ETH Price: $2,523.77 (+0.89%)
Gas: 0.54 Gwei

Transaction Decoder

Block:
21973039 at Mar-04-2025 10:50:35 AM +UTC
Transaction Fee:
0.000055212184370965 ETH $0.14
Gas Used:
45,601 Gas / 1.210766965 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x070f498F...9Bc070A95
0.001244266614193053 Eth
Nonce: 27
0.001189054429822088 Eth
Nonce: 28
0.000055212184370965
(Titan Builder)
6.830728977127646635 Eth6.830751777627646635 Eth0.0000228005

Execution Trace

ApprovalProxy.transferAndMulticall( tokens=[0x736ECc5237B31eDec6f1aB9a396FaE2416b1d96E], amounts=[192323881541954360665], targets=[0x736ECc5237B31eDec6f1aB9a396FaE2416b1d96E, 0x85CD07Ea01423b1E937929B44E4Ad8c40BbB5E71], datas=[CV6nswAAAAAAAAAAAAAAAIXNB+oBQjsek3kptE5K2MQLu15xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKbQevSWx+1Vk=, 3ZxflgAAAAAAAAAAAAAAAHNuzFI3sx7exvGrmjlvriQWsdluAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKbQevSWx+1VkAAAAAAAAAAAAAAADu7u7u7u7u7u7u7u7u7u7u7u7u7gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAipAvs+LlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHyr4bzv9gAAAAAAAAAAAAAAAChvqX+kXRQBBdI27vn6axXpLvrqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAswJzbsxSN7Me3sbxq5o5b64kFrHZbgH//wEsIdj+Kc2/bJj/Y4rFC1Ham4FhKAEXwa6C2ZN5JABZlACTdixeRTmrpQAE2sF/lY0u5SOiIGIGmUWXwT2DHscAF8GugtmTeSQAWZQAk3YsXkU5q6UAhc0H6gFCOx6TeSm0TkrYxAu7XnEACcQBwCqqObIj/o0KDlxPJ+rZCDx1bMIB//8CAIXNB+oBQjsek3kptE5K2MQLu15xAAAAAAAAAAAAAAAAAA==], values=[0, 0], refundTo=0xf70da97812CB96acDF810712Aa562db8dfA3dbEF )
  • GaspToken.transferFrom( owner=0x070f498F0458AEE7356902332461CFd9Bc070A95, recipient=0xA1BEa5fe917450041748Dbbbe7E9AC57A4bBEBaB, amount=192323881541954360665 )
    transferAndMulticall[ApprovalProxy (ln:37)]
    File 1 of 2: ApprovalProxy
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.23;
    import {Ownable} from "solady/src/auth/Ownable.sol";
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import {IERC20Router} from "../src/types/interfaces/IERC20Router.sol";
    contract ApprovalProxy is Ownable {
        using SafeERC20 for IERC20;
        error ArrayLengthsMismatch();
        error ERC20TransferFromFailed();
        error NativeTransferFailed();
        event RouterUpdated(address newRouter);
        address public router;
        receive() external payable {}
        constructor(address _owner, address _router) {
            _initializeOwner(_owner);
            router = _router;
        }
        /// @notice Withdraw function in case funds get stuck in contract
        function withdraw() external onlyOwner {
            _send(msg.sender, address(this).balance);
        }
        /// @notice Set the router address
        /// @param _router The address of the router contract
        function setRouter(address _router) external onlyOwner {
            router = _router;
            emit RouterUpdated(_router);
        }
        /// @notice Transfer tokens to ERC20Router and perform multicall in a single tx
        /// @dev This contract must be approved to transfer msg.sender's tokens to the ERC20Router
        /// @param tokens An array of token addresses to transfer
        /// @param amounts An array of token amounts to transfer
        /// @param targets An array of target addresses to pass to the multicall
        /// @param datas An array of calldata to pass to the multicall
        /// @param values An array of msg values to pass to the multicall
        /// @param refundTo The address to refund any leftover ETH to
        function transferAndMulticall(
            address[] calldata tokens,
            uint256[] calldata amounts,
            address[] calldata targets,
            bytes[] calldata datas,
            uint256[] calldata values,
            address refundTo
        ) external payable returns (bytes memory) {
            // Revert if array lengths do not match
            if ((tokens.length != amounts.length)) {
                revert ArrayLengthsMismatch();
            }
            // Revert if array lengths do not match (split from above for readability)
            if (targets.length != datas.length || datas.length != values.length) {
                revert ArrayLengthsMismatch();
            }
            // Transfer the tokens to the router
            for (uint256 i = 0; i < tokens.length; i++) {
                IERC20(tokens[i]).safeTransferFrom(msg.sender, router, amounts[i]);
            }
            // Call delegatecallMulticall on the router. The router will perform a
            // delegatecall to the Multicaller.
            // @dev msg.sender for the calls to targets will be the router
            bytes memory data = IERC20Router(router).delegatecallMulticall{value: msg.value}(
                targets,
                datas,
                values,
                refundTo
            );
            return data;
        }
        function _send(address to, uint256 value) internal {
            bool success;
            assembly {
                // Save gas by avoiding copying the return data to memory.
                // Provide at most 100k gas to the internal call, which is
                // more than enough to cover common use-cases of logic for
                // receiving native tokens (eg. SCW payable fallbacks).
                success := call(100000, to, value, 0, 0, 0, 0)
            }
            if (!success) {
                revert NativeTransferFailed();
            }
        }
    }// SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    /// @notice Simple single owner authorization mixin.
    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
    ///
    /// @dev Note:
    /// This implementation does NOT auto-initialize the owner to `msg.sender`.
    /// You MUST call the `_initializeOwner` in the constructor / initializer.
    ///
    /// While the ownable portion follows
    /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
    /// the nomenclature for the 2-step ownership handover may be unique to this codebase.
    abstract contract Ownable {
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                       CUSTOM ERRORS                        */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev The caller is not authorized to call the function.
        error Unauthorized();
        /// @dev The `newOwner` cannot be the zero address.
        error NewOwnerIsZeroAddress();
        /// @dev The `pendingOwner` does not have a valid handover request.
        error NoHandoverRequest();
        /// @dev Cannot double-initialize.
        error AlreadyInitialized();
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                           EVENTS                           */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
        /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
        /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
        /// despite it not being as lightweight as a single argument event.
        event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
        /// @dev An ownership handover to `pendingOwner` has been requested.
        event OwnershipHandoverRequested(address indexed pendingOwner);
        /// @dev The ownership handover to `pendingOwner` has been canceled.
        event OwnershipHandoverCanceled(address indexed pendingOwner);
        /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
        uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
            0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
        /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
        uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
            0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
        /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
        uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
            0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                          STORAGE                           */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev The owner slot is given by:
        /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
        /// It is intentionally chosen to be a high value
        /// to avoid collision with lower slots.
        /// The choice of manual storage layout is to enable compatibility
        /// with both regular and upgradeable contracts.
        bytes32 internal constant _OWNER_SLOT =
            0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
        /// The ownership handover slot of `newOwner` is given by:
        /// ```
        ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
        ///     let handoverSlot := keccak256(0x00, 0x20)
        /// ```
        /// It stores the expiry timestamp of the two-step ownership handover.
        uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                     INTERNAL FUNCTIONS                     */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
        function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
        /// @dev Initializes the owner directly without authorization guard.
        /// This function must be called upon initialization,
        /// regardless of whether the contract is upgradeable or not.
        /// This is to enable generalization to both regular and upgradeable contracts,
        /// and to save gas in case the initial owner is not the caller.
        /// For performance reasons, this function will not check if there
        /// is an existing owner.
        function _initializeOwner(address newOwner) internal virtual {
            if (_guardInitializeOwner()) {
                /// @solidity memory-safe-assembly
                assembly {
                    let ownerSlot := _OWNER_SLOT
                    if sload(ownerSlot) {
                        mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                        revert(0x1c, 0x04)
                    }
                    // Clean the upper 96 bits.
                    newOwner := shr(96, shl(96, newOwner))
                    // Store the new value.
                    sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                    // Emit the {OwnershipTransferred} event.
                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                }
            } else {
                /// @solidity memory-safe-assembly
                assembly {
                    // Clean the upper 96 bits.
                    newOwner := shr(96, shl(96, newOwner))
                    // Store the new value.
                    sstore(_OWNER_SLOT, newOwner)
                    // Emit the {OwnershipTransferred} event.
                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                }
            }
        }
        /// @dev Sets the owner directly without authorization guard.
        function _setOwner(address newOwner) internal virtual {
            if (_guardInitializeOwner()) {
                /// @solidity memory-safe-assembly
                assembly {
                    let ownerSlot := _OWNER_SLOT
                    // Clean the upper 96 bits.
                    newOwner := shr(96, shl(96, newOwner))
                    // Emit the {OwnershipTransferred} event.
                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                    // Store the new value.
                    sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                }
            } else {
                /// @solidity memory-safe-assembly
                assembly {
                    let ownerSlot := _OWNER_SLOT
                    // Clean the upper 96 bits.
                    newOwner := shr(96, shl(96, newOwner))
                    // Emit the {OwnershipTransferred} event.
                    log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                    // Store the new value.
                    sstore(ownerSlot, newOwner)
                }
            }
        }
        /// @dev Throws if the sender is not the owner.
        function _checkOwner() internal view virtual {
            /// @solidity memory-safe-assembly
            assembly {
                // If the caller is not the stored owner, revert.
                if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @dev Returns how long a two-step ownership handover is valid for in seconds.
        /// Override to return a different value if needed.
        /// Made internal to conserve bytecode. Wrap it in a public function if needed.
        function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
            return 48 * 3600;
        }
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                  PUBLIC UPDATE FUNCTIONS                   */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev Allows the owner to transfer the ownership to `newOwner`.
        function transferOwnership(address newOwner) public payable virtual onlyOwner {
            /// @solidity memory-safe-assembly
            assembly {
                if iszero(shl(96, newOwner)) {
                    mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                    revert(0x1c, 0x04)
                }
            }
            _setOwner(newOwner);
        }
        /// @dev Allows the owner to renounce their ownership.
        function renounceOwnership() public payable virtual onlyOwner {
            _setOwner(address(0));
        }
        /// @dev Request a two-step ownership handover to the caller.
        /// The request will automatically expire in 48 hours (172800 seconds) by default.
        function requestOwnershipHandover() public payable virtual {
            unchecked {
                uint256 expires = block.timestamp + _ownershipHandoverValidFor();
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute and set the handover slot to `expires`.
                    mstore(0x0c, _HANDOVER_SLOT_SEED)
                    mstore(0x00, caller())
                    sstore(keccak256(0x0c, 0x20), expires)
                    // Emit the {OwnershipHandoverRequested} event.
                    log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
                }
            }
        }
        /// @dev Cancels the two-step ownership handover to the caller, if any.
        function cancelOwnershipHandover() public payable virtual {
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to 0.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), 0)
                // Emit the {OwnershipHandoverCanceled} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
            }
        }
        /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
        /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
        function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to 0.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, pendingOwner)
                let handoverSlot := keccak256(0x0c, 0x20)
                // If the handover does not exist, or has expired.
                if gt(timestamp(), sload(handoverSlot)) {
                    mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                    revert(0x1c, 0x04)
                }
                // Set the handover slot to 0.
                sstore(handoverSlot, 0)
            }
            _setOwner(pendingOwner);
        }
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                   PUBLIC READ FUNCTIONS                    */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev Returns the owner of the contract.
        function owner() public view virtual returns (address result) {
            /// @solidity memory-safe-assembly
            assembly {
                result := sload(_OWNER_SLOT)
            }
        }
        /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
        function ownershipHandoverExpiresAt(address pendingOwner)
            public
            view
            virtual
            returns (uint256 result)
        {
            /// @solidity memory-safe-assembly
            assembly {
                // Compute the handover slot.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, pendingOwner)
                // Load the handover slot.
                result := sload(keccak256(0x0c, 0x20))
            }
        }
        /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
        /*                         MODIFIERS                          */
        /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
        /// @dev Marks a function as only callable by the owner.
        modifier onlyOwner() virtual {
            _checkOwner();
            _;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../IERC20.sol";
    import {IERC20Permit} from "../extensions/IERC20Permit.sol";
    import {Address} from "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev An operation with an ERC20 token failed.
         */
        error SafeERC20FailedOperation(address token);
        /**
         * @dev Indicates a failed `decreaseAllowance` request.
         */
        error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            forceApprove(token, spender, oldAllowance + value);
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
         * value, non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
            unchecked {
                uint256 currentAllowance = token.allowance(address(this), spender);
                if (currentAllowance < requestedDecrease) {
                    revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                }
                forceApprove(token, spender, currentAllowance - requestedDecrease);
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data);
            if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.23;
    import {ISignatureTransfer} from "permit2-relay/src/interfaces/ISignatureTransfer.sol";
    interface IERC20Router {
        function permitMulticall(
            address user,
            ISignatureTransfer.PermitBatchTransferFrom memory permit,
            address[] calldata targets,
            bytes[] calldata datas,
            uint256[] calldata values,
            address refundTo,
            bytes memory permitSignature
        ) external payable returns (bytes memory);
        function delegatecallMulticall(
            address[] calldata targets,
            bytes[] calldata datas,
            uint256[] calldata values,
            address refundTo
        ) external payable returns (bytes memory);
        function cleanupERC20(address token, address refundTo) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * ==== Security Considerations
     *
     * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
     * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
     * considered as an intention to spend the allowance in any specific way. The second is that because permits have
     * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
     * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
     * generally recommended is:
     *
     * ```solidity
     * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
     *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
     *     doThing(..., value);
     * }
     *
     * function doThing(..., uint256 value) public {
     *     token.safeTransferFrom(msg.sender, address(this), value);
     *     ...
     * }
     * ```
     *
     * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
     * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
     * {SafeERC20-safeTransferFrom}).
     *
     * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
     * contracts should have entry points that don't rely on permit.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         *
         * CAUTION: See Security Considerations above.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error AddressInsufficientBalance(address account);
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedInnerCall();
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert FailedInnerCall();
            }
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {FailedInnerCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
         * unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {FailedInnerCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert FailedInnerCall();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import {IEIP712} from "./IEIP712.sol";
    /// @title SignatureTransfer
    /// @notice Handles ERC20 token transfers through signature based actions
    /// @dev Requires user's token approval on the Permit2 contract
    interface ISignatureTransfer is IEIP712 {
        /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
        /// @param maxAmount The maximum amount a spender can request to transfer
        error InvalidAmount(uint256 maxAmount);
        /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
        /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
        error LengthMismatch();
        /// @notice Emits an event when the owner successfully invalidates an unordered nonce.
        event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);
        /// @notice The token and amount details for a transfer signed in the permit transfer signature
        struct TokenPermissions {
            // ERC20 token address
            address token;
            // the maximum amount that can be spent
            uint256 amount;
        }
        /// @notice The signed permit message for a single token transfer
        struct PermitTransferFrom {
            TokenPermissions permitted;
            // a unique value for every token owner's signature to prevent signature replays
            uint256 nonce;
            // deadline on the permit signature
            uint256 deadline;
        }
        /// @notice Specifies the recipient address and amount for batched transfers.
        /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
        /// @dev Reverts if the requested amount is greater than the permitted signed amount.
        struct SignatureTransferDetails {
            // recipient address
            address to;
            // spender requested amount
            uint256 requestedAmount;
        }
        /// @notice Used to reconstruct the signed permit message for multiple token transfers
        /// @dev Do not need to pass in spender address as it is required that it is msg.sender
        /// @dev Note that a user still signs over a spender address
        struct PermitBatchTransferFrom {
            // the tokens and corresponding amounts permitted for a transfer
            TokenPermissions[] permitted;
            // a unique value for every token owner's signature to prevent signature replays
            uint256 nonce;
            // deadline on the permit signature
            uint256 deadline;
        }
        /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
        /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
        /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
        /// @dev It returns a uint256 bitmap
        /// @dev The index, or wordPosition is capped at type(uint248).max
        function nonceBitmap(address, uint256) external view returns (uint256);
        /// @notice Transfers a token using a signed permit message
        /// @dev Reverts if the requested amount is greater than the permitted signed amount
        /// @param permit The permit data signed over by the owner
        /// @param owner The owner of the tokens to transfer
        /// @param transferDetails The spender's requested transfer details for the permitted token
        /// @param signature The signature to verify
        function permitTransferFrom(
            PermitTransferFrom memory permit,
            SignatureTransferDetails calldata transferDetails,
            address owner,
            bytes calldata signature
        ) external;
        /// @notice Transfers a token using a signed permit message
        /// @notice Includes extra data provided by the caller to verify signature over
        /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
        /// @dev Reverts if the requested amount is greater than the permitted signed amount
        /// @param permit The permit data signed over by the owner
        /// @param owner The owner of the tokens to transfer
        /// @param transferDetails The spender's requested transfer details for the permitted token
        /// @param witness Extra data to include when checking the user signature
        /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
        /// @param signature The signature to verify
        function permitWitnessTransferFrom(
            PermitTransferFrom memory permit,
            SignatureTransferDetails calldata transferDetails,
            address owner,
            bytes32 witness,
            string calldata witnessTypeString,
            bytes calldata signature
        ) external;
        /// @notice Transfers multiple tokens using a signed permit message
        /// @param permit The permit data signed over by the owner
        /// @param owner The owner of the tokens to transfer
        /// @param transferDetails Specifies the recipient and requested amount for the token transfer
        /// @param signature The signature to verify
        function permitTransferFrom(
            PermitBatchTransferFrom memory permit,
            SignatureTransferDetails[] calldata transferDetails,
            address owner,
            bytes calldata signature
        ) external;
        /// @notice Transfers multiple tokens using a signed permit message
        /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
        /// @notice Includes extra data provided by the caller to verify signature over
        /// @param permit The permit data signed over by the owner
        /// @param owner The owner of the tokens to transfer
        /// @param transferDetails Specifies the recipient and requested amount for the token transfer
        /// @param witness Extra data to include when checking the user signature
        /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
        /// @param signature The signature to verify
        function permitWitnessTransferFrom(
            PermitBatchTransferFrom memory permit,
            SignatureTransferDetails[] calldata transferDetails,
            address owner,
            bytes32 witness,
            string calldata witnessTypeString,
            bytes calldata signature
        ) external;
        /// @notice Invalidates the bits specified in mask for the bitmap at the word position
        /// @dev The wordPos is maxed at type(uint248).max
        /// @param wordPos A number to index the nonceBitmap at
        /// @param mask A bitmap masked against msg.sender's current bitmap at the word position
        function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    interface IEIP712 {
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    

    File 2 of 2: GaspToken
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.13;
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import {Context} from "@openzeppelin/contracts/utils/Context.sol";
    import {IGaspToken} from "./interfaces/IGaspToken.sol";
    contract GaspToken is Context, Ownable, ERC20, IGaspToken {
        uint256 private constant _TOTAL_SUPPLY = 1_000_000_000 * 10 ** 18;
        string private constant _NAME = "GASP";
        string private constant _SYMBOL = "GASP";
        mapping(address => bool) public override senderWhitelist;
        mapping(address => bool) public override recipientWhitelist;
        bool public override allowTransfers;
        modifier isWhitelisted(address sender, address recipient, bytes4 selector) {
            if (!allowTransfers && !senderWhitelist[sender] && !recipientWhitelist[recipient]) {
                revert OperationForbidden(selector);
            }
            _;
        }
        constructor(address l1Council) Ownable() ERC20(_NAME, _SYMBOL) {
            if (l1Council == address(0)) {
                revert ZeroL1Council();
            }
            _transferOwnership(l1Council);
            _mint(l1Council, _TOTAL_SUPPLY);
            senderWhitelist[l1Council] = true;
            recipientWhitelist[l1Council] = true;
        }
        function setAllowTransfers(bool allowTransfers_) external override onlyOwner {
            if (allowTransfers) {
                revert TransfersAlreadyAllowed();
            }
            allowTransfers = allowTransfers_;
            emit AllowTransfersSet(allowTransfers_);
        }
        function addToSenderWhitelist(address account) external override onlyOwner {
            if (account == address(0)) {
                revert ZeroWhitelistedAccount();
            }
            if (senderWhitelist[account]) {
                revert AccountAlreadyWhitelisted(account);
            }
            senderWhitelist[account] = true;
            emit AddedToSenderWhitelist(account);
        }
        function addToRecipientWhitelist(address account) external override onlyOwner {
            if (account == address(0)) {
                revert ZeroWhitelistedAccount();
            }
            if (recipientWhitelist[account]) {
                revert AccountAlreadyWhitelisted(account);
            }
            recipientWhitelist[account] = true;
            emit AddedToRecipientWhitelist(account);
        }
        function removeFromSenderWhitelist(address account) external override onlyOwner {
            if (account == address(0)) {
                revert ZeroWhitelistedAccount();
            }
            if (!senderWhitelist[account]) {
                revert AccountNotWhitelisted(account);
            }
            delete senderWhitelist[account];
            emit RemovedFromSenderWhitelist(account);
        }
        function removeFromRecipientWhitelist(address account) external override onlyOwner {
            if (account == address(0)) {
                revert ZeroWhitelistedAccount();
            }
            if (!recipientWhitelist[account]) {
                revert AccountNotWhitelisted(account);
            }
            delete recipientWhitelist[account];
            emit RemovedFromRecipientWhitelist(account);
        }
        function transfer(address recipient, uint256 amount)
            public
            override(ERC20, IERC20)
            isWhitelisted(_msgSender(), recipient, IERC20.transfer.selector)
            returns (bool)
        {
            return super.transfer(recipient, amount);
        }
        function transferFrom(address owner, address recipient, uint256 amount)
            public
            override(ERC20, IERC20)
            isWhitelisted(owner, recipient, IERC20.transferFrom.selector)
            returns (bool)
        {
            return super.transferFrom(owner, recipient, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.13;
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    interface IGaspToken is IERC20 {
        event AllowTransfersSet(bool allowTransfers_);
        event AddedToSenderWhitelist(address indexed account);
        event AddedToRecipientWhitelist(address indexed account);
        event RemovedFromSenderWhitelist(address indexed account);
        event RemovedFromRecipientWhitelist(address indexed account);
        error ZeroL1Council();
        error ZeroWhitelistedAccount();
        error TransfersAlreadyAllowed();
        error AccountAlreadyWhitelisted(address account);
        error AccountNotWhitelisted(address account);
        error OperationForbidden(bytes32 selector);
        function setAllowTransfers(bool allowTransfers_) external;
        function addToSenderWhitelist(address account) external;
        function addToRecipientWhitelist(address account) external;
        function removeFromSenderWhitelist(address account) external;
        function removeFromRecipientWhitelist(address account) external;
        function senderWhitelist(address account) external view returns (bool enabled);
        function recipientWhitelist(address account) external view returns (bool enabled);
        function allowTransfers() external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }