Transaction Hash:
Block:
19173413 at Feb-07-2024 02:40:59 AM +UTC
Transaction Fee:
0.003936980270106247 ETH
$10.00
Gas Used:
144,131 Gas / 27.315291437 Gwei
Emitted Events:
130 |
USDD.Transfer( from=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D, to=0x54130c0F6D7C39e4129AEDc56Dd1A8a458918D8E, value=503341709381541869990 )
|
131 |
TetherToken.Transfer( from=[Sender] 0x4a487fe12f101c0981e1a1bf2a491bae47bafc8e, to=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D, value=500000000 )
|
132 |
0x2bc477c7c00511ec8a2ea667dd8210af9ff15e1d.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x000000000000000000000000ef1c6e67703c7bd7107eed8303fbe6ec2554bf6b, 0x00000000000000000000000054130c0f6d7c39e4129aedc56dd1a8a458918d8e, ffffffffffffffffffffffffffffffffffffffffffffffe4b6bb0622db4b465a, 000000000000000000000000000000000000000000000000000000001dcd6500, 0000000000000000000000000000000000000000000010b89462d7215816e782, 0000000000000000000000000000000000000000000000008ac72880b2e4832f, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc858 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x0C10bF8F...09160b5c6 | |||||
0x2bc477c7...F9FF15e1D | (Uniswap V3: USDD-USDT) | ||||
0x4A487fE1...E47BAFc8e |
1.33171302307098578 Eth
Nonce: 3044
|
1.327776042800879533 Eth
Nonce: 3045
| 0.003936980270106247 | ||
0xB279d484...3f63b4e16
Miner
| (MEV Builder: 0xB27...e16) | 1.810018867802102179 Eth | 1.810249477402102179 Eth | 0.0002306096 | |
0xdAC17F95...13D831ec7 |
Execution Trace
UniversalRouter.execute( commands=0x00, inputs=[AAAAAAAAAAAAAAAAVBMMD218OeQSmu3FbdGopFiRjY4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHc1lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGfd12iY0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr2sF/lY0u5SOiIGIGmUWXwT2DHscAAGQMEL+Py3v1QSGHpZWrl6NgkWC1xgAAAAAAAAAAAAAAAAAAAAAAAAAAAA==], deadline=1707273829 )
Uniswap V3: USDD-USDT.128acb08( )
-
USDD.transfer( recipient=0x54130c0F6D7C39e4129AEDc56Dd1A8a458918D8E, amount=503341709381541869990 ) => ( True )
-
TetherToken.balanceOf( who=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D ) => ( 67231114820 )
UniversalRouter.uniswapV3SwapCallback( amount0Delta=-503341709381541869990, amount1Delta=500000000, data=0x00000000000000000000000000000000000000000000000000000000000000400000000000000000000000004A487FE12F101C0981E1A1BF2A491BAE47BAFC8E000000000000000000000000000000000000000000000000000000000000002BDAC17F958D2EE523A2206206994597C13D831EC70000640C10BF8FCB7BF5412187A595AB97A3609160B5C6000000000000000000000000000000000000000000 )
Permit2.transferFrom( from=0x4A487fE12F101c0981e1A1Bf2a491BAE47BAFc8e, to=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D, amount=500000000, token=0xdAC17F958D2ee523a2206206994597C13D831ec7 )
-
TetherToken.transferFrom( _from=0x4A487fE12F101c0981e1A1Bf2a491BAE47BAFc8e, _to=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D, _value=500000000 )
-
-
TetherToken.balanceOf( who=0x2bc477c7C00511eC8a2EA667dD8210AF9FF15e1D ) => ( 67731114820 )
-
File 1 of 4: UniversalRouter
File 2 of 4: USDD
File 3 of 4: TetherToken
File 4 of 4: Permit2
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {Dispatcher} from './base/Dispatcher.sol'; import {RewardsCollector} from './base/RewardsCollector.sol'; import {RouterParameters, RouterImmutables} from './base/RouterImmutables.sol'; import {Constants} from './libraries/Constants.sol'; import {Commands} from './libraries/Commands.sol'; import {IUniversalRouter} from './interfaces/IUniversalRouter.sol'; import {ReentrancyLock} from './base/ReentrancyLock.sol'; contract UniversalRouter is RouterImmutables, IUniversalRouter, Dispatcher, RewardsCollector, ReentrancyLock { modifier checkDeadline(uint256 deadline) { if (block.timestamp > deadline) revert TransactionDeadlinePassed(); _; } constructor(RouterParameters memory params) RouterImmutables(params) {} /// @inheritdoc IUniversalRouter function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable checkDeadline(deadline) { execute(commands, inputs); } /// @inheritdoc IUniversalRouter function execute(bytes calldata commands, bytes[] calldata inputs) public payable isNotLocked { bool success; bytes memory output; uint256 numCommands = commands.length; if (inputs.length != numCommands) revert LengthMismatch(); // loop through all given commands, execute them and pass along outputs as defined for (uint256 commandIndex = 0; commandIndex < numCommands;) { bytes1 command = commands[commandIndex]; bytes memory input = inputs[commandIndex]; (success, output) = dispatch(command, input); if (!success && successRequired(command)) { revert ExecutionFailed({commandIndex: commandIndex, message: output}); } unchecked { commandIndex++; } } } function successRequired(bytes1 command) internal pure returns (bool) { return command & Commands.FLAG_ALLOW_REVERT == 0; } // To receive ETH from WETH and NFT protocols receive() external payable {} } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {IERC721Receiver} from 'openzeppelin-contracts/contracts/token/ERC721/IERC721Receiver.sol'; import {IERC1155Receiver} from 'openzeppelin-contracts/contracts/token/ERC1155/IERC1155Receiver.sol'; import {IERC165} from 'openzeppelin-contracts/contracts/utils/introspection/IERC165.sol'; /// @title ERC Callback Support /// @notice Implements various functions introduced by a variety of ERCs for security reasons. /// All are called by external contracts to ensure that this contract safely supports the ERC in question. contract Callbacks is IERC721Receiver, IERC1155Receiver { function onERC721Received(address, address, uint256, bytes calldata) external pure returns (bytes4) { return this.onERC721Received.selector; } function onERC1155Received(address, address, uint256, uint256, bytes calldata) external pure returns (bytes4) { return this.onERC1155Received.selector; } function onERC1155BatchReceived(address, address, uint256[] calldata, uint256[] calldata, bytes calldata) external pure returns (bytes4) { return this.onERC1155BatchReceived.selector; } function supportsInterface(bytes4 interfaceId) external pure returns (bool) { return interfaceId == type(IERC1155Receiver).interfaceId || interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC165).interfaceId; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {V2SwapRouter} from '../modules/uniswap/v2/V2SwapRouter.sol'; import {V3SwapRouter} from '../modules/uniswap/v3/V3SwapRouter.sol'; import {Payments} from '../modules/Payments.sol'; import {RouterImmutables} from '../base/RouterImmutables.sol'; import {Callbacks} from '../base/Callbacks.sol'; import {Commands} from '../libraries/Commands.sol'; import {Recipient} from '../libraries/Recipient.sol'; import {ERC721} from 'solmate/tokens/ERC721.sol'; import {ERC1155} from 'solmate/tokens/ERC1155.sol'; import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol'; import {ICryptoPunksMarket} from '../interfaces/external/ICryptoPunksMarket.sol'; /// @title Decodes and Executes Commands /// @notice Called by the UniversalRouter contract to efficiently decode and execute a singular command abstract contract Dispatcher is Payments, V2SwapRouter, V3SwapRouter, Callbacks { using Recipient for address; error InvalidCommandType(uint256 commandType); error InvalidOwnerERC721(); error InvalidOwnerERC1155(); /// @notice Decodes and executes the given command with the given inputs /// @param commandType The command type to execute /// @param inputs The inputs to execute the command with /// @dev 2 masks are used to enable use of a nested-if statement in execution for efficiency reasons /// @return success True on success of the command, false on failure /// @return output The outputs or error messages, if any, from the command function dispatch(bytes1 commandType, bytes memory inputs) internal returns (bool success, bytes memory output) { uint256 command = uint8(commandType & Commands.COMMAND_TYPE_MASK); success = true; if (command < 0x10) { // 0x00 <= command < 0x08 if (command < 0x08) { if (command == Commands.V3_SWAP_EXACT_IN) { (address recipient, uint256 amountIn, uint256 amountOutMin, bytes memory path, bool payerIsUser) = abi.decode(inputs, (address, uint256, uint256, bytes, bool)); address payer = payerIsUser ? msg.sender : address(this); v3SwapExactInput(recipient.map(), amountIn, amountOutMin, path, payer); } else if (command == Commands.V3_SWAP_EXACT_OUT) { (address recipient, uint256 amountOut, uint256 amountInMax, bytes memory path, bool payerIsUser) = abi.decode(inputs, (address, uint256, uint256, bytes, bool)); address payer = payerIsUser ? msg.sender : address(this); v3SwapExactOutput(recipient.map(), amountOut, amountInMax, path, payer); } else if (command == Commands.PERMIT2_TRANSFER_FROM) { (address token, address recipient, uint160 amount) = abi.decode(inputs, (address, address, uint160)); permit2TransferFrom(token, msg.sender, recipient, amount); } else if (command == Commands.PERMIT2_PERMIT_BATCH) { (IAllowanceTransfer.PermitBatch memory permitBatch, bytes memory data) = abi.decode(inputs, (IAllowanceTransfer.PermitBatch, bytes)); PERMIT2.permit(msg.sender, permitBatch, data); } else if (command == Commands.SWEEP) { (address token, address recipient, uint256 amountMin) = abi.decode(inputs, (address, address, uint256)); Payments.sweep(token, recipient.map(), amountMin); } else if (command == Commands.TRANSFER) { (address token, address recipient, uint256 value) = abi.decode(inputs, (address, address, uint256)); Payments.pay(token, recipient.map(), value); } else if (command == Commands.PAY_PORTION) { (address token, address recipient, uint256 bips) = abi.decode(inputs, (address, address, uint256)); Payments.payPortion(token, recipient.map(), bips); } else if (command == Commands.COMMAND_PLACEHOLDER_0x07) { // placeholder for a future command revert InvalidCommandType(command); } // 0x08 <= command < 0x10 } else { if (command == Commands.V2_SWAP_EXACT_IN) { (address recipient, uint256 amountIn, uint256 amountOutMin, address[] memory path, bool payerIsUser) = abi.decode(inputs, (address, uint256, uint256, address[], bool)); address payer = payerIsUser ? msg.sender : address(this); v2SwapExactInput(recipient.map(), amountIn, amountOutMin, path, payer); } else if (command == Commands.V2_SWAP_EXACT_OUT) { (address recipient, uint256 amountOut, uint256 amountInMax, address[] memory path, bool payerIsUser) = abi.decode(inputs, (address, uint256, uint256, address[], bool)); address payer = payerIsUser ? msg.sender : address(this); v2SwapExactOutput(recipient.map(), amountOut, amountInMax, path, payer); } else if (command == Commands.PERMIT2_PERMIT) { (IAllowanceTransfer.PermitSingle memory permitSingle, bytes memory data) = abi.decode(inputs, (IAllowanceTransfer.PermitSingle, bytes)); PERMIT2.permit(msg.sender, permitSingle, data); } else if (command == Commands.WRAP_ETH) { (address recipient, uint256 amountMin) = abi.decode(inputs, (address, uint256)); Payments.wrapETH(recipient.map(), amountMin); } else if (command == Commands.UNWRAP_WETH) { (address recipient, uint256 amountMin) = abi.decode(inputs, (address, uint256)); Payments.unwrapWETH9(recipient.map(), amountMin); } else if (command == Commands.PERMIT2_TRANSFER_FROM_BATCH) { (IAllowanceTransfer.AllowanceTransferDetails[] memory batchDetails) = abi.decode(inputs, (IAllowanceTransfer.AllowanceTransferDetails[])); permit2TransferFrom(batchDetails); } else if (command == Commands.COMMAND_PLACEHOLDER_0x0e) { // placeholder for a future command revert InvalidCommandType(command); } else if (command == Commands.COMMAND_PLACEHOLDER_0x0f) { // placeholder for a future command revert InvalidCommandType(command); } } // 0x10 <= command } else { // 0x10 <= command < 0x18 if (command < 0x18) { if (command == Commands.SEAPORT) { (uint256 value, bytes memory data) = abi.decode(inputs, (uint256, bytes)); (success, output) = SEAPORT.call{value: value}(data); } else if (command == Commands.LOOKS_RARE_721) { (success, output) = callAndTransfer721(inputs, LOOKS_RARE); } else if (command == Commands.NFTX) { (uint256 value, bytes memory data) = abi.decode(inputs, (uint256, bytes)); (success, output) = NFTX_ZAP.call{value: value}(data); } else if (command == Commands.CRYPTOPUNKS) { (uint256 punkId, address recipient, uint256 value) = abi.decode(inputs, (uint256, address, uint256)); (success, output) = CRYPTOPUNKS.call{value: value}( abi.encodeWithSelector(ICryptoPunksMarket.buyPunk.selector, punkId) ); if (success) ICryptoPunksMarket(CRYPTOPUNKS).transferPunk(recipient.map(), punkId); else output = 'CryptoPunk Trade Failed'; } else if (command == Commands.LOOKS_RARE_1155) { (success, output) = callAndTransfer1155(inputs, LOOKS_RARE); } else if (command == Commands.OWNER_CHECK_721) { (address owner, address token, uint256 id) = abi.decode(inputs, (address, address, uint256)); success = (ERC721(token).ownerOf(id) == owner); if (!success) output = abi.encodeWithSignature('InvalidOwnerERC721()'); } else if (command == Commands.OWNER_CHECK_1155) { (address owner, address token, uint256 id, uint256 minBalance) = abi.decode(inputs, (address, address, uint256, uint256)); success = (ERC1155(token).balanceOf(owner, id) >= minBalance); if (!success) output = abi.encodeWithSignature('InvalidOwnerERC1155()'); } else if (command == Commands.SWEEP_ERC721) { (address token, address recipient, uint256 id) = abi.decode(inputs, (address, address, uint256)); Payments.sweepERC721(token, recipient.map(), id); } // 0x18 <= command < 0x1f } else { if (command == Commands.X2Y2_721) { (success, output) = callAndTransfer721(inputs, X2Y2); } else if (command == Commands.SUDOSWAP) { (uint256 value, bytes memory data) = abi.decode(inputs, (uint256, bytes)); (success, output) = SUDOSWAP.call{value: value}(data); } else if (command == Commands.NFT20) { (uint256 value, bytes memory data) = abi.decode(inputs, (uint256, bytes)); (success, output) = NFT20_ZAP.call{value: value}(data); } else if (command == Commands.X2Y2_1155) { (success, output) = callAndTransfer1155(inputs, X2Y2); } else if (command == Commands.FOUNDATION) { (success, output) = callAndTransfer721(inputs, FOUNDATION); } else if (command == Commands.SWEEP_ERC1155) { (address token, address recipient, uint256 id, uint256 amount) = abi.decode(inputs, (address, address, uint256, uint256)); Payments.sweepERC1155(token, recipient.map(), id, amount); } else if (command == Commands.COMMAND_PLACEHOLDER_0x1e) { // placeholder for a future command revert InvalidCommandType(command); } else if (command == Commands.COMMAND_PLACEHOLDER_0x1f) { // placeholder for a future command revert InvalidCommandType(command); } } } } /// @notice Performs a call to purchase an ERC721, then transfers the ERC721 to a specified recipient /// @param inputs The inputs for the protocol and ERC721 transfer, encoded /// @param protocol The protocol to pass the calldata to /// @return success True on success of the command, false on failure /// @return output The outputs or error messages, if any, from the command function callAndTransfer721(bytes memory inputs, address protocol) internal returns (bool success, bytes memory output) { (uint256 value, bytes memory data, address recipient, address token, uint256 id) = abi.decode(inputs, (uint256, bytes, address, address, uint256)); (success, output) = protocol.call{value: value}(data); if (success) ERC721(token).safeTransferFrom(address(this), recipient.map(), id); } /// @notice Performs a call to purchase an ERC1155, then transfers the ERC1155 to a specified recipient /// @param inputs The inputs for the protocol and ERC1155 transfer, encoded /// @param protocol The protocol to pass the calldata to /// @return success True on success of the command, false on failure /// @return output The outputs or error messages, if any, from the command function callAndTransfer1155(bytes memory inputs, address protocol) internal returns (bool success, bytes memory output) { (uint256 value, bytes memory data, address recipient, address token, uint256 id, uint256 amount) = abi.decode(inputs, (uint256, bytes, address, address, uint256, uint256)); (success, output) = protocol.call{value: value}(data); if (success) ERC1155(token).safeTransferFrom(address(this), recipient.map(), id, amount, new bytes(0)); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; contract ReentrancyLock { error ContractLocked(); uint256 private isLocked = 1; modifier isNotLocked() { if (isLocked != 1) revert ContractLocked(); isLocked = 2; _; isLocked = 1; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.15; import {ERC20} from 'solmate/tokens/ERC20.sol'; import {SafeTransferLib} from 'solmate/utils/SafeTransferLib.sol'; import {RouterImmutables} from './RouterImmutables.sol'; import {IRewardsCollector} from '../interfaces/IRewardsCollector.sol'; abstract contract RewardsCollector is IRewardsCollector, RouterImmutables { using SafeTransferLib for ERC20; event RewardsSent(uint256 amount); error UnableToClaim(); /// @inheritdoc IRewardsCollector function collectRewards(bytes calldata looksRareClaim) external { (bool success,) = LOOKS_RARE_REWARDS_DISTRIBUTOR.call(looksRareClaim); if (!success) revert UnableToClaim(); uint256 balance = LOOKS_RARE_TOKEN.balanceOf(address(this)); LOOKS_RARE_TOKEN.transfer(ROUTER_REWARDS_DISTRIBUTOR, balance); emit RewardsSent(balance); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol'; import {ERC20} from 'solmate/tokens/ERC20.sol'; import {IWETH9} from '../interfaces/external/IWETH9.sol'; struct RouterParameters { address permit2; address weth9; address seaport; address nftxZap; address x2y2; address foundation; address sudoswap; address nft20Zap; address cryptopunks; address looksRare; address routerRewardsDistributor; address looksRareRewardsDistributor; address looksRareToken; address v2Factory; address v3Factory; bytes32 pairInitCodeHash; bytes32 poolInitCodeHash; } /// @title Router Immutable Storage contract /// @notice Used along with the `RouterParameters` struct for ease of cross-chain deployment contract RouterImmutables { /// @dev WETH9 address IWETH9 internal immutable WETH9; /// @dev Permit2 address IAllowanceTransfer internal immutable PERMIT2; /// @dev Seaport address address internal immutable SEAPORT; /// @dev The address of NFTX zap contract for interfacing with vaults address internal immutable NFTX_ZAP; /// @dev The address of X2Y2 address internal immutable X2Y2; // @dev The address of Foundation address internal immutable FOUNDATION; // @dev The address of Sudoswap's router address internal immutable SUDOSWAP; // @dev the address of NFT20's zap contract address internal immutable NFT20_ZAP; // @dev the address of Larva Lab's cryptopunks marketplace address internal immutable CRYPTOPUNKS; /// @dev The address of LooksRare address internal immutable LOOKS_RARE; /// @dev The address of LooksRare token ERC20 internal immutable LOOKS_RARE_TOKEN; /// @dev The address of LooksRare rewards distributor address internal immutable LOOKS_RARE_REWARDS_DISTRIBUTOR; /// @dev The address of router rewards distributor address internal immutable ROUTER_REWARDS_DISTRIBUTOR; /// @dev The address of UniswapV2Factory address internal immutable UNISWAP_V2_FACTORY; /// @dev The address of UniswapV2Pair initcodehash bytes32 internal immutable UNISWAP_V2_PAIR_INIT_CODE_HASH; /// @dev The address of UniswapV3Factory address internal immutable UNISWAP_V3_FACTORY; /// @dev The address of UniswapV3Pool initcodehash bytes32 internal immutable UNISWAP_V3_POOL_INIT_CODE_HASH; constructor(RouterParameters memory params) { PERMIT2 = IAllowanceTransfer(params.permit2); WETH9 = IWETH9(params.weth9); SEAPORT = params.seaport; NFTX_ZAP = params.nftxZap; X2Y2 = params.x2y2; FOUNDATION = params.foundation; SUDOSWAP = params.sudoswap; NFT20_ZAP = params.nft20Zap; CRYPTOPUNKS = params.cryptopunks; LOOKS_RARE = params.looksRare; LOOKS_RARE_TOKEN = ERC20(params.looksRareToken); LOOKS_RARE_REWARDS_DISTRIBUTOR = params.looksRareRewardsDistributor; ROUTER_REWARDS_DISTRIBUTOR = params.routerRewardsDistributor; UNISWAP_V2_FACTORY = params.v2Factory; UNISWAP_V2_PAIR_INIT_CODE_HASH = params.pairInitCodeHash; UNISWAP_V3_FACTORY = params.v3Factory; UNISWAP_V3_POOL_INIT_CODE_HASH = params.poolInitCodeHash; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.15; import {ERC20} from 'solmate/tokens/ERC20.sol'; /// @title LooksRare Rewards Collector /// @notice Implements a permissionless call to fetch LooksRare rewards earned by Universal Router users /// and transfers them to an external rewards distributor contract interface IRewardsCollector { /// @notice Fetches users' LooksRare rewards and sends them to the distributor contract /// @param looksRareClaim The data required by LooksRare to claim reward tokens function collectRewards(bytes calldata looksRareClaim) external; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {IERC721Receiver} from 'openzeppelin-contracts/contracts/token/ERC721/IERC721Receiver.sol'; import {IERC1155Receiver} from 'openzeppelin-contracts/contracts/token/ERC1155/IERC1155Receiver.sol'; import {IRewardsCollector} from './IRewardsCollector.sol'; interface IUniversalRouter is IRewardsCollector, IERC721Receiver, IERC1155Receiver { /// @notice Thrown when a required command has failed error ExecutionFailed(uint256 commandIndex, bytes message); /// @notice Thrown when attempting to send ETH directly to the contract error ETHNotAccepted(); /// @notice Thrown executing commands with an expired deadline error TransactionDeadlinePassed(); /// @notice Thrown executing commands with an expired deadline error LengthMismatch(); /// @notice Executes encoded commands along with provided inputs. Reverts if deadline has expired. /// @param commands A set of concatenated commands, each 1 byte in length /// @param inputs An array of byte strings containing abi encoded inputs for each command /// @param deadline The deadline by which the transaction must be executed function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable; /// @notice Executes encoded commands along with provided inputs. /// @param commands A set of concatenated commands, each 1 byte in length /// @param inputs An array of byte strings containing abi encoded inputs for each command function execute(bytes calldata commands, bytes[] calldata inputs) external payable; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.4; /// @title Interface for CryptoPunksMarket interface ICryptoPunksMarket { /// @notice Buy a cryptopunk function buyPunk(uint256 punkIndex) external payable; /// @notice Transfer a cryptopunk to another address function transferPunk(address to, uint256 punkIndex) external; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.4; import {IERC20} from 'openzeppelin-contracts/contracts/token/ERC20/IERC20.sol'; /// @title Interface for WETH9 interface IWETH9 is IERC20 { /// @notice Deposit ether to get wrapped ether function deposit() external payable; /// @notice Withdraw wrapped ether to get ether function withdraw(uint256) external; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; /// @title Commands /// @notice Command Flags used to decode commands library Commands { // Masks to extract certain bits of commands bytes1 internal constant FLAG_ALLOW_REVERT = 0x80; bytes1 internal constant COMMAND_TYPE_MASK = 0x1f; bytes1 internal constant NFT_TYPE_MASK = 0x10; bytes1 internal constant SUB_IF_BRANCH_MASK = 0x08; // Command Types. Maximum supported command at this moment is 0x1F. // Command Types where value<0x08, executed in the first nested-if block uint256 constant V3_SWAP_EXACT_IN = 0x00; uint256 constant V3_SWAP_EXACT_OUT = 0x01; uint256 constant PERMIT2_TRANSFER_FROM = 0x02; uint256 constant PERMIT2_PERMIT_BATCH = 0x03; uint256 constant SWEEP = 0x04; uint256 constant TRANSFER = 0x05; uint256 constant PAY_PORTION = 0x06; uint256 constant COMMAND_PLACEHOLDER_0x07 = 0x07; // Command Types where 0x08<=value<=0x0f, executed in the second nested-if block uint256 constant V2_SWAP_EXACT_IN = 0x08; uint256 constant V2_SWAP_EXACT_OUT = 0x09; uint256 constant PERMIT2_PERMIT = 0x0a; uint256 constant WRAP_ETH = 0x0b; uint256 constant UNWRAP_WETH = 0x0c; uint256 constant PERMIT2_TRANSFER_FROM_BATCH = 0x0d; uint256 constant COMMAND_PLACEHOLDER_0x0e = 0x0e; uint256 constant COMMAND_PLACEHOLDER_0x0f = 0x0f; // Command Types where 0x10<=value<0x18, executed in the third nested-if block uint256 constant SEAPORT = 0x10; uint256 constant LOOKS_RARE_721 = 0x11; uint256 constant NFTX = 0x12; uint256 constant CRYPTOPUNKS = 0x13; uint256 constant LOOKS_RARE_1155 = 0x14; uint256 constant OWNER_CHECK_721 = 0x15; uint256 constant OWNER_CHECK_1155 = 0x16; uint256 constant SWEEP_ERC721 = 0x17; // Command Types where 0x18<=value<=0x1f, executed in the final nested-if block uint256 constant X2Y2_721 = 0x18; uint256 constant SUDOSWAP = 0x19; uint256 constant NFT20 = 0x1a; uint256 constant X2Y2_1155 = 0x1b; uint256 constant FOUNDATION = 0x1c; uint256 constant SWEEP_ERC1155 = 0x1d; uint256 constant COMMAND_PLACEHOLDER_0x1e = 0x1e; uint256 constant COMMAND_PLACEHOLDER_0x1f = 0x1f; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {IWETH9} from '../interfaces/external/IWETH9.sol'; /// @title Constant state /// @notice Constant state used by the Universal Router library Constants { /// @dev Used for identifying cases when this contract's balance of a token is to be used as an input /// This value is equivalent to 1<<255, i.e. a singular 1 in the most significant bit. uint256 internal constant CONTRACT_BALANCE = 0x8000000000000000000000000000000000000000000000000000000000000000; /// @dev Used for identifying cases when a v2 pair has already received input tokens uint256 internal constant ALREADY_PAID = 0; /// @dev Used as a flag for identifying the transfer of ETH instead of a token address internal constant ETH = address(0); /// @dev Used as a flag for identifying that msg.sender should be used, saves gas by sending more 0 bytes address internal constant MSG_SENDER = address(1); /// @dev Used as a flag for identifying address(this) should be used, saves gas by sending more 0 bytes address internal constant ADDRESS_THIS = address(2); } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {Constants} from '../libraries/Constants.sol'; /// @title Recipient Library /// @notice Calculates the recipient address for a command library Recipient { /// @notice Calculates the recipient address for a command /// @param recipient The recipient or recipient-flag for the command /// @return output The resultant recipient for the command function map(address recipient) internal view returns (address) { if (recipient == Constants.MSG_SENDER) { return msg.sender; } else if (recipient == Constants.ADDRESS_THIS) { return address(this); } else { return recipient; } } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {Constants} from '../libraries/Constants.sol'; import {RouterImmutables} from '../base/RouterImmutables.sol'; import {SafeTransferLib} from 'solmate/utils/SafeTransferLib.sol'; import {ERC20} from 'solmate/tokens/ERC20.sol'; import {ERC721} from 'solmate/tokens/ERC721.sol'; import {ERC1155} from 'solmate/tokens/ERC1155.sol'; /// @title Payments contract /// @notice Performs various operations around the payment of ETH and tokens abstract contract Payments is RouterImmutables { using SafeTransferLib for ERC20; using SafeTransferLib for address; error InsufficientToken(); error InsufficientETH(); error InvalidBips(); uint256 internal constant FEE_BIPS_BASE = 10_000; /// @notice Pays an amount of ETH or ERC20 to a recipient /// @param token The token to pay (can be ETH using Constants.ETH) /// @param recipient The address that will receive the payment /// @param value The amount to pay function pay(address token, address recipient, uint256 value) internal { if (token == Constants.ETH) { recipient.safeTransferETH(value); } else { if (value == Constants.CONTRACT_BALANCE) { value = ERC20(token).balanceOf(address(this)); } ERC20(token).safeTransfer(recipient, value); } } /// @notice Pays a proportion of the contract's ETH or ERC20 to a recipient /// @param token The token to pay (can be ETH using Constants.ETH) /// @param recipient The address that will receive payment /// @param bips Portion in bips of whole balance of the contract function payPortion(address token, address recipient, uint256 bips) internal { if (bips == 0 || bips > 10_000) revert InvalidBips(); if (token == Constants.ETH) { uint256 balance = address(this).balance; uint256 amount = (balance * bips) / FEE_BIPS_BASE; recipient.safeTransferETH(amount); } else { uint256 balance = ERC20(token).balanceOf(address(this)); uint256 amount = (balance * bips) / FEE_BIPS_BASE; // pay with tokens already in the contract (for the exact input multihop case) ERC20(token).safeTransfer(recipient, amount); } } /// @notice Sweeps all of the contract's ERC20 or ETH to an address /// @param token The token to sweep (can be ETH using Constants.ETH) /// @param recipient The address that will receive payment /// @param amountMinimum The minimum desired amount function sweep(address token, address recipient, uint256 amountMinimum) internal { uint256 balance; if (token == Constants.ETH) { balance = address(this).balance; if (balance < amountMinimum) revert InsufficientETH(); if (balance > 0) recipient.safeTransferETH(balance); } else { balance = ERC20(token).balanceOf(address(this)); if (balance < amountMinimum) revert InsufficientToken(); if (balance > 0) ERC20(token).safeTransfer(recipient, balance); } } /// @notice Sweeps an ERC721 to a recipient from the contract /// @param token The ERC721 token to sweep /// @param recipient The address that will receive payment /// @param id The ID of the ERC721 to sweep function sweepERC721(address token, address recipient, uint256 id) internal { ERC721(token).safeTransferFrom(address(this), recipient, id); } /// @notice Sweeps all of the contract's ERC1155 to an address /// @param token The ERC1155 token to sweep /// @param recipient The address that will receive payment /// @param id The ID of the ERC1155 to sweep /// @param amountMinimum The minimum desired amount function sweepERC1155(address token, address recipient, uint256 id, uint256 amountMinimum) internal { uint256 balance = ERC1155(token).balanceOf(address(this), id); if (balance < amountMinimum) revert InsufficientToken(); ERC1155(token).safeTransferFrom(address(this), recipient, id, balance, bytes('')); } /// @notice Wraps an amount of ETH into WETH /// @param recipient The recipient of the WETH /// @param amount The amount to wrap (can be CONTRACT_BALANCE) function wrapETH(address recipient, uint256 amount) internal { if (amount == Constants.CONTRACT_BALANCE) { amount = address(this).balance; } else if (amount > address(this).balance) { revert InsufficientETH(); } if (amount > 0) { WETH9.deposit{value: amount}(); WETH9.transfer(recipient, amount); } } /// @notice Unwraps all of the contract's WETH into ETH /// @param recipient The recipient of the ETH /// @param amountMinimum The minimum amount of ETH desired function unwrapWETH9(address recipient, uint256 amountMinimum) internal { uint256 value = WETH9.balanceOf(address(this)); if (value < amountMinimum) { revert InsufficientETH(); } if (value > 0) { WETH9.withdraw(value); recipient.safeTransferETH(value); } } } pragma solidity ^0.8.17; import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol'; import {SafeCast160} from 'permit2/src/libraries/SafeCast160.sol'; import {Payments} from './Payments.sol'; import {Constants} from '../libraries/Constants.sol'; import {RouterImmutables} from '../base/RouterImmutables.sol'; /// @title Payments through Permit2 /// @notice Performs interactions with Permit2 to transfer tokens abstract contract Permit2Payments is Payments { using SafeCast160 for uint256; error FromAddressIsNotOwner(); /// @notice Performs a transferFrom on Permit2 /// @param token The token to transfer /// @param from The address to transfer from /// @param to The recipient of the transfer /// @param amount The amount to transfer function permit2TransferFrom(address token, address from, address to, uint160 amount) internal { PERMIT2.transferFrom(from, to, amount, token); } /// @notice Performs a batch transferFrom on Permit2 /// @param batchDetails An array detailing each of the transfers that should occur function permit2TransferFrom(IAllowanceTransfer.AllowanceTransferDetails[] memory batchDetails) internal { address owner = msg.sender; uint256 batchLength = batchDetails.length; for (uint256 i = 0; i < batchLength; ++i) { if (batchDetails[i].from != owner) revert FromAddressIsNotOwner(); } PERMIT2.transferFrom(batchDetails); } /// @notice Either performs a regular payment or transferFrom on Permit2, depending on the payer address /// @param token The token to transfer /// @param payer The address to pay for the transfer /// @param recipient The recipient of the transfer /// @param amount The amount to transfer function payOrPermit2Transfer(address token, address payer, address recipient, uint256 amount) internal { if (payer == address(this)) pay(token, recipient, amount); else permit2TransferFrom(token, payer, recipient, amount.toUint160()); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.5.0; import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol'; /// @title Uniswap v2 Helper Library /// @notice Calculates the recipient address for a command library UniswapV2Library { error InvalidReserves(); error InvalidPath(); /// @notice Calculates the v2 address for a pair without making any external calls /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address function pairFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = sortTokens(tokenA, tokenB); pair = pairForPreSorted(factory, initCodeHash, token0, token1); } /// @notice Calculates the v2 address for a pair and the pair's token0 /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address /// @return token0 The token considered token0 in this pair function pairAndToken0For(address factory, bytes32 initCodeHash, address tokenA, address tokenB) internal pure returns (address pair, address token0) { address token1; (token0, token1) = sortTokens(tokenA, tokenB); pair = pairForPreSorted(factory, initCodeHash, token0, token1); } /// @notice Calculates the v2 address for a pair assuming the input tokens are pre-sorted /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param token0 The pair's token0 /// @param token1 The pair's token1 /// @return pair The resultant v2 pair address function pairForPreSorted(address factory, bytes32 initCodeHash, address token0, address token1) private pure returns (address pair) { pair = address( uint160( uint256( keccak256( abi.encodePacked(hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), initCodeHash) ) ) ) ); } /// @notice Calculates the v2 address for a pair and fetches the reserves for each token /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address /// @return reserveA The reserves for tokenA /// @return reserveB The reserves for tokenB function pairAndReservesFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB) private view returns (address pair, uint256 reserveA, uint256 reserveB) { address token0; (pair, token0) = pairAndToken0For(factory, initCodeHash, tokenA, tokenB); (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves(); (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0); } /// @notice Given an input asset amount returns the maximum output amount of the other asset /// @param amountIn The token input amount /// @param reserveIn The reserves available of the input token /// @param reserveOut The reserves available of the output token /// @return amountOut The output amount of the output token function getAmountOut(uint256 amountIn, uint256 reserveIn, uint256 reserveOut) internal pure returns (uint256 amountOut) { if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves(); uint256 amountInWithFee = amountIn * 997; uint256 numerator = amountInWithFee * reserveOut; uint256 denominator = reserveIn * 1000 + amountInWithFee; amountOut = numerator / denominator; } /// @notice Returns the input amount needed for a desired output amount in a single-hop trade /// @param amountOut The desired output amount /// @param reserveIn The reserves available of the input token /// @param reserveOut The reserves available of the output token /// @return amountIn The input amount of the input token function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut) internal pure returns (uint256 amountIn) { if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves(); uint256 numerator = reserveIn * amountOut * 1000; uint256 denominator = (reserveOut - amountOut) * 997; amountIn = (numerator / denominator) + 1; } /// @notice Returns the input amount needed for a desired output amount in a multi-hop trade /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param amountOut The desired output amount /// @param path The path of the multi-hop trade /// @return amount The input amount of the input token /// @return pair The first pair in the trade function getAmountInMultihop(address factory, bytes32 initCodeHash, uint256 amountOut, address[] memory path) internal view returns (uint256 amount, address pair) { if (path.length < 2) revert InvalidPath(); amount = amountOut; for (uint256 i = path.length - 1; i > 0; i--) { uint256 reserveIn; uint256 reserveOut; (pair, reserveIn, reserveOut) = pairAndReservesFor(factory, initCodeHash, path[i - 1], path[i]); amount = getAmountIn(amount, reserveIn, reserveOut); } } /// @notice Sorts two tokens to return token0 and token1 /// @param tokenA The first token to sort /// @param tokenB The other token to sort /// @return token0 The smaller token by address value /// @return token1 The larger token by address value function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) { (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol'; import {UniswapV2Library} from './UniswapV2Library.sol'; import {RouterImmutables} from '../../../base/RouterImmutables.sol'; import {Payments} from '../../Payments.sol'; import {Permit2Payments} from '../../Permit2Payments.sol'; import {Constants} from '../../../libraries/Constants.sol'; import {ERC20} from 'solmate/tokens/ERC20.sol'; /// @title Router for Uniswap v2 Trades abstract contract V2SwapRouter is RouterImmutables, Permit2Payments { error V2TooLittleReceived(); error V2TooMuchRequested(); error V2InvalidPath(); function _v2Swap(address[] memory path, address recipient, address pair) private { unchecked { if (path.length < 2) revert V2InvalidPath(); // cached to save on duplicate operations (address token0,) = UniswapV2Library.sortTokens(path[0], path[1]); uint256 finalPairIndex = path.length - 1; uint256 penultimatePairIndex = finalPairIndex - 1; for (uint256 i; i < finalPairIndex; i++) { (address input, address output) = (path[i], path[i + 1]); (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves(); (uint256 reserveInput, uint256 reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0); uint256 amountInput = ERC20(input).balanceOf(pair) - reserveInput; uint256 amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput); (uint256 amount0Out, uint256 amount1Out) = input == token0 ? (uint256(0), amountOutput) : (amountOutput, uint256(0)); address nextPair; (nextPair, token0) = i < penultimatePairIndex ? UniswapV2Library.pairAndToken0For( UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, output, path[i + 2] ) : (recipient, address(0)); IUniswapV2Pair(pair).swap(amount0Out, amount1Out, nextPair, new bytes(0)); pair = nextPair; } } } /// @notice Performs a Uniswap v2 exact input swap /// @param recipient The recipient of the output tokens /// @param amountIn The amount of input tokens for the trade /// @param amountOutMinimum The minimum desired amount of output tokens /// @param path The path of the trade as an array of token addresses /// @param payer The address that will be paying the input function v2SwapExactInput( address recipient, uint256 amountIn, uint256 amountOutMinimum, address[] memory path, address payer ) internal { address firstPair = UniswapV2Library.pairFor(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, path[0], path[1]); if ( amountIn != Constants.ALREADY_PAID // amountIn of 0 to signal that the pair already has the tokens ) { payOrPermit2Transfer(path[0], payer, firstPair, amountIn); } ERC20 tokenOut = ERC20(path[path.length - 1]); uint256 balanceBefore = tokenOut.balanceOf(recipient); _v2Swap(path, recipient, firstPair); uint256 amountOut = tokenOut.balanceOf(recipient) - balanceBefore; if (amountOut < amountOutMinimum) revert V2TooLittleReceived(); } /// @notice Performs a Uniswap v2 exact output swap /// @param recipient The recipient of the output tokens /// @param amountOut The amount of output tokens to receive for the trade /// @param amountInMaximum The maximum desired amount of input tokens /// @param path The path of the trade as an array of token addresses /// @param payer The address that will be paying the input function v2SwapExactOutput( address recipient, uint256 amountOut, uint256 amountInMaximum, address[] memory path, address payer ) internal { (uint256 amountIn, address firstPair) = UniswapV2Library.getAmountInMultihop(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, amountOut, path); if (amountIn > amountInMaximum) revert V2TooMuchRequested(); payOrPermit2Transfer(path[0], payer, firstPair, amountIn); _v2Swap(path, recipient, firstPair); } } // SPDX-License-Identifier: GPL-3.0-or-later /// @title Library for Bytes Manipulation /// Based on Gonçalo Sá's BytesLib - but updated and heavily editted pragma solidity ^0.8.0; library BytesLib { error SliceOverflow(); error SliceOutOfBounds(); error ToAddressOverflow(); error ToAddressOutOfBounds(); error ToUint24Overflow(); error ToUint24OutOfBounds(); error NoSlice(); // Constants used in slicePool // 43 bytes: token + feeTier + token uint256 internal constant POOL_LENGTH = 43; // Offset from beginning of _bytes to start copying from given that 43 isnt a multiple of 32 uint256 internal constant OFFSET = 11; // 43-32=11 // Constants used in inPlaceSliceToken uint256 internal constant ADDR_AND_FEE_LENGTH = 23; /// @notice Slices and returns the first 43 bytes from a bytes string /// @dev 43 bytes = pool (20 bytes) + feeTier (3 bytes) + pool (20 bytes) /// @param _bytes The input bytes string /// @return tempBytes The first 43 bytes of the input bytes string function slicePool(bytes memory _bytes) internal pure returns (bytes memory tempBytes) { if (_bytes.length < POOL_LENGTH) revert SliceOutOfBounds(); assembly ("memory-safe") { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is a partial word read from the // original array - given that 43 is not a multiple of 32. To read it, // we use the length of that partial word (43-32=11) and start copying // that many bytes into the array. The first word we copy will start // with data we don't care about, but the last 11 bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let copyDestination := add(tempBytes, OFFSET) let endNewBytes := add(copyDestination, POOL_LENGTH) let copyFrom := add(_bytes, OFFSET) mstore(copyDestination, mload(copyFrom)) copyDestination := add(copyDestination, 0x20) copyFrom := add(copyFrom, 0x20) mstore(copyDestination, mload(copyFrom)) mstore(tempBytes, POOL_LENGTH) // update free-memory pointer // allocating the array padded to 32 bytes like the compiler does now mstore(0x40, add(tempBytes, 0x60)) } } /// @notice Removes the first 23 bytes of a bytes string in-place /// @dev 23 bytes = pool (20 bytes) + feeTier (3 bytes) /// @param _bytes The input bytes string to slice function inPlaceSliceToken(bytes memory _bytes, uint256 _length) internal pure { unchecked { if (_length + 31 < _length) revert SliceOverflow(); if (ADDR_AND_FEE_LENGTH + _length < ADDR_AND_FEE_LENGTH) revert SliceOverflow(); if (_bytes.length < ADDR_AND_FEE_LENGTH + _length) revert SliceOutOfBounds(); if (_length == 0) revert NoSlice(); } assembly ("memory-safe") { // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. // 31==0b11111 to extract the final 5 bits of the length of the slice - the amount that // the length in bytes goes over a round number of bytes32 let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. // if the _length is not a multiple of 32, offset is lengthmod // otherwise its 32 (as lengthmod is 0) // offset from beginning of _bytes to start copying from let offset := add(lengthmod, mul(0x20, iszero(lengthmod))) // this does calculates where to start copying bytes into // bytes is the location where the bytes array is // byte+offset is the location where copying should start from let copyDestination := add(_bytes, offset) let endNewBytes := add(copyDestination, _length) for { let copyFrom := add(copyDestination, ADDR_AND_FEE_LENGTH) } lt(copyDestination, endNewBytes) { copyDestination := add(copyDestination, 0x20) copyFrom := add(copyFrom, 0x20) } { mstore(copyDestination, mload(copyFrom)) } mstore(_bytes, _length) } } /// @notice Returns the address starting at byte `_start` /// @dev _bytesLength must equal _bytes.length for this to function correctly /// @param _bytes The input bytes string to slice /// @param _start The starting index of the address /// @param _bytesLength The length of _bytes /// @return tempAddress The address starting at _start function toAddress(bytes memory _bytes, uint256 _start, uint256 _bytesLength) internal pure returns (address tempAddress) { unchecked { if (_start + 20 < _start) revert ToAddressOverflow(); if (_bytesLength < _start + 20) revert ToAddressOutOfBounds(); } assembly { tempAddress := mload(add(add(_bytes, 0x14), _start)) } } /// @notice Returns the uint24 starting at byte `_start` /// @dev _bytesLength must equal _bytes.length for this to function correctly /// @param _bytes The input bytes string to slice /// @param _start The starting index of the uint24 /// @param _bytesLength The length of _bytes /// @return tempUint24 The uint24 starting at _start function toUint24(bytes memory _bytes, uint256 _start, uint256 _bytesLength) internal pure returns (uint24 tempUint24) { unchecked { if (_start + 3 < _start) revert ToUint24Overflow(); if (_bytesLength < _start + 3) revert ToUint24OutOfBounds(); } assembly { tempUint24 := mload(add(add(_bytes, 0x3), _start)) } } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.6.0; import {BytesLib} from './BytesLib.sol'; /// @title Functions for manipulating path data for multihop swaps library V3Path { using BytesLib for bytes; /// @dev The length of the bytes encoded address uint256 private constant ADDR_SIZE = 20; /// @dev The length of the bytes encoded fee uint256 private constant FEE_SIZE = 3; /// @dev The offset of a single token address and pool fee uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE; /// @dev The offset of an encoded pool key uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE; /// @dev The minimum length of an encoding that contains 2 or more pools uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET; /// @notice Returns true iff the path contains two or more pools /// @param path The encoded swap path /// @return True if path contains two or more pools, otherwise false function hasMultiplePools(bytes memory path) internal pure returns (bool) { return path.length >= MULTIPLE_POOLS_MIN_LENGTH; } /// @notice Decodes the first pool in path /// @param path The bytes encoded swap path /// @return tokenA The first token of the given pool /// @return tokenB The second token of the given pool /// @return fee The fee level of the pool function decodeFirstPool(bytes memory path) internal pure returns (address tokenA, address tokenB, uint24 fee) { uint256 bytesLength = path.length; tokenA = path.toAddress(0, bytesLength); fee = path.toUint24(ADDR_SIZE, bytesLength); tokenB = path.toAddress(NEXT_OFFSET, bytesLength); } /// @notice Gets the segment corresponding to the first pool in the path /// @param path The bytes encoded swap path /// @return The segment containing all data necessary to target the first pool in the path function getFirstPool(bytes memory path) internal pure returns (bytes memory) { return path.slicePool(); } function decodeFirstToken(bytes memory path) internal pure returns (address tokenA) { tokenA = path.toAddress(0, path.length); } /// @notice Skips a token + fee element from the buffer in place /// @param path The swap path function skipToken(bytes memory path) internal pure { path.inPlaceSliceToken(path.length - NEXT_OFFSET); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import {V3Path} from './V3Path.sol'; import {SafeCast} from '@uniswap/v3-core/contracts/libraries/SafeCast.sol'; import {IUniswapV3Pool} from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol'; import {IUniswapV3SwapCallback} from '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol'; import {Constants} from '../../../libraries/Constants.sol'; import {RouterImmutables} from '../../../base/RouterImmutables.sol'; import {Permit2Payments} from '../../Permit2Payments.sol'; import {Constants} from '../../../libraries/Constants.sol'; import {ERC20} from 'solmate/tokens/ERC20.sol'; /// @title Router for Uniswap v3 Trades abstract contract V3SwapRouter is RouterImmutables, Permit2Payments, IUniswapV3SwapCallback { using V3Path for bytes; using SafeCast for uint256; error V3InvalidSwap(); error V3TooLittleReceived(); error V3TooMuchRequested(); error V3InvalidAmountOut(); error V3InvalidCaller(); /// @dev Used as the placeholder value for maxAmountIn, because the computed amount in for an exact output swap /// can never actually be this value uint256 private constant DEFAULT_MAX_AMOUNT_IN = type(uint256).max; /// @dev Transient storage variable used for checking slippage uint256 private maxAmountInCached = DEFAULT_MAX_AMOUNT_IN; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external { if (amount0Delta <= 0 && amount1Delta <= 0) revert V3InvalidSwap(); // swaps entirely within 0-liquidity regions are not supported (bytes memory path, address payer) = abi.decode(data, (bytes, address)); // because exact output swaps are executed in reverse order, in this case tokenOut is actually tokenIn (address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool(); if (computePoolAddress(tokenIn, tokenOut, fee) != msg.sender) revert V3InvalidCaller(); (bool isExactInput, uint256 amountToPay) = amount0Delta > 0 ? (tokenIn < tokenOut, uint256(amount0Delta)) : (tokenOut < tokenIn, uint256(amount1Delta)); if (isExactInput) { // Pay the pool (msg.sender) payOrPermit2Transfer(tokenIn, payer, msg.sender, amountToPay); } else { // either initiate the next swap or pay if (path.hasMultiplePools()) { // this is an intermediate step so the payer is actually this contract path.skipToken(); _swap(-amountToPay.toInt256(), msg.sender, path, payer, false); } else { if (amountToPay > maxAmountInCached) revert V3TooMuchRequested(); // note that because exact output swaps are executed in reverse order, tokenOut is actually tokenIn payOrPermit2Transfer(tokenOut, payer, msg.sender, amountToPay); } } } /// @notice Performs a Uniswap v3 exact input swap /// @param recipient The recipient of the output tokens /// @param amountIn The amount of input tokens for the trade /// @param amountOutMinimum The minimum desired amount of output tokens /// @param path The path of the trade as a bytes string /// @param payer The address that will be paying the input function v3SwapExactInput( address recipient, uint256 amountIn, uint256 amountOutMinimum, bytes memory path, address payer ) internal { // use amountIn == Constants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract if (amountIn == Constants.CONTRACT_BALANCE) { address tokenIn = path.decodeFirstToken(); amountIn = ERC20(tokenIn).balanceOf(address(this)); } uint256 amountOut; while (true) { bool hasMultiplePools = path.hasMultiplePools(); // the outputs of prior swaps become the inputs to subsequent ones (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) = _swap( amountIn.toInt256(), hasMultiplePools ? address(this) : recipient, // for intermediate swaps, this contract custodies path.getFirstPool(), // only the first pool is needed payer, // for intermediate swaps, this contract custodies true ); amountIn = uint256(-(zeroForOne ? amount1Delta : amount0Delta)); // decide whether to continue or terminate if (hasMultiplePools) { payer = address(this); path.skipToken(); } else { amountOut = amountIn; break; } } if (amountOut < amountOutMinimum) revert V3TooLittleReceived(); } /// @notice Performs a Uniswap v3 exact output swap /// @param recipient The recipient of the output tokens /// @param amountOut The amount of output tokens to receive for the trade /// @param amountInMaximum The maximum desired amount of input tokens /// @param path The path of the trade as a bytes string /// @param payer The address that will be paying the input function v3SwapExactOutput( address recipient, uint256 amountOut, uint256 amountInMaximum, bytes memory path, address payer ) internal { maxAmountInCached = amountInMaximum; (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) = _swap(-amountOut.toInt256(), recipient, path, payer, false); uint256 amountOutReceived = zeroForOne ? uint256(-amount1Delta) : uint256(-amount0Delta); if (amountOutReceived != amountOut) revert V3InvalidAmountOut(); maxAmountInCached = DEFAULT_MAX_AMOUNT_IN; } /// @dev Performs a single swap for both exactIn and exactOut /// For exactIn, `amount` is `amountIn`. For exactOut, `amount` is `-amountOut` function _swap(int256 amount, address recipient, bytes memory path, address payer, bool isExactIn) private returns (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) { (address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool(); zeroForOne = isExactIn ? tokenIn < tokenOut : tokenOut < tokenIn; (amount0Delta, amount1Delta) = IUniswapV3Pool(computePoolAddress(tokenIn, tokenOut, fee)).swap( recipient, zeroForOne, amount, (zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1), abi.encode(path, payer) ); } function computePoolAddress(address tokenA, address tokenB, uint24 fee) private view returns (address pool) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); pool = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', UNISWAP_V3_FACTORY, keccak256(abi.encode(tokenA, tokenB, fee)), UNISWAP_V3_POOL_INIT_CODE_HASH ) ) ) ) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer { /// @notice Thrown when an allowance on a token has expired. /// @param deadline The timestamp at which the allowed amount is no longer valid error AllowanceExpired(uint256 deadline); /// @notice Thrown when an allowance on a token has been depleted. /// @param amount The maximum amount allowed error InsufficientAllowance(uint256 amount); /// @notice Thrown when too many nonces are invalidated. error ExcessiveInvalidation(); /// @notice Emits an event when the owner successfully invalidates an ordered nonce. event NonceInvalidation( address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce ); /// @notice Emits an event when the owner successfully sets permissions on a token for the spender. event Approval( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration ); /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender. event Permit( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration, uint48 nonce ); /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function. event Lockdown(address indexed owner, address token, address spender); /// @notice The permit data for a token struct PermitDetails { // ERC20 token address address token; // the maximum amount allowed to spend uint160 amount; // timestamp at which a spender's token allowances become invalid uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice The permit message signed for a single token allownce struct PermitSingle { // the permit data for a single token alownce PermitDetails details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The permit message signed for multiple token allowances struct PermitBatch { // the permit data for multiple token allowances PermitDetails[] details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The saved permissions /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message /// @dev Setting amount to type(uint160).max sets an unlimited approval struct PackedAllowance { // amount allowed uint160 amount; // permission expiry uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice Details for a token transfer. struct AllowanceTransferDetails { // the owner of the token address from; // the recipient of the token address to; // the amount of the token uint160 amount; // the token to be transferred address token; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address, address, address) external view returns (uint160, uint48, uint48); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitSingle Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external; /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitBatch Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external; /// @notice Transfer approved tokens from one address to another /// @param from The address to transfer from /// @param to The address of the recipient /// @param amount The amount of the token to transfer /// @param token The token address to transfer /// @dev Requires the from address to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(address from, address to, uint160 amount, address token) external; /// @notice Transfer approved tokens in a batch /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers /// @dev Requires the from addresses to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; /// @notice Invalidate nonces for a given (token, spender) pair /// @param token The token to invalidate nonces for /// @param spender The spender to invalidate nonces for /// @param newNonce The new nonce to set. Invalidates all nonces less than it. /// @dev Can't invalidate more than 2**16 nonces per transaction. function invalidateNonces(address token, address spender, uint48 newNonce) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; library SafeCast160 { /// @notice Thrown when a valude greater than type(uint160).max is cast to uint160 error UnsafeCast(); /// @notice Safely casts uint256 to uint160 /// @param value The uint256 to be cast function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) revert UnsafeCast(); return uint160(value); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Minimalist and gas efficient standard ERC1155 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 amount ); event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts ); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); event URI(string value, uint256 indexed id); /*////////////////////////////////////////////////////////////// ERC1155 STORAGE //////////////////////////////////////////////////////////////*/ mapping(address => mapping(uint256 => uint256)) public balanceOf; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// METADATA LOGIC //////////////////////////////////////////////////////////////*/ function uri(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC1155 LOGIC //////////////////////////////////////////////////////////////*/ function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual { require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); balanceOf[from][id] -= amount; balanceOf[to][id] += amount; emit TransferSingle(msg.sender, from, to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual { require(ids.length == amounts.length, "LENGTH_MISMATCH"); require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); // Storing these outside the loop saves ~15 gas per iteration. uint256 id; uint256 amount; for (uint256 i = 0; i < ids.length; ) { id = ids[i]; amount = amounts[i]; balanceOf[from][id] -= amount; balanceOf[to][id] += amount; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function balanceOfBatch(address[] calldata owners, uint256[] calldata ids) public view virtual returns (uint256[] memory balances) { require(owners.length == ids.length, "LENGTH_MISMATCH"); balances = new uint256[](owners.length); // Unchecked because the only math done is incrementing // the array index counter which cannot possibly overflow. unchecked { for (uint256 i = 0; i < owners.length; ++i) { balances[i] = balanceOf[owners[i]][ids[i]]; } } } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155 interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { balanceOf[to][id] += amount; emit TransferSingle(msg.sender, address(0), to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[to][ids[i]] += amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, address(0), to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function _batchBurn( address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[from][ids[i]] -= amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, address(0), ids, amounts); } function _burn( address from, uint256 id, uint256 amount ) internal virtual { balanceOf[from][id] -= amount; emit TransferSingle(msg.sender, from, address(0), id, amount); } } /// @notice A generic interface for a contract which properly accepts ERC1155 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155TokenReceiver { function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155BatchReceived.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } }
File 2 of 4: USDD
pragma solidity 0.6.6; import {Initializable} from "./Initializable.sol"; contract EIP712Base is Initializable { struct EIP712Domain { string name; string version; address verifyingContract; bytes32 salt; } string constant public ERC712_VERSION = "1"; bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256( bytes( "EIP712Domain(string name,string version,address verifyingContract,bytes32 salt)" ) ); bytes32 internal domainSeperator; // supposed to be called once while initializing. // one of the contractsa that inherits this contract follows proxy pattern // so it is not possible to do this in a constructor function _initializeEIP712( string memory name ) internal initializer { _setDomainSeperator(name); } function _setDomainSeperator(string memory name) internal { domainSeperator = keccak256( abi.encode( EIP712_DOMAIN_TYPEHASH, keccak256(bytes(name)), keccak256(bytes(ERC712_VERSION)), address(this), bytes32(getChainId()) ) ); } function getDomainSeperator() public view returns (bytes32) { return domainSeperator; } function getChainId() public pure returns (uint256) { uint256 id; assembly { id := chainid() } return id; } /** * Accept message hash and returns hash message in EIP712 compatible form * So that it can be used to recover signer from signature signed using EIP712 formatted data * https://eips.ethereum.org/EIPS/eip-712 * "\\\\x19" makes the encoding deterministic * "\\\\x01" is the version byte to make it compatible to EIP-191 */ function toTypedMessageHash(bytes32 messageHash) internal view returns (bytes32) { return keccak256( abi.encodePacked("\\x19\\x01", getDomainSeperator(), messageHash) ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } pragma solidity 0.6.6; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; contract AccessControlMixin is AccessControl { string private _revertMsg; function _setupContractId(string memory contractId) internal { _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS")); } modifier only(bytes32 role) { require( hasRole(role, _msgSender()), _revertMsg ); _; } } pragma solidity 0.6.6; abstract contract ContextMixin { function msgSender() internal view returns (address payable sender) { if (msg.sender == address(this)) { bytes memory array = msg.data; uint256 index = msg.data.length; assembly { // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those. sender := and( mload(add(array, index)), 0xffffffffffffffffffffffffffffffffffffffff ) } } else { sender = msg.sender; } return sender; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../utils/Context.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { emit RoleAdminChanged(role, _roles[role].adminRole, adminRole); _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // This contract is not supposed to be used in production // It's strictly for testing purpose pragma solidity 0.6.6; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {IMintableERC20} from "./IMintableERC20.sol"; import {NativeMetaTransaction} from "../../common/NativeMetaTransaction.sol"; import {ContextMixin} from "../../common/ContextMixin.sol"; import {AccessControlMixin} from "../../common/AccessControlMixin.sol"; contract USDD is ERC20, AccessControlMixin, NativeMetaTransaction, ContextMixin, IMintableERC20 { bytes32 public constant PREDICATE_ROLE = keccak256("PREDICATE_ROLE"); constructor(string memory name_, string memory symbol_, address predicate_) public ERC20(name_, symbol_) { _setupContractId("USDD"); _setupRole(PREDICATE_ROLE, predicate_); _initializeEIP712(name_); } /** * @dev See {IMintableERC20-mint}. */ function mint(address user, uint256 amount) external override only(PREDICATE_ROLE) { _mint(user, amount); } function _msgSender() internal override view returns (address payable sender) { return ContextMixin.msgSender(); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } pragma solidity 0.6.6; import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {EIP712Base} from "./EIP712Base.sol"; contract NativeMetaTransaction is EIP712Base { using SafeMath for uint256; bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256( bytes( "MetaTransaction(uint256 nonce,address from,bytes functionSignature)" ) ); event MetaTransactionExecuted( address userAddress, address payable relayerAddress, bytes functionSignature ); mapping(address => uint256) nonces; /* * Meta transaction structure. * No point of including value field here as if user is doing value transfer then he has the funds to pay for gas * He should call the desired function directly in that case. */ struct MetaTransaction { uint256 nonce; address from; bytes functionSignature; } function executeMetaTransaction( address userAddress, bytes memory functionSignature, bytes32 sigR, bytes32 sigS, uint8 sigV ) public payable returns (bytes memory) { MetaTransaction memory metaTx = MetaTransaction({ nonce: nonces[userAddress], from: userAddress, functionSignature: functionSignature }); require( verify(userAddress, metaTx, sigR, sigS, sigV), "Signer and signature do not match" ); // increase nonce for user (to avoid re-use) nonces[userAddress] = nonces[userAddress].add(1); emit MetaTransactionExecuted( userAddress, msg.sender, functionSignature ); // Append userAddress and relayer address at the end to extract it from calling context (bool success, bytes memory returnData) = address(this).call( abi.encodePacked(functionSignature, userAddress) ); require(success, "Function call not successful"); return returnData; } function hashMetaTransaction(MetaTransaction memory metaTx) internal pure returns (bytes32) { return keccak256( abi.encode( META_TRANSACTION_TYPEHASH, metaTx.nonce, metaTx.from, keccak256(metaTx.functionSignature) ) ); } function getNonce(address user) public view returns (uint256 nonce) { nonce = nonces[user]; } function verify( address signer, MetaTransaction memory metaTx, bytes32 sigR, bytes32 sigS, uint8 sigV ) internal view returns (bool) { require(signer != address(0), "NativeMetaTransaction: INVALID_SIGNER"); return signer == ecrecover( toTypedMessageHash(hashMetaTransaction(metaTx)), sigV, sigR, sigS ); } } import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; pragma solidity 0.6.6; interface IMintableERC20 is IERC20 { /** * @notice called by predicate contract to mint tokens while withdrawing * @dev Should be callable only by MintableERC20Predicate * Make sure minting is done only by this function * @param user user address for whom token is being minted * @param amount amount of token being minted */ function mint(address user, uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } pragma solidity 0.6.6; contract Initializable { bool inited = false; modifier initializer() { require(!inited, "already inited"); _; inited = true; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
File 3 of 4: TetherToken
pragma solidity ^0.4.17; /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20Basic { uint public _totalSupply; function totalSupply() public constant returns (uint); function balanceOf(address who) public constant returns (uint); function transfer(address to, uint value) public; event Transfer(address indexed from, address indexed to, uint value); } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint); function transferFrom(address from, address to, uint value) public; function approve(address spender, uint value) public; event Approval(address indexed owner, address indexed spender, uint value); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); } contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; } contract TetherToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
File 4 of 4: Permit2
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {PermitHash} from "./libraries/PermitHash.sol"; import {SignatureVerification} from "./libraries/SignatureVerification.sol"; import {EIP712} from "./EIP712.sol"; import {IAllowanceTransfer} from "../src/interfaces/IAllowanceTransfer.sol"; import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol"; import {Allowance} from "./libraries/Allowance.sol"; contract AllowanceTransfer is IAllowanceTransfer, EIP712 { using SignatureVerification for bytes; using SafeTransferLib for ERC20; using PermitHash for PermitSingle; using PermitHash for PermitBatch; using Allowance for PackedAllowance; /// @notice Maps users to tokens to spender addresses and information about the approval on the token /// @dev Indexed in the order of token owner address, token address, spender address /// @dev The stored word saves the allowed amount, expiration on the allowance, and nonce mapping(address => mapping(address => mapping(address => PackedAllowance))) public allowance; /// @inheritdoc IAllowanceTransfer function approve(address token, address spender, uint160 amount, uint48 expiration) external { PackedAllowance storage allowed = allowance[msg.sender][token][spender]; allowed.updateAmountAndExpiration(amount, expiration); emit Approval(msg.sender, token, spender, amount, expiration); } /// @inheritdoc IAllowanceTransfer function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external { if (block.timestamp > permitSingle.sigDeadline) revert SignatureExpired(permitSingle.sigDeadline); // Verify the signer address from the signature. signature.verify(_hashTypedData(permitSingle.hash()), owner); _updateApproval(permitSingle.details, owner, permitSingle.spender); } /// @inheritdoc IAllowanceTransfer function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external { if (block.timestamp > permitBatch.sigDeadline) revert SignatureExpired(permitBatch.sigDeadline); // Verify the signer address from the signature. signature.verify(_hashTypedData(permitBatch.hash()), owner); address spender = permitBatch.spender; unchecked { uint256 length = permitBatch.details.length; for (uint256 i = 0; i < length; ++i) { _updateApproval(permitBatch.details[i], owner, spender); } } } /// @inheritdoc IAllowanceTransfer function transferFrom(address from, address to, uint160 amount, address token) external { _transfer(from, to, amount, token); } /// @inheritdoc IAllowanceTransfer function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external { unchecked { uint256 length = transferDetails.length; for (uint256 i = 0; i < length; ++i) { AllowanceTransferDetails memory transferDetail = transferDetails[i]; _transfer(transferDetail.from, transferDetail.to, transferDetail.amount, transferDetail.token); } } } /// @notice Internal function for transferring tokens using stored allowances /// @dev Will fail if the allowed timeframe has passed function _transfer(address from, address to, uint160 amount, address token) private { PackedAllowance storage allowed = allowance[from][token][msg.sender]; if (block.timestamp > allowed.expiration) revert AllowanceExpired(allowed.expiration); uint256 maxAmount = allowed.amount; if (maxAmount != type(uint160).max) { if (amount > maxAmount) { revert InsufficientAllowance(maxAmount); } else { unchecked { allowed.amount = uint160(maxAmount) - amount; } } } // Transfer the tokens from the from address to the recipient. ERC20(token).safeTransferFrom(from, to, amount); } /// @inheritdoc IAllowanceTransfer function lockdown(TokenSpenderPair[] calldata approvals) external { address owner = msg.sender; // Revoke allowances for each pair of spenders and tokens. unchecked { uint256 length = approvals.length; for (uint256 i = 0; i < length; ++i) { address token = approvals[i].token; address spender = approvals[i].spender; allowance[owner][token][spender].amount = 0; emit Lockdown(owner, token, spender); } } } /// @inheritdoc IAllowanceTransfer function invalidateNonces(address token, address spender, uint48 newNonce) external { uint48 oldNonce = allowance[msg.sender][token][spender].nonce; if (newNonce <= oldNonce) revert InvalidNonce(); // Limit the amount of nonces that can be invalidated in one transaction. unchecked { uint48 delta = newNonce - oldNonce; if (delta > type(uint16).max) revert ExcessiveInvalidation(); } allowance[msg.sender][token][spender].nonce = newNonce; emit NonceInvalidation(msg.sender, token, spender, newNonce, oldNonce); } /// @notice Sets the new values for amount, expiration, and nonce. /// @dev Will check that the signed nonce is equal to the current nonce and then incrememnt the nonce value by 1. /// @dev Emits a Permit event. function _updateApproval(PermitDetails memory details, address owner, address spender) private { uint48 nonce = details.nonce; address token = details.token; uint160 amount = details.amount; uint48 expiration = details.expiration; PackedAllowance storage allowed = allowance[owner][token][spender]; if (allowed.nonce != nonce) revert InvalidNonce(); allowed.updateAll(amount, expiration, nonce); emit Permit(owner, token, spender, amount, expiration, nonce); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; /// @notice EIP712 helpers for permit2 /// @dev Maintains cross-chain replay protection in the event of a fork /// @dev Reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol contract EIP712 { // Cache the domain separator as an immutable value, but also store the chain id that it // corresponds to, in order to invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; bytes32 private constant _HASHED_NAME = keccak256("Permit2"); bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); constructor() { _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME); } /// @notice Returns the domain separator for the current chain. /// @dev Uses cached version if chainid and address are unchanged from construction. function DOMAIN_SEPARATOR() public view returns (bytes32) { return block.chainid == _CACHED_CHAIN_ID ? _CACHED_DOMAIN_SEPARATOR : _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME); } /// @notice Builds a domain separator using the current chainId and contract address. function _buildDomainSeparator(bytes32 typeHash, bytes32 nameHash) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, block.chainid, address(this))); } /// @notice Creates an EIP-712 typed data hash function _hashTypedData(bytes32 dataHash) internal view returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", DOMAIN_SEPARATOR(), dataHash)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {SignatureTransfer} from "./SignatureTransfer.sol"; import {AllowanceTransfer} from "./AllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. contract Permit2 is SignatureTransfer, AllowanceTransfer { // Permit2 unifies the two contracts so users have maximal flexibility with their approval. } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; /// @notice Shared errors between signature based transfers and allowance based transfers. /// @notice Thrown when validating an inputted signature that is stale /// @param signatureDeadline The timestamp at which a signature is no longer valid error SignatureExpired(uint256 signatureDeadline); /// @notice Thrown when validating that the inputted nonce has not been used error InvalidNonce(); // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {ISignatureTransfer} from "./interfaces/ISignatureTransfer.sol"; import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol"; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {SignatureVerification} from "./libraries/SignatureVerification.sol"; import {PermitHash} from "./libraries/PermitHash.sol"; import {EIP712} from "./EIP712.sol"; contract SignatureTransfer is ISignatureTransfer, EIP712 { using SignatureVerification for bytes; using SafeTransferLib for ERC20; using PermitHash for PermitTransferFrom; using PermitHash for PermitBatchTransferFrom; /// @inheritdoc ISignatureTransfer mapping(address => mapping(uint256 => uint256)) public nonceBitmap; /// @inheritdoc ISignatureTransfer function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external { _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature); } /// @inheritdoc ISignatureTransfer function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external { _permitTransferFrom( permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature ); } /// @notice Transfers a token using a signed permit message. /// @dev If to is the zero address, the tokens are sent to the spender. /// @param permit The permit data signed over by the owner /// @param dataHash The EIP-712 hash of permit data to include when checking signature /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function _permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 dataHash, bytes calldata signature ) private { uint256 requestedAmount = transferDetails.requestedAmount; if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline); if (requestedAmount > permit.permitted.amount) revert InvalidAmount(permit.permitted.amount); _useUnorderedNonce(owner, permit.nonce); signature.verify(_hashTypedData(dataHash), owner); ERC20(permit.permitted.token).safeTransferFrom(owner, transferDetails.to, requestedAmount); } /// @inheritdoc ISignatureTransfer function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external { _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature); } /// @inheritdoc ISignatureTransfer function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external { _permitTransferFrom( permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature ); } /// @notice Transfers tokens using a signed permit messages /// @dev If to is the zero address, the tokens are sent to the spender /// @param permit The permit data signed over by the owner /// @param dataHash The EIP-712 hash of permit data to include when checking signature /// @param owner The owner of the tokens to transfer /// @param signature The signature to verify function _permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 dataHash, bytes calldata signature ) private { uint256 numPermitted = permit.permitted.length; if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline); if (numPermitted != transferDetails.length) revert LengthMismatch(); _useUnorderedNonce(owner, permit.nonce); signature.verify(_hashTypedData(dataHash), owner); unchecked { for (uint256 i = 0; i < numPermitted; ++i) { TokenPermissions memory permitted = permit.permitted[i]; uint256 requestedAmount = transferDetails[i].requestedAmount; if (requestedAmount > permitted.amount) revert InvalidAmount(permitted.amount); if (requestedAmount != 0) { // allow spender to specify which of the permitted tokens should be transferred ERC20(permitted.token).safeTransferFrom(owner, transferDetails[i].to, requestedAmount); } } } } /// @inheritdoc ISignatureTransfer function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external { nonceBitmap[msg.sender][wordPos] |= mask; emit UnorderedNonceInvalidation(msg.sender, wordPos, mask); } /// @notice Returns the index of the bitmap and the bit position within the bitmap. Used for unordered nonces /// @param nonce The nonce to get the associated word and bit positions /// @return wordPos The word position or index into the nonceBitmap /// @return bitPos The bit position /// @dev The first 248 bits of the nonce value is the index of the desired bitmap /// @dev The last 8 bits of the nonce value is the position of the bit in the bitmap function bitmapPositions(uint256 nonce) private pure returns (uint256 wordPos, uint256 bitPos) { wordPos = uint248(nonce >> 8); bitPos = uint8(nonce); } /// @notice Checks whether a nonce is taken and sets the bit at the bit position in the bitmap at the word position /// @param from The address to use the nonce at /// @param nonce The nonce to spend function _useUnorderedNonce(address from, uint256 nonce) internal { (uint256 wordPos, uint256 bitPos) = bitmapPositions(nonce); uint256 bit = 1 << bitPos; uint256 flipped = nonceBitmap[from][wordPos] ^= bit; if (flipped & bit == 0) revert InvalidNonce(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer { /// @notice Thrown when an allowance on a token has expired. /// @param deadline The timestamp at which the allowed amount is no longer valid error AllowanceExpired(uint256 deadline); /// @notice Thrown when an allowance on a token has been depleted. /// @param amount The maximum amount allowed error InsufficientAllowance(uint256 amount); /// @notice Thrown when too many nonces are invalidated. error ExcessiveInvalidation(); /// @notice Emits an event when the owner successfully invalidates an ordered nonce. event NonceInvalidation( address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce ); /// @notice Emits an event when the owner successfully sets permissions on a token for the spender. event Approval( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration ); /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender. event Permit( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration, uint48 nonce ); /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function. event Lockdown(address indexed owner, address token, address spender); /// @notice The permit data for a token struct PermitDetails { // ERC20 token address address token; // the maximum amount allowed to spend uint160 amount; // timestamp at which a spender's token allowances become invalid uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice The permit message signed for a single token allownce struct PermitSingle { // the permit data for a single token alownce PermitDetails details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The permit message signed for multiple token allowances struct PermitBatch { // the permit data for multiple token allowances PermitDetails[] details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The saved permissions /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message /// @dev Setting amount to type(uint160).max sets an unlimited approval struct PackedAllowance { // amount allowed uint160 amount; // permission expiry uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice Details for a token transfer. struct AllowanceTransferDetails { // the owner of the token address from; // the recipient of the token address to; // the amount of the token uint160 amount; // the token to be transferred address token; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address, address, address) external view returns (uint160, uint48, uint48); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitSingle Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external; /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitBatch Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external; /// @notice Transfer approved tokens from one address to another /// @param from The address to transfer from /// @param to The address of the recipient /// @param amount The amount of the token to transfer /// @param token The token address to transfer /// @dev Requires the from address to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(address from, address to, uint160 amount, address token) external; /// @notice Transfer approved tokens in a batch /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers /// @dev Requires the from addresses to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; /// @notice Invalidate nonces for a given (token, spender) pair /// @param token The token to invalidate nonces for /// @param spender The spender to invalidate nonces for /// @param newNonce The new nonce to set. Invalidates all nonces less than it. /// @dev Can't invalidate more than 2**16 nonces per transaction. function invalidateNonces(address token, address spender, uint48 newNonce) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IERC1271 { /// @dev Should return whether the signature provided is valid for the provided data /// @param hash Hash of the data to be signed /// @param signature Signature byte array associated with _data /// @return magicValue The bytes4 magic value 0x1626ba7e function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface ISignatureTransfer { /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount /// @param maxAmount The maximum amount a spender can request to transfer error InvalidAmount(uint256 maxAmount); /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred error LengthMismatch(); /// @notice Emits an event when the owner successfully invalidates an unordered nonce. event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask); /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice Used to reconstruct the signed permit message for multiple token transfers /// @dev Do not need to pass in spender address as it is required that it is msg.sender /// @dev Note that a user still signs over a spender address struct PermitBatchTransferFrom { // the tokens and corresponding amounts permitted for a transfer TokenPermissions[] permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers a token using a signed permit message /// @notice Includes extra data provided by the caller to verify signature over /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param signature The signature to verify function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @notice Includes extra data provided by the caller to verify signature over /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Invalidates the bits specified in mask for the bitmap at the word position /// @dev The wordPos is maxed at type(uint248).max /// @param wordPos A number to index the nonceBitmap at /// @param mask A bitmap masked against msg.sender's current bitmap at the word position function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol"; library Allowance { // note if the expiration passed is 0, then it the approval set to the block.timestamp uint256 private constant BLOCK_TIMESTAMP_EXPIRATION = 0; /// @notice Sets the allowed amount, expiry, and nonce of the spender's permissions on owner's token. /// @dev Nonce is incremented. /// @dev If the inputted expiration is 0, the stored expiration is set to block.timestamp function updateAll( IAllowanceTransfer.PackedAllowance storage allowed, uint160 amount, uint48 expiration, uint48 nonce ) internal { uint48 storedNonce; unchecked { storedNonce = nonce + 1; } uint48 storedExpiration = expiration == BLOCK_TIMESTAMP_EXPIRATION ? uint48(block.timestamp) : expiration; uint256 word = pack(amount, storedExpiration, storedNonce); assembly { sstore(allowed.slot, word) } } /// @notice Sets the allowed amount and expiry of the spender's permissions on owner's token. /// @dev Nonce does not need to be incremented. function updateAmountAndExpiration( IAllowanceTransfer.PackedAllowance storage allowed, uint160 amount, uint48 expiration ) internal { // If the inputted expiration is 0, the allowance only lasts the duration of the block. allowed.expiration = expiration == 0 ? uint48(block.timestamp) : expiration; allowed.amount = amount; } /// @notice Computes the packed slot of the amount, expiration, and nonce that make up PackedAllowance function pack(uint160 amount, uint48 expiration, uint48 nonce) internal pure returns (uint256 word) { word = (uint256(nonce) << 208) | uint256(expiration) << 160 | amount; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol"; import {ISignatureTransfer} from "../interfaces/ISignatureTransfer.sol"; library PermitHash { bytes32 public constant _PERMIT_DETAILS_TYPEHASH = keccak256("PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)"); bytes32 public constant _PERMIT_SINGLE_TYPEHASH = keccak256( "PermitSingle(PermitDetails details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)" ); bytes32 public constant _PERMIT_BATCH_TYPEHASH = keccak256( "PermitBatch(PermitDetails[] details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)" ); bytes32 public constant _TOKEN_PERMISSIONS_TYPEHASH = keccak256("TokenPermissions(address token,uint256 amount)"); bytes32 public constant _PERMIT_TRANSFER_FROM_TYPEHASH = keccak256( "PermitTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)" ); bytes32 public constant _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH = keccak256( "PermitBatchTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)" ); string public constant _TOKEN_PERMISSIONS_TYPESTRING = "TokenPermissions(address token,uint256 amount)"; string public constant _PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB = "PermitWitnessTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline,"; string public constant _PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB = "PermitBatchWitnessTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline,"; function hash(IAllowanceTransfer.PermitSingle memory permitSingle) internal pure returns (bytes32) { bytes32 permitHash = _hashPermitDetails(permitSingle.details); return keccak256(abi.encode(_PERMIT_SINGLE_TYPEHASH, permitHash, permitSingle.spender, permitSingle.sigDeadline)); } function hash(IAllowanceTransfer.PermitBatch memory permitBatch) internal pure returns (bytes32) { uint256 numPermits = permitBatch.details.length; bytes32[] memory permitHashes = new bytes32[](numPermits); for (uint256 i = 0; i < numPermits; ++i) { permitHashes[i] = _hashPermitDetails(permitBatch.details[i]); } return keccak256( abi.encode( _PERMIT_BATCH_TYPEHASH, keccak256(abi.encodePacked(permitHashes)), permitBatch.spender, permitBatch.sigDeadline ) ); } function hash(ISignatureTransfer.PermitTransferFrom memory permit) internal view returns (bytes32) { bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted); return keccak256( abi.encode(_PERMIT_TRANSFER_FROM_TYPEHASH, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline) ); } function hash(ISignatureTransfer.PermitBatchTransferFrom memory permit) internal view returns (bytes32) { uint256 numPermitted = permit.permitted.length; bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted); for (uint256 i = 0; i < numPermitted; ++i) { tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]); } return keccak256( abi.encode( _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH, keccak256(abi.encodePacked(tokenPermissionHashes)), msg.sender, permit.nonce, permit.deadline ) ); } function hashWithWitness( ISignatureTransfer.PermitTransferFrom memory permit, bytes32 witness, string calldata witnessTypeString ) internal view returns (bytes32) { bytes32 typeHash = keccak256(abi.encodePacked(_PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB, witnessTypeString)); bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted); return keccak256(abi.encode(typeHash, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline, witness)); } function hashWithWitness( ISignatureTransfer.PermitBatchTransferFrom memory permit, bytes32 witness, string calldata witnessTypeString ) internal view returns (bytes32) { bytes32 typeHash = keccak256(abi.encodePacked(_PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB, witnessTypeString)); uint256 numPermitted = permit.permitted.length; bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted); for (uint256 i = 0; i < numPermitted; ++i) { tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]); } return keccak256( abi.encode( typeHash, keccak256(abi.encodePacked(tokenPermissionHashes)), msg.sender, permit.nonce, permit.deadline, witness ) ); } function _hashPermitDetails(IAllowanceTransfer.PermitDetails memory details) private pure returns (bytes32) { return keccak256(abi.encode(_PERMIT_DETAILS_TYPEHASH, details)); } function _hashTokenPermissions(ISignatureTransfer.TokenPermissions memory permitted) private pure returns (bytes32) { return keccak256(abi.encode(_TOKEN_PERMISSIONS_TYPEHASH, permitted)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IERC1271} from "../interfaces/IERC1271.sol"; library SignatureVerification { /// @notice Thrown when the passed in signature is not a valid length error InvalidSignatureLength(); /// @notice Thrown when the recovered signer is equal to the zero address error InvalidSignature(); /// @notice Thrown when the recovered signer does not equal the claimedSigner error InvalidSigner(); /// @notice Thrown when the recovered contract signature is incorrect error InvalidContractSignature(); bytes32 constant UPPER_BIT_MASK = (0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); function verify(bytes calldata signature, bytes32 hash, address claimedSigner) internal view { bytes32 r; bytes32 s; uint8 v; if (claimedSigner.code.length == 0) { if (signature.length == 65) { (r, s) = abi.decode(signature, (bytes32, bytes32)); v = uint8(signature[64]); } else if (signature.length == 64) { // EIP-2098 bytes32 vs; (r, vs) = abi.decode(signature, (bytes32, bytes32)); s = vs & UPPER_BIT_MASK; v = uint8(uint256(vs >> 255)) + 27; } else { revert InvalidSignatureLength(); } address signer = ecrecover(hash, v, r, s); if (signer == address(0)) revert InvalidSignature(); if (signer != claimedSigner) revert InvalidSigner(); } else { bytes4 magicValue = IERC1271(claimedSigner).isValidSignature(hash, signature); if (magicValue != IERC1271.isValidSignature.selector) revert InvalidContractSignature(); } } }