ac94dd1d,
                      0x890740a8eb06ce9be422cb8da5cdafc2b58c0a5e24036c578de2a433c828ff7d,
                      0x3b8ec09e026fdc305365dfc94e189a81b38c7597b3d941c279f042e8206e0bd8,
                      0xecd50eee38e386bd62be9bedb990706951b65fe053bd9d8a521af753d139e2da,
                      0xdefff6d330bb5403f63b14f33b578274160de3a50df4efecf0e0db73bcdd3da5,
                      0x617bdd11f7c0a11f49db22f629387a12da7596f9d1704d7465177c63d88ec7d7,
                      0x292c23a9aa1d8bea7e2435e555a4a60e379a5a35f3f452bae60121073fb6eead,
                      0xe1cea92ed99acdcb045a6726b2f87107e8a61620a232cf4d7d5b5766b3952e10,
                      0x7ad66c0a68c72cb89e4fb4303841966e4062a76ab97451e3b9fb526a5ceb7f82,
                      0xe026cc5a4aed3c22a58cbd3d2ac754c9352c5436f638042dca99034e83636516,
                      0x3d04cffd8b46a874edf5cfae63077de85f849a660426697b06a829c70dd1409c,
                      0xad676aa337a485e4728a0b240d92b3ef7b3c372d06d189322bfd5f61f1e7203e,
                      0xa2fca4a49658f9fab7aa63289c91b7c7b6c832a6d0e69334ff5b0a3483d09dab,
                      0x4ebfd9cd7bca2505f7bef59cc1c12ecc708fff26ae4af19abe852afe9e20c862,
                      0x2def10d13dd169f550f578bda343d9717a138562e0093b380a1120789d53cf10
                  ];
                  // Reserve memory space for our hashes.
                  bytes memory buf = new bytes(64);
                  // We'll need to keep track of left and right siblings.
                  bytes32 leftSibling;
                  bytes32 rightSibling;
                  // Number of non-empty nodes at the current depth.
                  uint256 rowSize = _elements.length;
                  // Current depth, counting from 0 at the leaves
                  uint256 depth = 0;
                  // Common sub-expressions
                  uint256 halfRowSize;         // rowSize / 2
                  bool rowSizeIsOdd;           // rowSize % 2 == 1
                  while (rowSize > 1) {
                      halfRowSize = rowSize / 2;
                      rowSizeIsOdd = rowSize % 2 == 1;
                      for (uint256 i = 0; i < halfRowSize; i++) {
                          leftSibling  = _elements[(2 * i)    ];
                          rightSibling = _elements[(2 * i) + 1];
                          assembly {
                              mstore(add(buf, 32), leftSibling )
                              mstore(add(buf, 64), rightSibling)
                          }
                          _elements[i] = keccak256(buf);
                      }
                      if (rowSizeIsOdd) {
                          leftSibling  = _elements[rowSize - 1];
                          rightSibling = bytes32(defaults[depth]);
                          assembly {
                              mstore(add(buf, 32), leftSibling)
                              mstore(add(buf, 64), rightSibling)
                          }
                          _elements[halfRowSize] = keccak256(buf);
                      }
                      rowSize = halfRowSize + (rowSizeIsOdd ? 1 : 0);
                      depth++;
                  }
                  return _elements[0];
              }
              /**
               * Verifies a merkle branch for the given leaf hash.  Assumes the original length
               * of leaves generated is a known, correct input, and does not return true for indices
               * extending past that index (even if _siblings would be otherwise valid.)
               * @param _root The Merkle root to verify against.
               * @param _leaf The leaf hash to verify inclusion of.
               * @param _index The index in the tree of this leaf.
               * @param _siblings Array of sibline nodes in the inclusion proof, starting from depth 0 (bottom of the tree).
               * @param _totalLeaves The total number of leaves originally passed into.
               * @return Whether or not the merkle branch and leaf passes verification.
               */
              function verify(
                  bytes32 _root,
                  bytes32 _leaf,
                  uint256 _index,
                  bytes32[] memory _siblings,
                  uint256 _totalLeaves
              )
                  internal
                  pure
                  returns (
                      bool
                  )
              {
                  require(
                      _totalLeaves > 0,
                      "Lib_MerkleTree: Total leaves must be greater than zero."
                  );
                  require(
                      _index < _totalLeaves,
                      "Lib_MerkleTree: Index out of bounds."
                  );
                  require(
                      _siblings.length == _ceilLog2(_totalLeaves),
                      "Lib_MerkleTree: Total siblings does not correctly correspond to total leaves."
                  );
                  bytes32 computedRoot = _leaf;
                  for (uint256 i = 0; i < _siblings.length; i++) {
                      if ((_index & 1) == 1) {
                          computedRoot = keccak256(
                              abi.encodePacked(
                                  _siblings[i],
                                  computedRoot
                              )
                          );
                      } else {
                          computedRoot = keccak256(
                              abi.encodePacked(
                                  computedRoot,
                                  _siblings[i]
                              )
                          );
                      }
                      _index >>= 1;
                  }
                  return _root == computedRoot;
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Calculates the integer ceiling of the log base 2 of an input.
               * @param _in Unsigned input to calculate the log.
               * @return ceil(log_base_2(_in))
               */
              function _ceilLog2(
                  uint256 _in
              )
                  private
                  pure
                  returns (
                      uint256
                  )
              {
                  require(
                      _in > 0,
                      "Lib_MerkleTree: Cannot compute ceil(log_2) of 0."
                  );
                  if (_in == 1) {
                      return 0;
                  }
                  // Find the highest set bit (will be floor(log_2)).
                  // Borrowed with <3 from https://github.com/ethereum/solidity-examples
                  uint256 val = _in;
                  uint256 highest = 0;
                  for (uint256 i = 128; i >= 1; i >>= 1) {
                      if (val & (uint(1) << i) - 1 << i != 0) {
                          highest += i;
                          val >>= i;
                      }
                  }
                  // Increment by one if this is not a perfect logarithm.
                  if ((uint(1) << highest) != _in) {
                      highest += 1;
                  }
                  return highest;
              }
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /**
           * @dev Wrappers over Solidity's arithmetic operations with added overflow
           * checks.
           *
           * Arithmetic operations in Solidity wrap on overflow. This can easily result
           * in bugs, because programmers usually assume that an overflow raises an
           * error, which is the standard behavior in high level programming languages.
           * `SafeMath` restores this intuition by reverting the transaction when an
           * operation overflows.
           *
           * Using this library instead of the unchecked operations eliminates an entire
           * class of bugs, so it's recommended to use it always.
           */
          library SafeMath {
              /**
               * @dev Returns the addition of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
              /**
               * @dev Returns the substraction of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
              /**
               * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
              /**
               * @dev Returns the division of two unsigned integers, with a division by zero flag.
               *
               * _Available since v3.4._
               */
              function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
               *
               * _Available since v3.4._
               */
              function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
              /**
               * @dev Returns the addition of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `+` operator.
               *
               * Requirements:
               *
               * - Addition cannot overflow.
               */
              function add(uint256 a, uint256 b) internal pure returns (uint256) {
                  uint256 c = a + b;
                  require(c >= a, "SafeMath: addition overflow");
                  return c;
              }
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting on
               * overflow (when the result is negative).
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               *
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b <= a, "SafeMath: subtraction overflow");
                  return a - b;
              }
              /**
               * @dev Returns the multiplication of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `*` operator.
               *
               * Requirements:
               *
               * - Multiplication cannot overflow.
               */
              function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                  if (a == 0) return 0;
                  uint256 c = a * b;
                  require(c / a == b, "SafeMath: multiplication overflow");
                  return c;
              }
              /**
               * @dev Returns the integer division of two unsigned integers, reverting on
               * division by zero. The result is rounded towards zero.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b > 0, "SafeMath: division by zero");
                  return a / b;
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * reverting when dividing by zero.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b > 0, "SafeMath: modulo by zero");
                  return a % b;
              }
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
               * overflow (when the result is negative).
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {trySub}.
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               *
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b <= a, errorMessage);
                  return a - b;
              }
              /**
               * @dev Returns the integer division of two unsigned integers, reverting with custom message on
               * division by zero. The result is rounded towards zero.
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {tryDiv}.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b > 0, errorMessage);
                  return a / b;
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * reverting with custom message when dividing by zero.
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {tryMod}.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b > 0, errorMessage);
                  return a % b;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /**
           * @dev Contract module that helps prevent reentrant calls to a function.
           *
           * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
           * available, which can be applied to functions to make sure there are no nested
           * (reentrant) calls to them.
           *
           * Note that because there is a single `nonReentrant` guard, functions marked as
           * `nonReentrant` may not call one another. This can be worked around by making
           * those functions `private`, and then adding `external` `nonReentrant` entry
           * points to them.
           *
           * TIP: If you would like to learn more about reentrancy and alternative ways
           * to protect against it, check out our blog post
           * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
           */
          abstract contract ReentrancyGuard {
              // Booleans are more expensive than uint256 or any type that takes up a full
              // word because each write operation emits an extra SLOAD to first read the
              // slot's contents, replace the bits taken up by the boolean, and then write
              // back. This is the compiler's defense against contract upgrades and
              // pointer aliasing, and it cannot be disabled.
              // The values being non-zero value makes deployment a bit more expensive,
              // but in exchange the refund on every call to nonReentrant will be lower in
              // amount. Since refunds are capped to a percentage of the total
              // transaction's gas, it is best to keep them low in cases like this one, to
              // increase the likelihood of the full refund coming into effect.
              uint256 private constant _NOT_ENTERED = 1;
              uint256 private constant _ENTERED = 2;
              uint256 private _status;
              constructor () internal {
                  _status = _NOT_ENTERED;
              }
              /**
               * @dev Prevents a contract from calling itself, directly or indirectly.
               * Calling a `nonReentrant` function from another `nonReentrant`
               * function is not supported. It is possible to prevent this from happening
               * by making the `nonReentrant` function external, and make it call a
               * `private` function that does the actual work.
               */
              modifier nonReentrant() {
                  // On the first call to nonReentrant, _notEntered will be true
                  require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                  // Any calls to nonReentrant after this point will fail
                  _status = _ENTERED;
                  _;
                  // By storing the original value once again, a refund is triggered (see
                  // https://eips.ethereum.org/EIPS/eip-2200)
                  _status = _NOT_ENTERED;
              }
          }
          

          File 2 of 6: CanonicalTransactionChain
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { AddressAliasHelper } from "../../standards/AddressAliasHelper.sol";
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
          /* Interface Imports */
          import { ICanonicalTransactionChain } from "./ICanonicalTransactionChain.sol";
          import { IChainStorageContainer } from "./IChainStorageContainer.sol";
          /**
           * @title CanonicalTransactionChain
           * @dev The Canonical Transaction Chain (CTC) contract is an append-only log of transactions
           * which must be applied to the rollup state. It defines the ordering of rollup transactions by
           * writing them to the 'CTC:batches' instance of the Chain Storage Container.
           * The CTC also allows any account to 'enqueue' an L2 transaction, which will require that the
           * Sequencer will eventually append it to the rollup state.
           *
           * Runtime target: EVM
           */
          contract CanonicalTransactionChain is ICanonicalTransactionChain, Lib_AddressResolver {
              /*************
               * Constants *
               *************/
              // L2 tx gas-related
              uint256 public constant MIN_ROLLUP_TX_GAS = 100000;
              uint256 public constant MAX_ROLLUP_TX_SIZE = 50000;
              // The approximate cost of calling the enqueue function
              uint256 public enqueueGasCost;
              // The ratio of the cost of L1 gas to the cost of L2 gas
              uint256 public l2GasDiscountDivisor;
              // The amount of L2 gas which can be forwarded to L2 without spam prevention via 'gas burn'.
              // Calculated as the product of l2GasDiscountDivisor * enqueueGasCost.
              // See comments in enqueue() for further detail.
              uint256 public enqueueL2GasPrepaid;
              // Encoding-related (all in bytes)
              uint256 internal constant BATCH_CONTEXT_SIZE = 16;
              uint256 internal constant BATCH_CONTEXT_LENGTH_POS = 12;
              uint256 internal constant BATCH_CONTEXT_START_POS = 15;
              uint256 internal constant TX_DATA_HEADER_SIZE = 3;
              uint256 internal constant BYTES_TILL_TX_DATA = 65;
              /*************
               * Variables *
               *************/
              uint256 public maxTransactionGasLimit;
              /***************
               * Queue State *
               ***************/
              uint40 private _nextQueueIndex; // index of the first queue element not yet included
              Lib_OVMCodec.QueueElement[] queueElements;
              /***************
               * Constructor *
               ***************/
              constructor(
                  address _libAddressManager,
                  uint256 _maxTransactionGasLimit,
                  uint256 _l2GasDiscountDivisor,
                  uint256 _enqueueGasCost
              ) Lib_AddressResolver(_libAddressManager) {
                  maxTransactionGasLimit = _maxTransactionGasLimit;
                  l2GasDiscountDivisor = _l2GasDiscountDivisor;
                  enqueueGasCost = _enqueueGasCost;
                  enqueueL2GasPrepaid = _l2GasDiscountDivisor * _enqueueGasCost;
              }
              /**********************
               * Function Modifiers *
               **********************/
              /**
               * Modifier to enforce that, if configured, only the Burn Admin may
               * successfully call a method.
               */
              modifier onlyBurnAdmin() {
                  require(msg.sender == libAddressManager.owner(), "Only callable by the Burn Admin.");
                  _;
              }
              /*******************************
               * Authorized Setter Functions *
               *******************************/
              /**
               * Allows the Burn Admin to update the parameters which determine the amount of gas to burn.
               * The value of enqueueL2GasPrepaid is immediately updated as well.
               */
              function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost)
                  external
                  onlyBurnAdmin
              {
                  enqueueGasCost = _enqueueGasCost;
                  l2GasDiscountDivisor = _l2GasDiscountDivisor;
                  // See the comment in enqueue() for the rationale behind this formula.
                  enqueueL2GasPrepaid = _l2GasDiscountDivisor * _enqueueGasCost;
                  emit L2GasParamsUpdated(l2GasDiscountDivisor, enqueueGasCost, enqueueL2GasPrepaid);
              }
              /********************
               * Public Functions *
               ********************/
              /**
               * Accesses the batch storage container.
               * @return Reference to the batch storage container.
               */
              function batches() public view returns (IChainStorageContainer) {
                  return IChainStorageContainer(resolve("ChainStorageContainer-CTC-batches"));
              }
              /**
               * Retrieves the total number of elements submitted.
               * @return _totalElements Total submitted elements.
               */
              function getTotalElements() public view returns (uint256 _totalElements) {
                  (uint40 totalElements, , , ) = _getBatchExtraData();
                  return uint256(totalElements);
              }
              /**
               * Retrieves the total number of batches submitted.
               * @return _totalBatches Total submitted batches.
               */
              function getTotalBatches() public view returns (uint256 _totalBatches) {
                  return batches().length();
              }
              /**
               * Returns the index of the next element to be enqueued.
               * @return Index for the next queue element.
               */
              function getNextQueueIndex() public view returns (uint40) {
                  return _nextQueueIndex;
              }
              /**
               * Returns the timestamp of the last transaction.
               * @return Timestamp for the last transaction.
               */
              function getLastTimestamp() public view returns (uint40) {
                  (, , uint40 lastTimestamp, ) = _getBatchExtraData();
                  return lastTimestamp;
              }
              /**
               * Returns the blocknumber of the last transaction.
               * @return Blocknumber for the last transaction.
               */
              function getLastBlockNumber() public view returns (uint40) {
                  (, , , uint40 lastBlockNumber) = _getBatchExtraData();
                  return lastBlockNumber;
              }
              /**
               * Gets the queue element at a particular index.
               * @param _index Index of the queue element to access.
               * @return _element Queue element at the given index.
               */
              function getQueueElement(uint256 _index)
                  public
                  view
                  returns (Lib_OVMCodec.QueueElement memory _element)
              {
                  return queueElements[_index];
              }
              /**
               * Get the number of queue elements which have not yet been included.
               * @return Number of pending queue elements.
               */
              function getNumPendingQueueElements() public view returns (uint40) {
                  return uint40(queueElements.length) - _nextQueueIndex;
              }
              /**
               * Retrieves the length of the queue, including
               * both pending and canonical transactions.
               * @return Length of the queue.
               */
              function getQueueLength() public view returns (uint40) {
                  return uint40(queueElements.length);
              }
              /**
               * Adds a transaction to the queue.
               * @param _target Target L2 contract to send the transaction to.
               * @param _gasLimit Gas limit for the enqueued L2 transaction.
               * @param _data Transaction data.
               */
              function enqueue(
                  address _target,
                  uint256 _gasLimit,
                  bytes memory _data
              ) external {
                  require(
                      _data.length <= MAX_ROLLUP_TX_SIZE,
                      "Transaction data size exceeds maximum for rollup transaction."
                  );
                  require(
                      _gasLimit <= maxTransactionGasLimit,
                      "Transaction gas limit exceeds maximum for rollup transaction."
                  );
                  require(_gasLimit >= MIN_ROLLUP_TX_GAS, "Transaction gas limit too low to enqueue.");
                  // Transactions submitted to the queue lack a method for paying gas fees to the Sequencer.
                  // So we need to prevent spam attacks by ensuring that the cost of enqueueing a transaction
                  // from L1 to L2 is not underpriced. For transaction with a high L2 gas limit, we do this by
                  // burning some extra gas on L1. Of course there is also some intrinsic cost to enqueueing a
                  // transaction, so we want to make sure not to over-charge (by burning too much L1 gas).
                  // Therefore, we define 'enqueueL2GasPrepaid' as the L2 gas limit above which we must burn
                  // additional gas on L1. This threshold is the product of two inputs:
                  // 1. enqueueGasCost: the base cost of calling this function.
                  // 2. l2GasDiscountDivisor: the ratio between the cost of gas on L1 and L2. This is a
                  //    positive integer, meaning we assume L2 gas is always less costly.
                  // The calculation below for gasToConsume can be seen as converting the difference (between
                  // the specified L2 gas limit and the prepaid L2 gas limit) to an L1 gas amount.
                  if (_gasLimit > enqueueL2GasPrepaid) {
                      uint256 gasToConsume = (_gasLimit - enqueueL2GasPrepaid) / l2GasDiscountDivisor;
                      uint256 startingGas = gasleft();
                      // Although this check is not necessary (burn below will run out of gas if not true), it
                      // gives the user an explicit reason as to why the enqueue attempt failed.
                      require(startingGas > gasToConsume, "Insufficient gas for L2 rate limiting burn.");
                      uint256 i;
                      while (startingGas - gasleft() < gasToConsume) {
                          i++;
                      }
                  }
                  // Apply an aliasing unless msg.sender == tx.origin. This prevents an attack in which a
                  // contract on L1 has the same address as a contract on L2 but doesn't have the same code.
                  // We can safely ignore this for EOAs because they're guaranteed to have the same "code"
                  // (i.e. no code at all). This also makes it possible for users to interact with contracts
                  // on L2 even when the Sequencer is down.
                  address sender;
                  if (msg.sender == tx.origin) {
                      sender = msg.sender;
                  } else {
                      sender = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                  }
                  bytes32 transactionHash = keccak256(abi.encode(sender, _target, _gasLimit, _data));
                  queueElements.push(
                      Lib_OVMCodec.QueueElement({
                          transactionHash: transactionHash,
                          timestamp: uint40(block.timestamp),
                          blockNumber: uint40(block.number)
                      })
                  );
                  uint256 queueIndex = queueElements.length - 1;
                  emit TransactionEnqueued(sender, _target, _gasLimit, _data, queueIndex, block.timestamp);
              }
              /**
               * Allows the sequencer to append a batch of transactions.
               * @dev This function uses a custom encoding scheme for efficiency reasons.
               * .param _shouldStartAtElement Specific batch we expect to start appending to.
               * .param _totalElementsToAppend Total number of batch elements we expect to append.
               * .param _contexts Array of batch contexts.
               * .param _transactionDataFields Array of raw transaction data.
               */
              function appendSequencerBatch() external {
                  uint40 shouldStartAtElement;
                  uint24 totalElementsToAppend;
                  uint24 numContexts;
                  assembly {
                      shouldStartAtElement := shr(216, calldataload(4))
                      totalElementsToAppend := shr(232, calldataload(9))
                      numContexts := shr(232, calldataload(12))
                  }
                  require(
                      shouldStartAtElement == getTotalElements(),
                      "Actual batch start index does not match expected start index."
                  );
                  require(
                      msg.sender == resolve("OVM_Sequencer"),
                      "Function can only be called by the Sequencer."
                  );
                  uint40 nextTransactionPtr = uint40(
                      BATCH_CONTEXT_START_POS + BATCH_CONTEXT_SIZE * numContexts
                  );
                  require(msg.data.length >= nextTransactionPtr, "Not enough BatchContexts provided.");
                  // Counter for number of sequencer transactions appended so far.
                  uint32 numSequencerTransactions = 0;
                  // Cache the _nextQueueIndex storage variable to a temporary stack variable.
                  // This is safe as long as nothing reads or writes to the storage variable
                  // until it is updated by the temp variable.
                  uint40 nextQueueIndex = _nextQueueIndex;
                  BatchContext memory curContext;
                  for (uint32 i = 0; i < numContexts; i++) {
                      BatchContext memory nextContext = _getBatchContext(i);
                      // Now we can update our current context.
                      curContext = nextContext;
                      // Process sequencer transactions first.
                      numSequencerTransactions += uint32(curContext.numSequencedTransactions);
                      // Now process any subsequent queue transactions.
                      nextQueueIndex += uint40(curContext.numSubsequentQueueTransactions);
                  }
                  require(
                      nextQueueIndex <= queueElements.length,
                      "Attempted to append more elements than are available in the queue."
                  );
                  // Generate the required metadata that we need to append this batch
                  uint40 numQueuedTransactions = totalElementsToAppend - numSequencerTransactions;
                  uint40 blockTimestamp;
                  uint40 blockNumber;
                  if (curContext.numSubsequentQueueTransactions == 0) {
                      // The last element is a sequencer tx, therefore pull timestamp and block number from
                      // the last context.
                      blockTimestamp = uint40(curContext.timestamp);
                      blockNumber = uint40(curContext.blockNumber);
                  } else {
                      // The last element is a queue tx, therefore pull timestamp and block number from the
                      // queue element.
                      // curContext.numSubsequentQueueTransactions > 0 which means that we've processed at
                      // least one queue element. We increment nextQueueIndex after processing each queue
                      // element, so the index of the last element we processed is nextQueueIndex - 1.
                      Lib_OVMCodec.QueueElement memory lastElement = queueElements[nextQueueIndex - 1];
                      blockTimestamp = lastElement.timestamp;
                      blockNumber = lastElement.blockNumber;
                  }
                  // Cache the previous blockhash to ensure all transaction data can be retrieved efficiently.
                  _appendBatch(
                      blockhash(block.number - 1),
                      totalElementsToAppend,
                      numQueuedTransactions,
                      blockTimestamp,
                      blockNumber
                  );
                  emit SequencerBatchAppended(
                      nextQueueIndex - numQueuedTransactions,
                      numQueuedTransactions,
                      getTotalElements()
                  );
                  // Update the _nextQueueIndex storage variable.
                  _nextQueueIndex = nextQueueIndex;
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Returns the BatchContext located at a particular index.
               * @param _index The index of the BatchContext
               * @return The BatchContext at the specified index.
               */
              function _getBatchContext(uint256 _index) internal pure returns (BatchContext memory) {
                  uint256 contextPtr = 15 + _index * BATCH_CONTEXT_SIZE;
                  uint256 numSequencedTransactions;
                  uint256 numSubsequentQueueTransactions;
                  uint256 ctxTimestamp;
                  uint256 ctxBlockNumber;
                  assembly {
                      numSequencedTransactions := shr(232, calldataload(contextPtr))
                      numSubsequentQueueTransactions := shr(232, calldataload(add(contextPtr, 3)))
                      ctxTimestamp := shr(216, calldataload(add(contextPtr, 6)))
                      ctxBlockNumber := shr(216, calldataload(add(contextPtr, 11)))
                  }
                  return
                      BatchContext({
                          numSequencedTransactions: numSequencedTransactions,
                          numSubsequentQueueTransactions: numSubsequentQueueTransactions,
                          timestamp: ctxTimestamp,
                          blockNumber: ctxBlockNumber
                      });
              }
              /**
               * Parses the batch context from the extra data.
               * @return Total number of elements submitted.
               * @return Index of the next queue element.
               */
              function _getBatchExtraData()
                  internal
                  view
                  returns (
                      uint40,
                      uint40,
                      uint40,
                      uint40
                  )
              {
                  bytes27 extraData = batches().getGlobalMetadata();
                  uint40 totalElements;
                  uint40 nextQueueIndex;
                  uint40 lastTimestamp;
                  uint40 lastBlockNumber;
                  // solhint-disable max-line-length
                  assembly {
                      extraData := shr(40, extraData)
                      totalElements := and(
                          extraData,
                          0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF
                      )
                      nextQueueIndex := shr(
                          40,
                          and(extraData, 0x00000000000000000000000000000000000000000000FFFFFFFFFF0000000000)
                      )
                      lastTimestamp := shr(
                          80,
                          and(extraData, 0x0000000000000000000000000000000000FFFFFFFFFF00000000000000000000)
                      )
                      lastBlockNumber := shr(
                          120,
                          and(extraData, 0x000000000000000000000000FFFFFFFFFF000000000000000000000000000000)
                      )
                  }
                  // solhint-enable max-line-length
                  return (totalElements, nextQueueIndex, lastTimestamp, lastBlockNumber);
              }
              /**
               * Encodes the batch context for the extra data.
               * @param _totalElements Total number of elements submitted.
               * @param _nextQueueIdx Index of the next queue element.
               * @param _timestamp Timestamp for the last batch.
               * @param _blockNumber Block number of the last batch.
               * @return Encoded batch context.
               */
              function _makeBatchExtraData(
                  uint40 _totalElements,
                  uint40 _nextQueueIdx,
                  uint40 _timestamp,
                  uint40 _blockNumber
              ) internal pure returns (bytes27) {
                  bytes27 extraData;
                  assembly {
                      extraData := _totalElements
                      extraData := or(extraData, shl(40, _nextQueueIdx))
                      extraData := or(extraData, shl(80, _timestamp))
                      extraData := or(extraData, shl(120, _blockNumber))
                      extraData := shl(40, extraData)
                  }
                  return extraData;
              }
              /**
               * Inserts a batch into the chain of batches.
               * @param _transactionRoot Root of the transaction tree for this batch.
               * @param _batchSize Number of elements in the batch.
               * @param _numQueuedTransactions Number of queue transactions in the batch.
               * @param _timestamp The latest batch timestamp.
               * @param _blockNumber The latest batch blockNumber.
               */
              function _appendBatch(
                  bytes32 _transactionRoot,
                  uint256 _batchSize,
                  uint256 _numQueuedTransactions,
                  uint40 _timestamp,
                  uint40 _blockNumber
              ) internal {
                  IChainStorageContainer batchesRef = batches();
                  (uint40 totalElements, uint40 nextQueueIndex, , ) = _getBatchExtraData();
                  Lib_OVMCodec.ChainBatchHeader memory header = Lib_OVMCodec.ChainBatchHeader({
                      batchIndex: batchesRef.length(),
                      batchRoot: _transactionRoot,
                      batchSize: _batchSize,
                      prevTotalElements: totalElements,
                      extraData: hex""
                  });
                  emit TransactionBatchAppended(
                      header.batchIndex,
                      header.batchRoot,
                      header.batchSize,
                      header.prevTotalElements,
                      header.extraData
                  );
                  bytes32 batchHeaderHash = Lib_OVMCodec.hashBatchHeader(header);
                  bytes27 latestBatchContext = _makeBatchExtraData(
                      totalElements + uint40(header.batchSize),
                      nextQueueIndex + uint40(_numQueuedTransactions),
                      _timestamp,
                      _blockNumber
                  );
                  batchesRef.push(batchHeaderHash, latestBatchContext);
              }
          }
          // SPDX-License-Identifier: Apache-2.0
          /*
           * Copyright 2019-2021, Offchain Labs, Inc.
           *
           * Licensed under the Apache License, Version 2.0 (the "License");
           * you may not use this file except in compliance with the License.
           * You may obtain a copy of the License at
           *
           *    http://www.apache.org/licenses/LICENSE-2.0
           *
           * Unless required by applicable law or agreed to in writing, software
           * distributed under the License is distributed on an "AS IS" BASIS,
           * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
           * See the License for the specific language governing permissions and
           * limitations under the License.
           */
          pragma solidity ^0.8.7;
          library AddressAliasHelper {
              uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
              /// @notice Utility function that converts the address in the L1 that submitted a tx to
              /// the inbox to the msg.sender viewed in the L2
              /// @param l1Address the address in the L1 that triggered the tx to L2
              /// @return l2Address L2 address as viewed in msg.sender
              function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                  unchecked {
                      l2Address = address(uint160(l1Address) + offset);
                  }
              }
              /// @notice Utility function that converts the msg.sender viewed in the L2 to the
              /// address in the L1 that submitted a tx to the inbox
              /// @param l2Address L2 address as viewed in msg.sender
              /// @return l1Address the address in the L1 that triggered the tx to L2
              function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                  unchecked {
                      l1Address = address(uint160(l2Address) - offset);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
          import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
          import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";
          import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol";
          /**
           * @title Lib_OVMCodec
           */
          library Lib_OVMCodec {
              /*********
               * Enums *
               *********/
              enum QueueOrigin {
                  SEQUENCER_QUEUE,
                  L1TOL2_QUEUE
              }
              /***********
               * Structs *
               ***********/
              struct EVMAccount {
                  uint256 nonce;
                  uint256 balance;
                  bytes32 storageRoot;
                  bytes32 codeHash;
              }
              struct ChainBatchHeader {
                  uint256 batchIndex;
                  bytes32 batchRoot;
                  uint256 batchSize;
                  uint256 prevTotalElements;
                  bytes extraData;
              }
              struct ChainInclusionProof {
                  uint256 index;
                  bytes32[] siblings;
              }
              struct Transaction {
                  uint256 timestamp;
                  uint256 blockNumber;
                  QueueOrigin l1QueueOrigin;
                  address l1TxOrigin;
                  address entrypoint;
                  uint256 gasLimit;
                  bytes data;
              }
              struct TransactionChainElement {
                  bool isSequenced;
                  uint256 queueIndex; // QUEUED TX ONLY
                  uint256 timestamp; // SEQUENCER TX ONLY
                  uint256 blockNumber; // SEQUENCER TX ONLY
                  bytes txData; // SEQUENCER TX ONLY
              }
              struct QueueElement {
                  bytes32 transactionHash;
                  uint40 timestamp;
                  uint40 blockNumber;
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Encodes a standard OVM transaction.
               * @param _transaction OVM transaction to encode.
               * @return Encoded transaction bytes.
               */
              function encodeTransaction(Transaction memory _transaction)
                  internal
                  pure
                  returns (bytes memory)
              {
                  return
                      abi.encodePacked(
                          _transaction.timestamp,
                          _transaction.blockNumber,
                          _transaction.l1QueueOrigin,
                          _transaction.l1TxOrigin,
                          _transaction.entrypoint,
                          _transaction.gasLimit,
                          _transaction.data
                      );
              }
              /**
               * Hashes a standard OVM transaction.
               * @param _transaction OVM transaction to encode.
               * @return Hashed transaction
               */
              function hashTransaction(Transaction memory _transaction) internal pure returns (bytes32) {
                  return keccak256(encodeTransaction(_transaction));
              }
              /**
               * @notice Decodes an RLP-encoded account state into a useful struct.
               * @param _encoded RLP-encoded account state.
               * @return Account state struct.
               */
              function decodeEVMAccount(bytes memory _encoded) internal pure returns (EVMAccount memory) {
                  Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(_encoded);
                  return
                      EVMAccount({
                          nonce: Lib_RLPReader.readUint256(accountState[0]),
                          balance: Lib_RLPReader.readUint256(accountState[1]),
                          storageRoot: Lib_RLPReader.readBytes32(accountState[2]),
                          codeHash: Lib_RLPReader.readBytes32(accountState[3])
                      });
              }
              /**
               * Calculates a hash for a given batch header.
               * @param _batchHeader Header to hash.
               * @return Hash of the header.
               */
              function hashBatchHeader(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
                  internal
                  pure
                  returns (bytes32)
              {
                  return
                      keccak256(
                          abi.encode(
                              _batchHeader.batchRoot,
                              _batchHeader.batchSize,
                              _batchHeader.prevTotalElements,
                              _batchHeader.extraData
                          )
                      );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_AddressManager } from "./Lib_AddressManager.sol";
          /**
           * @title Lib_AddressResolver
           */
          abstract contract Lib_AddressResolver {
              /*************
               * Variables *
               *************/
              Lib_AddressManager public libAddressManager;
              /***************
               * Constructor *
               ***************/
              /**
               * @param _libAddressManager Address of the Lib_AddressManager.
               */
              constructor(address _libAddressManager) {
                  libAddressManager = Lib_AddressManager(_libAddressManager);
              }
              /********************
               * Public Functions *
               ********************/
              /**
               * Resolves the address associated with a given name.
               * @param _name Name to resolve an address for.
               * @return Address associated with the given name.
               */
              function resolve(string memory _name) public view returns (address) {
                  return libAddressManager.getAddress(_name);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /* Library Imports */
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          /* Interface Imports */
          import { IChainStorageContainer } from "./IChainStorageContainer.sol";
          /**
           * @title ICanonicalTransactionChain
           */
          interface ICanonicalTransactionChain {
              /**********
               * Events *
               **********/
              event L2GasParamsUpdated(
                  uint256 l2GasDiscountDivisor,
                  uint256 enqueueGasCost,
                  uint256 enqueueL2GasPrepaid
              );
              event TransactionEnqueued(
                  address indexed _l1TxOrigin,
                  address indexed _target,
                  uint256 _gasLimit,
                  bytes _data,
                  uint256 indexed _queueIndex,
                  uint256 _timestamp
              );
              event QueueBatchAppended(
                  uint256 _startingQueueIndex,
                  uint256 _numQueueElements,
                  uint256 _totalElements
              );
              event SequencerBatchAppended(
                  uint256 _startingQueueIndex,
                  uint256 _numQueueElements,
                  uint256 _totalElements
              );
              event TransactionBatchAppended(
                  uint256 indexed _batchIndex,
                  bytes32 _batchRoot,
                  uint256 _batchSize,
                  uint256 _prevTotalElements,
                  bytes _extraData
              );
              /***********
               * Structs *
               ***********/
              struct BatchContext {
                  uint256 numSequencedTransactions;
                  uint256 numSubsequentQueueTransactions;
                  uint256 timestamp;
                  uint256 blockNumber;
              }
              /*******************************
               * Authorized Setter Functions *
               *******************************/
              /**
               * Allows the Burn Admin to update the parameters which determine the amount of gas to burn.
               * The value of enqueueL2GasPrepaid is immediately updated as well.
               */
              function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost) external;
              /********************
               * Public Functions *
               ********************/
              /**
               * Accesses the batch storage container.
               * @return Reference to the batch storage container.
               */
              function batches() external view returns (IChainStorageContainer);
              /**
               * Retrieves the total number of elements submitted.
               * @return _totalElements Total submitted elements.
               */
              function getTotalElements() external view returns (uint256 _totalElements);
              /**
               * Retrieves the total number of batches submitted.
               * @return _totalBatches Total submitted batches.
               */
              function getTotalBatches() external view returns (uint256 _totalBatches);
              /**
               * Returns the index of the next element to be enqueued.
               * @return Index for the next queue element.
               */
              function getNextQueueIndex() external view returns (uint40);
              /**
               * Gets the queue element at a particular index.
               * @param _index Index of the queue element to access.
               * @return _element Queue element at the given index.
               */
              function getQueueElement(uint256 _index)
                  external
                  view
                  returns (Lib_OVMCodec.QueueElement memory _element);
              /**
               * Returns the timestamp of the last transaction.
               * @return Timestamp for the last transaction.
               */
              function getLastTimestamp() external view returns (uint40);
              /**
               * Returns the blocknumber of the last transaction.
               * @return Blocknumber for the last transaction.
               */
              function getLastBlockNumber() external view returns (uint40);
              /**
               * Get the number of queue elements which have not yet been included.
               * @return Number of pending queue elements.
               */
              function getNumPendingQueueElements() external view returns (uint40);
              /**
               * Retrieves the length of the queue, including
               * both pending and canonical transactions.
               * @return Length of the queue.
               */
              function getQueueLength() external view returns (uint40);
              /**
               * Adds a transaction to the queue.
               * @param _target Target contract to send the transaction to.
               * @param _gasLimit Gas limit for the given transaction.
               * @param _data Transaction data.
               */
              function enqueue(
                  address _target,
                  uint256 _gasLimit,
                  bytes memory _data
              ) external;
              /**
               * Allows the sequencer to append a batch of transactions.
               * @dev This function uses a custom encoding scheme for efficiency reasons.
               * .param _shouldStartAtElement Specific batch we expect to start appending to.
               * .param _totalElementsToAppend Total number of batch elements we expect to append.
               * .param _contexts Array of batch contexts.
               * .param _transactionDataFields Array of raw transaction data.
               */
              function appendSequencerBatch(
                  // uint40 _shouldStartAtElement,
                  // uint24 _totalElementsToAppend,
                  // BatchContext[] _contexts,
                  // bytes[] _transactionDataFields
              ) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /**
           * @title IChainStorageContainer
           */
          interface IChainStorageContainer {
              /********************
               * Public Functions *
               ********************/
              /**
               * Sets the container's global metadata field. We're using `bytes27` here because we use five
               * bytes to maintain the length of the underlying data structure, meaning we have an extra
               * 27 bytes to store arbitrary data.
               * @param _globalMetadata New global metadata to set.
               */
              function setGlobalMetadata(bytes27 _globalMetadata) external;
              /**
               * Retrieves the container's global metadata field.
               * @return Container global metadata field.
               */
              function getGlobalMetadata() external view returns (bytes27);
              /**
               * Retrieves the number of objects stored in the container.
               * @return Number of objects in the container.
               */
              function length() external view returns (uint256);
              /**
               * Pushes an object into the container.
               * @param _object A 32 byte value to insert into the container.
               */
              function push(bytes32 _object) external;
              /**
               * Pushes an object into the container. Function allows setting the global metadata since
               * we'll need to touch the "length" storage slot anyway, which also contains the global
               * metadata (it's an optimization).
               * @param _object A 32 byte value to insert into the container.
               * @param _globalMetadata New global metadata for the container.
               */
              function push(bytes32 _object, bytes27 _globalMetadata) external;
              /**
               * Retrieves an object from the container.
               * @param _index Index of the particular object to access.
               * @return 32 byte object value.
               */
              function get(uint256 _index) external view returns (bytes32);
              /**
               * Removes all objects after and including a given index.
               * @param _index Object index to delete from.
               */
              function deleteElementsAfterInclusive(uint256 _index) external;
              /**
               * Removes all objects after and including a given index. Also allows setting the global
               * metadata field.
               * @param _index Object index to delete from.
               * @param _globalMetadata New global metadata for the container.
               */
              function deleteElementsAfterInclusive(uint256 _index, bytes27 _globalMetadata) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_RLPReader
           * @dev Adapted from "RLPReader" by Hamdi Allam ([email protected]).
           */
          library Lib_RLPReader {
              /*************
               * Constants *
               *************/
              uint256 internal constant MAX_LIST_LENGTH = 32;
              /*********
               * Enums *
               *********/
              enum RLPItemType {
                  DATA_ITEM,
                  LIST_ITEM
              }
              /***********
               * Structs *
               ***********/
              struct RLPItem {
                  uint256 length;
                  uint256 ptr;
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Converts bytes to a reference to memory position and length.
               * @param _in Input bytes to convert.
               * @return Output memory reference.
               */
              function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
                  uint256 ptr;
                  assembly {
                      ptr := add(_in, 32)
                  }
                  return RLPItem({ length: _in.length, ptr: ptr });
              }
              /**
               * Reads an RLP list value into a list of RLP items.
               * @param _in RLP list value.
               * @return Decoded RLP list items.
               */
              function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) {
                  (uint256 listOffset, , RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.LIST_ITEM, "Invalid RLP list value.");
                  // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                  // writing to the length. Since we can't know the number of RLP items without looping over
                  // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                  // simply set a reasonable maximum list length and decrease the size before we finish.
                  RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
                  uint256 itemCount = 0;
                  uint256 offset = listOffset;
                  while (offset < _in.length) {
                      require(itemCount < MAX_LIST_LENGTH, "Provided RLP list exceeds max list length.");
                      (uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
                          RLPItem({ length: _in.length - offset, ptr: _in.ptr + offset })
                      );
                      out[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: _in.ptr + offset });
                      itemCount += 1;
                      offset += itemOffset + itemLength;
                  }
                  // Decrease the array size to match the actual item count.
                  assembly {
                      mstore(out, itemCount)
                  }
                  return out;
              }
              /**
               * Reads an RLP list value into a list of RLP items.
               * @param _in RLP list value.
               * @return Decoded RLP list items.
               */
              function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
                  return readList(toRLPItem(_in));
              }
              /**
               * Reads an RLP bytes value into bytes.
               * @param _in RLP bytes value.
               * @return Decoded bytes.
               */
              function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                  (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes value.");
                  return _copy(_in.ptr, itemOffset, itemLength);
              }
              /**
               * Reads an RLP bytes value into bytes.
               * @param _in RLP bytes value.
               * @return Decoded bytes.
               */
              function readBytes(bytes memory _in) internal pure returns (bytes memory) {
                  return readBytes(toRLPItem(_in));
              }
              /**
               * Reads an RLP string value into a string.
               * @param _in RLP string value.
               * @return Decoded string.
               */
              function readString(RLPItem memory _in) internal pure returns (string memory) {
                  return string(readBytes(_in));
              }
              /**
               * Reads an RLP string value into a string.
               * @param _in RLP string value.
               * @return Decoded string.
               */
              function readString(bytes memory _in) internal pure returns (string memory) {
                  return readString(toRLPItem(_in));
              }
              /**
               * Reads an RLP bytes32 value into a bytes32.
               * @param _in RLP bytes32 value.
               * @return Decoded bytes32.
               */
              function readBytes32(RLPItem memory _in) internal pure returns (bytes32) {
                  require(_in.length <= 33, "Invalid RLP bytes32 value.");
                  (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes32 value.");
                  uint256 ptr = _in.ptr + itemOffset;
                  bytes32 out;
                  assembly {
                      out := mload(ptr)
                      // Shift the bytes over to match the item size.
                      if lt(itemLength, 32) {
                          out := div(out, exp(256, sub(32, itemLength)))
                      }
                  }
                  return out;
              }
              /**
               * Reads an RLP bytes32 value into a bytes32.
               * @param _in RLP bytes32 value.
               * @return Decoded bytes32.
               */
              function readBytes32(bytes memory _in) internal pure returns (bytes32) {
                  return readBytes32(toRLPItem(_in));
              }
              /**
               * Reads an RLP uint256 value into a uint256.
               * @param _in RLP uint256 value.
               * @return Decoded uint256.
               */
              function readUint256(RLPItem memory _in) internal pure returns (uint256) {
                  return uint256(readBytes32(_in));
              }
              /**
               * Reads an RLP uint256 value into a uint256.
               * @param _in RLP uint256 value.
               * @return Decoded uint256.
               */
              function readUint256(bytes memory _in) internal pure returns (uint256) {
                  return readUint256(toRLPItem(_in));
              }
              /**
               * Reads an RLP bool value into a bool.
               * @param _in RLP bool value.
               * @return Decoded bool.
               */
              function readBool(RLPItem memory _in) internal pure returns (bool) {
                  require(_in.length == 1, "Invalid RLP boolean value.");
                  uint256 ptr = _in.ptr;
                  uint256 out;
                  assembly {
                      out := byte(0, mload(ptr))
                  }
                  require(out == 0 || out == 1, "Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1");
                  return out != 0;
              }
              /**
               * Reads an RLP bool value into a bool.
               * @param _in RLP bool value.
               * @return Decoded bool.
               */
              function readBool(bytes memory _in) internal pure returns (bool) {
                  return readBool(toRLPItem(_in));
              }
              /**
               * Reads an RLP address value into a address.
               * @param _in RLP address value.
               * @return Decoded address.
               */
              function readAddress(RLPItem memory _in) internal pure returns (address) {
                  if (_in.length == 1) {
                      return address(0);
                  }
                  require(_in.length == 21, "Invalid RLP address value.");
                  return address(uint160(readUint256(_in)));
              }
              /**
               * Reads an RLP address value into a address.
               * @param _in RLP address value.
               * @return Decoded address.
               */
              function readAddress(bytes memory _in) internal pure returns (address) {
                  return readAddress(toRLPItem(_in));
              }
              /**
               * Reads the raw bytes of an RLP item.
               * @param _in RLP item to read.
               * @return Raw RLP bytes.
               */
              function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                  return _copy(_in);
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Decodes the length of an RLP item.
               * @param _in RLP item to decode.
               * @return Offset of the encoded data.
               * @return Length of the encoded data.
               * @return RLP item type (LIST_ITEM or DATA_ITEM).
               */
              function _decodeLength(RLPItem memory _in)
                  private
                  pure
                  returns (
                      uint256,
                      uint256,
                      RLPItemType
                  )
              {
                  require(_in.length > 0, "RLP item cannot be null.");
                  uint256 ptr = _in.ptr;
                  uint256 prefix;
                  assembly {
                      prefix := byte(0, mload(ptr))
                  }
                  if (prefix <= 0x7f) {
                      // Single byte.
                      return (0, 1, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xb7) {
                      // Short string.
                      uint256 strLen = prefix - 0x80;
                      require(_in.length > strLen, "Invalid RLP short string.");
                      return (1, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xbf) {
                      // Long string.
                      uint256 lenOfStrLen = prefix - 0xb7;
                      require(_in.length > lenOfStrLen, "Invalid RLP long string length.");
                      uint256 strLen;
                      assembly {
                          // Pick out the string length.
                          strLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfStrLen)))
                      }
                      require(_in.length > lenOfStrLen + strLen, "Invalid RLP long string.");
                      return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xf7) {
                      // Short list.
                      uint256 listLen = prefix - 0xc0;
                      require(_in.length > listLen, "Invalid RLP short list.");
                      return (1, listLen, RLPItemType.LIST_ITEM);
                  } else {
                      // Long list.
                      uint256 lenOfListLen = prefix - 0xf7;
                      require(_in.length > lenOfListLen, "Invalid RLP long list length.");
                      uint256 listLen;
                      assembly {
                          // Pick out the list length.
                          listLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfListLen)))
                      }
                      require(_in.length > lenOfListLen + listLen, "Invalid RLP long list.");
                      return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                  }
              }
              /**
               * Copies the bytes from a memory location.
               * @param _src Pointer to the location to read from.
               * @param _offset Offset to start reading from.
               * @param _length Number of bytes to read.
               * @return Copied bytes.
               */
              function _copy(
                  uint256 _src,
                  uint256 _offset,
                  uint256 _length
              ) private pure returns (bytes memory) {
                  bytes memory out = new bytes(_length);
                  if (out.length == 0) {
                      return out;
                  }
                  uint256 src = _src + _offset;
                  uint256 dest;
                  assembly {
                      dest := add(out, 32)
                  }
                  // Copy over as many complete words as we can.
                  for (uint256 i = 0; i < _length / 32; i++) {
                      assembly {
                          mstore(dest, mload(src))
                      }
                      src += 32;
                      dest += 32;
                  }
                  // Pick out the remaining bytes.
                  uint256 mask;
                  unchecked {
                      mask = 256**(32 - (_length % 32)) - 1;
                  }
                  assembly {
                      mstore(dest, or(and(mload(src), not(mask)), and(mload(dest), mask)))
                  }
                  return out;
              }
              /**
               * Copies an RLP item into bytes.
               * @param _in RLP item to copy.
               * @return Copied bytes.
               */
              function _copy(RLPItem memory _in) private pure returns (bytes memory) {
                  return _copy(_in.ptr, 0, _in.length);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_RLPWriter
           * @author Bakaoh (with modifications)
           */
          library Lib_RLPWriter {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * RLP encodes a byte string.
               * @param _in The byte string to encode.
               * @return The RLP encoded string in bytes.
               */
              function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
                  bytes memory encoded;
                  if (_in.length == 1 && uint8(_in[0]) < 128) {
                      encoded = _in;
                  } else {
                      encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
                  }
                  return encoded;
              }
              /**
               * RLP encodes a list of RLP encoded byte byte strings.
               * @param _in The list of RLP encoded byte strings.
               * @return The RLP encoded list of items in bytes.
               */
              function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
                  bytes memory list = _flatten(_in);
                  return abi.encodePacked(_writeLength(list.length, 192), list);
              }
              /**
               * RLP encodes a string.
               * @param _in The string to encode.
               * @return The RLP encoded string in bytes.
               */
              function writeString(string memory _in) internal pure returns (bytes memory) {
                  return writeBytes(bytes(_in));
              }
              /**
               * RLP encodes an address.
               * @param _in The address to encode.
               * @return The RLP encoded address in bytes.
               */
              function writeAddress(address _in) internal pure returns (bytes memory) {
                  return writeBytes(abi.encodePacked(_in));
              }
              /**
               * RLP encodes a uint.
               * @param _in The uint256 to encode.
               * @return The RLP encoded uint256 in bytes.
               */
              function writeUint(uint256 _in) internal pure returns (bytes memory) {
                  return writeBytes(_toBinary(_in));
              }
              /**
               * RLP encodes a bool.
               * @param _in The bool to encode.
               * @return The RLP encoded bool in bytes.
               */
              function writeBool(bool _in) internal pure returns (bytes memory) {
                  bytes memory encoded = new bytes(1);
                  encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  return encoded;
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
               * @param _len The length of the string or the payload.
               * @param _offset 128 if item is string, 192 if item is list.
               * @return RLP encoded bytes.
               */
              function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
                  bytes memory encoded;
                  if (_len < 56) {
                      encoded = new bytes(1);
                      encoded[0] = bytes1(uint8(_len) + uint8(_offset));
                  } else {
                      uint256 lenLen;
                      uint256 i = 1;
                      while (_len / i != 0) {
                          lenLen++;
                          i *= 256;
                      }
                      encoded = new bytes(lenLen + 1);
                      encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                      for (i = 1; i <= lenLen; i++) {
                          encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
                      }
                  }
                  return encoded;
              }
              /**
               * Encode integer in big endian binary form with no leading zeroes.
               * @notice TODO: This should be optimized with assembly to save gas costs.
               * @param _x The integer to encode.
               * @return RLP encoded bytes.
               */
              function _toBinary(uint256 _x) private pure returns (bytes memory) {
                  bytes memory b = abi.encodePacked(_x);
                  uint256 i = 0;
                  for (; i < 32; i++) {
                      if (b[i] != 0) {
                          break;
                      }
                  }
                  bytes memory res = new bytes(32 - i);
                  for (uint256 j = 0; j < res.length; j++) {
                      res[j] = b[i++];
                  }
                  return res;
              }
              /**
               * Copies a piece of memory to another location.
               * @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
               * @param _dest Destination location.
               * @param _src Source location.
               * @param _len Length of memory to copy.
               */
              function _memcpy(
                  uint256 _dest,
                  uint256 _src,
                  uint256 _len
              ) private pure {
                  uint256 dest = _dest;
                  uint256 src = _src;
                  uint256 len = _len;
                  for (; len >= 32; len -= 32) {
                      assembly {
                          mstore(dest, mload(src))
                      }
                      dest += 32;
                      src += 32;
                  }
                  uint256 mask;
                  unchecked {
                      mask = 256**(32 - len) - 1;
                  }
                  assembly {
                      let srcpart := and(mload(src), not(mask))
                      let destpart := and(mload(dest), mask)
                      mstore(dest, or(destpart, srcpart))
                  }
              }
              /**
               * Flattens a list of byte strings into one byte string.
               * @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
               * @param _list List of byte strings to flatten.
               * @return The flattened byte string.
               */
              function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
                  if (_list.length == 0) {
                      return new bytes(0);
                  }
                  uint256 len;
                  uint256 i = 0;
                  for (; i < _list.length; i++) {
                      len += _list[i].length;
                  }
                  bytes memory flattened = new bytes(len);
                  uint256 flattenedPtr;
                  assembly {
                      flattenedPtr := add(flattened, 0x20)
                  }
                  for (i = 0; i < _list.length; i++) {
                      bytes memory item = _list[i];
                      uint256 listPtr;
                      assembly {
                          listPtr := add(item, 0x20)
                      }
                      _memcpy(flattenedPtr, listPtr, item.length);
                      flattenedPtr += _list[i].length;
                  }
                  return flattened;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_BytesUtils
           */
          library Lib_BytesUtils {
              /**********************
               * Internal Functions *
               **********************/
              function slice(
                  bytes memory _bytes,
                  uint256 _start,
                  uint256 _length
              ) internal pure returns (bytes memory) {
                  require(_length + 31 >= _length, "slice_overflow");
                  require(_start + _length >= _start, "slice_overflow");
                  require(_bytes.length >= _start + _length, "slice_outOfBounds");
                  bytes memory tempBytes;
                  assembly {
                      switch iszero(_length)
                      case 0 {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // The first word of the slice result is potentially a partial
                          // word read from the original array. To read it, we calculate
                          // the length of that partial word and start copying that many
                          // bytes into the array. The first word we copy will start with
                          // data we don't care about, but the last `lengthmod` bytes will
                          // land at the beginning of the contents of the new array. When
                          // we're done copying, we overwrite the full first word with
                          // the actual length of the slice.
                          let lengthmod := and(_length, 31)
                          // The multiplication in the next line is necessary
                          // because when slicing multiples of 32 bytes (lengthmod == 0)
                          // the following copy loop was copying the origin's length
                          // and then ending prematurely not copying everything it should.
                          let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                          let end := add(mc, _length)
                          for {
                              // The multiplication in the next line has the same exact purpose
                              // as the one above.
                              let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          mstore(tempBytes, _length)
                          //update free-memory pointer
                          //allocating the array padded to 32 bytes like the compiler does now
                          mstore(0x40, and(add(mc, 31), not(31)))
                      }
                      //if we want a zero-length slice let's just return a zero-length array
                      default {
                          tempBytes := mload(0x40)
                          //zero out the 32 bytes slice we are about to return
                          //we need to do it because Solidity does not garbage collect
                          mstore(tempBytes, 0)
                          mstore(0x40, add(tempBytes, 0x20))
                      }
                  }
                  return tempBytes;
              }
              function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                  if (_start >= _bytes.length) {
                      return bytes("");
                  }
                  return slice(_bytes, _start, _bytes.length - _start);
              }
              function toBytes32(bytes memory _bytes) internal pure returns (bytes32) {
                  if (_bytes.length < 32) {
                      bytes32 ret;
                      assembly {
                          ret := mload(add(_bytes, 32))
                      }
                      return ret;
                  }
                  return abi.decode(_bytes, (bytes32)); // will truncate if input length > 32 bytes
              }
              function toUint256(bytes memory _bytes) internal pure returns (uint256) {
                  return uint256(toBytes32(_bytes));
              }
              function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                  bytes memory nibbles = new bytes(_bytes.length * 2);
                  for (uint256 i = 0; i < _bytes.length; i++) {
                      nibbles[i * 2] = _bytes[i] >> 4;
                      nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
                  }
                  return nibbles;
              }
              function fromNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                  bytes memory ret = new bytes(_bytes.length / 2);
                  for (uint256 i = 0; i < ret.length; i++) {
                      ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
                  }
                  return ret;
              }
              function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                  return keccak256(_bytes) == keccak256(_other);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_Byte32Utils
           */
          library Lib_Bytes32Utils {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true."
               * @param _in Input bytes32 value.
               * @return Bytes32 as a boolean.
               */
              function toBool(bytes32 _in) internal pure returns (bool) {
                  return _in != 0;
              }
              /**
               * Converts a boolean to a bytes32 value.
               * @param _in Input boolean value.
               * @return Boolean as a bytes32.
               */
              function fromBool(bool _in) internal pure returns (bytes32) {
                  return bytes32(uint256(_in ? 1 : 0));
              }
              /**
               * Converts a bytes32 value to an address. Takes the *last* 20 bytes.
               * @param _in Input bytes32 value.
               * @return Bytes32 as an address.
               */
              function toAddress(bytes32 _in) internal pure returns (address) {
                  return address(uint160(uint256(_in)));
              }
              /**
               * Converts an address to a bytes32.
               * @param _in Input address value.
               * @return Address as a bytes32.
               */
              function fromAddress(address _in) internal pure returns (bytes32) {
                  return bytes32(uint256(uint160(_in)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* External Imports */
          import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
          /**
           * @title Lib_AddressManager
           */
          contract Lib_AddressManager is Ownable {
              /**********
               * Events *
               **********/
              event AddressSet(string indexed _name, address _newAddress, address _oldAddress);
              /*************
               * Variables *
               *************/
              mapping(bytes32 => address) private addresses;
              /********************
               * Public Functions *
               ********************/
              /**
               * Changes the address associated with a particular name.
               * @param _name String name to associate an address with.
               * @param _address Address to associate with the name.
               */
              function setAddress(string memory _name, address _address) external onlyOwner {
                  bytes32 nameHash = _getNameHash(_name);
                  address oldAddress = addresses[nameHash];
                  addresses[nameHash] = _address;
                  emit AddressSet(_name, _address, oldAddress);
              }
              /**
               * Retrieves the address associated with a given name.
               * @param _name Name to retrieve an address for.
               * @return Address associated with the given name.
               */
              function getAddress(string memory _name) external view returns (address) {
                  return addresses[_getNameHash(_name)];
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Computes the hash of a name.
               * @param _name Name to compute a hash for.
               * @return Hash of the given name.
               */
              function _getNameHash(string memory _name) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked(_name));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../utils/Context.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor() {
                  _setOwner(_msgSender());
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _setOwner(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _setOwner(newOwner);
              }
              function _setOwner(address newOwner) private {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
          }
          

          File 3 of 6: Lib_ResolvedDelegateProxy
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          import "../utils/Context.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor () internal {
                  address msgSender = _msgSender();
                  _owner = msgSender;
                  emit OwnershipTransferred(address(0), msgSender);
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  emit OwnershipTransferred(_owner, address(0));
                  _owner = address(0);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  emit OwnershipTransferred(_owner, newOwner);
                  _owner = newOwner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with GSN meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address payable) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes memory) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.8.0;
          /* External Imports */
          import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
          /**
           * @title Lib_AddressManager
           */
          contract Lib_AddressManager is Ownable {
              /**********
               * Events *
               **********/
              event AddressSet(
                  string indexed _name,
                  address _newAddress,
                  address _oldAddress
              );
              /*************
               * Variables *
               *************/
              mapping (bytes32 => address) private addresses;
              /********************
               * Public Functions *
               ********************/
              /**
               * Changes the address associated with a particular name.
               * @param _name String name to associate an address with.
               * @param _address Address to associate with the name.
               */
              function setAddress(
                  string memory _name,
                  address _address
              )
                  external
                  onlyOwner
              {
                  bytes32 nameHash = _getNameHash(_name);
                  address oldAddress = addresses[nameHash];
                  addresses[nameHash] = _address;
                  emit AddressSet(
                      _name,
                      _address,
                      oldAddress
                  );
              }
              /**
               * Retrieves the address associated with a given name.
               * @param _name Name to retrieve an address for.
               * @return Address associated with the given name.
               */
              function getAddress(
                  string memory _name
              )
                  external
                  view
                  returns (
                      address
                  )
              {
                  return addresses[_getNameHash(_name)];
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Computes the hash of a name.
               * @param _name Name to compute a hash for.
               * @return Hash of the given name.
               */
              function _getNameHash(
                  string memory _name
              )
                  internal
                  pure
                  returns (
                      bytes32
                  )
              {
                  return keccak256(abi.encodePacked(_name));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.8.0;
          /* Library Imports */
          import { Lib_AddressManager } from "./Lib_AddressManager.sol";
          /**
           * @title Lib_ResolvedDelegateProxy
           */
          contract Lib_ResolvedDelegateProxy {
              /*************
               * Variables *
               *************/
              // Using mappings to store fields to avoid overwriting storage slots in the
              // implementation contract. For example, instead of storing these fields at
              // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
              // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
              // NOTE: Do not use this code in your own contract system.
              //      There is a known flaw in this contract, and we will remove it from the repository
              //      in the near future. Due to the very limited way that we are using it, this flaw is
              //      not an issue in our system.
              mapping (address => string) private implementationName;
              mapping (address => Lib_AddressManager) private addressManager;
              /***************
               * Constructor *
               ***************/
              /**
               * @param _libAddressManager Address of the Lib_AddressManager.
               * @param _implementationName implementationName of the contract to proxy to.
               */
              constructor(
                  address _libAddressManager,
                  string memory _implementationName
              ) {
                  addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
                  implementationName[address(this)] = _implementationName;
              }
              /*********************
               * Fallback Function *
               *********************/
              fallback()
                  external
                  payable
              {
                  address target = addressManager[address(this)].getAddress(
                      (implementationName[address(this)])
                  );
                  require(
                      target != address(0),
                      "Target address must be initialized."
                  );
                  (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                  if (success == true) {
                      assembly {
                          return(add(returndata, 0x20), mload(returndata))
                      }
                  } else {
                      assembly {
                          revert(add(returndata, 0x20), mload(returndata))
                      }
                  }
              }
          }
          

          File 4 of 6: OptimismMessengerWrapper
          // SPDX-License-Identifier: MIT
          pragma solidity 0.6.12;
          pragma experimental ABIEncoderV2;
          import "@openzeppelin/contracts/access/Ownable.sol";
          import "../interfaces/optimism/messengers/iOVM_L1CrossDomainMessenger.sol";
          import "./MessengerWrapper.sol";
          /**
           * @dev A MessengerWrapper for Optimism - https://community.optimism.io/docs/
           * @notice Deployed on layer-1
           */
          contract OptimismMessengerWrapper is MessengerWrapper, Ownable {
              iOVM_L1CrossDomainMessenger public immutable l1MessengerAddress;
              address public immutable l2BridgeAddress;
              uint256 public defaultL2GasLimit;
              mapping (bytes4 => uint256) public l2GasLimitForSignature;
              constructor(
                  address _l1BridgeAddress,
                  address _l2BridgeAddress,
                  iOVM_L1CrossDomainMessenger _l1MessengerAddress,
                  uint256 _defaultL2GasLimit
              )
                  public
                  MessengerWrapper(_l1BridgeAddress)
              {
                  l2BridgeAddress = _l2BridgeAddress;
                  l1MessengerAddress = _l1MessengerAddress;
                  defaultL2GasLimit = _defaultL2GasLimit;
              }
              /** 
               * @dev Sends a message to the l2BridgeAddress from layer-1
               * @param _calldata The data that l2BridgeAddress will be called with
               */
              function sendCrossDomainMessage(bytes memory _calldata) public override onlyL1Bridge {
                  uint256 l2GasLimit = l2GasLimitForCalldata(_calldata);
                  l1MessengerAddress.sendMessage(
                      l2BridgeAddress,
                      _calldata,
                      uint32(l2GasLimit)
                  );
              }
              function verifySender(address l1BridgeCaller, bytes memory /*_data*/) public override {
                  require(l1BridgeCaller == address(l1MessengerAddress), "OVM_MSG_WPR: Caller is not l1MessengerAddress");
                  // Verify that cross-domain sender is l2BridgeAddress
                  require(l1MessengerAddress.xDomainMessageSender() == l2BridgeAddress, "OVM_MSG_WPR: Invalid cross-domain sender");
              }
              function setDefaultL2GasLimit(uint256 _l2GasLimit) external onlyOwner {
                  defaultL2GasLimit = _l2GasLimit;
              }
              function setL2GasLimitForSignature(uint256 _l2GasLimit, bytes4 signature) external onlyOwner {
                  l2GasLimitForSignature[signature] = _l2GasLimit;
              }
              // Private functions
              function l2GasLimitForCalldata(bytes memory _calldata) private view returns (uint256) {
                  uint256 l2GasLimit;
                  if (_calldata.length >= 4) {
                      bytes4 functionSignature = bytes4(toUint32(_calldata, 0));
                      l2GasLimit = l2GasLimitForSignature[functionSignature];
                  }
                  if (l2GasLimit == 0) {
                      l2GasLimit = defaultL2GasLimit;
                  }
                  return l2GasLimit;
              }
              // source: https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol
              function toUint32(bytes memory _bytes, uint256 _start) private pure returns (uint32) {
                  require(_bytes.length >= _start + 4, "OVM_MSG_WPR: out of bounds");
                  uint32 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x4), _start))
                  }
                  return tempUint;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          import "../utils/Context.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor () internal {
                  address msgSender = _msgSender();
                  _owner = msgSender;
                  emit OwnershipTransferred(address(0), msgSender);
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  emit OwnershipTransferred(_owner, address(0));
                  _owner = address(0);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  emit OwnershipTransferred(_owner, newOwner);
                  _owner = newOwner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.8.0;
          pragma experimental ABIEncoderV2;
          import { iOVM_BaseCrossDomainMessenger } from "./iOVM_BaseCrossDomainMessenger.sol";
          /**
           * @title iOVM_L1CrossDomainMessenger
           */
          interface iOVM_L1CrossDomainMessenger is iOVM_BaseCrossDomainMessenger {}// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.12 <0.8.0;
          pragma experimental ABIEncoderV2;
          import "../interfaces/IMessengerWrapper.sol";
          abstract contract MessengerWrapper is IMessengerWrapper {
              address public immutable l1BridgeAddress;
              constructor(address _l1BridgeAddress) internal {
                  l1BridgeAddress = _l1BridgeAddress;
              }
              modifier onlyL1Bridge {
                  require(msg.sender == l1BridgeAddress, "MW: Sender must be the L1 Bridge");
                  _;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with GSN meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address payable) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes memory) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }
          // SPDX-License-Identifier: MIT
          // +build ovm
          pragma solidity >0.5.0 <0.8.0;
          pragma experimental ABIEncoderV2;
          /**
           * @title iOVM_BaseCrossDomainMessenger
           */
          interface iOVM_BaseCrossDomainMessenger {
              /**********
               * Events *
               **********/
              event SentMessage(bytes message);
              event RelayedMessage(bytes32 msgHash);
              /**********************
               * Contract Variables *
               **********************/
              function xDomainMessageSender() external view returns (address);
              /********************
               * Public Functions *
               ********************/
              /**
               * Sends a cross domain message to the target messenger.
               * @param _target Target contract address.
               * @param _message Message to send to the target.
               * @param _gasLimit Gas limit for the provided message.
               */
              function sendMessage(
                  address _target,
                  bytes calldata _message,
                  uint32 _gasLimit
              ) external;
              function deposit(
                  address _depositor,
                  uint256 _amount,
                  bool _send
              ) external;
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.12 <0.8.0;
          pragma experimental ABIEncoderV2;
          interface IMessengerWrapper {
              function sendCrossDomainMessage(bytes memory _calldata) external;
              function verifySender(address l1BridgeCaller, bytes memory _data) external;
          }
          

          File 5 of 6: Lib_AddressManager
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          import "../utils/Context.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor () internal {
                  address msgSender = _msgSender();
                  _owner = msgSender;
                  emit OwnershipTransferred(address(0), msgSender);
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  emit OwnershipTransferred(_owner, address(0));
                  _owner = address(0);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  emit OwnershipTransferred(_owner, newOwner);
                  _owner = newOwner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with GSN meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address payable) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes memory) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.8.0;
          /* External Imports */
          import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
          /**
           * @title Lib_AddressManager
           */
          contract Lib_AddressManager is Ownable {
              /**********
               * Events *
               **********/
              event AddressSet(
                  string indexed _name,
                  address _newAddress,
                  address _oldAddress
              );
              /*************
               * Variables *
               *************/
              mapping (bytes32 => address) private addresses;
              /********************
               * Public Functions *
               ********************/
              /**
               * Changes the address associated with a particular name.
               * @param _name String name to associate an address with.
               * @param _address Address to associate with the name.
               */
              function setAddress(
                  string memory _name,
                  address _address
              )
                  external
                  onlyOwner
              {
                  bytes32 nameHash = _getNameHash(_name);
                  address oldAddress = addresses[nameHash];
                  addresses[nameHash] = _address;
                  emit AddressSet(
                      _name,
                      _address,
                      oldAddress
                  );
              }
              /**
               * Retrieves the address associated with a given name.
               * @param _name Name to retrieve an address for.
               * @return Address associated with the given name.
               */
              function getAddress(
                  string memory _name
              )
                  external
                  view
                  returns (
                      address
                  )
              {
                  return addresses[_getNameHash(_name)];
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Computes the hash of a name.
               * @param _name Name to compute a hash for.
               * @return Hash of the given name.
               */
              function _getNameHash(
                  string memory _name
              )
                  internal
                  pure
                  returns (
                      bytes32
                  )
              {
                  return keccak256(abi.encodePacked(_name));
              }
          }
          

          File 6 of 6: L1CrossDomainMessenger
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              function __Ownable_init() internal initializer {
                  __Context_init_unchained();
                  __Ownable_init_unchained();
              }
              function __Ownable_init_unchained() internal initializer {
                  _setOwner(_msgSender());
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _setOwner(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _setOwner(newOwner);
              }
              function _setOwner(address newOwner) private {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               */
              bool private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Modifier to protect an initializer function from being invoked twice.
               */
              modifier initializer() {
                  require(_initializing || !_initialized, "Initializable: contract is already initialized");
                  bool isTopLevelCall = !_initializing;
                  if (isTopLevelCall) {
                      _initializing = true;
                      _initialized = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which allows children to implement an emergency stop
           * mechanism that can be triggered by an authorized account.
           *
           * This module is used through inheritance. It will make available the
           * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
           * the functions of your contract. Note that they will not be pausable by
           * simply including this module, only once the modifiers are put in place.
           */
          abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
              /**
               * @dev Emitted when the pause is triggered by `account`.
               */
              event Paused(address account);
              /**
               * @dev Emitted when the pause is lifted by `account`.
               */
              event Unpaused(address account);
              bool private _paused;
              /**
               * @dev Initializes the contract in unpaused state.
               */
              function __Pausable_init() internal initializer {
                  __Context_init_unchained();
                  __Pausable_init_unchained();
              }
              function __Pausable_init_unchained() internal initializer {
                  _paused = false;
              }
              /**
               * @dev Returns true if the contract is paused, and false otherwise.
               */
              function paused() public view virtual returns (bool) {
                  return _paused;
              }
              /**
               * @dev Modifier to make a function callable only when the contract is not paused.
               *
               * Requirements:
               *
               * - The contract must not be paused.
               */
              modifier whenNotPaused() {
                  require(!paused(), "Pausable: paused");
                  _;
              }
              /**
               * @dev Modifier to make a function callable only when the contract is paused.
               *
               * Requirements:
               *
               * - The contract must be paused.
               */
              modifier whenPaused() {
                  require(paused(), "Pausable: not paused");
                  _;
              }
              /**
               * @dev Triggers stopped state.
               *
               * Requirements:
               *
               * - The contract must not be paused.
               */
              function _pause() internal virtual whenNotPaused {
                  _paused = true;
                  emit Paused(_msgSender());
              }
              /**
               * @dev Returns to normal state.
               *
               * Requirements:
               *
               * - The contract must be paused.
               */
              function _unpause() internal virtual whenPaused {
                  _paused = false;
                  emit Unpaused(_msgSender());
              }
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module that helps prevent reentrant calls to a function.
           *
           * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
           * available, which can be applied to functions to make sure there are no nested
           * (reentrant) calls to them.
           *
           * Note that because there is a single `nonReentrant` guard, functions marked as
           * `nonReentrant` may not call one another. This can be worked around by making
           * those functions `private`, and then adding `external` `nonReentrant` entry
           * points to them.
           *
           * TIP: If you would like to learn more about reentrancy and alternative ways
           * to protect against it, check out our blog post
           * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
           */
          abstract contract ReentrancyGuardUpgradeable is Initializable {
              // Booleans are more expensive than uint256 or any type that takes up a full
              // word because each write operation emits an extra SLOAD to first read the
              // slot's contents, replace the bits taken up by the boolean, and then write
              // back. This is the compiler's defense against contract upgrades and
              // pointer aliasing, and it cannot be disabled.
              // The values being non-zero value makes deployment a bit more expensive,
              // but in exchange the refund on every call to nonReentrant will be lower in
              // amount. Since refunds are capped to a percentage of the total
              // transaction's gas, it is best to keep them low in cases like this one, to
              // increase the likelihood of the full refund coming into effect.
              uint256 private constant _NOT_ENTERED = 1;
              uint256 private constant _ENTERED = 2;
              uint256 private _status;
              function __ReentrancyGuard_init() internal initializer {
                  __ReentrancyGuard_init_unchained();
              }
              function __ReentrancyGuard_init_unchained() internal initializer {
                  _status = _NOT_ENTERED;
              }
              /**
               * @dev Prevents a contract from calling itself, directly or indirectly.
               * Calling a `nonReentrant` function from another `nonReentrant`
               * function is not supported. It is possible to prevent this from happening
               * by making the `nonReentrant` function external, and make it call a
               * `private` function that does the actual work.
               */
              modifier nonReentrant() {
                  // On the first call to nonReentrant, _notEntered will be true
                  require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                  // Any calls to nonReentrant after this point will fail
                  _status = _ENTERED;
                  _;
                  // By storing the original value once again, a refund is triggered (see
                  // https://eips.ethereum.org/EIPS/eip-2200)
                  _status = _NOT_ENTERED;
              }
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal initializer {
                  __Context_init_unchained();
              }
              function __Context_init_unchained() internal initializer {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../utils/Context.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor() {
                  _setOwner(_msgSender());
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _setOwner(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _setOwner(newOwner);
              }
              function _setOwner(address newOwner) private {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          /* Interface Imports */
          import { ICrossDomainMessenger } from "../../libraries/bridge/ICrossDomainMessenger.sol";
          /**
           * @title IL1CrossDomainMessenger
           */
          interface IL1CrossDomainMessenger is ICrossDomainMessenger {
              /*******************
               * Data Structures *
               *******************/
              struct L2MessageInclusionProof {
                  bytes32 stateRoot;
                  Lib_OVMCodec.ChainBatchHeader stateRootBatchHeader;
                  Lib_OVMCodec.ChainInclusionProof stateRootProof;
                  bytes stateTrieWitness;
                  bytes storageTrieWitness;
              }
              /********************
               * Public Functions *
               ********************/
              /**
               * Relays a cross domain message to a contract.
               * @param _target Target contract address.
               * @param _sender Message sender address.
               * @param _message Message to send to the target.
               * @param _messageNonce Nonce for the provided message.
               * @param _proof Inclusion proof for the given message.
               */
              function relayMessage(
                  address _target,
                  address _sender,
                  bytes memory _message,
                  uint256 _messageNonce,
                  L2MessageInclusionProof memory _proof
              ) external;
              /**
               * Replays a cross domain message to the target messenger.
               * @param _target Target contract address.
               * @param _sender Original sender address.
               * @param _message Message to send to the target.
               * @param _queueIndex CTC Queue index for the message to replay.
               * @param _oldGasLimit Original gas limit used to send the message.
               * @param _newGasLimit New gas limit to be used for this message.
               */
              function replayMessage(
                  address _target,
                  address _sender,
                  bytes memory _message,
                  uint256 _queueIndex,
                  uint32 _oldGasLimit,
                  uint32 _newGasLimit
              ) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { AddressAliasHelper } from "../../standards/AddressAliasHelper.sol";
          import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          import { Lib_AddressManager } from "../../libraries/resolver/Lib_AddressManager.sol";
          import { Lib_SecureMerkleTrie } from "../../libraries/trie/Lib_SecureMerkleTrie.sol";
          import { Lib_DefaultValues } from "../../libraries/constants/Lib_DefaultValues.sol";
          import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
          import { Lib_CrossDomainUtils } from "../../libraries/bridge/Lib_CrossDomainUtils.sol";
          /* Interface Imports */
          import { IL1CrossDomainMessenger } from "./IL1CrossDomainMessenger.sol";
          import { ICanonicalTransactionChain } from "../rollup/ICanonicalTransactionChain.sol";
          import { IStateCommitmentChain } from "../rollup/IStateCommitmentChain.sol";
          /* External Imports */
          import {
              OwnableUpgradeable
          } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
          import {
              PausableUpgradeable
          } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
          import {
              ReentrancyGuardUpgradeable
          } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
          /**
           * @title L1CrossDomainMessenger
           * @dev The L1 Cross Domain Messenger contract sends messages from L1 to L2, and relays messages
           * from L2 onto L1. In the event that a message sent from L1 to L2 is rejected for exceeding the L2
           * epoch gas limit, it can be resubmitted via this contract's replay function.
           *
           * Runtime target: EVM
           */
          contract L1CrossDomainMessenger is
              IL1CrossDomainMessenger,
              Lib_AddressResolver,
              OwnableUpgradeable,
              PausableUpgradeable,
              ReentrancyGuardUpgradeable
          {
              /**********
               * Events *
               **********/
              event MessageBlocked(bytes32 indexed _xDomainCalldataHash);
              event MessageAllowed(bytes32 indexed _xDomainCalldataHash);
              /**********************
               * Contract Variables *
               **********************/
              mapping(bytes32 => bool) public blockedMessages;
              mapping(bytes32 => bool) public relayedMessages;
              mapping(bytes32 => bool) public successfulMessages;
              address internal xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER;
              /***************
               * Constructor *
               ***************/
              /**
               * This contract is intended to be behind a delegate proxy.
               * We pass the zero address to the address resolver just to satisfy the constructor.
               * We still need to set this value in initialize().
               */
              constructor() Lib_AddressResolver(address(0)) {}
              /********************
               * Public Functions *
               ********************/
              /**
               * @param _libAddressManager Address of the Address Manager.
               */
              function initialize(address _libAddressManager) public initializer {
                  require(
                      address(libAddressManager) == address(0),
                      "L1CrossDomainMessenger already intialized."
                  );
                  libAddressManager = Lib_AddressManager(_libAddressManager);
                  xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER;
                  // Initialize upgradable OZ contracts
                  __Context_init_unchained(); // Context is a dependency for both Ownable and Pausable
                  __Ownable_init_unchained();
                  __Pausable_init_unchained();
                  __ReentrancyGuard_init_unchained();
              }
              /**
               * Pause relaying.
               */
              function pause() external onlyOwner {
                  _pause();
              }
              /**
               * Block a message.
               * @param _xDomainCalldataHash Hash of the message to block.
               */
              function blockMessage(bytes32 _xDomainCalldataHash) external onlyOwner {
                  blockedMessages[_xDomainCalldataHash] = true;
                  emit MessageBlocked(_xDomainCalldataHash);
              }
              /**
               * Allow a message.
               * @param _xDomainCalldataHash Hash of the message to block.
               */
              function allowMessage(bytes32 _xDomainCalldataHash) external onlyOwner {
                  blockedMessages[_xDomainCalldataHash] = false;
                  emit MessageAllowed(_xDomainCalldataHash);
              }
              function xDomainMessageSender() public view returns (address) {
                  require(
                      xDomainMsgSender != Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER,
                      "xDomainMessageSender is not set"
                  );
                  return xDomainMsgSender;
              }
              /**
               * Sends a cross domain message to the target messenger.
               * @param _target Target contract address.
               * @param _message Message to send to the target.
               * @param _gasLimit Gas limit for the provided message.
               */
              function sendMessage(
                  address _target,
                  bytes memory _message,
                  uint32 _gasLimit
              ) public {
                  address ovmCanonicalTransactionChain = resolve("CanonicalTransactionChain");
                  // Use the CTC queue length as nonce
                  uint40 nonce = ICanonicalTransactionChain(ovmCanonicalTransactionChain).getQueueLength();
                  bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
                      _target,
                      msg.sender,
                      _message,
                      nonce
                  );
                  _sendXDomainMessage(ovmCanonicalTransactionChain, xDomainCalldata, _gasLimit);
                  emit SentMessage(_target, msg.sender, _message, nonce, _gasLimit);
              }
              /**
               * Relays a cross domain message to a contract.
               * @inheritdoc IL1CrossDomainMessenger
               */
              function relayMessage(
                  address _target,
                  address _sender,
                  bytes memory _message,
                  uint256 _messageNonce,
                  L2MessageInclusionProof memory _proof
              ) public nonReentrant whenNotPaused {
                  bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
                      _target,
                      _sender,
                      _message,
                      _messageNonce
                  );
                  require(
                      _verifyXDomainMessage(xDomainCalldata, _proof) == true,
                      "Provided message could not be verified."
                  );
                  bytes32 xDomainCalldataHash = keccak256(xDomainCalldata);
                  require(
                      successfulMessages[xDomainCalldataHash] == false,
                      "Provided message has already been received."
                  );
                  require(
                      blockedMessages[xDomainCalldataHash] == false,
                      "Provided message has been blocked."
                  );
                  require(
                      _target != resolve("CanonicalTransactionChain"),
                      "Cannot send L2->L1 messages to L1 system contracts."
                  );
                  xDomainMsgSender = _sender;
                  (bool success, ) = _target.call(_message);
                  xDomainMsgSender = Lib_DefaultValues.DEFAULT_XDOMAIN_SENDER;
                  // Mark the message as received if the call was successful. Ensures that a message can be
                  // relayed multiple times in the case that the call reverted.
                  if (success == true) {
                      successfulMessages[xDomainCalldataHash] = true;
                      emit RelayedMessage(xDomainCalldataHash);
                  } else {
                      emit FailedRelayedMessage(xDomainCalldataHash);
                  }
                  // Store an identifier that can be used to prove that the given message was relayed by some
                  // user. Gives us an easy way to pay relayers for their work.
                  bytes32 relayId = keccak256(abi.encodePacked(xDomainCalldata, msg.sender, block.number));
                  relayedMessages[relayId] = true;
              }
              /**
               * Replays a cross domain message to the target messenger.
               * @inheritdoc IL1CrossDomainMessenger
               */
              function replayMessage(
                  address _target,
                  address _sender,
                  bytes memory _message,
                  uint256 _queueIndex,
                  uint32 _oldGasLimit,
                  uint32 _newGasLimit
              ) public {
                  // Verify that the message is in the queue:
                  address canonicalTransactionChain = resolve("CanonicalTransactionChain");
                  Lib_OVMCodec.QueueElement memory element = ICanonicalTransactionChain(
                      canonicalTransactionChain
                  ).getQueueElement(_queueIndex);
                  // Compute the calldata that was originally used to send the message.
                  bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
                      _target,
                      _sender,
                      _message,
                      _queueIndex
                  );
                  // Compute the transactionHash
                  bytes32 transactionHash = keccak256(
                      abi.encode(
                          AddressAliasHelper.applyL1ToL2Alias(address(this)),
                          Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER,
                          _oldGasLimit,
                          xDomainCalldata
                      )
                  );
                  // Now check that the provided message data matches the one in the queue element.
                  require(
                      transactionHash == element.transactionHash,
                      "Provided message has not been enqueued."
                  );
                  // Send the same message but with the new gas limit.
                  _sendXDomainMessage(canonicalTransactionChain, xDomainCalldata, _newGasLimit);
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Verifies that the given message is valid.
               * @param _xDomainCalldata Calldata to verify.
               * @param _proof Inclusion proof for the message.
               * @return Whether or not the provided message is valid.
               */
              function _verifyXDomainMessage(
                  bytes memory _xDomainCalldata,
                  L2MessageInclusionProof memory _proof
              ) internal view returns (bool) {
                  return (_verifyStateRootProof(_proof) && _verifyStorageProof(_xDomainCalldata, _proof));
              }
              /**
               * Verifies that the state root within an inclusion proof is valid.
               * @param _proof Message inclusion proof.
               * @return Whether or not the provided proof is valid.
               */
              function _verifyStateRootProof(L2MessageInclusionProof memory _proof)
                  internal
                  view
                  returns (bool)
              {
                  IStateCommitmentChain ovmStateCommitmentChain = IStateCommitmentChain(
                      resolve("StateCommitmentChain")
                  );
                  return (ovmStateCommitmentChain.insideFraudProofWindow(_proof.stateRootBatchHeader) ==
                      false &&
                      ovmStateCommitmentChain.verifyStateCommitment(
                          _proof.stateRoot,
                          _proof.stateRootBatchHeader,
                          _proof.stateRootProof
                      ));
              }
              /**
               * Verifies that the storage proof within an inclusion proof is valid.
               * @param _xDomainCalldata Encoded message calldata.
               * @param _proof Message inclusion proof.
               * @return Whether or not the provided proof is valid.
               */
              function _verifyStorageProof(
                  bytes memory _xDomainCalldata,
                  L2MessageInclusionProof memory _proof
              ) internal view returns (bool) {
                  bytes32 storageKey = keccak256(
                      abi.encodePacked(
                          keccak256(
                              abi.encodePacked(
                                  _xDomainCalldata,
                                  Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER
                              )
                          ),
                          uint256(0)
                      )
                  );
                  (bool exists, bytes memory encodedMessagePassingAccount) = Lib_SecureMerkleTrie.get(
                      abi.encodePacked(Lib_PredeployAddresses.L2_TO_L1_MESSAGE_PASSER),
                      _proof.stateTrieWitness,
                      _proof.stateRoot
                  );
                  require(
                      exists == true,
                      "Message passing predeploy has not been initialized or invalid proof provided."
                  );
                  Lib_OVMCodec.EVMAccount memory account = Lib_OVMCodec.decodeEVMAccount(
                      encodedMessagePassingAccount
                  );
                  return
                      Lib_SecureMerkleTrie.verifyInclusionProof(
                          abi.encodePacked(storageKey),
                          abi.encodePacked(uint8(1)),
                          _proof.storageTrieWitness,
                          account.storageRoot
                      );
              }
              /**
               * Sends a cross domain message.
               * @param _canonicalTransactionChain Address of the CanonicalTransactionChain instance.
               * @param _message Message to send.
               * @param _gasLimit OVM gas limit for the message.
               */
              function _sendXDomainMessage(
                  address _canonicalTransactionChain,
                  bytes memory _message,
                  uint256 _gasLimit
              ) internal {
                  ICanonicalTransactionChain(_canonicalTransactionChain).enqueue(
                      Lib_PredeployAddresses.L2_CROSS_DOMAIN_MESSENGER,
                      _gasLimit,
                      _message
                  );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /* Library Imports */
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          /* Interface Imports */
          import { IChainStorageContainer } from "./IChainStorageContainer.sol";
          /**
           * @title ICanonicalTransactionChain
           */
          interface ICanonicalTransactionChain {
              /**********
               * Events *
               **********/
              event L2GasParamsUpdated(
                  uint256 l2GasDiscountDivisor,
                  uint256 enqueueGasCost,
                  uint256 enqueueL2GasPrepaid
              );
              event TransactionEnqueued(
                  address indexed _l1TxOrigin,
                  address indexed _target,
                  uint256 _gasLimit,
                  bytes _data,
                  uint256 indexed _queueIndex,
                  uint256 _timestamp
              );
              event QueueBatchAppended(
                  uint256 _startingQueueIndex,
                  uint256 _numQueueElements,
                  uint256 _totalElements
              );
              event SequencerBatchAppended(
                  uint256 _startingQueueIndex,
                  uint256 _numQueueElements,
                  uint256 _totalElements
              );
              event TransactionBatchAppended(
                  uint256 indexed _batchIndex,
                  bytes32 _batchRoot,
                  uint256 _batchSize,
                  uint256 _prevTotalElements,
                  bytes _extraData
              );
              /***********
               * Structs *
               ***********/
              struct BatchContext {
                  uint256 numSequencedTransactions;
                  uint256 numSubsequentQueueTransactions;
                  uint256 timestamp;
                  uint256 blockNumber;
              }
              /*******************************
               * Authorized Setter Functions *
               *******************************/
              /**
               * Allows the Burn Admin to update the parameters which determine the amount of gas to burn.
               * The value of enqueueL2GasPrepaid is immediately updated as well.
               */
              function setGasParams(uint256 _l2GasDiscountDivisor, uint256 _enqueueGasCost) external;
              /********************
               * Public Functions *
               ********************/
              /**
               * Accesses the batch storage container.
               * @return Reference to the batch storage container.
               */
              function batches() external view returns (IChainStorageContainer);
              /**
               * Retrieves the total number of elements submitted.
               * @return _totalElements Total submitted elements.
               */
              function getTotalElements() external view returns (uint256 _totalElements);
              /**
               * Retrieves the total number of batches submitted.
               * @return _totalBatches Total submitted batches.
               */
              function getTotalBatches() external view returns (uint256 _totalBatches);
              /**
               * Returns the index of the next element to be enqueued.
               * @return Index for the next queue element.
               */
              function getNextQueueIndex() external view returns (uint40);
              /**
               * Gets the queue element at a particular index.
               * @param _index Index of the queue element to access.
               * @return _element Queue element at the given index.
               */
              function getQueueElement(uint256 _index)
                  external
                  view
                  returns (Lib_OVMCodec.QueueElement memory _element);
              /**
               * Returns the timestamp of the last transaction.
               * @return Timestamp for the last transaction.
               */
              function getLastTimestamp() external view returns (uint40);
              /**
               * Returns the blocknumber of the last transaction.
               * @return Blocknumber for the last transaction.
               */
              function getLastBlockNumber() external view returns (uint40);
              /**
               * Get the number of queue elements which have not yet been included.
               * @return Number of pending queue elements.
               */
              function getNumPendingQueueElements() external view returns (uint40);
              /**
               * Retrieves the length of the queue, including
               * both pending and canonical transactions.
               * @return Length of the queue.
               */
              function getQueueLength() external view returns (uint40);
              /**
               * Adds a transaction to the queue.
               * @param _target Target contract to send the transaction to.
               * @param _gasLimit Gas limit for the given transaction.
               * @param _data Transaction data.
               */
              function enqueue(
                  address _target,
                  uint256 _gasLimit,
                  bytes memory _data
              ) external;
              /**
               * Allows the sequencer to append a batch of transactions.
               * @dev This function uses a custom encoding scheme for efficiency reasons.
               * .param _shouldStartAtElement Specific batch we expect to start appending to.
               * .param _totalElementsToAppend Total number of batch elements we expect to append.
               * .param _contexts Array of batch contexts.
               * .param _transactionDataFields Array of raw transaction data.
               */
              function appendSequencerBatch(
                  // uint40 _shouldStartAtElement,
                  // uint24 _totalElementsToAppend,
                  // BatchContext[] _contexts,
                  // bytes[] _transactionDataFields
              ) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /**
           * @title IChainStorageContainer
           */
          interface IChainStorageContainer {
              /********************
               * Public Functions *
               ********************/
              /**
               * Sets the container's global metadata field. We're using `bytes27` here because we use five
               * bytes to maintain the length of the underlying data structure, meaning we have an extra
               * 27 bytes to store arbitrary data.
               * @param _globalMetadata New global metadata to set.
               */
              function setGlobalMetadata(bytes27 _globalMetadata) external;
              /**
               * Retrieves the container's global metadata field.
               * @return Container global metadata field.
               */
              function getGlobalMetadata() external view returns (bytes27);
              /**
               * Retrieves the number of objects stored in the container.
               * @return Number of objects in the container.
               */
              function length() external view returns (uint256);
              /**
               * Pushes an object into the container.
               * @param _object A 32 byte value to insert into the container.
               */
              function push(bytes32 _object) external;
              /**
               * Pushes an object into the container. Function allows setting the global metadata since
               * we'll need to touch the "length" storage slot anyway, which also contains the global
               * metadata (it's an optimization).
               * @param _object A 32 byte value to insert into the container.
               * @param _globalMetadata New global metadata for the container.
               */
              function push(bytes32 _object, bytes27 _globalMetadata) external;
              /**
               * Retrieves an object from the container.
               * @param _index Index of the particular object to access.
               * @return 32 byte object value.
               */
              function get(uint256 _index) external view returns (bytes32);
              /**
               * Removes all objects after and including a given index.
               * @param _index Object index to delete from.
               */
              function deleteElementsAfterInclusive(uint256 _index) external;
              /**
               * Removes all objects after and including a given index. Also allows setting the global
               * metadata field.
               * @param _index Object index to delete from.
               * @param _globalMetadata New global metadata for the container.
               */
              function deleteElementsAfterInclusive(uint256 _index, bytes27 _globalMetadata) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /* Library Imports */
          import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
          /**
           * @title IStateCommitmentChain
           */
          interface IStateCommitmentChain {
              /**********
               * Events *
               **********/
              event StateBatchAppended(
                  uint256 indexed _batchIndex,
                  bytes32 _batchRoot,
                  uint256 _batchSize,
                  uint256 _prevTotalElements,
                  bytes _extraData
              );
              event StateBatchDeleted(uint256 indexed _batchIndex, bytes32 _batchRoot);
              /********************
               * Public Functions *
               ********************/
              /**
               * Retrieves the total number of elements submitted.
               * @return _totalElements Total submitted elements.
               */
              function getTotalElements() external view returns (uint256 _totalElements);
              /**
               * Retrieves the total number of batches submitted.
               * @return _totalBatches Total submitted batches.
               */
              function getTotalBatches() external view returns (uint256 _totalBatches);
              /**
               * Retrieves the timestamp of the last batch submitted by the sequencer.
               * @return _lastSequencerTimestamp Last sequencer batch timestamp.
               */
              function getLastSequencerTimestamp() external view returns (uint256 _lastSequencerTimestamp);
              /**
               * Appends a batch of state roots to the chain.
               * @param _batch Batch of state roots.
               * @param _shouldStartAtElement Index of the element at which this batch should start.
               */
              function appendStateBatch(bytes32[] calldata _batch, uint256 _shouldStartAtElement) external;
              /**
               * Deletes all state roots after (and including) a given batch.
               * @param _batchHeader Header of the batch to start deleting from.
               */
              function deleteStateBatch(Lib_OVMCodec.ChainBatchHeader memory _batchHeader) external;
              /**
               * Verifies a batch inclusion proof.
               * @param _element Hash of the element to verify a proof for.
               * @param _batchHeader Header of the batch in which the element was included.
               * @param _proof Merkle inclusion proof for the element.
               */
              function verifyStateCommitment(
                  bytes32 _element,
                  Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
                  Lib_OVMCodec.ChainInclusionProof memory _proof
              ) external view returns (bool _verified);
              /**
               * Checks whether a given batch is still inside its fraud proof window.
               * @param _batchHeader Header of the batch to check.
               * @return _inside Whether or not the batch is inside the fraud proof window.
               */
              function insideFraudProofWindow(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
                  external
                  view
                  returns (bool _inside);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >0.5.0 <0.9.0;
          /**
           * @title ICrossDomainMessenger
           */
          interface ICrossDomainMessenger {
              /**********
               * Events *
               **********/
              event SentMessage(
                  address indexed target,
                  address sender,
                  bytes message,
                  uint256 messageNonce,
                  uint256 gasLimit
              );
              event RelayedMessage(bytes32 indexed msgHash);
              event FailedRelayedMessage(bytes32 indexed msgHash);
              /*************
               * Variables *
               *************/
              function xDomainMessageSender() external view returns (address);
              /********************
               * Public Functions *
               ********************/
              /**
               * Sends a cross domain message to the target messenger.
               * @param _target Target contract address.
               * @param _message Message to send to the target.
               * @param _gasLimit Gas limit for the provided message.
               */
              function sendMessage(
                  address _target,
                  bytes calldata _message,
                  uint32 _gasLimit
              ) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
          /**
           * @title Lib_CrossDomainUtils
           */
          library Lib_CrossDomainUtils {
              /**
               * Generates the correct cross domain calldata for a message.
               * @param _target Target contract address.
               * @param _sender Message sender address.
               * @param _message Message to send to the target.
               * @param _messageNonce Nonce for the provided message.
               * @return ABI encoded cross domain calldata.
               */
              function encodeXDomainCalldata(
                  address _target,
                  address _sender,
                  bytes memory _message,
                  uint256 _messageNonce
              ) internal pure returns (bytes memory) {
                  return
                      abi.encodeWithSignature(
                          "relayMessage(address,address,bytes,uint256)",
                          _target,
                          _sender,
                          _message,
                          _messageNonce
                      );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
          import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
          import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";
          import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol";
          /**
           * @title Lib_OVMCodec
           */
          library Lib_OVMCodec {
              /*********
               * Enums *
               *********/
              enum QueueOrigin {
                  SEQUENCER_QUEUE,
                  L1TOL2_QUEUE
              }
              /***********
               * Structs *
               ***********/
              struct EVMAccount {
                  uint256 nonce;
                  uint256 balance;
                  bytes32 storageRoot;
                  bytes32 codeHash;
              }
              struct ChainBatchHeader {
                  uint256 batchIndex;
                  bytes32 batchRoot;
                  uint256 batchSize;
                  uint256 prevTotalElements;
                  bytes extraData;
              }
              struct ChainInclusionProof {
                  uint256 index;
                  bytes32[] siblings;
              }
              struct Transaction {
                  uint256 timestamp;
                  uint256 blockNumber;
                  QueueOrigin l1QueueOrigin;
                  address l1TxOrigin;
                  address entrypoint;
                  uint256 gasLimit;
                  bytes data;
              }
              struct TransactionChainElement {
                  bool isSequenced;
                  uint256 queueIndex; // QUEUED TX ONLY
                  uint256 timestamp; // SEQUENCER TX ONLY
                  uint256 blockNumber; // SEQUENCER TX ONLY
                  bytes txData; // SEQUENCER TX ONLY
              }
              struct QueueElement {
                  bytes32 transactionHash;
                  uint40 timestamp;
                  uint40 blockNumber;
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Encodes a standard OVM transaction.
               * @param _transaction OVM transaction to encode.
               * @return Encoded transaction bytes.
               */
              function encodeTransaction(Transaction memory _transaction)
                  internal
                  pure
                  returns (bytes memory)
              {
                  return
                      abi.encodePacked(
                          _transaction.timestamp,
                          _transaction.blockNumber,
                          _transaction.l1QueueOrigin,
                          _transaction.l1TxOrigin,
                          _transaction.entrypoint,
                          _transaction.gasLimit,
                          _transaction.data
                      );
              }
              /**
               * Hashes a standard OVM transaction.
               * @param _transaction OVM transaction to encode.
               * @return Hashed transaction
               */
              function hashTransaction(Transaction memory _transaction) internal pure returns (bytes32) {
                  return keccak256(encodeTransaction(_transaction));
              }
              /**
               * @notice Decodes an RLP-encoded account state into a useful struct.
               * @param _encoded RLP-encoded account state.
               * @return Account state struct.
               */
              function decodeEVMAccount(bytes memory _encoded) internal pure returns (EVMAccount memory) {
                  Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(_encoded);
                  return
                      EVMAccount({
                          nonce: Lib_RLPReader.readUint256(accountState[0]),
                          balance: Lib_RLPReader.readUint256(accountState[1]),
                          storageRoot: Lib_RLPReader.readBytes32(accountState[2]),
                          codeHash: Lib_RLPReader.readBytes32(accountState[3])
                      });
              }
              /**
               * Calculates a hash for a given batch header.
               * @param _batchHeader Header to hash.
               * @return Hash of the header.
               */
              function hashBatchHeader(Lib_OVMCodec.ChainBatchHeader memory _batchHeader)
                  internal
                  pure
                  returns (bytes32)
              {
                  return
                      keccak256(
                          abi.encode(
                              _batchHeader.batchRoot,
                              _batchHeader.batchSize,
                              _batchHeader.prevTotalElements,
                              _batchHeader.extraData
                          )
                      );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_DefaultValues
           */
          library Lib_DefaultValues {
              // The default x-domain message sender being set to a non-zero value makes
              // deployment a bit more expensive, but in exchange the refund on every call to
              // `relayMessage` by the L1 and L2 messengers will be higher.
              address internal constant DEFAULT_XDOMAIN_SENDER = 0x000000000000000000000000000000000000dEaD;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_PredeployAddresses
           */
          library Lib_PredeployAddresses {
              address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
              address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
              address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
              address payable internal constant OVM_ETH = payable(0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000);
              address internal constant L2_CROSS_DOMAIN_MESSENGER =
                  0x4200000000000000000000000000000000000007;
              address internal constant LIB_ADDRESS_MANAGER = 0x4200000000000000000000000000000000000008;
              address internal constant PROXY_EOA = 0x4200000000000000000000000000000000000009;
              address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
              address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
              address internal constant L2_STANDARD_TOKEN_FACTORY =
                  0x4200000000000000000000000000000000000012;
              address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* External Imports */
          import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
          /**
           * @title Lib_AddressManager
           */
          contract Lib_AddressManager is Ownable {
              /**********
               * Events *
               **********/
              event AddressSet(string indexed _name, address _newAddress, address _oldAddress);
              /*************
               * Variables *
               *************/
              mapping(bytes32 => address) private addresses;
              /********************
               * Public Functions *
               ********************/
              /**
               * Changes the address associated with a particular name.
               * @param _name String name to associate an address with.
               * @param _address Address to associate with the name.
               */
              function setAddress(string memory _name, address _address) external onlyOwner {
                  bytes32 nameHash = _getNameHash(_name);
                  address oldAddress = addresses[nameHash];
                  addresses[nameHash] = _address;
                  emit AddressSet(_name, _address, oldAddress);
              }
              /**
               * Retrieves the address associated with a given name.
               * @param _name Name to retrieve an address for.
               * @return Address associated with the given name.
               */
              function getAddress(string memory _name) external view returns (address) {
                  return addresses[_getNameHash(_name)];
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Computes the hash of a name.
               * @param _name Name to compute a hash for.
               * @return Hash of the given name.
               */
              function _getNameHash(string memory _name) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked(_name));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_AddressManager } from "./Lib_AddressManager.sol";
          /**
           * @title Lib_AddressResolver
           */
          abstract contract Lib_AddressResolver {
              /*************
               * Variables *
               *************/
              Lib_AddressManager public libAddressManager;
              /***************
               * Constructor *
               ***************/
              /**
               * @param _libAddressManager Address of the Lib_AddressManager.
               */
              constructor(address _libAddressManager) {
                  libAddressManager = Lib_AddressManager(_libAddressManager);
              }
              /********************
               * Public Functions *
               ********************/
              /**
               * Resolves the address associated with a given name.
               * @param _name Name to resolve an address for.
               * @return Address associated with the given name.
               */
              function resolve(string memory _name) public view returns (address) {
                  return libAddressManager.getAddress(_name);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_RLPReader
           * @dev Adapted from "RLPReader" by Hamdi Allam ([email protected]).
           */
          library Lib_RLPReader {
              /*************
               * Constants *
               *************/
              uint256 internal constant MAX_LIST_LENGTH = 32;
              /*********
               * Enums *
               *********/
              enum RLPItemType {
                  DATA_ITEM,
                  LIST_ITEM
              }
              /***********
               * Structs *
               ***********/
              struct RLPItem {
                  uint256 length;
                  uint256 ptr;
              }
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Converts bytes to a reference to memory position and length.
               * @param _in Input bytes to convert.
               * @return Output memory reference.
               */
              function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
                  uint256 ptr;
                  assembly {
                      ptr := add(_in, 32)
                  }
                  return RLPItem({ length: _in.length, ptr: ptr });
              }
              /**
               * Reads an RLP list value into a list of RLP items.
               * @param _in RLP list value.
               * @return Decoded RLP list items.
               */
              function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) {
                  (uint256 listOffset, , RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.LIST_ITEM, "Invalid RLP list value.");
                  // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                  // writing to the length. Since we can't know the number of RLP items without looping over
                  // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                  // simply set a reasonable maximum list length and decrease the size before we finish.
                  RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
                  uint256 itemCount = 0;
                  uint256 offset = listOffset;
                  while (offset < _in.length) {
                      require(itemCount < MAX_LIST_LENGTH, "Provided RLP list exceeds max list length.");
                      (uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
                          RLPItem({ length: _in.length - offset, ptr: _in.ptr + offset })
                      );
                      out[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: _in.ptr + offset });
                      itemCount += 1;
                      offset += itemOffset + itemLength;
                  }
                  // Decrease the array size to match the actual item count.
                  assembly {
                      mstore(out, itemCount)
                  }
                  return out;
              }
              /**
               * Reads an RLP list value into a list of RLP items.
               * @param _in RLP list value.
               * @return Decoded RLP list items.
               */
              function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
                  return readList(toRLPItem(_in));
              }
              /**
               * Reads an RLP bytes value into bytes.
               * @param _in RLP bytes value.
               * @return Decoded bytes.
               */
              function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                  (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes value.");
                  return _copy(_in.ptr, itemOffset, itemLength);
              }
              /**
               * Reads an RLP bytes value into bytes.
               * @param _in RLP bytes value.
               * @return Decoded bytes.
               */
              function readBytes(bytes memory _in) internal pure returns (bytes memory) {
                  return readBytes(toRLPItem(_in));
              }
              /**
               * Reads an RLP string value into a string.
               * @param _in RLP string value.
               * @return Decoded string.
               */
              function readString(RLPItem memory _in) internal pure returns (string memory) {
                  return string(readBytes(_in));
              }
              /**
               * Reads an RLP string value into a string.
               * @param _in RLP string value.
               * @return Decoded string.
               */
              function readString(bytes memory _in) internal pure returns (string memory) {
                  return readString(toRLPItem(_in));
              }
              /**
               * Reads an RLP bytes32 value into a bytes32.
               * @param _in RLP bytes32 value.
               * @return Decoded bytes32.
               */
              function readBytes32(RLPItem memory _in) internal pure returns (bytes32) {
                  require(_in.length <= 33, "Invalid RLP bytes32 value.");
                  (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.DATA_ITEM, "Invalid RLP bytes32 value.");
                  uint256 ptr = _in.ptr + itemOffset;
                  bytes32 out;
                  assembly {
                      out := mload(ptr)
                      // Shift the bytes over to match the item size.
                      if lt(itemLength, 32) {
                          out := div(out, exp(256, sub(32, itemLength)))
                      }
                  }
                  return out;
              }
              /**
               * Reads an RLP bytes32 value into a bytes32.
               * @param _in RLP bytes32 value.
               * @return Decoded bytes32.
               */
              function readBytes32(bytes memory _in) internal pure returns (bytes32) {
                  return readBytes32(toRLPItem(_in));
              }
              /**
               * Reads an RLP uint256 value into a uint256.
               * @param _in RLP uint256 value.
               * @return Decoded uint256.
               */
              function readUint256(RLPItem memory _in) internal pure returns (uint256) {
                  return uint256(readBytes32(_in));
              }
              /**
               * Reads an RLP uint256 value into a uint256.
               * @param _in RLP uint256 value.
               * @return Decoded uint256.
               */
              function readUint256(bytes memory _in) internal pure returns (uint256) {
                  return readUint256(toRLPItem(_in));
              }
              /**
               * Reads an RLP bool value into a bool.
               * @param _in RLP bool value.
               * @return Decoded bool.
               */
              function readBool(RLPItem memory _in) internal pure returns (bool) {
                  require(_in.length == 1, "Invalid RLP boolean value.");
                  uint256 ptr = _in.ptr;
                  uint256 out;
                  assembly {
                      out := byte(0, mload(ptr))
                  }
                  require(out == 0 || out == 1, "Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1");
                  return out != 0;
              }
              /**
               * Reads an RLP bool value into a bool.
               * @param _in RLP bool value.
               * @return Decoded bool.
               */
              function readBool(bytes memory _in) internal pure returns (bool) {
                  return readBool(toRLPItem(_in));
              }
              /**
               * Reads an RLP address value into a address.
               * @param _in RLP address value.
               * @return Decoded address.
               */
              function readAddress(RLPItem memory _in) internal pure returns (address) {
                  if (_in.length == 1) {
                      return address(0);
                  }
                  require(_in.length == 21, "Invalid RLP address value.");
                  return address(uint160(readUint256(_in)));
              }
              /**
               * Reads an RLP address value into a address.
               * @param _in RLP address value.
               * @return Decoded address.
               */
              function readAddress(bytes memory _in) internal pure returns (address) {
                  return readAddress(toRLPItem(_in));
              }
              /**
               * Reads the raw bytes of an RLP item.
               * @param _in RLP item to read.
               * @return Raw RLP bytes.
               */
              function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                  return _copy(_in);
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Decodes the length of an RLP item.
               * @param _in RLP item to decode.
               * @return Offset of the encoded data.
               * @return Length of the encoded data.
               * @return RLP item type (LIST_ITEM or DATA_ITEM).
               */
              function _decodeLength(RLPItem memory _in)
                  private
                  pure
                  returns (
                      uint256,
                      uint256,
                      RLPItemType
                  )
              {
                  require(_in.length > 0, "RLP item cannot be null.");
                  uint256 ptr = _in.ptr;
                  uint256 prefix;
                  assembly {
                      prefix := byte(0, mload(ptr))
                  }
                  if (prefix <= 0x7f) {
                      // Single byte.
                      return (0, 1, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xb7) {
                      // Short string.
                      uint256 strLen = prefix - 0x80;
                      require(_in.length > strLen, "Invalid RLP short string.");
                      return (1, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xbf) {
                      // Long string.
                      uint256 lenOfStrLen = prefix - 0xb7;
                      require(_in.length > lenOfStrLen, "Invalid RLP long string length.");
                      uint256 strLen;
                      assembly {
                          // Pick out the string length.
                          strLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfStrLen)))
                      }
                      require(_in.length > lenOfStrLen + strLen, "Invalid RLP long string.");
                      return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xf7) {
                      // Short list.
                      uint256 listLen = prefix - 0xc0;
                      require(_in.length > listLen, "Invalid RLP short list.");
                      return (1, listLen, RLPItemType.LIST_ITEM);
                  } else {
                      // Long list.
                      uint256 lenOfListLen = prefix - 0xf7;
                      require(_in.length > lenOfListLen, "Invalid RLP long list length.");
                      uint256 listLen;
                      assembly {
                          // Pick out the list length.
                          listLen := div(mload(add(ptr, 1)), exp(256, sub(32, lenOfListLen)))
                      }
                      require(_in.length > lenOfListLen + listLen, "Invalid RLP long list.");
                      return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                  }
              }
              /**
               * Copies the bytes from a memory location.
               * @param _src Pointer to the location to read from.
               * @param _offset Offset to start reading from.
               * @param _length Number of bytes to read.
               * @return Copied bytes.
               */
              function _copy(
                  uint256 _src,
                  uint256 _offset,
                  uint256 _length
              ) private pure returns (bytes memory) {
                  bytes memory out = new bytes(_length);
                  if (out.length == 0) {
                      return out;
                  }
                  uint256 src = _src + _offset;
                  uint256 dest;
                  assembly {
                      dest := add(out, 32)
                  }
                  // Copy over as many complete words as we can.
                  for (uint256 i = 0; i < _length / 32; i++) {
                      assembly {
                          mstore(dest, mload(src))
                      }
                      src += 32;
                      dest += 32;
                  }
                  // Pick out the remaining bytes.
                  uint256 mask;
                  unchecked {
                      mask = 256**(32 - (_length % 32)) - 1;
                  }
                  assembly {
                      mstore(dest, or(and(mload(src), not(mask)), and(mload(dest), mask)))
                  }
                  return out;
              }
              /**
               * Copies an RLP item into bytes.
               * @param _in RLP item to copy.
               * @return Copied bytes.
               */
              function _copy(RLPItem memory _in) private pure returns (bytes memory) {
                  return _copy(_in.ptr, 0, _in.length);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_RLPWriter
           * @author Bakaoh (with modifications)
           */
          library Lib_RLPWriter {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * RLP encodes a byte string.
               * @param _in The byte string to encode.
               * @return The RLP encoded string in bytes.
               */
              function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
                  bytes memory encoded;
                  if (_in.length == 1 && uint8(_in[0]) < 128) {
                      encoded = _in;
                  } else {
                      encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
                  }
                  return encoded;
              }
              /**
               * RLP encodes a list of RLP encoded byte byte strings.
               * @param _in The list of RLP encoded byte strings.
               * @return The RLP encoded list of items in bytes.
               */
              function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
                  bytes memory list = _flatten(_in);
                  return abi.encodePacked(_writeLength(list.length, 192), list);
              }
              /**
               * RLP encodes a string.
               * @param _in The string to encode.
               * @return The RLP encoded string in bytes.
               */
              function writeString(string memory _in) internal pure returns (bytes memory) {
                  return writeBytes(bytes(_in));
              }
              /**
               * RLP encodes an address.
               * @param _in The address to encode.
               * @return The RLP encoded address in bytes.
               */
              function writeAddress(address _in) internal pure returns (bytes memory) {
                  return writeBytes(abi.encodePacked(_in));
              }
              /**
               * RLP encodes a uint.
               * @param _in The uint256 to encode.
               * @return The RLP encoded uint256 in bytes.
               */
              function writeUint(uint256 _in) internal pure returns (bytes memory) {
                  return writeBytes(_toBinary(_in));
              }
              /**
               * RLP encodes a bool.
               * @param _in The bool to encode.
               * @return The RLP encoded bool in bytes.
               */
              function writeBool(bool _in) internal pure returns (bytes memory) {
                  bytes memory encoded = new bytes(1);
                  encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  return encoded;
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
               * @param _len The length of the string or the payload.
               * @param _offset 128 if item is string, 192 if item is list.
               * @return RLP encoded bytes.
               */
              function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
                  bytes memory encoded;
                  if (_len < 56) {
                      encoded = new bytes(1);
                      encoded[0] = bytes1(uint8(_len) + uint8(_offset));
                  } else {
                      uint256 lenLen;
                      uint256 i = 1;
                      while (_len / i != 0) {
                          lenLen++;
                          i *= 256;
                      }
                      encoded = new bytes(lenLen + 1);
                      encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                      for (i = 1; i <= lenLen; i++) {
                          encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
                      }
                  }
                  return encoded;
              }
              /**
               * Encode integer in big endian binary form with no leading zeroes.
               * @notice TODO: This should be optimized with assembly to save gas costs.
               * @param _x The integer to encode.
               * @return RLP encoded bytes.
               */
              function _toBinary(uint256 _x) private pure returns (bytes memory) {
                  bytes memory b = abi.encodePacked(_x);
                  uint256 i = 0;
                  for (; i < 32; i++) {
                      if (b[i] != 0) {
                          break;
                      }
                  }
                  bytes memory res = new bytes(32 - i);
                  for (uint256 j = 0; j < res.length; j++) {
                      res[j] = b[i++];
                  }
                  return res;
              }
              /**
               * Copies a piece of memory to another location.
               * @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
               * @param _dest Destination location.
               * @param _src Source location.
               * @param _len Length of memory to copy.
               */
              function _memcpy(
                  uint256 _dest,
                  uint256 _src,
                  uint256 _len
              ) private pure {
                  uint256 dest = _dest;
                  uint256 src = _src;
                  uint256 len = _len;
                  for (; len >= 32; len -= 32) {
                      assembly {
                          mstore(dest, mload(src))
                      }
                      dest += 32;
                      src += 32;
                  }
                  uint256 mask;
                  unchecked {
                      mask = 256**(32 - len) - 1;
                  }
                  assembly {
                      let srcpart := and(mload(src), not(mask))
                      let destpart := and(mload(dest), mask)
                      mstore(dest, or(destpart, srcpart))
                  }
              }
              /**
               * Flattens a list of byte strings into one byte string.
               * @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
               * @param _list List of byte strings to flatten.
               * @return The flattened byte string.
               */
              function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
                  if (_list.length == 0) {
                      return new bytes(0);
                  }
                  uint256 len;
                  uint256 i = 0;
                  for (; i < _list.length; i++) {
                      len += _list[i].length;
                  }
                  bytes memory flattened = new bytes(len);
                  uint256 flattenedPtr;
                  assembly {
                      flattenedPtr := add(flattened, 0x20)
                  }
                  for (i = 0; i < _list.length; i++) {
                      bytes memory item = _list[i];
                      uint256 listPtr;
                      assembly {
                          listPtr := add(item, 0x20)
                      }
                      _memcpy(flattenedPtr, listPtr, item.length);
                      flattenedPtr += _list[i].length;
                  }
                  return flattened;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";
          import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
          import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
          /**
           * @title Lib_MerkleTrie
           */
          library Lib_MerkleTrie {
              /*******************
               * Data Structures *
               *******************/
              enum NodeType {
                  BranchNode,
                  ExtensionNode,
                  LeafNode
              }
              struct TrieNode {
                  bytes encoded;
                  Lib_RLPReader.RLPItem[] decoded;
              }
              /**********************
               * Contract Constants *
               **********************/
              // TREE_RADIX determines the number of elements per branch node.
              uint256 constant TREE_RADIX = 16;
              // Branch nodes have TREE_RADIX elements plus an additional `value` slot.
              uint256 constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
              // Leaf nodes and extension nodes always have two elements, a `path` and a `value`.
              uint256 constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
              // Prefixes are prepended to the `path` within a leaf or extension node and
              // allow us to differentiate between the two node types. `ODD` or `EVEN` is
              // determined by the number of nibbles within the unprefixed `path`. If the
              // number of nibbles if even, we need to insert an extra padding nibble so
              // the resulting prefixed `path` has an even number of nibbles.
              uint8 constant PREFIX_EXTENSION_EVEN = 0;
              uint8 constant PREFIX_EXTENSION_ODD = 1;
              uint8 constant PREFIX_LEAF_EVEN = 2;
              uint8 constant PREFIX_LEAF_ODD = 3;
              // Just a utility constant. RLP represents `NULL` as 0x80.
              bytes1 constant RLP_NULL = bytes1(0x80);
              bytes constant RLP_NULL_BYTES = hex"80";
              bytes32 internal constant KECCAK256_RLP_NULL_BYTES = keccak256(RLP_NULL_BYTES);
              /**********************
               * Internal Functions *
               **********************/
              /**
               * @notice Verifies a proof that a given key/value pair is present in the
               * Merkle trie.
               * @param _key Key of the node to search for, as a hex string.
               * @param _value Value of the node to search for, as a hex string.
               * @param _proof Merkle trie inclusion proof for the desired node. Unlike
               * traditional Merkle trees, this proof is executed top-down and consists
               * of a list of RLP-encoded nodes that make a path down to the target node.
               * @param _root Known root of the Merkle trie. Used to verify that the
               * included proof is correctly constructed.
               * @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
               */
              function verifyInclusionProof(
                  bytes memory _key,
                  bytes memory _value,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bool _verified) {
                  (bool exists, bytes memory value) = get(_key, _proof, _root);
                  return (exists && Lib_BytesUtils.equal(_value, value));
              }
              /**
               * @notice Updates a Merkle trie and returns a new root hash.
               * @param _key Key of the node to update, as a hex string.
               * @param _value Value of the node to update, as a hex string.
               * @param _proof Merkle trie inclusion proof for the node *nearest* the
               * target node. If the key exists, we can simply update the value.
               * Otherwise, we need to modify the trie to handle the new k/v pair.
               * @param _root Known root of the Merkle trie. Used to verify that the
               * included proof is correctly constructed.
               * @return _updatedRoot Root hash of the newly constructed trie.
               */
              function update(
                  bytes memory _key,
                  bytes memory _value,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bytes32 _updatedRoot) {
                  // Special case when inserting the very first node.
                  if (_root == KECCAK256_RLP_NULL_BYTES) {
                      return getSingleNodeRootHash(_key, _value);
                  }
                  TrieNode[] memory proof = _parseProof(_proof);
                  (uint256 pathLength, bytes memory keyRemainder, ) = _walkNodePath(proof, _key, _root);
                  TrieNode[] memory newPath = _getNewPath(proof, pathLength, _key, keyRemainder, _value);
                  return _getUpdatedTrieRoot(newPath, _key);
              }
              /**
               * @notice Retrieves the value associated with a given key.
               * @param _key Key to search for, as hex bytes.
               * @param _proof Merkle trie inclusion proof for the key.
               * @param _root Known root of the Merkle trie.
               * @return _exists Whether or not the key exists.
               * @return _value Value of the key if it exists.
               */
              function get(
                  bytes memory _key,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bool _exists, bytes memory _value) {
                  TrieNode[] memory proof = _parseProof(_proof);
                  (uint256 pathLength, bytes memory keyRemainder, bool isFinalNode) = _walkNodePath(
                      proof,
                      _key,
                      _root
                  );
                  bool exists = keyRemainder.length == 0;
                  require(exists || isFinalNode, "Provided proof is invalid.");
                  bytes memory value = exists ? _getNodeValue(proof[pathLength - 1]) : bytes("");
                  return (exists, value);
              }
              /**
               * Computes the root hash for a trie with a single node.
               * @param _key Key for the single node.
               * @param _value Value for the single node.
               * @return _updatedRoot Hash of the trie.
               */
              function getSingleNodeRootHash(bytes memory _key, bytes memory _value)
                  internal
                  pure
                  returns (bytes32 _updatedRoot)
              {
                  return keccak256(_makeLeafNode(Lib_BytesUtils.toNibbles(_key), _value).encoded);
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * @notice Walks through a proof using a provided key.
               * @param _proof Inclusion proof to walk through.
               * @param _key Key to use for the walk.
               * @param _root Known root of the trie.
               * @return _pathLength Length of the final path
               * @return _keyRemainder Portion of the key remaining after the walk.
               * @return _isFinalNode Whether or not we've hit a dead end.
               */
              function _walkNodePath(
                  TrieNode[] memory _proof,
                  bytes memory _key,
                  bytes32 _root
              )
                  private
                  pure
                  returns (
                      uint256 _pathLength,
                      bytes memory _keyRemainder,
                      bool _isFinalNode
                  )
              {
                  uint256 pathLength = 0;
                  bytes memory key = Lib_BytesUtils.toNibbles(_key);
                  bytes32 currentNodeID = _root;
                  uint256 currentKeyIndex = 0;
                  uint256 currentKeyIncrement = 0;
                  TrieNode memory currentNode;
                  // Proof is top-down, so we start at the first element (root).
                  for (uint256 i = 0; i < _proof.length; i++) {
                      currentNode = _proof[i];
                      currentKeyIndex += currentKeyIncrement;
                      // Keep track of the proof elements we actually need.
                      // It's expensive to resize arrays, so this simply reduces gas costs.
                      pathLength += 1;
                      if (currentKeyIndex == 0) {
                          // First proof element is always the root node.
                          require(keccak256(currentNode.encoded) == currentNodeID, "Invalid root hash");
                      } else if (currentNode.encoded.length >= 32) {
                          // Nodes 32 bytes or larger are hashed inside branch nodes.
                          require(
                              keccak256(currentNode.encoded) == currentNodeID,
                              "Invalid large internal hash"
                          );
                      } else {
                          // Nodes smaller than 31 bytes aren't hashed.
                          require(
                              Lib_BytesUtils.toBytes32(currentNode.encoded) == currentNodeID,
                              "Invalid internal node hash"
                          );
                      }
                      if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                          if (currentKeyIndex == key.length) {
                              // We've hit the end of the key
                              // meaning the value should be within this branch node.
                              break;
                          } else {
                              // We're not at the end of the key yet.
                              // Figure out what the next node ID should be and continue.
                              uint8 branchKey = uint8(key[currentKeyIndex]);
                              Lib_RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                              currentNodeID = _getNodeID(nextNode);
                              currentKeyIncrement = 1;
                              continue;
                          }
                      } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                          bytes memory path = _getNodePath(currentNode);
                          uint8 prefix = uint8(path[0]);
                          uint8 offset = 2 - (prefix % 2);
                          bytes memory pathRemainder = Lib_BytesUtils.slice(path, offset);
                          bytes memory keyRemainder = Lib_BytesUtils.slice(key, currentKeyIndex);
                          uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                          if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                              if (
                                  pathRemainder.length == sharedNibbleLength &&
                                  keyRemainder.length == sharedNibbleLength
                              ) {
                                  // The key within this leaf matches our key exactly.
                                  // Increment the key index to reflect that we have no remainder.
                                  currentKeyIndex += sharedNibbleLength;
                              }
                              // We've hit a leaf node, so our next node should be NULL.
                              currentNodeID = bytes32(RLP_NULL);
                              break;
                          } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                              if (sharedNibbleLength != pathRemainder.length) {
                                  // Our extension node is not identical to the remainder.
                                  // We've hit the end of this path
                                  // updates will need to modify this extension.
                                  currentNodeID = bytes32(RLP_NULL);
                                  break;
                              } else {
                                  // Our extension shares some nibbles.
                                  // Carry on to the next node.
                                  currentNodeID = _getNodeID(currentNode.decoded[1]);
                                  currentKeyIncrement = sharedNibbleLength;
                                  continue;
                              }
                          } else {
                              revert("Received a node with an unknown prefix");
                          }
                      } else {
                          revert("Received an unparseable node.");
                      }
                  }
                  // If our node ID is NULL, then we're at a dead end.
                  bool isFinalNode = currentNodeID == bytes32(RLP_NULL);
                  return (pathLength, Lib_BytesUtils.slice(key, currentKeyIndex), isFinalNode);
              }
              /**
               * @notice Creates new nodes to support a k/v pair insertion into a given Merkle trie path.
               * @param _path Path to the node nearest the k/v pair.
               * @param _pathLength Length of the path. Necessary because the provided path may include
               *  additional nodes (e.g., it comes directly from a proof) and we can't resize in-memory
               *  arrays without costly duplication.
               * @param _key Full original key.
               * @param _keyRemainder Portion of the initial key that must be inserted into the trie.
               * @param _value Value to insert at the given key.
               * @return _newPath A new path with the inserted k/v pair and extra supporting nodes.
               */
              function _getNewPath(
                  TrieNode[] memory _path,
                  uint256 _pathLength,
                  bytes memory _key,
                  bytes memory _keyRemainder,
                  bytes memory _value
              ) private pure returns (TrieNode[] memory _newPath) {
                  bytes memory keyRemainder = _keyRemainder;
                  // Most of our logic depends on the status of the last node in the path.
                  TrieNode memory lastNode = _path[_pathLength - 1];
                  NodeType lastNodeType = _getNodeType(lastNode);
                  // Create an array for newly created nodes.
                  // We need up to three new nodes, depending on the contents of the last node.
                  // Since array resizing is expensive, we'll keep track of the size manually.
                  // We're using an explicit `totalNewNodes += 1` after insertions for clarity.
                  TrieNode[] memory newNodes = new TrieNode[](3);
                  uint256 totalNewNodes = 0;
                  // solhint-disable-next-line max-line-length
                  // Reference: https://github.com/ethereumjs/merkle-patricia-tree/blob/c0a10395aab37d42c175a47114ebfcbd7efcf059/src/baseTrie.ts#L294-L313
                  bool matchLeaf = false;
                  if (lastNodeType == NodeType.LeafNode) {
                      uint256 l = 0;
                      if (_path.length > 0) {
                          for (uint256 i = 0; i < _path.length - 1; i++) {
                              if (_getNodeType(_path[i]) == NodeType.BranchNode) {
                                  l++;
                              } else {
                                  l += _getNodeKey(_path[i]).length;
                              }
                          }
                      }
                      if (
                          _getSharedNibbleLength(
                              _getNodeKey(lastNode),
                              Lib_BytesUtils.slice(Lib_BytesUtils.toNibbles(_key), l)
                          ) ==
                          _getNodeKey(lastNode).length &&
                          keyRemainder.length == 0
                      ) {
                          matchLeaf = true;
                      }
                  }
                  if (matchLeaf) {
                      // We've found a leaf node with the given key.
                      // Simply need to update the value of the node to match.
                      newNodes[totalNewNodes] = _makeLeafNode(_getNodeKey(lastNode), _value);
                      totalNewNodes += 1;
                  } else if (lastNodeType == NodeType.BranchNode) {
                      if (keyRemainder.length == 0) {
                          // We've found a branch node with the given key.
                          // Simply need to update the value of the node to match.
                          newNodes[totalNewNodes] = _editBranchValue(lastNode, _value);
                          totalNewNodes += 1;
                      } else {
                          // We've found a branch node, but it doesn't contain our key.
                          // Reinsert the old branch for now.
                          newNodes[totalNewNodes] = lastNode;
                          totalNewNodes += 1;
                          // Create a new leaf node, slicing our remainder since the first byte points
                          // to our branch node.
                          newNodes[totalNewNodes] = _makeLeafNode(
                              Lib_BytesUtils.slice(keyRemainder, 1),
                              _value
                          );
                          totalNewNodes += 1;
                      }
                  } else {
                      // Our last node is either an extension node or a leaf node with a different key.
                      bytes memory lastNodeKey = _getNodeKey(lastNode);
                      uint256 sharedNibbleLength = _getSharedNibbleLength(lastNodeKey, keyRemainder);
                      if (sharedNibbleLength != 0) {
                          // We've got some shared nibbles between the last node and our key remainder.
                          // We'll need to insert an extension node that covers these shared nibbles.
                          bytes memory nextNodeKey = Lib_BytesUtils.slice(lastNodeKey, 0, sharedNibbleLength);
                          newNodes[totalNewNodes] = _makeExtensionNode(nextNodeKey, _getNodeHash(_value));
                          totalNewNodes += 1;
                          // Cut down the keys since we've just covered these shared nibbles.
                          lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, sharedNibbleLength);
                          keyRemainder = Lib_BytesUtils.slice(keyRemainder, sharedNibbleLength);
                      }
                      // Create an empty branch to fill in.
                      TrieNode memory newBranch = _makeEmptyBranchNode();
                      if (lastNodeKey.length == 0) {
                          // Key remainder was larger than the key for our last node.
                          // The value within our last node is therefore going to be shifted into
                          // a branch value slot.
                          newBranch = _editBranchValue(newBranch, _getNodeValue(lastNode));
                      } else {
                          // Last node key was larger than the key remainder.
                          // We're going to modify some index of our branch.
                          uint8 branchKey = uint8(lastNodeKey[0]);
                          // Move on to the next nibble.
                          lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, 1);
                          if (lastNodeType == NodeType.LeafNode) {
                              // We're dealing with a leaf node.
                              // We'll modify the key and insert the old leaf node into the branch index.
                              TrieNode memory modifiedLastNode = _makeLeafNode(
                                  lastNodeKey,
                                  _getNodeValue(lastNode)
                              );
                              newBranch = _editBranchIndex(
                                  newBranch,
                                  branchKey,
                                  _getNodeHash(modifiedLastNode.encoded)
                              );
                          } else if (lastNodeKey.length != 0) {
                              // We're dealing with a shrinking extension node.
                              // We need to modify the node to decrease the size of the key.
                              TrieNode memory modifiedLastNode = _makeExtensionNode(
                                  lastNodeKey,
                                  _getNodeValue(lastNode)
                              );
                              newBranch = _editBranchIndex(
                                  newBranch,
                                  branchKey,
                                  _getNodeHash(modifiedLastNode.encoded)
                              );
                          } else {
                              // We're dealing with an unnecessary extension node.
                              // We're going to delete the node entirely.
                              // Simply insert its current value into the branch index.
                              newBranch = _editBranchIndex(newBranch, branchKey, _getNodeValue(lastNode));
                          }
                      }
                      if (keyRemainder.length == 0) {
                          // We've got nothing left in the key remainder.
                          // Simply insert the value into the branch value slot.
                          newBranch = _editBranchValue(newBranch, _value);
                          // Push the branch into the list of new nodes.
                          newNodes[totalNewNodes] = newBranch;
                          totalNewNodes += 1;
                      } else {
                          // We've got some key remainder to work with.
                          // We'll be inserting a leaf node into the trie.
                          // First, move on to the next nibble.
                          keyRemainder = Lib_BytesUtils.slice(keyRemainder, 1);
                          // Push the branch into the list of new nodes.
                          newNodes[totalNewNodes] = newBranch;
                          totalNewNodes += 1;
                          // Push a new leaf node for our k/v pair.
                          newNodes[totalNewNodes] = _makeLeafNode(keyRemainder, _value);
                          totalNewNodes += 1;
                      }
                  }
                  // Finally, join the old path with our newly created nodes.
                  // Since we're overwriting the last node in the path, we use `_pathLength - 1`.
                  return _joinNodeArrays(_path, _pathLength - 1, newNodes, totalNewNodes);
              }
              /**
               * @notice Computes the trie root from a given path.
               * @param _nodes Path to some k/v pair.
               * @param _key Key for the k/v pair.
               * @return _updatedRoot Root hash for the updated trie.
               */
              function _getUpdatedTrieRoot(TrieNode[] memory _nodes, bytes memory _key)
                  private
                  pure
                  returns (bytes32 _updatedRoot)
              {
                  bytes memory key = Lib_BytesUtils.toNibbles(_key);
                  // Some variables to keep track of during iteration.
                  TrieNode memory currentNode;
                  NodeType currentNodeType;
                  bytes memory previousNodeHash;
                  // Run through the path backwards to rebuild our root hash.
                  for (uint256 i = _nodes.length; i > 0; i--) {
                      // Pick out the current node.
                      currentNode = _nodes[i - 1];
                      currentNodeType = _getNodeType(currentNode);
                      if (currentNodeType == NodeType.LeafNode) {
                          // Leaf nodes are already correctly encoded.
                          // Shift the key over to account for the nodes key.
                          bytes memory nodeKey = _getNodeKey(currentNode);
                          key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
                      } else if (currentNodeType == NodeType.ExtensionNode) {
                          // Shift the key over to account for the nodes key.
                          bytes memory nodeKey = _getNodeKey(currentNode);
                          key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
                          // If this node is the last element in the path, it'll be correctly encoded
                          // and we can skip this part.
                          if (previousNodeHash.length > 0) {
                              // Re-encode the node based on the previous node.
                              currentNode = _editExtensionNodeValue(currentNode, previousNodeHash);
                          }
                      } else if (currentNodeType == NodeType.BranchNode) {
                          // If this node is the last element in the path, it'll be correctly encoded
                          // and we can skip this part.
                          if (previousNodeHash.length > 0) {
                              // Re-encode the node based on the previous node.
                              uint8 branchKey = uint8(key[key.length - 1]);
                              key = Lib_BytesUtils.slice(key, 0, key.length - 1);
                              currentNode = _editBranchIndex(currentNode, branchKey, previousNodeHash);
                          }
                      }
                      // Compute the node hash for the next iteration.
                      previousNodeHash = _getNodeHash(currentNode.encoded);
                  }
                  // Current node should be the root at this point.
                  // Simply return the hash of its encoding.
                  return keccak256(currentNode.encoded);
              }
              /**
               * @notice Parses an RLP-encoded proof into something more useful.
               * @param _proof RLP-encoded proof to parse.
               * @return _parsed Proof parsed into easily accessible structs.
               */
              function _parseProof(bytes memory _proof) private pure returns (TrieNode[] memory _parsed) {
                  Lib_RLPReader.RLPItem[] memory nodes = Lib_RLPReader.readList(_proof);
                  TrieNode[] memory proof = new TrieNode[](nodes.length);
                  for (uint256 i = 0; i < nodes.length; i++) {
                      bytes memory encoded = Lib_RLPReader.readBytes(nodes[i]);
                      proof[i] = TrieNode({ encoded: encoded, decoded: Lib_RLPReader.readList(encoded) });
                  }
                  return proof;
              }
              /**
               * @notice Picks out the ID for a node. Node ID is referred to as the
               * "hash" within the specification, but nodes < 32 bytes are not actually
               * hashed.
               * @param _node Node to pull an ID for.
               * @return _nodeID ID for the node, depending on the size of its contents.
               */
              function _getNodeID(Lib_RLPReader.RLPItem memory _node) private pure returns (bytes32 _nodeID) {
                  bytes memory nodeID;
                  if (_node.length < 32) {
                      // Nodes smaller than 32 bytes are RLP encoded.
                      nodeID = Lib_RLPReader.readRawBytes(_node);
                  } else {
                      // Nodes 32 bytes or larger are hashed.
                      nodeID = Lib_RLPReader.readBytes(_node);
                  }
                  return Lib_BytesUtils.toBytes32(nodeID);
              }
              /**
               * @notice Gets the path for a leaf or extension node.
               * @param _node Node to get a path for.
               * @return _path Node path, converted to an array of nibbles.
               */
              function _getNodePath(TrieNode memory _node) private pure returns (bytes memory _path) {
                  return Lib_BytesUtils.toNibbles(Lib_RLPReader.readBytes(_node.decoded[0]));
              }
              /**
               * @notice Gets the key for a leaf or extension node. Keys are essentially
               * just paths without any prefix.
               * @param _node Node to get a key for.
               * @return _key Node key, converted to an array of nibbles.
               */
              function _getNodeKey(TrieNode memory _node) private pure returns (bytes memory _key) {
                  return _removeHexPrefix(_getNodePath(_node));
              }
              /**
               * @notice Gets the path for a node.
               * @param _node Node to get a value for.
               * @return _value Node value, as hex bytes.
               */
              function _getNodeValue(TrieNode memory _node) private pure returns (bytes memory _value) {
                  return Lib_RLPReader.readBytes(_node.decoded[_node.decoded.length - 1]);
              }
              /**
               * @notice Computes the node hash for an encoded node. Nodes < 32 bytes
               * are not hashed, all others are keccak256 hashed.
               * @param _encoded Encoded node to hash.
               * @return _hash Hash of the encoded node. Simply the input if < 32 bytes.
               */
              function _getNodeHash(bytes memory _encoded) private pure returns (bytes memory _hash) {
                  if (_encoded.length < 32) {
                      return _encoded;
                  } else {
                      return abi.encodePacked(keccak256(_encoded));
                  }
              }
              /**
               * @notice Determines the type for a given node.
               * @param _node Node to determine a type for.
               * @return _type Type of the node; BranchNode/ExtensionNode/LeafNode.
               */
              function _getNodeType(TrieNode memory _node) private pure returns (NodeType _type) {
                  if (_node.decoded.length == BRANCH_NODE_LENGTH) {
                      return NodeType.BranchNode;
                  } else if (_node.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                      bytes memory path = _getNodePath(_node);
                      uint8 prefix = uint8(path[0]);
                      if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                          return NodeType.LeafNode;
                      } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                          return NodeType.ExtensionNode;
                      }
                  }
                  revert("Invalid node type");
              }
              /**
               * @notice Utility; determines the number of nibbles shared between two
               * nibble arrays.
               * @param _a First nibble array.
               * @param _b Second nibble array.
               * @return _shared Number of shared nibbles.
               */
              function _getSharedNibbleLength(bytes memory _a, bytes memory _b)
                  private
                  pure
                  returns (uint256 _shared)
              {
                  uint256 i = 0;
                  while (_a.length > i && _b.length > i && _a[i] == _b[i]) {
                      i++;
                  }
                  return i;
              }
              /**
               * @notice Utility; converts an RLP-encoded node into our nice struct.
               * @param _raw RLP-encoded node to convert.
               * @return _node Node as a TrieNode struct.
               */
              function _makeNode(bytes[] memory _raw) private pure returns (TrieNode memory _node) {
                  bytes memory encoded = Lib_RLPWriter.writeList(_raw);
                  return TrieNode({ encoded: encoded, decoded: Lib_RLPReader.readList(encoded) });
              }
              /**
               * @notice Utility; converts an RLP-decoded node into our nice struct.
               * @param _items RLP-decoded node to convert.
               * @return _node Node as a TrieNode struct.
               */
              function _makeNode(Lib_RLPReader.RLPItem[] memory _items)
                  private
                  pure
                  returns (TrieNode memory _node)
              {
                  bytes[] memory raw = new bytes[](_items.length);
                  for (uint256 i = 0; i < _items.length; i++) {
                      raw[i] = Lib_RLPReader.readRawBytes(_items[i]);
                  }
                  return _makeNode(raw);
              }
              /**
               * @notice Creates a new extension node.
               * @param _key Key for the extension node, unprefixed.
               * @param _value Value for the extension node.
               * @return _node New extension node with the given k/v pair.
               */
              function _makeExtensionNode(bytes memory _key, bytes memory _value)
                  private
                  pure
                  returns (TrieNode memory _node)
              {
                  bytes[] memory raw = new bytes[](2);
                  bytes memory key = _addHexPrefix(_key, false);
                  raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
                  raw[1] = Lib_RLPWriter.writeBytes(_value);
                  return _makeNode(raw);
              }
              /**
               * Creates a new extension node with the same key but a different value.
               * @param _node Extension node to copy and modify.
               * @param _value New value for the extension node.
               * @return New node with the same key and different value.
               */
              function _editExtensionNodeValue(TrieNode memory _node, bytes memory _value)
                  private
                  pure
                  returns (TrieNode memory)
              {
                  bytes[] memory raw = new bytes[](2);
                  bytes memory key = _addHexPrefix(_getNodeKey(_node), false);
                  raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
                  if (_value.length < 32) {
                      raw[1] = _value;
                  } else {
                      raw[1] = Lib_RLPWriter.writeBytes(_value);
                  }
                  return _makeNode(raw);
              }
              /**
               * @notice Creates a new leaf node.
               * @dev This function is essentially identical to `_makeExtensionNode`.
               * Although we could route both to a single method with a flag, it's
               * more gas efficient to keep them separate and duplicate the logic.
               * @param _key Key for the leaf node, unprefixed.
               * @param _value Value for the leaf node.
               * @return _node New leaf node with the given k/v pair.
               */
              function _makeLeafNode(bytes memory _key, bytes memory _value)
                  private
                  pure
                  returns (TrieNode memory _node)
              {
                  bytes[] memory raw = new bytes[](2);
                  bytes memory key = _addHexPrefix(_key, true);
                  raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
                  raw[1] = Lib_RLPWriter.writeBytes(_value);
                  return _makeNode(raw);
              }
              /**
               * @notice Creates an empty branch node.
               * @return _node Empty branch node as a TrieNode struct.
               */
              function _makeEmptyBranchNode() private pure returns (TrieNode memory _node) {
                  bytes[] memory raw = new bytes[](BRANCH_NODE_LENGTH);
                  for (uint256 i = 0; i < raw.length; i++) {
                      raw[i] = RLP_NULL_BYTES;
                  }
                  return _makeNode(raw);
              }
              /**
               * @notice Modifies the value slot for a given branch.
               * @param _branch Branch node to modify.
               * @param _value Value to insert into the branch.
               * @return _updatedNode Modified branch node.
               */
              function _editBranchValue(TrieNode memory _branch, bytes memory _value)
                  private
                  pure
                  returns (TrieNode memory _updatedNode)
              {
                  bytes memory encoded = Lib_RLPWriter.writeBytes(_value);
                  _branch.decoded[_branch.decoded.length - 1] = Lib_RLPReader.toRLPItem(encoded);
                  return _makeNode(_branch.decoded);
              }
              /**
               * @notice Modifies a slot at an index for a given branch.
               * @param _branch Branch node to modify.
               * @param _index Slot index to modify.
               * @param _value Value to insert into the slot.
               * @return _updatedNode Modified branch node.
               */
              function _editBranchIndex(
                  TrieNode memory _branch,
                  uint8 _index,
                  bytes memory _value
              ) private pure returns (TrieNode memory _updatedNode) {
                  bytes memory encoded = _value.length < 32 ? _value : Lib_RLPWriter.writeBytes(_value);
                  _branch.decoded[_index] = Lib_RLPReader.toRLPItem(encoded);
                  return _makeNode(_branch.decoded);
              }
              /**
               * @notice Utility; adds a prefix to a key.
               * @param _key Key to prefix.
               * @param _isLeaf Whether or not the key belongs to a leaf.
               * @return _prefixedKey Prefixed key.
               */
              function _addHexPrefix(bytes memory _key, bool _isLeaf)
                  private
                  pure
                  returns (bytes memory _prefixedKey)
              {
                  uint8 prefix = _isLeaf ? uint8(0x02) : uint8(0x00);
                  uint8 offset = uint8(_key.length % 2);
                  bytes memory prefixed = new bytes(2 - offset);
                  prefixed[0] = bytes1(prefix + offset);
                  return abi.encodePacked(prefixed, _key);
              }
              /**
               * @notice Utility; removes a prefix from a path.
               * @param _path Path to remove the prefix from.
               * @return _unprefixedKey Unprefixed key.
               */
              function _removeHexPrefix(bytes memory _path)
                  private
                  pure
                  returns (bytes memory _unprefixedKey)
              {
                  if (uint8(_path[0]) % 2 == 0) {
                      return Lib_BytesUtils.slice(_path, 2);
                  } else {
                      return Lib_BytesUtils.slice(_path, 1);
                  }
              }
              /**
               * @notice Utility; combines two node arrays. Array lengths are required
               * because the actual lengths may be longer than the filled lengths.
               * Array resizing is extremely costly and should be avoided.
               * @param _a First array to join.
               * @param _aLength Length of the first array.
               * @param _b Second array to join.
               * @param _bLength Length of the second array.
               * @return _joined Combined node array.
               */
              function _joinNodeArrays(
                  TrieNode[] memory _a,
                  uint256 _aLength,
                  TrieNode[] memory _b,
                  uint256 _bLength
              ) private pure returns (TrieNode[] memory _joined) {
                  TrieNode[] memory ret = new TrieNode[](_aLength + _bLength);
                  // Copy elements from the first array.
                  for (uint256 i = 0; i < _aLength; i++) {
                      ret[i] = _a[i];
                  }
                  // Copy elements from the second array.
                  for (uint256 i = 0; i < _bLength; i++) {
                      ret[i + _aLength] = _b[i];
                  }
                  return ret;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /* Library Imports */
          import { Lib_MerkleTrie } from "./Lib_MerkleTrie.sol";
          /**
           * @title Lib_SecureMerkleTrie
           */
          library Lib_SecureMerkleTrie {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * @notice Verifies a proof that a given key/value pair is present in the
               * Merkle trie.
               * @param _key Key of the node to search for, as a hex string.
               * @param _value Value of the node to search for, as a hex string.
               * @param _proof Merkle trie inclusion proof for the desired node. Unlike
               * traditional Merkle trees, this proof is executed top-down and consists
               * of a list of RLP-encoded nodes that make a path down to the target node.
               * @param _root Known root of the Merkle trie. Used to verify that the
               * included proof is correctly constructed.
               * @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
               */
              function verifyInclusionProof(
                  bytes memory _key,
                  bytes memory _value,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bool _verified) {
                  bytes memory key = _getSecureKey(_key);
                  return Lib_MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
              }
              /**
               * @notice Updates a Merkle trie and returns a new root hash.
               * @param _key Key of the node to update, as a hex string.
               * @param _value Value of the node to update, as a hex string.
               * @param _proof Merkle trie inclusion proof for the node *nearest* the
               * target node. If the key exists, we can simply update the value.
               * Otherwise, we need to modify the trie to handle the new k/v pair.
               * @param _root Known root of the Merkle trie. Used to verify that the
               * included proof is correctly constructed.
               * @return _updatedRoot Root hash of the newly constructed trie.
               */
              function update(
                  bytes memory _key,
                  bytes memory _value,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bytes32 _updatedRoot) {
                  bytes memory key = _getSecureKey(_key);
                  return Lib_MerkleTrie.update(key, _value, _proof, _root);
              }
              /**
               * @notice Retrieves the value associated with a given key.
               * @param _key Key to search for, as hex bytes.
               * @param _proof Merkle trie inclusion proof for the key.
               * @param _root Known root of the Merkle trie.
               * @return _exists Whether or not the key exists.
               * @return _value Value of the key if it exists.
               */
              function get(
                  bytes memory _key,
                  bytes memory _proof,
                  bytes32 _root
              ) internal pure returns (bool _exists, bytes memory _value) {
                  bytes memory key = _getSecureKey(_key);
                  return Lib_MerkleTrie.get(key, _proof, _root);
              }
              /**
               * Computes the root hash for a trie with a single node.
               * @param _key Key for the single node.
               * @param _value Value for the single node.
               * @return _updatedRoot Hash of the trie.
               */
              function getSingleNodeRootHash(bytes memory _key, bytes memory _value)
                  internal
                  pure
                  returns (bytes32 _updatedRoot)
              {
                  bytes memory key = _getSecureKey(_key);
                  return Lib_MerkleTrie.getSingleNodeRootHash(key, _value);
              }
              /*********************
               * Private Functions *
               *********************/
              /**
               * Computes the secure counterpart to a key.
               * @param _key Key to get a secure key from.
               * @return _secureKey Secure version of the key.
               */
              function _getSecureKey(bytes memory _key) private pure returns (bytes memory _secureKey) {
                  return abi.encodePacked(keccak256(_key));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_Byte32Utils
           */
          library Lib_Bytes32Utils {
              /**********************
               * Internal Functions *
               **********************/
              /**
               * Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true."
               * @param _in Input bytes32 value.
               * @return Bytes32 as a boolean.
               */
              function toBool(bytes32 _in) internal pure returns (bool) {
                  return _in != 0;
              }
              /**
               * Converts a boolean to a bytes32 value.
               * @param _in Input boolean value.
               * @return Boolean as a bytes32.
               */
              function fromBool(bool _in) internal pure returns (bytes32) {
                  return bytes32(uint256(_in ? 1 : 0));
              }
              /**
               * Converts a bytes32 value to an address. Takes the *last* 20 bytes.
               * @param _in Input bytes32 value.
               * @return Bytes32 as an address.
               */
              function toAddress(bytes32 _in) internal pure returns (address) {
                  return address(uint160(uint256(_in)));
              }
              /**
               * Converts an address to a bytes32.
               * @param _in Input address value.
               * @return Address as a bytes32.
               */
              function fromAddress(address _in) internal pure returns (bytes32) {
                  return bytes32(uint256(uint160(_in)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.9;
          /**
           * @title Lib_BytesUtils
           */
          library Lib_BytesUtils {
              /**********************
               * Internal Functions *
               **********************/
              function slice(
                  bytes memory _bytes,
                  uint256 _start,
                  uint256 _length
              ) internal pure returns (bytes memory) {
                  require(_length + 31 >= _length, "slice_overflow");
                  require(_start + _length >= _start, "slice_overflow");
                  require(_bytes.length >= _start + _length, "slice_outOfBounds");
                  bytes memory tempBytes;
                  assembly {
                      switch iszero(_length)
                      case 0 {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // The first word of the slice result is potentially a partial
                          // word read from the original array. To read it, we calculate
                          // the length of that partial word and start copying that many
                          // bytes into the array. The first word we copy will start with
                          // data we don't care about, but the last `lengthmod` bytes will
                          // land at the beginning of the contents of the new array. When
                          // we're done copying, we overwrite the full first word with
                          // the actual length of the slice.
                          let lengthmod := and(_length, 31)
                          // The multiplication in the next line is necessary
                          // because when slicing multiples of 32 bytes (lengthmod == 0)
                          // the following copy loop was copying the origin's length
                          // and then ending prematurely not copying everything it should.
                          let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                          let end := add(mc, _length)
                          for {
                              // The multiplication in the next line has the same exact purpose
                              // as the one above.
                              let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          mstore(tempBytes, _length)
                          //update free-memory pointer
                          //allocating the array padded to 32 bytes like the compiler does now
                          mstore(0x40, and(add(mc, 31), not(31)))
                      }
                      //if we want a zero-length slice let's just return a zero-length array
                      default {
                          tempBytes := mload(0x40)
                          //zero out the 32 bytes slice we are about to return
                          //we need to do it because Solidity does not garbage collect
                          mstore(tempBytes, 0)
                          mstore(0x40, add(tempBytes, 0x20))
                      }
                  }
                  return tempBytes;
              }
              function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                  if (_start >= _bytes.length) {
                      return bytes("");
                  }
                  return slice(_bytes, _start, _bytes.length - _start);
              }
              function toBytes32(bytes memory _bytes) internal pure returns (bytes32) {
                  if (_bytes.length < 32) {
                      bytes32 ret;
                      assembly {
                          ret := mload(add(_bytes, 32))
                      }
                      return ret;
                  }
                  return abi.decode(_bytes, (bytes32)); // will truncate if input length > 32 bytes
              }
              function toUint256(bytes memory _bytes) internal pure returns (uint256) {
                  return uint256(toBytes32(_bytes));
              }
              function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                  bytes memory nibbles = new bytes(_bytes.length * 2);
                  for (uint256 i = 0; i < _bytes.length; i++) {
                      nibbles[i * 2] = _bytes[i] >> 4;
                      nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
                  }
                  return nibbles;
              }
              function fromNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                  bytes memory ret = new bytes(_bytes.length / 2);
                  for (uint256 i = 0; i < ret.length; i++) {
                      ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
                  }
                  return ret;
              }
              function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                  return keccak256(_bytes) == keccak256(_other);
              }
          }
          // SPDX-License-Identifier: Apache-2.0
          /*
           * Copyright 2019-2021, Offchain Labs, Inc.
           *
           * Licensed under the Apache License, Version 2.0 (the "License");
           * you may not use this file except in compliance with the License.
           * You may obtain a copy of the License at
           *
           *    http://www.apache.org/licenses/LICENSE-2.0
           *
           * Unless required by applicable law or agreed to in writing, software
           * distributed under the License is distributed on an "AS IS" BASIS,
           * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
           * See the License for the specific language governing permissions and
           * limitations under the License.
           */
          pragma solidity ^0.8.7;
          library AddressAliasHelper {
              uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
              /// @notice Utility function that converts the address in the L1 that submitted a tx to
              /// the inbox to the msg.sender viewed in the L2
              /// @param l1Address the address in the L1 that triggered the tx to L2
              /// @return l2Address L2 address as viewed in msg.sender
              function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                  unchecked {
                      l2Address = address(uint160(l1Address) + offset);
                  }
              }
              /// @notice Utility function that converts the msg.sender viewed in the L2 to the
              /// address in the L1 that submitted a tx to the inbox
              /// @param l2Address L2 address as viewed in msg.sender
              /// @return l1Address the address in the L1 that triggered the tx to L2
              function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                  unchecked {
                      l1Address = address(uint160(l2Address) - offset);
                  }
              }
          }