Transaction Hash:
Block:
22726166 at Jun-17-2025 06:59:47 PM +UTC
Transaction Fee:
0.00012302576388276 ETH
$0.31
Gas Used:
62,826 Gas / 1.95819826 Gwei
Emitted Events:
633 |
TransparentUpgradeableProxy.0xe8d9861dbc9c663ed3accd261bbe2fe01e0d3d9e5f51fa38523b265c7757a93a( 0xe8d9861dbc9c663ed3accd261bbe2fe01e0d3d9e5f51fa38523b265c7757a93a, 1a9c672fefec8030ab379239154a77f8681e7113ae6f73a02dc3fc57da1e2c15 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x9757F2d2...4107cd8D6 | (Rarible: Exchange V2) | ||||
0xA8a3a764...290aa2B02 |
0.002768807742176941 Eth
Nonce: 390
|
0.002645781978294181 Eth
Nonce: 391
| 0.00012302576388276 | ||
0xdadB0d80...24f783711
Miner
| (BuilderNet) | 46.374504329682476739 Eth | 46.374504340723517979 Eth | 0.00000001104104124 |
Execution Trace
TransparentUpgradeableProxy.e2864fe3( )
-
ExchangeV2.cancel( order=[{name:maker, type:address, order:1, indexed:false, value:0xA8a3a7649Debc03C7DE29253F0387f7290aa2B02, valueString:0xA8a3a7649Debc03C7DE29253F0387f7290aa2B02}, {name:makeAsset, type:tuple, order:2, indexed:false, value:[{name:assetType, type:tuple, order:1, indexed:false, value:[{name:assetClass, type:bytes4, order:1, indexed:false, value:c60hRg==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29, valueString:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29}], valueString:[{name:assetClass, type:bytes4, order:1, indexed:false, value:c60hRg==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29, valueString:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29}]}, {name:value, type:uint256, order:2, indexed:false, value:1, valueString:1}], valueString:[{name:assetType, type:tuple, order:1, indexed:false, value:[{name:assetClass, type:bytes4, order:1, indexed:false, value:c60hRg==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29, valueString:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29}], valueString:[{name:assetClass, type:bytes4, order:1, indexed:false, value:c60hRg==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29, valueString:0x0000000000000000000000001D3ADA5856B14D9DF178EA5CAB137D436DC55F1D0000000000000000000000000000000000000000000000000000000000001B29}]}, {name:value, type:uint256, order:2, indexed:false, value:1, valueString:1}]}, {name:taker, type:address, order:3, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:takeAsset, type:tuple, order:4, indexed:false, value:[{name:assetType, type:tuple, order:1, indexed:false, value:[{name:assetClass, type:bytes4, order:1, indexed:false, value:qq6+ug==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x, valueString:0x}], valueString:[{name:assetClass, type:bytes4, order:1, indexed:false, value:qq6u002Bug==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x, valueString:0x}]}, {name:value, type:uint256, order:2, indexed:false, value:110000000000000000, valueString:110000000000000000}], valueString:[{name:assetType, type:tuple, order:1, indexed:false, value:[{name:assetClass, type:bytes4, order:1, indexed:false, value:qq6u002Bug==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x, valueString:0x}], valueString:[{name:assetClass, type:bytes4, order:1, indexed:false, value:qq6u002Bug==, valueString:System.Byte[]}, {name:data, type:bytes, order:2, indexed:false, value:0x, valueString:0x}]}, {name:value, type:uint256, order:2, indexed:false, value:110000000000000000, valueString:110000000000000000}]}, {name:salt, type:uint256, order:5, indexed:false, value:91894248294000893912304496906534302935258541616706495723551907967665208960641, valueString:91894248294000893912304496906534302935258541616706495723551907967665208960641}, {name:start, type:uint256, order:6, indexed:false, value:0, valueString:0}, {name:end, type:uint256, order:7, indexed:false, value:1750537095, valueString:1750537095}, {name:dataType, type:bytes4, order:8, indexed:false, value:St5Uyg==, valueString:System.Byte[]}, {name:data, type:bytes, order:9, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000001CF0DF2A5A20CD61D68D4489EEBBF85B8D39E18A00000000000000000000000000000000000000000000000000000000000001DB, valueString:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000001CF0DF2A5A20CD61D68D4489EEBBF85B8D39E18A00000000000000000000000000000000000000000000000000000000000001DB}] )
File 1 of 2: TransparentUpgradeableProxy
File 2 of 2: ExchangeV2
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol"; import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol"; // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins. contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy { constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./TransparentUpgradeableProxy.sol"; import "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev Returns the current implementation of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("implementation()")) == 0x5c60da1b (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b"); require(success); return abi.decode(returndata, (address)); } /** * @dev Returns the current admin of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("admin()")) == 0xf851a440 (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440"); require(success); return abi.decode(returndata, (address)); } /** * @dev Changes the admin of `proxy` to `newAdmin`. * * Requirements: * * - This contract must be the current admin of `proxy`. */ function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner { proxy.changeAdmin(newAdmin); } /** * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner { proxy.upgradeTo(implementation); } /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See * {TransparentUpgradeableProxy-upgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify * continuation of the upgradability. * * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is ERC1967Upgrade { function upgradeTo(address newImplementation) external virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, bytes(""), false); } function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, data, true); } function _authorizeUpgrade(address newImplementation) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; abstract contract Proxiable is UUPSUpgradeable { function _authorizeUpgrade(address newImplementation) internal override { _beforeUpgrade(newImplementation); } function _beforeUpgrade(address newImplementation) internal virtual; } contract ChildOfProxiable is Proxiable { function _beforeUpgrade(address newImplementation) internal virtual override {} }
File 2 of 2: ExchangeV2
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../proxy/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712Upgradeable is Initializable { /* solhint-disable var-name-mixedcase */ bytes32 private _HASHED_NAME; bytes32 private _HASHED_VERSION; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal initializer { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal initializer { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash()); } function _buildDomainSeparator(bytes32 typeHash, bytes32 name, bytes32 version) private view returns (bytes32) { return keccak256( abi.encode( typeHash, name, version, _getChainId(), address(this) ) ); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712NameHash() internal virtual view returns (bytes32) { return _HASHED_NAME; } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712VersionHash() internal virtual view returns (bytes32) { return _HASHED_VERSION; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMathUpgradeable { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT // solhint-disable-next-line compiler-version pragma solidity >=0.4.24 <0.8.0; import "../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "../../introspection/IERC165Upgradeable.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155Upgradeable is IERC165Upgradeable { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch(address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must be have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom(address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "../../introspection/IERC165Upgradeable.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721Upgradeable is IERC165Upgradeable { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../proxy/Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-asset/contracts/LibAsset.sol"; interface IAssetMatcher { function matchAssets( LibAsset.AssetType memory leftAssetType, LibAsset.AssetType memory rightAssetType ) external view returns (LibAsset.AssetType memory); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.9 <0.8.0; pragma abicoder v2; import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; interface IERC20TransferProxy { function erc20safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.9 <0.8.0; pragma abicoder v2; import "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC1155/IERC1155Upgradeable.sol"; interface INftTransferProxy { function erc721safeTransferFrom(IERC721Upgradeable token, address from, address to, uint256 tokenId) external; function erc1155safeTransferFrom(IERC1155Upgradeable token, address from, address to, uint256 id, uint256 value, bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; pragma abicoder v2; import "@rarible/lib-part/contracts/LibPart.sol"; interface IRoyaltiesProvider { function getRoyalties(address token, uint tokenId) external returns (LibPart.Part[] memory); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.9 <0.8.0; pragma abicoder v2; import "@rarible/lib-asset/contracts/LibAsset.sol"; interface ITransferProxy { function transfer(LibAsset.Asset calldata asset, address from, address to) external; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/exchange-interfaces/contracts/IAssetMatcher.sol"; import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; abstract contract AssetMatcher is Initializable, OwnableUpgradeable { bytes constant EMPTY = ""; mapping(bytes4 => address) internal matchers; event MatcherChange(bytes4 indexed assetType, address matcher); function setAssetMatcher(bytes4 assetType, address matcher) external onlyOwner { matchers[assetType] = matcher; emit MatcherChange(assetType, matcher); } function matchAssets(LibAsset.AssetType memory leftAssetType, LibAsset.AssetType memory rightAssetType) internal view returns (LibAsset.AssetType memory) { LibAsset.AssetType memory result = matchAssetOneSide(leftAssetType, rightAssetType); if (result.assetClass == 0) { return matchAssetOneSide(rightAssetType, leftAssetType); } else { return result; } } function matchAssetOneSide(LibAsset.AssetType memory leftAssetType, LibAsset.AssetType memory rightAssetType) private view returns (LibAsset.AssetType memory) { bytes4 classLeft = leftAssetType.assetClass; bytes4 classRight = rightAssetType.assetClass; if (classLeft == LibAsset.ETH_ASSET_CLASS) { if (classRight == LibAsset.ETH_ASSET_CLASS) { return leftAssetType; } return LibAsset.AssetType(0, EMPTY); } if (classLeft == LibAsset.ERC20_ASSET_CLASS) { if (classRight == LibAsset.ERC20_ASSET_CLASS) { return simpleMatch(leftAssetType, rightAssetType); } return LibAsset.AssetType(0, EMPTY); } if (classLeft == LibAsset.ERC721_ASSET_CLASS) { if (classRight == LibAsset.ERC721_ASSET_CLASS) { return simpleMatch(leftAssetType, rightAssetType); } return LibAsset.AssetType(0, EMPTY); } if (classLeft == LibAsset.ERC1155_ASSET_CLASS) { if (classRight == LibAsset.ERC1155_ASSET_CLASS) { return simpleMatch(leftAssetType, rightAssetType); } return LibAsset.AssetType(0, EMPTY); } address matcher = matchers[classLeft]; if (matcher != address(0)) { return IAssetMatcher(matcher).matchAssets(leftAssetType, rightAssetType); } if (classLeft == classRight) { return simpleMatch(leftAssetType, rightAssetType); } revert("not found IAssetMatcher"); } function simpleMatch(LibAsset.AssetType memory leftAssetType, LibAsset.AssetType memory rightAssetType) private pure returns (LibAsset.AssetType memory) { bytes32 leftHash = keccak256(leftAssetType.data); bytes32 rightHash = keccak256(rightAssetType.data); if (leftHash == rightHash) { return leftAssetType; } return LibAsset.AssetType(0, EMPTY); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "./ExchangeV2Core.sol"; import "@rarible/transfer-manager/contracts/RaribleTransferManager.sol"; contract ExchangeV2 is ExchangeV2Core, RaribleTransferManager { function __ExchangeV2_init( address _transferProxy, address _erc20TransferProxy, uint newProtocolFee, address newDefaultFeeReceiver, IRoyaltiesProvider newRoyaltiesProvider ) external initializer { __Context_init_unchained(); __Ownable_init_unchained(); __TransferExecutor_init_unchained(_transferProxy, _erc20TransferProxy); __RaribleTransferManager_init_unchained(newProtocolFee, newDefaultFeeReceiver, newRoyaltiesProvider); __OrderValidator_init_unchained(); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "./libraries/LibFill.sol"; import "./libraries/LibOrderData.sol"; import "./libraries/LibDirectTransfer.sol"; import "./OrderValidator.sol"; import "./AssetMatcher.sol"; import "@rarible/transfer-manager/contracts/TransferExecutor.sol"; import "@rarible/transfer-manager/contracts/interfaces/ITransferManager.sol"; import "@rarible/transfer-manager/contracts/lib/LibDeal.sol"; abstract contract ExchangeV2Core is Initializable, OwnableUpgradeable, AssetMatcher, TransferExecutor, OrderValidator, ITransferManager { using SafeMathUpgradeable for uint; using LibTransfer for address; uint256 private constant UINT256_MAX = type(uint256).max; //state of the orders mapping(bytes32 => uint) public fills; //events event Cancel(bytes32 hash); event Match(bytes32 leftHash, bytes32 rightHash, uint newLeftFill, uint newRightFill); function cancel(LibOrder.Order memory order) external { require(_msgSender() == order.maker, "not a maker"); require(order.salt != 0, "0 salt can't be used"); bytes32 orderKeyHash = LibOrder.hashKey(order); fills[orderKeyHash] = UINT256_MAX; emit Cancel(orderKeyHash); } /** * @dev function, generate sellOrder and buyOrder from parameters and call validateAndMatch() for purchase transaction */ function directPurchase( LibDirectTransfer.Purchase calldata direct ) external payable{ LibAsset.AssetType memory paymentAssetType = getPaymentAssetType(direct.paymentToken); LibOrder.Order memory sellOrder = LibOrder.Order( direct.sellOrderMaker, LibAsset.Asset( LibAsset.AssetType( direct.nftAssetClass, direct.nftData ), direct.sellOrderNftAmount ), address(0), LibAsset.Asset( paymentAssetType, direct.sellOrderPaymentAmount ), direct.sellOrderSalt, direct.sellOrderStart, direct.sellOrderEnd, direct.sellOrderDataType, direct.sellOrderData ); LibOrder.Order memory buyOrder = LibOrder.Order( address(0), LibAsset.Asset( paymentAssetType, direct.buyOrderPaymentAmount ), address(0), LibAsset.Asset( LibAsset.AssetType( direct.nftAssetClass, direct.nftData ), direct.buyOrderNftAmount ), 0, 0, 0, direct.sellOrderDataType, direct.buyOrderData ); validateFull(sellOrder, direct.sellOrderSignature); matchAndTransfer(sellOrder, buyOrder); } /** * @dev function, generate sellOrder and buyOrder from parameters and call validateAndMatch() for accept bid transaction * @param direct struct with parameters for accept bid operation */ function directAcceptBid( LibDirectTransfer.AcceptBid calldata direct ) external payable { LibAsset.AssetType memory paymentAssetType = getPaymentAssetType(direct.paymentToken); LibOrder.Order memory buyOrder = LibOrder.Order( direct.bidMaker, LibAsset.Asset( paymentAssetType, direct.bidPaymentAmount ), address(0), LibAsset.Asset( LibAsset.AssetType( direct.nftAssetClass, direct.nftData ), direct.bidNftAmount ), direct.bidSalt, direct.bidStart, direct.bidEnd, direct.bidDataType, direct.bidData ); LibOrder.Order memory sellOrder = LibOrder.Order( address(0), LibAsset.Asset( LibAsset.AssetType( direct.nftAssetClass, direct.nftData ), direct.sellOrderNftAmount ), address(0), LibAsset.Asset( paymentAssetType, direct.sellOrderPaymentAmount ), 0, 0, 0, direct.bidDataType, direct.sellOrderData ); validateFull(buyOrder, direct.bidSignature); matchAndTransfer(sellOrder, buyOrder); } function matchOrders( LibOrder.Order memory orderLeft, bytes memory signatureLeft, LibOrder.Order memory orderRight, bytes memory signatureRight ) external payable { validateOrders(orderLeft, signatureLeft, orderRight, signatureRight); matchAndTransfer(orderLeft, orderRight); } /** * @dev function, validate orders * @param orderLeft left order * @param signatureLeft order left signature * @param orderRight right order * @param signatureRight order right signature */ function validateOrders(LibOrder.Order memory orderLeft, bytes memory signatureLeft, LibOrder.Order memory orderRight, bytes memory signatureRight) internal view { validateFull(orderLeft, signatureLeft); validateFull(orderRight, signatureRight); if (orderLeft.taker != address(0)) { if (orderRight.maker != address(0)) require(orderRight.maker == orderLeft.taker, "leftOrder.taker verification failed"); } if (orderRight.taker != address(0)) { if (orderLeft.maker != address(0)) require(orderRight.taker == orderLeft.maker, "rightOrder.taker verification failed"); } } /** @notice matches valid orders and transfers their assets @param orderLeft the left order of the match @param orderRight the right order of the match */ function matchAndTransfer(LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight) internal { (LibAsset.AssetType memory makeMatch, LibAsset.AssetType memory takeMatch) = matchAssets(orderLeft, orderRight); (LibOrderData.GenericOrderData memory leftOrderData, LibOrderData.GenericOrderData memory rightOrderData, LibFill.FillResult memory newFill) = parseOrdersSetFillEmitMatch(orderLeft, orderRight); (uint totalMakeValue, uint totalTakeValue) = doTransfers( LibDeal.DealSide({ asset: LibAsset.Asset({ assetType: makeMatch, value: newFill.leftValue }), payouts: leftOrderData.payouts, originFees: leftOrderData.originFees, proxy: proxies[makeMatch.assetClass], from: orderLeft.maker, protocolFeeEnabled: leftOrderData.protocolFeeEnabled }), LibDeal.DealSide({ asset: LibAsset.Asset( takeMatch, newFill.rightValue ), payouts: rightOrderData.payouts, originFees: rightOrderData.originFees, proxy: proxies[takeMatch.assetClass], from: orderRight.maker, protocolFeeEnabled: rightOrderData.protocolFeeEnabled }), LibFeeSide.getFeeSide(makeMatch.assetClass, takeMatch.assetClass) ); if (makeMatch.assetClass == LibAsset.ETH_ASSET_CLASS) { require(takeMatch.assetClass != LibAsset.ETH_ASSET_CLASS); require(msg.value >= totalMakeValue, "not enough eth"); if (msg.value > totalMakeValue) { address(msg.sender).transferEth(msg.value.sub(totalMakeValue)); } } else if (takeMatch.assetClass == LibAsset.ETH_ASSET_CLASS) { require(msg.value >= totalTakeValue, "not enough eth"); if (msg.value > totalTakeValue) { address(msg.sender).transferEth(msg.value.sub(totalTakeValue)); } } } function parseOrdersSetFillEmitMatch( LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight ) internal returns (LibOrderData.GenericOrderData memory leftOrderData, LibOrderData.GenericOrderData memory rightOrderData, LibFill.FillResult memory newFill) { bytes32 leftOrderKeyHash = LibOrder.hashKey(orderLeft); bytes32 rightOrderKeyHash = LibOrder.hashKey(orderRight); address msgSender = _msgSender(); if (orderLeft.maker == address(0)) { orderLeft.maker = msgSender; } if (orderRight.maker == address(0)) { orderRight.maker = msgSender; } leftOrderData = LibOrderData.parse(orderLeft); rightOrderData = LibOrderData.parse(orderRight); newFill = setFillEmitMatch( orderLeft, orderRight, leftOrderKeyHash, rightOrderKeyHash, leftOrderData.isMakeFill, rightOrderData.isMakeFill ); } /** @notice calculates fills for the matched orders and set them in "fills" mapping @param orderLeft left order of the match @param orderRight right order of the match @param leftMakeFill true if the left orders uses make-side fills, false otherwise @param rightMakeFill true if the right orders uses make-side fills, false otherwise @return returns change in orders' fills by the match */ function setFillEmitMatch( LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight, bytes32 leftOrderKeyHash, bytes32 rightOrderKeyHash, bool leftMakeFill, bool rightMakeFill ) internal returns (LibFill.FillResult memory) { uint leftOrderFill = getOrderFill(orderLeft.salt, leftOrderKeyHash); uint rightOrderFill = getOrderFill(orderRight.salt, rightOrderKeyHash); LibFill.FillResult memory newFill = LibFill.fillOrder(orderLeft, orderRight, leftOrderFill, rightOrderFill, leftMakeFill, rightMakeFill); if (orderLeft.makeAsset.value != 0 || orderRight.takeAsset.value != 0) { require(newFill.leftValue > 0, "nothing to fill"); } if (orderLeft.takeAsset.value != 0 || orderRight.makeAsset.value != 0) { require(newFill.rightValue > 0, "nothing to fill"); } if (orderLeft.salt != 0) { if (leftMakeFill) { fills[leftOrderKeyHash] = leftOrderFill.add(newFill.leftValue); } else { fills[leftOrderKeyHash] = leftOrderFill.add(newFill.rightValue); } } if (orderRight.salt != 0) { if (rightMakeFill) { fills[rightOrderKeyHash] = rightOrderFill.add(newFill.rightValue); } else { fills[rightOrderKeyHash] = rightOrderFill.add(newFill.leftValue); } } emit Match(leftOrderKeyHash, rightOrderKeyHash, newFill.rightValue, newFill.leftValue); return newFill; } function getOrderFill(uint salt, bytes32 hash) internal view returns (uint fill) { if (salt == 0) { fill = 0; } else { fill = fills[hash]; } } function matchAssets(LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight) internal view returns (LibAsset.AssetType memory makeMatch, LibAsset.AssetType memory takeMatch) { makeMatch = matchAssets(orderLeft.makeAsset.assetType, orderRight.takeAsset.assetType); require(makeMatch.assetClass != 0, "assets don't match"); takeMatch = matchAssets(orderLeft.takeAsset.assetType, orderRight.makeAsset.assetType); require(takeMatch.assetClass != 0, "assets don't match"); } function validateFull(LibOrder.Order memory order, bytes memory signature) internal view { LibOrder.validateOrderTime(order); validate(order, signature); } function getPaymentAssetType(address token) internal pure returns(LibAsset.AssetType memory){ LibAsset.AssetType memory result; if(token == address(0)) { result.assetClass = LibAsset.ETH_ASSET_CLASS; } else { result.assetClass = LibAsset.ERC20_ASSET_CLASS; result.data = abi.encode(token); } return result; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "./libraries/LibOrder.sol"; import "@rarible/lib-signature/contracts/IERC1271.sol"; import "@rarible/lib-signature/contracts/LibSignature.sol"; import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/drafts/EIP712Upgradeable.sol"; abstract contract OrderValidator is Initializable, ContextUpgradeable, EIP712Upgradeable { using LibSignature for bytes32; using AddressUpgradeable for address; bytes4 constant internal MAGICVALUE = 0x1626ba7e; function __OrderValidator_init_unchained() internal initializer { __EIP712_init_unchained("Exchange", "2"); } function validate(LibOrder.Order memory order, bytes memory signature) internal view { if (order.salt == 0) { if (order.maker != address(0)) { require(_msgSender() == order.maker, "maker is not tx sender"); } } else { if (_msgSender() != order.maker) { bytes32 hash = LibOrder.hash(order); // if maker is contract checking ERC1271 signature if (order.maker.isContract()) { require( IERC1271(order.maker).isValidSignature(_hashTypedDataV4(hash), signature) == MAGICVALUE, "contract order signature verification error" ); } else { // if maker is not contract then checking ECDSA signature if (_hashTypedDataV4(hash).recover(signature) != order.maker) { revert("order signature verification error"); } else { require (order.maker != address(0), "no maker"); } } } } } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "@rarible/lib-asset/contracts/LibAsset.sol"; library LibDirectTransfer { //LibDirectTransfers /*All buy parameters need for create buyOrder and sellOrder*/ struct Purchase { address sellOrderMaker; // uint256 sellOrderNftAmount; bytes4 nftAssetClass; bytes nftData; uint256 sellOrderPaymentAmount; address paymentToken; uint256 sellOrderSalt; uint sellOrderStart; uint sellOrderEnd; bytes4 sellOrderDataType; bytes sellOrderData; bytes sellOrderSignature; uint256 buyOrderPaymentAmount; uint256 buyOrderNftAmount; bytes buyOrderData; } /*All accept bid parameters need for create buyOrder and sellOrder*/ struct AcceptBid { address bidMaker; // uint256 bidNftAmount; bytes4 nftAssetClass; bytes nftData; uint256 bidPaymentAmount; address paymentToken; uint256 bidSalt; uint bidStart; uint bidEnd; bytes4 bidDataType; bytes bidData; bytes bidSignature; uint256 sellOrderPaymentAmount; uint256 sellOrderNftAmount; bytes sellOrderData; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "./LibOrder.sol"; library LibFill { struct FillResult { uint leftValue; uint rightValue; } struct IsMakeFill { bool leftMake; bool rightMake; } /** * @dev Should return filled values * @param leftOrder left order * @param rightOrder right order * @param leftOrderFill current fill of the left order (0 if order is unfilled) * @param rightOrderFill current fill of the right order (0 if order is unfilled) * @param leftIsMakeFill true if left orders fill is calculated from the make side, false if from the take side * @param rightIsMakeFill true if right orders fill is calculated from the make side, false if from the take side * @return tuple representing fill of both assets */ function fillOrder(LibOrder.Order memory leftOrder, LibOrder.Order memory rightOrder, uint leftOrderFill, uint rightOrderFill, bool leftIsMakeFill, bool rightIsMakeFill) internal pure returns (FillResult memory) { (uint leftMakeValue, uint leftTakeValue) = LibOrder.calculateRemaining(leftOrder, leftOrderFill, leftIsMakeFill); (uint rightMakeValue, uint rightTakeValue) = LibOrder.calculateRemaining(rightOrder, rightOrderFill, rightIsMakeFill); //We have 3 cases here: if (rightTakeValue > leftMakeValue || (rightTakeValue == leftMakeValue && leftMakeValue == 0)) { //1nd: left order should be fully filled return fillLeft(leftMakeValue, leftTakeValue, rightOrder.makeAsset.value, rightOrder.takeAsset.value); }//2st: right order should be fully filled or 3d: both should be fully filled if required values are the same return fillRight(leftOrder.makeAsset.value, leftOrder.takeAsset.value, rightMakeValue, rightTakeValue); } function fillRight(uint leftMakeValue, uint leftTakeValue, uint rightMakeValue, uint rightTakeValue) internal pure returns (FillResult memory result) { uint makerValue = LibMath.safeGetPartialAmountFloor(rightTakeValue, leftMakeValue, leftTakeValue); require(makerValue <= rightMakeValue, "fillRight: unable to fill"); return FillResult(rightTakeValue, makerValue); } function fillLeft(uint leftMakeValue, uint leftTakeValue, uint rightMakeValue, uint rightTakeValue) internal pure returns (FillResult memory result) { uint rightTake = LibMath.safeGetPartialAmountFloor(leftTakeValue, rightMakeValue, rightTakeValue); require(rightTake <= leftMakeValue, "fillLeft: unable to fill"); return FillResult(leftMakeValue, leftTakeValue); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "@openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol"; library LibMath { using SafeMathUpgradeable for uint; /// @dev Calculates partial value given a numerator and denominator rounded down. /// Reverts if rounding error is >= 0.1% /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to calculate partial of. /// @return partialAmount value of target rounded down. function safeGetPartialAmountFloor( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { if (isRoundingErrorFloor(numerator, denominator, target)) { revert("rounding error"); } partialAmount = numerator.mul(target).div(denominator); } /// @dev Checks if rounding error >= 0.1% when rounding down. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to multiply with numerator/denominator. /// @return isError Rounding error is present. function isRoundingErrorFloor( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (bool isError) { if (denominator == 0) { revert("division by zero"); } // The absolute rounding error is the difference between the rounded // value and the ideal value. The relative rounding error is the // absolute rounding error divided by the absolute value of the // ideal value. This is undefined when the ideal value is zero. // // The ideal value is `numerator * target / denominator`. // Let's call `numerator * target % denominator` the remainder. // The absolute error is `remainder / denominator`. // // When the ideal value is zero, we require the absolute error to // be zero. Fortunately, this is always the case. The ideal value is // zero iff `numerator == 0` and/or `target == 0`. In this case the // remainder and absolute error are also zero. if (target == 0 || numerator == 0) { return false; } // Otherwise, we want the relative rounding error to be strictly // less than 0.1%. // The relative error is `remainder / (numerator * target)`. // We want the relative error less than 1 / 1000: // remainder / (numerator * target) < 1 / 1000 // or equivalently: // 1000 * remainder < numerator * target // so we have a rounding error iff: // 1000 * remainder >= numerator * target uint256 remainder = mulmod( target, numerator, denominator ); isError = remainder.mul(1000) >= numerator.mul(target); } function safeGetPartialAmountCeil( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { if (isRoundingErrorCeil(numerator, denominator, target)) { revert("rounding error"); } partialAmount = numerator.mul(target).add(denominator.sub(1)).div(denominator); } /// @dev Checks if rounding error >= 0.1% when rounding up. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to multiply with numerator/denominator. /// @return isError Rounding error is present. function isRoundingErrorCeil( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (bool isError) { if (denominator == 0) { revert("division by zero"); } // See the comments in `isRoundingError`. if (target == 0 || numerator == 0) { // When either is zero, the ideal value and rounded value are zero // and there is no rounding error. (Although the relative error // is undefined.) return false; } // Compute remainder as before uint256 remainder = mulmod( target, numerator, denominator ); remainder = denominator.sub(remainder) % denominator; isError = remainder.mul(1000) >= numerator.mul(target); return isError; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "@rarible/lib-asset/contracts/LibAsset.sol"; import "./LibMath.sol"; import "./LibOrderDataV3.sol"; import "./LibOrderDataV2.sol"; import "./LibOrderDataV1.sol"; library LibOrder { using SafeMathUpgradeable for uint; bytes32 constant ORDER_TYPEHASH = keccak256( "Order(address maker,Asset makeAsset,address taker,Asset takeAsset,uint256 salt,uint256 start,uint256 end,bytes4 dataType,bytes data)Asset(AssetType assetType,uint256 value)AssetType(bytes4 assetClass,bytes data)" ); bytes4 constant DEFAULT_ORDER_TYPE = 0xffffffff; struct Order { address maker; LibAsset.Asset makeAsset; address taker; LibAsset.Asset takeAsset; uint salt; uint start; uint end; bytes4 dataType; bytes data; } /** * @dev Calculate remaining make and take values of the order (after partial filling real make and take decrease) * @param order initial order to calculate remaining values for * @param fill current fill of the left order (0 if order is unfilled) * @param isMakeFill true if order fill is calculated from the make side, false if from the take side * @return makeValue remaining make value of the order. if fill = 0 then it's order's make value * @return takeValue remaining take value of the order. if fill = 0 then it's order's take value */ function calculateRemaining(Order memory order, uint fill, bool isMakeFill) internal pure returns (uint makeValue, uint takeValue) { if (isMakeFill) { makeValue = order.makeAsset.value.sub(fill); takeValue = LibMath.safeGetPartialAmountFloor(order.takeAsset.value, order.makeAsset.value, makeValue); } else { takeValue = order.takeAsset.value.sub(fill); makeValue = LibMath.safeGetPartialAmountFloor(order.makeAsset.value, order.takeAsset.value, takeValue); } } function hashKey(Order memory order) internal pure returns (bytes32) { if (order.dataType == LibOrderDataV1.V1 || order.dataType == DEFAULT_ORDER_TYPE) { return keccak256(abi.encode( order.maker, LibAsset.hash(order.makeAsset.assetType), LibAsset.hash(order.takeAsset.assetType), order.salt )); } else { //order.data is in hash for V2, V3 and all new order return keccak256(abi.encode( order.maker, LibAsset.hash(order.makeAsset.assetType), LibAsset.hash(order.takeAsset.assetType), order.salt, order.data )); } } function hash(Order memory order) internal pure returns (bytes32) { return keccak256(abi.encode( ORDER_TYPEHASH, order.maker, LibAsset.hash(order.makeAsset), order.taker, LibAsset.hash(order.takeAsset), order.salt, order.start, order.end, order.dataType, keccak256(order.data) )); } function validateOrderTime(LibOrder.Order memory order) internal view { require(order.start == 0 || order.start < block.timestamp, "Order start validation failed"); require(order.end == 0 || order.end > block.timestamp, "Order end validation failed"); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "./LibOrder.sol"; library LibOrderData { struct GenericOrderData { LibPart.Part[] payouts; LibPart.Part[] originFees; bool isMakeFill; bool protocolFeeEnabled; } function parse(LibOrder.Order memory order) pure internal returns (GenericOrderData memory dataOrder) { dataOrder.protocolFeeEnabled = false; if (order.dataType == LibOrderDataV1.V1) { LibOrderDataV1.DataV1 memory data = abi.decode(order.data, (LibOrderDataV1.DataV1)); dataOrder.payouts = data.payouts; dataOrder.originFees = data.originFees; } else if (order.dataType == LibOrderDataV2.V2) { LibOrderDataV2.DataV2 memory data = abi.decode(order.data, (LibOrderDataV2.DataV2)); dataOrder.payouts = data.payouts; dataOrder.originFees = data.originFees; dataOrder.isMakeFill = data.isMakeFill; } else if (order.dataType == LibOrderDataV3.V3) { LibOrderDataV3.DataV3 memory data = abi.decode(order.data, (LibOrderDataV3.DataV3)); dataOrder.payouts = data.payouts; dataOrder.originFees = data.originFees; dataOrder.isMakeFill = data.isMakeFill; dataOrder.protocolFeeEnabled = true; } else if (order.dataType == 0xffffffff) { } else { revert("Unknown Order data type"); } if (dataOrder.payouts.length == 0) { dataOrder.payouts = payoutSet(order.maker); } } function payoutSet(address orderAddress) pure internal returns (LibPart.Part[] memory) { LibPart.Part[] memory payout = new LibPart.Part[](1); payout[0].account = payable(orderAddress); payout[0].value = 10000; return payout; } function parseOriginFeeData(uint dataFirst, uint dataSecond) internal pure returns(LibPart.Part[] memory) { LibPart.Part[] memory originFee; if (dataFirst > 0 && dataSecond > 0){ originFee = new LibPart.Part[](2); originFee[0] = uintToLibPart(dataFirst); originFee[1] = uintToLibPart(dataSecond); } if (dataFirst > 0 && dataSecond == 0) { originFee = new LibPart.Part[](1); originFee[0] = uintToLibPart(dataFirst); } if (dataFirst == 0 && dataSecond > 0) { originFee = new LibPart.Part[](1); originFee[0] = uintToLibPart(dataSecond); } return originFee; } function parsePayouts(uint data) internal pure returns(LibPart.Part[] memory) { LibPart.Part[] memory payouts; if (data > 0) { payouts = new LibPart.Part[](1); payouts[0] = uintToLibPart(data); } return payouts; } /** @notice converts uint to LibPart.Part @param data address and value encoded in uint (first 12 bytes ) @return result LibPart.Part */ function uintToLibPart(uint data) internal pure returns(LibPart.Part memory result) { if (data > 0){ result.account = payable(address(data)); result.value = uint96(data >> 160); } } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-part/contracts/LibPart.sol"; library LibOrderDataV1 { bytes4 constant public V1 = bytes4(keccak256("V1")); struct DataV1 { LibPart.Part[] payouts; LibPart.Part[] originFees; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-part/contracts/LibPart.sol"; library LibOrderDataV2 { bytes4 constant public V2 = bytes4(keccak256("V2")); struct DataV2 { LibPart.Part[] payouts; LibPart.Part[] originFees; bool isMakeFill; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-part/contracts/LibPart.sol"; library LibOrderDataV3 { bytes4 constant public V3 = bytes4(keccak256("V3")); struct DataV3 { LibPart.Part[] payouts; LibPart.Part[] originFees; bool isMakeFill; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "@rarible/lib-part/contracts/LibPart.sol"; library LibERC1155LazyMint { bytes4 constant public ERC1155_LAZY_ASSET_CLASS = bytes4(keccak256("ERC1155_LAZY")); bytes4 constant _INTERFACE_ID_MINT_AND_TRANSFER = 0x6db15a0f; struct Mint1155Data { uint tokenId; string tokenURI; uint supply; LibPart.Part[] creators; LibPart.Part[] royalties; bytes[] signatures; } bytes32 public constant MINT_AND_TRANSFER_TYPEHASH = keccak256("Mint1155(uint256 tokenId,uint256 supply,string tokenURI,Part[] creators,Part[] royalties)Part(address account,uint96 value)"); function hash(Mint1155Data memory data) internal pure returns (bytes32) { bytes32[] memory royaltiesBytes = new bytes32[](data.royalties.length); for (uint i = 0; i < data.royalties.length; ++i) { royaltiesBytes[i] = LibPart.hash(data.royalties[i]); } bytes32[] memory creatorsBytes = new bytes32[](data.creators.length); for (uint i = 0; i < data.creators.length; ++i) { creatorsBytes[i] = LibPart.hash(data.creators[i]); } return keccak256(abi.encode( MINT_AND_TRANSFER_TYPEHASH, data.tokenId, data.supply, keccak256(bytes(data.tokenURI)), keccak256(abi.encodePacked(creatorsBytes)), keccak256(abi.encodePacked(royaltiesBytes)) )); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "@rarible/lib-part/contracts/LibPart.sol"; library LibERC721LazyMint { bytes4 constant public ERC721_LAZY_ASSET_CLASS = bytes4(keccak256("ERC721_LAZY")); bytes4 constant _INTERFACE_ID_MINT_AND_TRANSFER = 0x8486f69f; struct Mint721Data { uint tokenId; string tokenURI; LibPart.Part[] creators; LibPart.Part[] royalties; bytes[] signatures; } bytes32 public constant MINT_AND_TRANSFER_TYPEHASH = keccak256("Mint721(uint256 tokenId,string tokenURI,Part[] creators,Part[] royalties)Part(address account,uint96 value)"); function hash(Mint721Data memory data) internal pure returns (bytes32) { bytes32[] memory royaltiesBytes = new bytes32[](data.royalties.length); for (uint i = 0; i < data.royalties.length; ++i) { royaltiesBytes[i] = LibPart.hash(data.royalties[i]); } bytes32[] memory creatorsBytes = new bytes32[](data.creators.length); for (uint i = 0; i < data.creators.length; ++i) { creatorsBytes[i] = LibPart.hash(data.creators[i]); } return keccak256(abi.encode( MINT_AND_TRANSFER_TYPEHASH, data.tokenId, keccak256(bytes(data.tokenURI)), keccak256(abi.encodePacked(creatorsBytes)), keccak256(abi.encodePacked(royaltiesBytes)) )); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; library LibAsset { bytes4 constant public ETH_ASSET_CLASS = bytes4(keccak256("ETH")); bytes4 constant public ERC20_ASSET_CLASS = bytes4(keccak256("ERC20")); bytes4 constant public ERC721_ASSET_CLASS = bytes4(keccak256("ERC721")); bytes4 constant public ERC1155_ASSET_CLASS = bytes4(keccak256("ERC1155")); bytes4 constant public COLLECTION = bytes4(keccak256("COLLECTION")); bytes4 constant public CRYPTO_PUNKS = bytes4(keccak256("CRYPTO_PUNKS")); bytes32 constant ASSET_TYPE_TYPEHASH = keccak256( "AssetType(bytes4 assetClass,bytes data)" ); bytes32 constant ASSET_TYPEHASH = keccak256( "Asset(AssetType assetType,uint256 value)AssetType(bytes4 assetClass,bytes data)" ); struct AssetType { bytes4 assetClass; bytes data; } struct Asset { AssetType assetType; uint value; } function hash(AssetType memory assetType) internal pure returns (bytes32) { return keccak256(abi.encode( ASSET_TYPE_TYPEHASH, assetType.assetClass, keccak256(assetType.data) )); } function hash(Asset memory asset) internal pure returns (bytes32) { return keccak256(abi.encode( ASSET_TYPEHASH, hash(asset.assetType), asset.value )); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "@openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol"; library BpLibrary { using SafeMathUpgradeable for uint; function bp(uint value, uint bpValue) internal pure returns (uint) { return value.mul(bpValue).div(10000); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; library LibPart { bytes32 public constant TYPE_HASH = keccak256("Part(address account,uint96 value)"); struct Part { address payable account; uint96 value; } function hash(Part memory part) internal pure returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, part.account, part.value)); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param _hash Hash of the data signed on the behalf of address(this) * @param _signature Signature byte array associated with _data * * MUST return the bytes4 magic value 0x1626ba7e when function passes. * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5) * MUST allow external calls */ function isValidSignature(bytes32 _hash, bytes calldata _signature) virtual external view returns (bytes4 magicValue); }// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; library LibSignature { /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { // Check the signature length if (signature.length != 65) { revert("ECDSA: invalid signature length"); } // Divide the signature in r, s and v variables bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. // solhint-disable-next-line no-inline-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return recover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover-bytes32-bytes-} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. require( uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value" ); // If the signature is valid (and not malleable), return the signer address // v > 30 is a special case, we need to adjust hash with "\\x19Ethereum Signed Message:\ 32" // and v = v - 4 address signer; if (v > 30) { require( v - 4 == 27 || v - 4 == 28, "ECDSA: invalid signature 'v' value" ); signer = ecrecover(toEthSignedMessageHash(hash), v - 4, r, s); } else { require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value"); signer = ecrecover(hash, v, r, s); } require(signer != address(0), "ECDSA: invalid signature"); return signer; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * replicates the behavior of the * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`] * JSON-RPC method. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256( abi.encodePacked("\\x19Ethereum Signed Message:\ 32", hash) ); } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@rarible/lazy-mint/contracts/erc-721/LibERC721LazyMint.sol"; import "@rarible/lazy-mint/contracts/erc-1155/LibERC1155LazyMint.sol"; import "@rarible/exchange-interfaces/contracts/IRoyaltiesProvider.sol"; import "@rarible/lib-bp/contracts/BpLibrary.sol"; import "./interfaces/ITransferManager.sol"; abstract contract RaribleTransferManager is OwnableUpgradeable, ITransferManager { using BpLibrary for uint; using SafeMathUpgradeable for uint; ProtocolFeeData public protocolFee; IRoyaltiesProvider public royaltiesRegistry; //deprecated address private defaultFeeReceiver; // deprecated mapping(address => address) private feeReceivers; /// @dev event that's emitted when ProtocolFeeData buyerAmount changes event BuyerFeeAmountChanged(uint oldValue, uint newValue); /// @dev event that's emitted when ProtocolFeeData sellerAmount changes event SellerFeeAmountChanged(uint oldValue, uint newValue); /// @dev event that's emitted when ProtocolFeeData receiver changes event FeeReceiverChanged(address oldValue, address newValue); /// @dev struct to store protocol fee - receiver address, buyer fee amount (in bp), seller fee amount (in bp) struct ProtocolFeeData { address receiver; uint48 buyerAmount; uint48 sellerAmount; } /** @notice initialises RaribleTransferManager state @param newProtocolFee deprecated @param newDefaultFeeReceiver deprecated @param newRoyaltiesProvider royaltiesRegistry contract address */ function __RaribleTransferManager_init_unchained( uint newProtocolFee, address newDefaultFeeReceiver, IRoyaltiesProvider newRoyaltiesProvider ) internal initializer { royaltiesRegistry = newRoyaltiesProvider; } function setRoyaltiesRegistry(IRoyaltiesProvider newRoyaltiesRegistry) external onlyOwner { royaltiesRegistry = newRoyaltiesRegistry; } function setPrtocolFeeReceiver(address _receiver) public onlyOwner { emit FeeReceiverChanged(protocolFee.receiver, _receiver); protocolFee.receiver = _receiver; } function setPrtocolFeeBuyerAmount(uint48 _buyerAmount) public onlyOwner { emit BuyerFeeAmountChanged(protocolFee.buyerAmount, _buyerAmount); protocolFee.buyerAmount = _buyerAmount; } function setPrtocolFeeSellerAmount(uint48 _sellerAmount) public onlyOwner { emit SellerFeeAmountChanged(protocolFee.sellerAmount, _sellerAmount); protocolFee.sellerAmount = _sellerAmount; } function setAllProtocolFeeData(address _receiver, uint48 _buyerAmount, uint48 _sellerAmount) public onlyOwner { setPrtocolFeeReceiver(_receiver); setPrtocolFeeBuyerAmount(_buyerAmount); setPrtocolFeeSellerAmount(_sellerAmount); } /** @notice executes transfers for 2 matched orders @param left DealSide from the left order (see LibDeal.sol) @param right DealSide from the right order (see LibDeal.sol) @param feeSide feeSide of the match @return totalLeftValue - total amount for the left order @return totalRightValue - total amout for the right order */ function doTransfers( LibDeal.DealSide memory left, LibDeal.DealSide memory right, LibFeeSide.FeeSide feeSide ) override internal returns (uint totalLeftValue, uint totalRightValue) { totalLeftValue = left.asset.value; totalRightValue = right.asset.value; if (feeSide == LibFeeSide.FeeSide.LEFT) { totalLeftValue = doTransfersWithFees(left, right, protocolFee); transferPayouts(right.asset.assetType, right.asset.value, right.from, left.payouts, right.proxy); } else if (feeSide == LibFeeSide.FeeSide.RIGHT) { totalRightValue = doTransfersWithFees(right, left,protocolFee); transferPayouts(left.asset.assetType, left.asset.value, left.from, right.payouts, left.proxy); } else { transferPayouts(left.asset.assetType, left.asset.value, left.from, right.payouts, left.proxy); transferPayouts(right.asset.assetType, right.asset.value, right.from, left.payouts, right.proxy); } } /** @notice executes the fee-side transfers (payment + fees) @param paymentSide DealSide of the fee-side order @param nftSide DealSide of the nft-side order @param _protocolFee protocol fee data @return totalAmount of fee-side asset */ function doTransfersWithFees( LibDeal.DealSide memory paymentSide, LibDeal.DealSide memory nftSide, ProtocolFeeData memory _protocolFee ) internal returns (uint totalAmount) { uint buyerProtocolFee = paymentSide.protocolFeeEnabled ? _protocolFee.buyerAmount : 0; uint sellerProtocolFee = nftSide.protocolFeeEnabled ? _protocolFee.sellerAmount : 0; totalAmount = calculateTotalAmount(paymentSide.asset.value, buyerProtocolFee, paymentSide.originFees); uint rest = transferProtocolFee(totalAmount, paymentSide.asset.value, paymentSide.from, buyerProtocolFee + sellerProtocolFee, _protocolFee.receiver, paymentSide.asset.assetType, paymentSide.proxy); rest = transferRoyalties(paymentSide.asset.assetType, nftSide.asset.assetType, nftSide.payouts, rest, paymentSide.asset.value, paymentSide.from, paymentSide.proxy); if ( paymentSide.originFees.length == 1 && nftSide.originFees.length == 1 && nftSide.originFees[0].account == paymentSide.originFees[0].account ) { LibPart.Part[] memory origin = new LibPart.Part[](1); origin[0].account = nftSide.originFees[0].account; origin[0].value = nftSide.originFees[0].value + paymentSide.originFees[0].value; (rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, origin, paymentSide.from, paymentSide.proxy); } else { (rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, paymentSide.originFees, paymentSide.from, paymentSide.proxy); (rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, nftSide.originFees, paymentSide.from, paymentSide.proxy); } transferPayouts(paymentSide.asset.assetType, rest, paymentSide.from, nftSide.payouts, paymentSide.proxy); } /** @notice transfers protocol fee to protocol fee receiver */ function transferProtocolFee( uint totalAmount, uint amount, address from, uint protocolFeeTotal, address protocolFeeReceiver, LibAsset.AssetType memory matchCalculate, address proxy ) internal returns (uint) { (uint rest, uint fee) = subFeeInBp(totalAmount, amount, protocolFeeTotal); if (fee > 0) { transfer(LibAsset.Asset(matchCalculate, fee), from, protocolFeeReceiver, proxy); } return rest; } /** @notice Transfer royalties. If there is only one royalties receiver and one address in payouts and they match, nothing is transferred in this function @param paymentAssetType Asset Type which represents payment @param nftAssetType Asset Type which represents NFT to pay royalties for @param payouts Payouts to be made @param rest How much of the amount left after previous transfers @param from owner of the Asset to transfer @param proxy Transfer proxy to use @return How much left after transferring royalties */ function transferRoyalties( LibAsset.AssetType memory paymentAssetType, LibAsset.AssetType memory nftAssetType, LibPart.Part[] memory payouts, uint rest, uint amount, address from, address proxy ) internal returns (uint) { LibPart.Part[] memory royalties = getRoyaltiesByAssetType(nftAssetType); if ( royalties.length == 1 && payouts.length == 1 && royalties[0].account == payouts[0].account ) { require(royalties[0].value <= 5000, "Royalties are too high (>50%)"); return rest; } (uint result, uint totalRoyalties) = transferFees(paymentAssetType, rest, amount, royalties, from, proxy); require(totalRoyalties <= 5000, "Royalties are too high (>50%)"); return result; } /** @notice calculates royalties by asset type. If it's a lazy NFT, then royalties are extracted from asset. otherwise using royaltiesRegistry @param nftAssetType NFT Asset Type to calculate royalties for @return calculated royalties (Array of LibPart.Part) */ function getRoyaltiesByAssetType(LibAsset.AssetType memory nftAssetType) internal returns (LibPart.Part[] memory) { if (nftAssetType.assetClass == LibAsset.ERC1155_ASSET_CLASS || nftAssetType.assetClass == LibAsset.ERC721_ASSET_CLASS) { (address token, uint tokenId) = abi.decode(nftAssetType.data, (address, uint)); return royaltiesRegistry.getRoyalties(token, tokenId); } else if (nftAssetType.assetClass == LibERC1155LazyMint.ERC1155_LAZY_ASSET_CLASS) { (, LibERC1155LazyMint.Mint1155Data memory data) = abi.decode(nftAssetType.data, (address, LibERC1155LazyMint.Mint1155Data)); return data.royalties; } else if (nftAssetType.assetClass == LibERC721LazyMint.ERC721_LAZY_ASSET_CLASS) { (, LibERC721LazyMint.Mint721Data memory data) = abi.decode(nftAssetType.data, (address, LibERC721LazyMint.Mint721Data)); return data.royalties; } LibPart.Part[] memory empty; return empty; } /** @notice Transfer fees @param assetType Asset Type to transfer @param rest How much of the amount left after previous transfers @param amount Total amount of the Asset. Used as a base to calculate part from (100%) @param fees Array of LibPart.Part which represents fees to pay @param from owner of the Asset to transfer @param proxy Transfer proxy to use @return newRest how much left after transferring fees @return totalFees total number of fees in bp */ function transferFees( LibAsset.AssetType memory assetType, uint rest, uint amount, LibPart.Part[] memory fees, address from, address proxy ) internal returns (uint newRest, uint totalFees) { totalFees = 0; newRest = rest; for (uint256 i = 0; i < fees.length; ++i) { totalFees = totalFees.add(fees[i].value); uint feeValue; (newRest, feeValue) = subFeeInBp(newRest, amount, fees[i].value); if (feeValue > 0) { transfer(LibAsset.Asset(assetType, feeValue), from, fees[i].account, proxy); } } } /** @notice transfers main part of the asset (payout) @param assetType Asset Type to transfer @param amount Amount of the asset to transfer @param from Current owner of the asset @param payouts List of payouts - receivers of the Asset @param proxy Transfer Proxy to use */ function transferPayouts( LibAsset.AssetType memory assetType, uint amount, address from, LibPart.Part[] memory payouts, address proxy ) internal { require(payouts.length > 0, "transferPayouts: nothing to transfer"); uint sumBps = 0; uint rest = amount; for (uint256 i = 0; i < payouts.length - 1; ++i) { uint currentAmount = amount.bp(payouts[i].value); sumBps = sumBps.add(payouts[i].value); if (currentAmount > 0) { rest = rest.sub(currentAmount); transfer(LibAsset.Asset(assetType, currentAmount), from, payouts[i].account, proxy); } } LibPart.Part memory lastPayout = payouts[payouts.length - 1]; sumBps = sumBps.add(lastPayout.value); require(sumBps == 10000, "Sum payouts Bps not equal 100%"); if (rest > 0) { transfer(LibAsset.Asset(assetType, rest), from, lastPayout.account, proxy); } } /** @notice calculates total amount of fee-side asset that is going to be used in match @param amount fee-side order value @param buyerProtocolFee buyer protocol fee @param orderOriginFees fee-side order's origin fee (it adds on top of the amount) @return total amount of fee-side asset */ function calculateTotalAmount( uint amount, uint buyerProtocolFee, LibPart.Part[] memory orderOriginFees ) internal pure returns (uint) { uint fees = buyerProtocolFee; for (uint256 i = 0; i < orderOriginFees.length; ++i) { require(orderOriginFees[i].value <= 10000, "origin fee is too big"); fees = fees + orderOriginFees[i].value; } return amount.add(amount.bp(fees)); } function subFeeInBp(uint value, uint total, uint feeInBp) internal pure returns (uint newValue, uint realFee) { return subFee(value, total.bp(feeInBp)); } function subFee(uint value, uint fee) internal pure returns (uint newValue, uint realFee) { if (value > fee) { newValue = value.sub(fee); realFee = fee; } else { newValue = 0; realFee = value; } } uint256[46] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/exchange-interfaces/contracts/ITransferProxy.sol"; import "@rarible/exchange-interfaces/contracts/INftTransferProxy.sol"; import "@rarible/exchange-interfaces/contracts/IERC20TransferProxy.sol"; import "./interfaces/ITransferExecutor.sol"; import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "./lib/LibTransfer.sol"; abstract contract TransferExecutor is Initializable, OwnableUpgradeable, ITransferExecutor { using LibTransfer for address; mapping (bytes4 => address) internal proxies; event ProxyChange(bytes4 indexed assetType, address proxy); function __TransferExecutor_init_unchained(address transferProxy, address erc20TransferProxy) internal { proxies[LibAsset.ERC20_ASSET_CLASS] = address(erc20TransferProxy); proxies[LibAsset.ERC721_ASSET_CLASS] = address(transferProxy); proxies[LibAsset.ERC1155_ASSET_CLASS] = address(transferProxy); } function setTransferProxy(bytes4 assetType, address proxy) external onlyOwner { proxies[assetType] = proxy; emit ProxyChange(assetType, proxy); } function transfer( LibAsset.Asset memory asset, address from, address to, address proxy ) internal override { if (asset.assetType.assetClass == LibAsset.ERC721_ASSET_CLASS) { //not using transfer proxy when transfering from this contract (address token, uint tokenId) = abi.decode(asset.assetType.data, (address, uint256)); require(asset.value == 1, "erc721 value error"); if (from == address(this)){ IERC721Upgradeable(token).safeTransferFrom(address(this), to, tokenId); } else { INftTransferProxy(proxy).erc721safeTransferFrom(IERC721Upgradeable(token), from, to, tokenId); } } else if (asset.assetType.assetClass == LibAsset.ERC20_ASSET_CLASS) { //not using transfer proxy when transfering from this contract (address token) = abi.decode(asset.assetType.data, (address)); if (from == address(this)){ require(IERC20Upgradeable(token).transfer(to, asset.value), "erc20 transfer failed"); } else { IERC20TransferProxy(proxy).erc20safeTransferFrom(IERC20Upgradeable(token), from, to, asset.value); } } else if (asset.assetType.assetClass == LibAsset.ERC1155_ASSET_CLASS) { //not using transfer proxy when transfering from this contract (address token, uint tokenId) = abi.decode(asset.assetType.data, (address, uint256)); if (from == address(this)){ IERC1155Upgradeable(token).safeTransferFrom(address(this), to, tokenId, asset.value, ""); } else { INftTransferProxy(proxy).erc1155safeTransferFrom(IERC1155Upgradeable(token), from, to, tokenId, asset.value, ""); } } else if (asset.assetType.assetClass == LibAsset.ETH_ASSET_CLASS) { if (to != address(this)) { to.transferEth(asset.value); } } else { ITransferProxy(proxy).transfer(asset, from, to); } } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-asset/contracts/LibAsset.sol"; abstract contract ITransferExecutor { function transfer( LibAsset.Asset memory asset, address from, address to, address proxy ) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "../lib/LibDeal.sol"; import "./ITransferExecutor.sol"; abstract contract ITransferManager is ITransferExecutor { function doTransfers( LibDeal.DealSide memory left, LibDeal.DealSide memory right, LibFeeSide.FeeSide feeSide ) internal virtual returns (uint totalMakeValue, uint totalTakeValue); }// SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma abicoder v2; import "@rarible/lib-part/contracts/LibPart.sol"; import "@rarible/lib-asset/contracts/LibAsset.sol"; import "./LibFeeSide.sol"; library LibDeal { struct DealSide { LibAsset.Asset asset; LibPart.Part[] payouts; LibPart.Part[] originFees; address proxy; address from; bool protocolFeeEnabled; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; import "@rarible/lib-asset/contracts/LibAsset.sol"; library LibFeeSide { enum FeeSide {NONE, LEFT, RIGHT} function getFeeSide(bytes4 leftClass, bytes4 rightClass) internal pure returns (FeeSide) { if (leftClass == LibAsset.ETH_ASSET_CLASS) { return FeeSide.LEFT; } if (rightClass == LibAsset.ETH_ASSET_CLASS) { return FeeSide.RIGHT; } if (leftClass == LibAsset.ERC20_ASSET_CLASS) { return FeeSide.LEFT; } if (rightClass == LibAsset.ERC20_ASSET_CLASS) { return FeeSide.RIGHT; } if (leftClass == LibAsset.ERC1155_ASSET_CLASS) { return FeeSide.LEFT; } if (rightClass == LibAsset.ERC1155_ASSET_CLASS) { return FeeSide.RIGHT; } return FeeSide.NONE; } } // SPDX-License-Identifier: MIT pragma solidity 0.7.6; library LibTransfer { function transferEth(address to, uint value) internal { (bool success,) = to.call{ value: value }(""); require(success, "transfer failed"); } }