Transaction Hash:
Block:
22605797 at May-31-2025 10:50:59 PM +UTC
Transaction Fee:
0.000063876570503767 ETH
$0.17
Gas Used:
29,701 Gas / 2.150653867 Gwei
Emitted Events:
593 |
AdventureGold.Transfer( from=[Sender] 0x548f27e2c1eb0c90c9c0ef3a4a61a6ae60038f02, to=0x4a2C73d14a795C7c44708b7b81E1f7842f9Bd175, value=39874465802940000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x32353A6C...9A2489A20 | |||||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 7.72624094647101059 Eth | 7.726285718491609476 Eth | 0.000044772020598886 | |
0x548f27e2...E60038f02 | (Upbit Dep: 0x548f27e2c1eb0c90C9C0EF3a4A61a6aE60038f02) |
14.127665481128721321 Eth
Nonce: 23967
|
14.127601604558217554 Eth
Nonce: 23968
| 0.000063876570503767 |
Execution Trace
AdventureGold.transfer( recipient=0x4a2C73d14a795C7c44708b7b81E1f7842f9Bd175, amount=39874465802940000000000 ) => ( True )
transfer[ERC20 (ln:315)]
_transfer[ERC20 (ln:321)]
_beforeTokenTransfer[ERC20 (ln:465)]
Transfer[ERC20 (ln:477)]
_afterTokenTransfer[ERC20 (ln:479)]
_msgSender[ERC20 (ln:321)]
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); } /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require( currentAllowance >= amount, "ERC20: transfer amount exceeds allowance" ); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender] + addedValue ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require( senderBalance >= amount, "ERC20: transfer amount exceeds balance" ); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; } /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } /// @title Adventure Gold for Loot holders! /// @author Will Papper <https://twitter.com/WillPapper> /// @notice This contract mints Adventure Gold for Loot holders and provides /// administrative functions to the Loot DAO. It allows: /// * Loot holders to claim Adventure Gold /// * A DAO to set seasons for new opportunities to claim Adventure Gold /// * A DAO to mint Adventure Gold for use within the Loot ecosystem /// @custom:unaudited This contract has not been audited. Use at your own risk. contract AdventureGold is Context, Ownable, ERC20 { // Loot contract is available at https://etherscan.io/address/0xff9c1b15b16263c61d017ee9f65c50e4ae0113d7 address public lootContractAddress = 0xFF9C1b15B16263C61d017ee9F65C50e4AE0113D7; IERC721Enumerable public lootContract; // Give out 10,000 Adventure Gold for every Loot Bag that a user holds uint256 public adventureGoldPerTokenId = 10000 * (10**decimals()); // tokenIdStart of 1 is based on the following lines in the Loot contract: /** function claim(uint256 tokenId) public nonReentrant { require(tokenId > 0 && tokenId < 7778, "Token ID invalid"); _safeMint(_msgSender(), tokenId); } */ uint256 public tokenIdStart = 1; // tokenIdEnd of 8000 is based on the following lines in the Loot contract: /** function ownerClaim(uint256 tokenId) public nonReentrant onlyOwner { require(tokenId > 7777 && tokenId < 8001, "Token ID invalid"); _safeMint(owner(), tokenId); } */ uint256 public tokenIdEnd = 8000; // Seasons are used to allow users to claim tokens regularly. Seasons are // decided by the DAO. uint256 public season = 0; // Track claimed tokens within a season // IMPORTANT: The format of the mapping is: // claimedForSeason[season][tokenId][claimed] mapping(uint256 => mapping(uint256 => bool)) public seasonClaimedByTokenId; constructor() Ownable() ERC20("Adventure Gold", "AGLD") { // Transfer ownership to the Loot DAO // Ownable by OpenZeppelin automatically sets owner to msg.sender, but // we're going to be using a separate wallet for deployment transferOwnership(0xcD814C83198C15A542F9A13FAf84D518d1744ED1); lootContract = IERC721Enumerable(lootContractAddress); } /// @notice Claim Adventure Gold for a given Loot ID /// @param tokenId The tokenId of the Loot NFT function claimById(uint256 tokenId) external { // Follow the Checks-Effects-Interactions pattern to prevent reentrancy // attacks // Checks // Check that the msgSender owns the token that is being claimed require( _msgSender() == lootContract.ownerOf(tokenId), "MUST_OWN_TOKEN_ID" ); // Further Checks, Effects, and Interactions are contained within the // _claim() function _claim(tokenId, _msgSender()); } /// @notice Claim Adventure Gold for all tokens owned by the sender /// @notice This function will run out of gas if you have too much loot! If /// this is a concern, you should use claimRangeForOwner and claim Adventure /// Gold in batches. function claimAllForOwner() external { uint256 tokenBalanceOwner = lootContract.balanceOf(_msgSender()); // Checks require(tokenBalanceOwner > 0, "NO_TOKENS_OWNED"); // i < tokenBalanceOwner because tokenBalanceOwner is 1-indexed for (uint256 i = 0; i < tokenBalanceOwner; i++) { // Further Checks, Effects, and Interactions are contained within // the _claim() function _claim( lootContract.tokenOfOwnerByIndex(_msgSender(), i), _msgSender() ); } } /// @notice Claim Adventure Gold for all tokens owned by the sender within a /// given range /// @notice This function is useful if you own too much Loot to claim all at /// once or if you want to leave some Loot unclaimed. If you leave Loot /// unclaimed, however, you cannot claim it once the next season starts. function claimRangeForOwner(uint256 ownerIndexStart, uint256 ownerIndexEnd) external { uint256 tokenBalanceOwner = lootContract.balanceOf(_msgSender()); // Checks require(tokenBalanceOwner > 0, "NO_TOKENS_OWNED"); // We use < for ownerIndexEnd and tokenBalanceOwner because // tokenOfOwnerByIndex is 0-indexed while the token balance is 1-indexed require( ownerIndexStart >= 0 && ownerIndexEnd < tokenBalanceOwner, "INDEX_OUT_OF_RANGE" ); // i <= ownerIndexEnd because ownerIndexEnd is 0-indexed for (uint256 i = ownerIndexStart; i <= ownerIndexEnd; i++) { // Further Checks, Effects, and Interactions are contained within // the _claim() function _claim( lootContract.tokenOfOwnerByIndex(_msgSender(), i), _msgSender() ); } } /// @dev Internal function to mint Loot upon claiming function _claim(uint256 tokenId, address tokenOwner) internal { // Checks // Check that the token ID is in range // We use >= and <= to here because all of the token IDs are 0-indexed require( tokenId >= tokenIdStart && tokenId <= tokenIdEnd, "TOKEN_ID_OUT_OF_RANGE" ); // Check that Adventure Gold have not already been claimed this season // for a given tokenId require( !seasonClaimedByTokenId[season][tokenId], "GOLD_CLAIMED_FOR_TOKEN_ID" ); // Effects // Mark that Adventure Gold has been claimed for this season for the // given tokenId seasonClaimedByTokenId[season][tokenId] = true; // Interactions // Send Adventure Gold to the owner of the token ID _mint(tokenOwner, adventureGoldPerTokenId); } /// @notice Allows the DAO to mint new tokens for use within the Loot /// Ecosystem /// @param amountDisplayValue The amount of Loot to mint. This should be /// input as the display value, not in raw decimals. If you want to mint /// 100 Loot, you should enter "100" rather than the value of 100 * 10^18. function daoMint(uint256 amountDisplayValue) external onlyOwner { _mint(owner(), amountDisplayValue * (10**decimals())); } /// @notice Allows the DAO to set a new contract address for Loot. This is /// relevant in the event that Loot migrates to a new contract. /// @param lootContractAddress_ The new contract address for Loot function daoSetLootContractAddress(address lootContractAddress_) external onlyOwner { lootContractAddress = lootContractAddress_; lootContract = IERC721Enumerable(lootContractAddress); } /// @notice Allows the DAO to set the token IDs that are eligible to claim /// Loot /// @param tokenIdStart_ The start of the eligible token range /// @param tokenIdEnd_ The end of the eligible token range /// @dev This is relevant in case a future Loot contract has a different /// total supply of Loot function daoSetTokenIdRange(uint256 tokenIdStart_, uint256 tokenIdEnd_) external onlyOwner { tokenIdStart = tokenIdStart_; tokenIdEnd = tokenIdEnd_; } /// @notice Allows the DAO to set a season for new Adventure Gold claims /// @param season_ The season to use for claiming Loot function daoSetSeason(uint256 season_) public onlyOwner { season = season_; } /// @notice Allows the DAO to set the amount of Adventure Gold that is /// claimed per token ID /// @param adventureGoldDisplayValue The amount of Loot a user can claim. /// This should be input as the display value, not in raw decimals. If you /// want to mint 100 Loot, you should enter "100" rather than the value of /// 100 * 10^18. function daoSetAdventureGoldPerTokenId(uint256 adventureGoldDisplayValue) public onlyOwner { adventureGoldPerTokenId = adventureGoldDisplayValue * (10**decimals()); } /// @notice Allows the DAO to set the season and Adventure Gold per token ID /// in one transaction. This ensures that there is not a gap where a user /// can claim more Adventure Gold than others /// @param season_ The season to use for claiming loot /// @param adventureGoldDisplayValue The amount of Loot a user can claim. /// This should be input as the display value, not in raw decimals. If you /// want to mint 100 Loot, you should enter "100" rather than the value of /// 100 * 10^18. /// @dev We would save a tiny amount of gas by modifying the season and /// adventureGold variables directly. It is better practice for security, /// however, to avoid repeating code. This function is so rarely used that /// it's not worth moving these values into their own internal function to /// skip the gas used on the modifier check. function daoSetSeasonAndAdventureGoldPerTokenID( uint256 season_, uint256 adventureGoldDisplayValue ) external onlyOwner { daoSetSeason(season_); daoSetAdventureGoldPerTokenId(adventureGoldDisplayValue); } }