ETH Price: $2,510.78 (-0.26%)

Transaction Decoder

Block:
22553524 at May-24-2025 03:14:35 PM +UTC
Transaction Fee:
0.000114511010571919 ETH $0.29
Gas Used:
106,873 Gas / 1.071468103 Gwei

Emitted Events:

351 WETH9.Transfer( src=[Sender] 0xe83f75907fb4c575414fa6f5cfe8cef24dc5870c, dst=UniswapV2Pair, wad=126272038502400000 )
352 ERC20ByMetadrop.Transfer( from=UniswapV2Pair, to=[Sender] 0xe83f75907fb4c575414fa6f5cfe8cef24dc5870c, value=29756768247406052405368 )
353 UniswapV2Pair.Sync( reserve0=42735124613601817639957880, reserve1=180927577542527991871 )
354 UniswapV2Pair.Swap( sender=[Receiver] AggregationRouterV6, amount0In=0, amount1In=126272038502400000, amount0Out=29756768247406052405368, amount1Out=0, to=[Sender] 0xe83f75907fb4c575414fa6f5cfe8cef24dc5870c )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
8.504192775899705461 Eth8.504212806316731483 Eth0.000020030417026022
0x58cB3036...a8a917Dcb
0x68b44c26...09524c7cB
0xC02aaA39...83C756Cc2
0xE83F7590...24Dc5870C
0.898705796593835827 Eth
Nonce: 55004
0.898591285583263908 Eth
Nonce: 55005
0.000114511010571919

Execution Trace

AggregationRouterV6.unoswap( token=1097077688018008265106216665536940668749033598146, amount=126272038502400000, minReturn=29744865540107089984405, dex=3618502788666131108443710414538163137809464292272472546691128201228709054411 ) => ( returnAmount=29756768247406052405368 )
  • WETH9.transferFrom( src=0xE83F75907Fb4c575414FA6F5cfe8cef24Dc5870C, dst=0x68b44c26874998AdbD41a964e92315809524c7cB, wad=126272038502400000 ) => ( True )
  • UniswapV2Pair.STATICCALL( )
  • UniswapV2Pair.swap( amount0Out=29756768247406052405368, amount1Out=0, to=0xE83F75907Fb4c575414FA6F5cfe8cef24Dc5870C, data=0x )
    • ERC20ByMetadrop.transfer( to=0xE83F75907Fb4c575414FA6F5cfe8cef24Dc5870C, amount=29756768247406052405368 ) => ( True )
    • ERC20ByMetadrop.balanceOf( account=0x68b44c26874998AdbD41a964e92315809524c7cB ) => ( 42735124613601817639957880 )
    • WETH9.balanceOf( 0x68b44c26874998AdbD41a964e92315809524c7cB ) => ( 180927577542527991871 )
      File 1 of 4: AggregationRouterV6
      /*
                                                                 ,▄▓▓██▌   ,╓▄▄▓▓▓▓▓▓▓▓▄▄▄,,
                                                              ,▓██▓███▓▄▓███▓╬╬╬╬╬╬╬╬╬╬╬╬╬▓███▓▄,
                                                        ▄█   ▓██╬╣███████╬▓▀╬╬▓▓▓████████████▓█████▄,
                                                       ▓██▌ ▓██╬╣██████╬▓▌  ██████████████████████▌╙╙▀ⁿ
                                                      ▐████████╬▓████▓▓█╨ ▄ ╟█████████▓▓╬╬╬╬╬▓▓█████▓▄
                                        └▀▓▓▄╓        ╟█▓╣█████▓██████▀ ╓█▌ ███████▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬▓██▓▄
                                           └▀████▓▄╥  ▐██╬╬██████████╙ Æ▀─ ▓███▀╚╠╬╩▀▀███████▓▓╬╬╬╬╬╬╬╬╬██▄
                                              └▀██▓▀▀█████▓╬▓██████▀     ▄█████▒╠"      └╙▓██████▓╬╬╬╬╬╬╬╬██▄
                                                 └▀██▄,└╙▀▀████▌└╙    ^"▀╙╙╙"╙██      @▄    ╙▀███████╬╬╬╬╬╬╬██µ
                                                    └▀██▓▄, ██▌       ╒       ╙█▓     ]▓█▓╔    ▀███████▓╬╬╬╬╬▓█▌
                                                        ▀█████       ▓         ╟█▌    ]╠██▓░▒╓   ▀████████╬╬╬╬╣█▌
                                                        ▐████      ╓█▀█▌      ,██▌    ╚Å███▓▒▒╠╓  ╙█████████╬╬╬╣█▌
                                                        └████     ▓█░░▓█      ▀▀▀    φ▒╫████▒▒▒▒╠╓  █████████▓╬╬▓█µ
                                                         ╘███µ ▌▄█▓▄▓▀`     ,▀    ,╔╠░▓██████▌╠▒▒▒φ  ██████████╬╬██
                                                         ▐████µ╙▓▀`     ,▀╙,╔╔φφφ╠░▄▓███████▌░▓╙▒▒▒╠ └██╬███████╬▓█⌐
                                                         ╫██ ▓▌         ▌φ▒▒░▓██████████████▌▒░▓╚▒▒▒╠ ▓██╬▓██████╣█▌
                                                         ██▌           ▌╔▒▒▄████████████████▒▒▒░▌╠▒▒▒≥▐██▓╬╬███████▌
                                                         ██▌      ,╓φ╠▓«▒▒▓████▀  ▀█████████▌▒▒▒╟░▒▒▒▒▐███╬╬╣████▓█▌
                                                        ▐██      ╠▒▄▓▓███▓████└     ▀████████▌▒▒░▌╚▒▒▒▐███▓╬╬████ ╙▌
                                                        ███  )  ╠▒░░░▒░╬████▀        └████████░▒▒░╬∩▒▒▓████╬╬╣███
                                                       ▓██    ╠╠▒▒▐█▀▀▌`░╫██           ███████▒▒▒▒░▒▒½█████╬╬╣███
                                                      ███ ,█▄ ╠▒▒▒╫▌,▄▀,▒╫██           ╟██████▒▒▒░╣⌠▒▓█████╬╬╣██▌
                                                     ╘██µ ██` ╠▒▒░██╬φ╠▄▓██`            ██████░░▌φ╠░▓█████▓╬╬▓██
                                                      ╟██  .φ╠▒░▄█▀░░▄██▀└              █████▌▒╣φ▒░▓██████╬╬╣██
                                                       ▀██▄▄▄╓▄███████▀                ▐█████░▓φ▒▄███████▓╬╣██
                                                         ╙▀▀▀██▀└                      ████▓▄▀φ▄▓████████╬▓█▀
                                                                                      ▓███╬╩╔╣██████████▓██└
                                                                                    ╓████▀▄▓████████▀████▀
                                                                                  ,▓███████████████─]██╙
                                                                               ,▄▓██████████████▀└  ╙
                                                                          ,╓▄▓███████████████▀╙
                                                                   `"▀▀▀████████▀▀▀▀`▄███▀▀└
                                                                                    └└
                          11\\   11\\                     11\\             11\\   11\\            11\\                                       11\\
                        1111 |  \\__|                    11 |            111\\  11 |           11 |                                      11 |
                        \\_11 |  11\\ 1111111\\   1111111\\ 1111111\\        1111\\ 11 | 111111\\ 111111\\   11\\  11\\  11\\  111111\\   111111\\  11 |  11\\
                          11 |  11 |11  __11\\ 11  _____|11  __11\\       11 11\\11 |11  __11\\\\_11  _|  11 | 11 | 11 |11  __11\\ 11  __11\\ 11 | 11  |
                          11 |  11 |11 |  11 |11 /      11 |  11 |      11 \\1111 |11111111 | 11 |    11 | 11 | 11 |11 /  11 |11 |  \\__|111111  /
                          11 |  11 |11 |  11 |11 |      11 |  11 |      11 |\\111 |11   ____| 11 |11\\ 11 | 11 | 11 |11 |  11 |11 |      11  _11<
                        111111\\ 11 |11 |  11 |\\1111111\\ 11 |  11 |      11 | \\11 |\\1111111\\  \\1111  |\\11111\\1111  |\\111111  |11 |      11 | \\11\\
                        \\______|\\__|\\__|  \\__| \\_______|\\__|  \\__|      \\__|  \\__| \\_______|  \\____/  \\_____\\____/  \\______/ \\__|      \\__|  \\__|
                                     111111\\                                                               11\\     11\\
                                    11  __11\\                                                              11 |    \\__|
                                    11 /  11 | 111111\\   111111\\   111111\\   111111\\   111111\\   111111\\ 111111\\   11\\  111111\\  1111111\\
                                    11111111 |11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\  \\____11\\\\_11  _|  11 |11  __11\\ 11  __11\\
                                    11  __11 |11 /  11 |11 /  11 |11 |  \\__|11111111 |11 /  11 | 1111111 | 11 |    11 |11 /  11 |11 |  11 |
                                    11 |  11 |11 |  11 |11 |  11 |11 |      11   ____|11 |  11 |11  __11 | 11 |11\\ 11 |11 |  11 |11 |  11 |
                                    11 |  11 |\\1111111 |\\1111111 |11 |      \\1111111\\ \\1111111 |\\1111111 | \\1111  |11 |\\111111  |11 |  11 |
                                    \\__|  \\__| \\____11 | \\____11 |\\__|       \\_______| \\____11 | \\_______|  \\____/ \\__| \\______/ \\__|  \\__|
                                              11\\   11 |11\\   11 |                    11\\   11 |
                                              \\111111  |\\111111  |                    \\111111  |
                                               \\______/  \\______/                      \\______/
                                                      1111111\\                        11\\
                                                      11  __11\\                       11 |
                                                      11 |  11 | 111111\\  11\\   11\\ 111111\\    111111\\   111111\\
                                                      1111111  |11  __11\\ 11 |  11 |\\_11  _|  11  __11\\ 11  __11\\
                                                      11  __11< 11 /  11 |11 |  11 |  11 |    11111111 |11 |  \\__|
                                                      11 |  11 |11 |  11 |11 |  11 |  11 |11\\ 11   ____|11 |
                                                      11 |  11 |\\111111  |\\111111  |  \\1111  |\\1111111\\ 11 |
                                                      \\__|  \\__| \\______/  \\______/    \\____/  \\_______|\\__|
      */
      // SPDX-License-Identifier: MIT
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      pragma solidity 0.8.23;
      type MakerTraits is uint256;
      /**
       * @title MakerTraitsLib
       * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
       * @dev
       * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
       * High bits are used for flags
       * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
       * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
       * 253 bit                                  - unused
       * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
       * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
       * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
       * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
       * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
       * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH
       * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
       * uint80 last 10 bytes of allowed sender address (0 if any)
       * uint40 expiration timestamp (0 if none)
       * uint40 nonce or epoch
       * uint40 series
       */
      library MakerTraitsLib {
          // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
          uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
          uint256 private constant _EXPIRATION_OFFSET = 80;
          uint256 private constant _EXPIRATION_MASK = type(uint40).max;
          uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
          uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
          uint256 private constant _SERIES_OFFSET = 160;
          uint256 private constant _SERIES_MASK = type(uint40).max;
          uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
          uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
          uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
          uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
          uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
          uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
          uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
          uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;
          /**
           * @notice Checks if the order has the extension flag set.
           * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the flag is set.
           */
          function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
          }
          /**
           * @notice Checks if the maker allows a specific taker to fill the order.
           * @param makerTraits The traits of the maker.
           * @param sender The address of the taker to be checked.
           * @return result A boolean indicating whether the taker is allowed.
           */
          function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
              uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
              return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
          }
          /**
           * @notice Checks if the order has expired.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the order has expired.
           */
          function isExpired(MakerTraits makerTraits) internal view returns (bool) {
              uint256 expiration = (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
              return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
          }
          /**
           * @notice Returns the nonce or epoch of the order.
           * @param makerTraits The traits of the maker.
           * @return result The nonce or epoch of the order.
           */
          function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
              return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
          }
          /**
           * @notice Returns the series of the order.
           * @param makerTraits The traits of the maker.
           * @return result The series of the order.
           */
          function series(MakerTraits makerTraits) internal pure returns (uint256) {
              return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
          }
          /**
            * @notice Determines if the order allows partial fills.
            * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
            * @param makerTraits The traits of the maker, determining their preferences for the order.
            * @return result A boolean indicating whether the maker allows partial fills.
            */
          function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
          }
          /**
           * @notice Checks if the maker needs pre-interaction call.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the maker needs a pre-interaction call.
           */
          function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
          }
          /**
           * @notice Checks if the maker needs post-interaction call.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the maker needs a post-interaction call.
           */
          function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
          }
          /**
            * @notice Determines if the order allows multiple fills.
            * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
            * @param makerTraits The traits of the maker, determining their preferences for the order.
            * @return result A boolean indicating whether the maker allows multiple fills.
            */
          function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
          }
          /**
            * @notice Determines if an order should use the bit invalidator or remaining amount validator.
            * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
            * @param makerTraits The traits of the maker, determining their preferences for the order.
            * @return result A boolean indicating whether the bit invalidator should be used.
            * True if the order requires the use of the bit invalidator.
            */
          function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
              return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
          }
          /**
           * @notice Checks if the maker needs to check the epoch.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the maker needs to check the epoch manager.
           */
          function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
              return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
          }
          /**
           * @notice Checks if the maker uses permit2.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the maker uses permit2.
           */
          function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
              return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
          }
          /**
           * @notice Checks if the maker needs to unwraps WETH.
           * @param makerTraits The traits of the maker.
           * @return result A boolean indicating whether the maker needs to unwrap WETH.
           */
          function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
              return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      type TakerTraits is uint256;
      /**
       * @title TakerTraitsLib
       * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
       * @dev The TakerTraits are structured as follows:
       * High bits are used for flags
       * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
       * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
       * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
       * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
       * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
       * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
       * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
       * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
       */
      library TakerTraitsLib {
          uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
          uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
          uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
          uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
          uint256 private constant _ARGS_HAS_TARGET = 1 << 251;
          uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
          uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
          uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
          uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;
          uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;
          /**
           * @notice Checks if the args should contain target address.
           * @param takerTraits The traits of the taker.
           * @return result A boolean indicating whether the args should contain target address.
           */
          function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
              return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
          }
          /**
           * @notice Retrieves the length of the extension calldata from the takerTraits.
           * @param takerTraits The traits of the taker.
           * @return result The length of the extension calldata encoded in the takerTraits.
           */
          function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
              return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
          }
          /**
           * @notice Retrieves the length of the interaction calldata from the takerTraits.
           * @param takerTraits The traits of the taker.
           * @return result The length of the interaction calldata encoded in the takerTraits.
           */
          function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
              return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
          }
          /**
           * @notice Checks if the taking amount should be calculated based on making amount.
           * @param takerTraits The traits of the taker.
           * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
           */
          function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
              return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
          }
          /**
           * @notice Checks if the order should unwrap WETH and send ETH to taker.
           * @param takerTraits The traits of the taker.
           * @return result A boolean indicating whether the order should unwrap WETH.
           */
          function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
              return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
          }
          /**
           * @notice Checks if the order should skip maker's permit execution.
           * @param takerTraits The traits of the taker.
           * @return result A boolean indicating whether the order don't apply permit.
           */
          function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
              return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
          }
          /**
           * @notice Checks if the order uses the permit2 instead of permit.
           * @param takerTraits The traits of the taker.
           * @return result A boolean indicating whether the order uses the permit2.
           */
          function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
              return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
          }
          /**
           * @notice Retrieves the threshold amount from the takerTraits.
           * The maximum amount a taker agrees to give in exchange for a making amount.
           * @param takerTraits The traits of the taker.
           * @return result The threshold amount encoded in the takerTraits.
           */
          function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
              return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
          }
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      type Address is uint256;
      /**
      * @dev Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
      */
      library AddressLib {
          uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;
          /**
          * @notice Returns the address representation of a uint256.
          * @param a The uint256 value to convert to an address.
          * @return The address representation of the provided uint256 value.
          */
          function get(Address a) internal pure returns (address) {
              return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
          }
          /**
          * @notice Checks if a given flag is set for the provided address.
          * @param a The address to check for the flag.
          * @param flag The flag to check for in the provided address.
          * @return True if the provided flag is set in the address, false otherwise.
          */
          function getFlag(Address a, uint256 flag) internal pure returns (bool) {
              return (Address.unwrap(a) & flag) != 0;
          }
          /**
          * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
          * @param a The address containing the uint32 value.
          * @param offset The bit offset at which the uint32 value is stored.
          * @return The uint32 value stored in the address at the specified bit offset.
          */
          function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
              return uint32(Address.unwrap(a) >> offset);
          }
          /**
          * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
          * @param a The address containing the uint64 value.
          * @param offset The bit offset at which the uint64 value is stored.
          * @return The uint64 value stored in the address at the specified bit offset.
          */
          function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
              return uint64(Address.unwrap(a) >> offset);
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
      interface IOrderMixin {
          struct Order {
              uint256 salt;
              Address maker;
              Address receiver;
              Address makerAsset;
              Address takerAsset;
              uint256 makingAmount;
              uint256 takingAmount;
              MakerTraits makerTraits;
          }
          error InvalidatedOrder();
          error TakingAmountExceeded();
          error PrivateOrder();
          error BadSignature();
          error OrderExpired();
          error WrongSeriesNonce();
          error SwapWithZeroAmount();
          error PartialFillNotAllowed();
          error OrderIsNotSuitableForMassInvalidation();
          error EpochManagerAndBitInvalidatorsAreIncompatible();
          error ReentrancyDetected();
          error PredicateIsNotTrue();
          error TakingAmountTooHigh();
          error MakingAmountTooLow();
          error TransferFromMakerToTakerFailed();
          error TransferFromTakerToMakerFailed();
          error MismatchArraysLengths();
          error InvalidPermit2Transfer();
          error SimulationResults(bool success, bytes res);
          /**
           * @notice Emitted when order gets filled
           * @param orderHash Hash of the order
           * @param remainingAmount Amount of the maker asset that remains to be filled
           */
          event OrderFilled(
              bytes32 orderHash,
              uint256 remainingAmount
          );
          /**
           * @notice Emitted when order without `useBitInvalidator` gets cancelled
           * @param orderHash Hash of the order
           */
          event OrderCancelled(
              bytes32 orderHash
          );
          /**
           * @notice Emitted when order with `useBitInvalidator` gets cancelled
           * @param maker Maker address
           * @param slotIndex Slot index that was updated
           * @param slotValue New slot value
           */
          event BitInvalidatorUpdated(
              address indexed maker,
              uint256 slotIndex,
              uint256 slotValue
          );
          /**
           * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
           * @param maker Maker address
           * @param slot Slot number to return bitmask for
           * @return result Each bit represents whether corresponding was already invalidated
           */
          function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);
          /**
           * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
           * @param orderHash Hash of the order
           * @return remaining Remaining amount of the order
           */
          function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);
          /**
           * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
           * @param orderHash Hash of the order
           * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
           */
          function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);
          /**
           * @notice Cancels order's quote
           * @param makerTraits Order makerTraits
           * @param orderHash Hash of the order to cancel
           */
          function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;
          /**
           * @notice Cancels orders' quotes
           * @param makerTraits Orders makerTraits
           * @param orderHashes Hashes of the orders to cancel
           */
          function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;
          /**
           * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
           * @param makerTraits Order makerTraits
           * @param additionalMask Additional bitmask to invalidate orders
           */
          function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;
          /**
           * @notice Returns order hash, hashed with limit order protocol contract EIP712
           * @param order Order
           * @return orderHash Hash of the order
           */
          function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);
          /**
           * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
           * @dev The function always reverts and returns the simulation results in revert data.
           * @param target Addresses that will be delegated
           * @param data Data that will be passed to delegatee
           */
          function simulate(address target, bytes calldata data) external;
          /**
           * @notice Fills order's quote, fully or partially (whichever is possible).
           * @param order Order quote to fill
           * @param r R component of signature
           * @param vs VS component of signature
           * @param amount Taker amount to fill
           * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
           * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
           * @return makingAmount Actual amount transferred from maker to taker
           * @return takingAmount Actual amount transferred from taker to maker
           * @return orderHash Hash of the filled order
           */
          function fillOrder(
              Order calldata order,
              bytes32 r,
              bytes32 vs,
              uint256 amount,
              TakerTraits takerTraits
          ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
          /**
           * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
           * @param order Order quote to fill
           * @param r R component of signature
           * @param vs VS component of signature
           * @param amount Taker amount to fill
           * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
           * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
           * @param args Arguments that are used by the taker (target, extension, interaction, permit)
           * @return makingAmount Actual amount transferred from maker to taker
           * @return takingAmount Actual amount transferred from taker to maker
           * @return orderHash Hash of the filled order
           */
          function fillOrderArgs(
              IOrderMixin.Order calldata order,
              bytes32 r,
              bytes32 vs,
              uint256 amount,
              TakerTraits takerTraits,
              bytes calldata args
          ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
          /**
           * @notice Same as `fillOrder` but uses contract-based signatures.
           * @param order Order quote to fill
           * @param signature Signature to confirm quote ownership
           * @param amount Taker amount to fill
           * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
           * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
           * @return makingAmount Actual amount transferred from maker to taker
           * @return takingAmount Actual amount transferred from taker to maker
           * @return orderHash Hash of the filled order
           * @dev See tests for examples
           */
          function fillContractOrder(
              Order calldata order,
              bytes calldata signature,
              uint256 amount,
              TakerTraits takerTraits
          ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
          /**
           * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
           * @param order Order quote to fill
           * @param signature Signature to confirm quote ownership
           * @param amount Taker amount to fill
           * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
           * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
           * @param args Arguments that are used by the taker (target, extension, interaction, permit)
           * @return makingAmount Actual amount transferred from maker to taker
           * @return takingAmount Actual amount transferred from taker to maker
           * @return orderHash Hash of the filled order
           * @dev See tests for examples
           */
          function fillContractOrderArgs(
              Order calldata order,
              bytes calldata signature,
              uint256 amount,
              TakerTraits takerTraits,
              bytes calldata args
          ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
      }
      // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
      interface IAmountGetter {
          /**
           * @notice View method that gets called to determine the actual making amount
           * @param order Order being processed
           * @param extension Order extension data
           * @param orderHash Hash of the order being processed
           * @param taker Taker address
           * @param takingAmount Actual taking amount
           * @param remainingMakingAmount Order remaining making amount
           * @param extraData Extra data
           */
          function getMakingAmount(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              bytes32 orderHash,
              address taker,
              uint256 takingAmount,
              uint256 remainingMakingAmount,
              bytes calldata extraData
          ) external view returns (uint256);
          /**
           * @notice View method that gets called to determine the actual making amount
           * @param order Order being processed
           * @param extension Order extension data
           * @param orderHash Hash of the order being processed
           * @param taker Taker address
           * @param makingAmount Actual taking amount
           * @param remainingMakingAmount Order remaining making amount
           * @param extraData Extra data
           */
          function getTakingAmount(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              bytes32 orderHash,
              address taker,
              uint256 makingAmount,
              uint256 remainingMakingAmount,
              bytes calldata extraData
          ) external view returns (uint256);
      }
      // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
      interface IPostInteraction {
          /**
           * @notice Callback method that gets called after all fund transfers
           * @param order Order being processed
           * @param extension Order extension data
           * @param orderHash Hash of the order being processed
           * @param taker Taker address
           * @param makingAmount Actual making amount
           * @param takingAmount Actual taking amount
           * @param remainingMakingAmount Order remaining making amount
           * @param extraData Extra data
           */
          function postInteraction(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              bytes32 orderHash,
              address taker,
              uint256 makingAmount,
              uint256 takingAmount,
              uint256 remainingMakingAmount,
              bytes calldata extraData
          ) external;
      }
      // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
      interface IPreInteraction {
          /**
           * @notice Callback method that gets called before any funds transfers
           * @param order Order being processed
           * @param extension Order extension data
           * @param orderHash Hash of the order being processed
           * @param taker Taker address
           * @param makingAmount Actual making amount
           * @param takingAmount Actual taking amount
           * @param remainingMakingAmount Order remaining making amount
           * @param extraData Extra data
           */
          function preInteraction(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              bytes32 orderHash,
              address taker,
              uint256 makingAmount,
              uint256 takingAmount,
              uint256 remainingMakingAmount,
              bytes calldata extraData
          ) external;
      }
      // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
      /**
       * @title Interface for interactor which acts after `maker -> taker` transfer but before `taker -> maker` transfer.
       * @notice The order filling steps are `preInteraction` =>` Transfer "maker -> taker"` => **`Interaction`** => `Transfer "taker -> maker"` => `postInteraction`
       */
      interface ITakerInteraction {
          /**
           * @dev This callback allows to interactively handle maker aseets to produce takers assets, doesn't supports ETH as taker assets
           * @notice Callback method that gets called after maker fund transfer but before taker fund transfer
           * @param order Order being processed
           * @param extension Order extension data
           * @param orderHash Hash of the order being processed
           * @param taker Taker address
           * @param makingAmount Actual making amount
           * @param takingAmount Actual taking amount
           * @param remainingMakingAmount Order remaining making amount
           * @param extraData Extra data
           */
          function takerInteraction(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              bytes32 orderHash,
              address taker,
              uint256 makingAmount,
              uint256 takingAmount,
              uint256 remainingMakingAmount,
              bytes calldata extraData
          ) external;
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      type Offsets is uint256;
      /// @title OffsetsLib
      /// @dev A library for retrieving values by offsets from a concatenated calldata.
      library OffsetsLib {
          /// @dev Error to be thrown when the offset is out of bounds.
          error OffsetOutOfBounds();
          /**
           * @notice Retrieves the field value calldata corresponding to the provided field index from the concatenated calldata.
           * @dev
           * The function performs the following steps:
           * 1. Retrieve the start and end of the segment corresponding to the provided index from the offsets array.
           * 2. Get the value from segment using offset and length calculated based on the start and end of the segment.
           * 3. Throw `OffsetOutOfBounds` error if the length of the segment is greater than the length of the concatenated data.
           * @param offsets The offsets encoding the start and end of each segment within the concatenated calldata.
           * @param concat The concatenated calldata.
           * @param index The index of the segment to retrieve. The field index 0 corresponds to the lowest bytes of the offsets array.
           * @return result The calldata from a segment of the concatenated calldata corresponding to the provided index.
           */
          function get(Offsets offsets, bytes calldata concat, uint256 index) internal pure returns(bytes calldata result) {
              bytes4 exception = OffsetOutOfBounds.selector;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  let bitShift := shl(5, index)                                   // bitShift = index * 32
                  let begin := and(0xffffffff, shr(bitShift, shl(32, offsets)))   // begin = offsets[ bitShift : bitShift + 32 ]
                  let end := and(0xffffffff, shr(bitShift, offsets))              // end   = offsets[ bitShift + 32 : bitShift + 64 ]
                  result.offset := add(concat.offset, begin)
                  result.length := sub(end, begin)
                  if gt(end, concat.length) {
                      mstore(0, exception)
                      revert(0, 4)
                  }
              }
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      /**
       * @title ExtensionLib
       * @notice Library for retrieving extensions information for the IOrderMixin Interface.
       */
      library ExtensionLib {
          using AddressLib for Address;
          using OffsetsLib for Offsets;
          enum DynamicField {
              MakerAssetSuffix,
              TakerAssetSuffix,
              MakingAmountData,
              TakingAmountData,
              Predicate,
              MakerPermit,
              PreInteractionData,
              PostInteractionData,
              CustomData
          }
          /**
           * @notice Returns the MakerAssetSuffix from the provided extension calldata.
           * @param extension The calldata from which the MakerAssetSuffix is to be retrieved.
           * @return calldata Bytes representing the MakerAssetSuffix.
           */
          function makerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.MakerAssetSuffix);
          }
          /**
           * @notice Returns the TakerAssetSuffix from the provided extension calldata.
           * @param extension The calldata from which the TakerAssetSuffix is to be retrieved.
           * @return calldata Bytes representing the TakerAssetSuffix.
           */
          function takerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.TakerAssetSuffix);
          }
          /**
           * @notice Returns the MakingAmountData from the provided extension calldata.
           * @param extension The calldata from which the MakingAmountData is to be retrieved.
           * @return calldata Bytes representing the MakingAmountData.
           */
          function makingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.MakingAmountData);
          }
          /**
           * @notice Returns the TakingAmountData from the provided extension calldata.
           * @param extension The calldata from which the TakingAmountData is to be retrieved.
           * @return calldata Bytes representing the TakingAmountData.
           */
          function takingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.TakingAmountData);
          }
          /**
           * @notice Returns the order's predicate from the provided extension calldata.
           * @param extension The calldata from which the predicate is to be retrieved.
           * @return calldata Bytes representing the predicate.
           */
          function predicate(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.Predicate);
          }
          /**
           * @notice Returns the maker's permit from the provided extension calldata.
           * @param extension The calldata from which the maker's permit is to be retrieved.
           * @return calldata Bytes representing the maker's permit.
           */
          function makerPermit(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.MakerPermit);
          }
          /**
           * @notice Returns the pre-interaction from the provided extension calldata.
           * @param extension The calldata from which the pre-interaction is to be retrieved.
           * @return calldata Bytes representing the pre-interaction.
           */
          function preInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.PreInteractionData);
          }
          /**
           * @notice Returns the post-interaction from the provided extension calldata.
           * @param extension The calldata from which the post-interaction is to be retrieved.
           * @return calldata Bytes representing the post-interaction.
           */
          function postInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
              return _get(extension, DynamicField.PostInteractionData);
          }
          /**
           * @notice Returns extra suffix data from the provided extension calldata.
           * @param extension The calldata from which the extra suffix data is to be retrieved.
           * @return calldata Bytes representing the extra suffix data.
           */
          function customData(bytes calldata extension) internal pure returns(bytes calldata) {
              if (extension.length < 0x20) return msg.data[:0];
              uint256 offsets = uint256(bytes32(extension));
              unchecked {
                  return extension[0x20 + (offsets >> 224):];
              }
          }
          /**
           * @notice Retrieves a specific field from the provided extension calldata.
           * @dev The first 32 bytes of an extension calldata contain offsets to the end of each field within the calldata.
           * @param extension The calldata from which the field is to be retrieved.
           * @param field The specific dynamic field to retrieve from the extension.
           * @return calldata Bytes representing the requested field.
           */
          function _get(bytes calldata extension, DynamicField field) private pure returns(bytes calldata) {
              if (extension.length < 0x20) return msg.data[:0];
              Offsets offsets;
              bytes calldata concat;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  offsets := calldataload(extension.offset)
                  concat.offset := add(extension.offset, 0x20)
                  concat.length := sub(extension.length, 0x20)
              }
              return offsets.get(concat, uint256(field));
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      /// @title The helper library to calculate linearly taker amount from maker amount and vice versa.
      library AmountCalculatorLib {
          /// @notice Calculates maker amount
          /// @return Result Floored maker amount
          function getMakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapTakerAmount) internal pure returns(uint256) {
              if ((swapTakerAmount | orderMakerAmount) >> 128 == 0) {
                  unchecked {
                      return (swapTakerAmount * orderMakerAmount) / orderTakerAmount;
                  }
              }
              return swapTakerAmount * orderMakerAmount / orderTakerAmount;
          }
          /// @notice Calculates taker amount
          /// @return Result Ceiled taker amount
          function getTakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapMakerAmount) internal pure returns(uint256) {
              if ((swapMakerAmount | orderTakerAmount) >> 128 == 0) {
                  unchecked {
                      return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
                  }
              }
              return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
          }
      }
      // File @openzeppelin/contracts/interfaces/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
      /**
       * @dev Interface of the ERC1271 standard signature validation method for
       * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
       */
      interface IERC1271 {
          /**
           * @dev Should return whether the signature provided is valid for the provided data
           * @param hash      Hash of the data to be signed
           * @param signature Signature byte array associated with _data
           */
          function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      library ECDSA {
          // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
          // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
          // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
          // signatures from current libraries generate a unique signature with an s-value in the lower half order.
          //
          // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
          // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
          // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
          // these malleable signatures as well.
          uint256 private constant _S_BOUNDARY = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 + 1;
          uint256 private constant _COMPACT_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
          uint256 private constant _COMPACT_V_SHIFT = 255;
          function recover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal view returns (address signer) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  if lt(s, _S_BOUNDARY) {
                      let ptr := mload(0x40)
                      mstore(ptr, hash)
                      mstore(add(ptr, 0x20), v)
                      mstore(add(ptr, 0x40), r)
                      mstore(add(ptr, 0x60), s)
                      mstore(0, 0)
                      pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                      signer := mload(0)
                  }
              }
          }
          function recover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal view returns (address signer) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let s := and(vs, _COMPACT_S_MASK)
                  if lt(s, _S_BOUNDARY) {
                      let ptr := mload(0x40)
                      mstore(ptr, hash)
                      mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                      mstore(add(ptr, 0x40), r)
                      mstore(add(ptr, 0x60), s)
                      mstore(0, 0)
                      pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                      signer := mload(0)
                  }
              }
          }
          /// @dev WARNING!!!
          /// There is a known signature malleability issue with two representations of signatures!
          /// Even though this function is able to verify both standard 65-byte and compact 64-byte EIP-2098 signatures
          /// one should never use raw signatures for any kind of invalidation logic in their code.
          /// As the standard and compact representations are interchangeable any invalidation logic that relies on
          /// signature uniqueness will get rekt.
          /// More info: https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
          function recover(bytes32 hash, bytes calldata signature) internal view returns (address signer) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  // memory[ptr:ptr+0x80] = (hash, v, r, s)
                  switch signature.length
                  case 65 {
                      // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                      mstore(add(ptr, 0x20), byte(0, calldataload(add(signature.offset, 0x40))))
                      calldatacopy(add(ptr, 0x40), signature.offset, 0x40)
                  }
                  case 64 {
                      // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                      let vs := calldataload(add(signature.offset, 0x20))
                      mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                      calldatacopy(add(ptr, 0x40), signature.offset, 0x20)
                      mstore(add(ptr, 0x60), and(vs, _COMPACT_S_MASK))
                  }
                  default {
                      ptr := 0
                  }
                  if ptr {
                      if lt(mload(add(ptr, 0x60)), _S_BOUNDARY) {
                          // memory[ptr:ptr+0x20] = (hash)
                          mstore(ptr, hash)
                          mstore(0, 0)
                          pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                          signer := mload(0)
                      }
                  }
              }
          }
          function recoverOrIsValidSignature(
              address signer,
              bytes32 hash,
              bytes calldata signature
          ) internal view returns (bool success) {
              if (signer == address(0)) return false;
              if ((signature.length == 64 || signature.length == 65) && recover(hash, signature) == signer) {
                  return true;
              }
              return isValidSignature(signer, hash, signature);
          }
          function recoverOrIsValidSignature(
              address signer,
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal view returns (bool success) {
              if (signer == address(0)) return false;
              if (recover(hash, v, r, s) == signer) {
                  return true;
              }
              return isValidSignature(signer, hash, v, r, s);
          }
          function recoverOrIsValidSignature(
              address signer,
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal view returns (bool success) {
              if (signer == address(0)) return false;
              if (recover(hash, r, vs) == signer) {
                  return true;
              }
              return isValidSignature(signer, hash, r, vs);
          }
          function recoverOrIsValidSignature65(
              address signer,
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal view returns (bool success) {
              if (signer == address(0)) return false;
              if (recover(hash, r, vs) == signer) {
                  return true;
              }
              return isValidSignature65(signer, hash, r, vs);
          }
          function isValidSignature(
              address signer,
              bytes32 hash,
              bytes calldata signature
          ) internal view returns (bool success) {
              // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature));
              // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
              bytes4 selector = IERC1271.isValidSignature.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, selector)
                  mstore(add(ptr, 0x04), hash)
                  mstore(add(ptr, 0x24), 0x40)
                  mstore(add(ptr, 0x44), signature.length)
                  calldatacopy(add(ptr, 0x64), signature.offset, signature.length)
                  if staticcall(gas(), signer, ptr, add(0x64, signature.length), 0, 0x20) {
                      success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                  }
              }
          }
          function isValidSignature(
              address signer,
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal view returns (bool success) {
              bytes4 selector = IERC1271.isValidSignature.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, selector)
                  mstore(add(ptr, 0x04), hash)
                  mstore(add(ptr, 0x24), 0x40)
                  mstore(add(ptr, 0x44), 65)
                  mstore(add(ptr, 0x64), r)
                  mstore(add(ptr, 0x84), s)
                  mstore8(add(ptr, 0xa4), v)
                  if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                      success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                  }
              }
          }
          function isValidSignature(
              address signer,
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal view returns (bool success) {
              // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs)));
              // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
              bytes4 selector = IERC1271.isValidSignature.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, selector)
                  mstore(add(ptr, 0x04), hash)
                  mstore(add(ptr, 0x24), 0x40)
                  mstore(add(ptr, 0x44), 64)
                  mstore(add(ptr, 0x64), r)
                  mstore(add(ptr, 0x84), vs)
                  if staticcall(gas(), signer, ptr, 0xa4, 0, 0x20) {
                      success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                  }
              }
          }
          function isValidSignature65(
              address signer,
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal view returns (bool success) {
              // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs & ~uint256(1 << 255), uint8(vs >> 255))));
              // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
              bytes4 selector = IERC1271.isValidSignature.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, selector)
                  mstore(add(ptr, 0x04), hash)
                  mstore(add(ptr, 0x24), 0x40)
                  mstore(add(ptr, 0x44), 65)
                  mstore(add(ptr, 0x64), r)
                  mstore(add(ptr, 0x84), and(vs, _COMPACT_S_MASK))
                  mstore8(add(ptr, 0xa4), add(27, shr(_COMPACT_V_SHIFT, vs)))
                  if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                      success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                  }
              }
          }
          function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 res) {
              // 32 is the length in bytes of hash, enforced by the type signature above
              // return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      32", hash));
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  mstore(0, 0x19457468657265756d205369676e6564204d6573736167653a0a333200000000) // "\\x19Ethereum Signed Message:\
      32"
                  mstore(28, hash)
                  res := keccak256(0, 60)
              }
          }
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 res) {
              // return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, 0x1901000000000000000000000000000000000000000000000000000000000000) // "\\x19\\x01"
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  res := keccak256(ptr, 66)
              }
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/[email protected]
      /**
       * @title OrderLib
       * @dev The library provides common functionality for processing and manipulating limit orders.
       * It provides functionality to calculate and verify order hashes, calculate trade amounts, and validate
       * extension data associated with orders. The library also contains helper methods to get the receiver of
       * an order and call getter functions.
       */
       library OrderLib {
          using AddressLib for Address;
          using MakerTraitsLib for MakerTraits;
          using ExtensionLib for bytes;
          /// @dev Error to be thrown when the extension data of an order is missing.
          error MissingOrderExtension();
          /// @dev Error to be thrown when the order has an unexpected extension.
          error UnexpectedOrderExtension();
          /// @dev Error to be thrown when the order extension hash is invalid.
          error InvalidExtensionHash();
          /// @dev The typehash of the order struct.
          bytes32 constant internal _LIMIT_ORDER_TYPEHASH = keccak256(
              "Order("
                  "uint256 salt,"
                  "address maker,"
                  "address receiver,"
                  "address makerAsset,"
                  "address takerAsset,"
                  "uint256 makingAmount,"
                  "uint256 takingAmount,"
                  "uint256 makerTraits"
              ")"
          );
          uint256 constant internal _ORDER_STRUCT_SIZE = 0x100;
          uint256 constant internal _DATA_HASH_SIZE = 0x120;
          /**
            * @notice Calculates the hash of an order.
            * @param order The order to be hashed.
            * @param domainSeparator The domain separator to be used for the EIP-712 hashing.
            * @return result The keccak256 hash of the order data.
            */
          function hash(IOrderMixin.Order calldata order, bytes32 domainSeparator) internal pure returns(bytes32 result) {
              bytes32 typehash = _LIMIT_ORDER_TYPEHASH;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  // keccak256(abi.encode(_LIMIT_ORDER_TYPEHASH, order));
                  mstore(ptr, typehash)
                  calldatacopy(add(ptr, 0x20), order, _ORDER_STRUCT_SIZE)
                  result := keccak256(ptr, _DATA_HASH_SIZE)
              }
              result = ECDSA.toTypedDataHash(domainSeparator, result);
          }
          /**
            * @notice Returns the receiver address for an order.
            * @param order The order.
            * @return receiver The address of the receiver, either explicitly defined in the order or the maker's address if not specified.
            */
          function getReceiver(IOrderMixin.Order calldata order) internal pure returns(address /*receiver*/) {
              address receiver = order.receiver.get();
              return receiver != address(0) ? receiver : order.maker.get();
          }
          /**
            * @notice Calculates the making amount based on the requested taking amount.
            * @dev If getter is specified in the extension data, the getter is called to calculate the making amount,
            * otherwise the making amount is calculated linearly.
            * @param order The order.
            * @param extension The extension data associated with the order.
            * @param requestedTakingAmount The amount the taker wants to take.
            * @param remainingMakingAmount The remaining amount of the asset left to fill.
            * @param orderHash The hash of the order.
            * @return makingAmount The amount of the asset the maker receives.
            */
          function calculateMakingAmount(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              uint256 requestedTakingAmount,
              uint256 remainingMakingAmount,
              bytes32 orderHash
          ) internal view returns(uint256) {
              bytes calldata data = extension.makingAmountData();
              if (data.length == 0) {
                  // Linear proportion
                  return AmountCalculatorLib.getMakingAmount(order.makingAmount, order.takingAmount, requestedTakingAmount);
              }
              return IAmountGetter(address(bytes20(data))).getMakingAmount(
                  order,
                  extension,
                  orderHash,
                  msg.sender,
                  requestedTakingAmount,
                  remainingMakingAmount,
                  data[20:]
              );
          }
          /**
            * @notice Calculates the taking amount based on the requested making amount.
            * @dev If getter is specified in the extension data, the getter is called to calculate the taking amount,
            * otherwise the taking amount is calculated linearly.
            * @param order The order.
            * @param extension The extension data associated with the order.
            * @param requestedMakingAmount The amount the maker wants to receive.
            * @param remainingMakingAmount The remaining amount of the asset left to be filled.
            * @param orderHash The hash of the order.
            * @return takingAmount The amount of the asset the taker takes.
            */
          function calculateTakingAmount(
              IOrderMixin.Order calldata order,
              bytes calldata extension,
              uint256 requestedMakingAmount,
              uint256 remainingMakingAmount,
              bytes32 orderHash
          ) internal view returns(uint256) {
              bytes calldata data = extension.takingAmountData();
              if (data.length == 0) {
                  // Linear proportion
                  return AmountCalculatorLib.getTakingAmount(order.makingAmount, order.takingAmount, requestedMakingAmount);
              }
              return IAmountGetter(address(bytes20(data))).getTakingAmount(
                  order,
                  extension,
                  orderHash,
                  msg.sender,
                  requestedMakingAmount,
                  remainingMakingAmount,
                  data[20:]
              );
          }
          /**
            * @dev Validates the extension associated with an order.
            * @param order The order to validate against.
            * @param extension The extension associated with the order.
            * @return valid True if the extension is valid, false otherwise.
            * @return errorSelector The error selector if the extension is invalid, 0x00000000 otherwise.
            */
          function isValidExtension(IOrderMixin.Order calldata order, bytes calldata extension) internal pure returns(bool, bytes4) {
              if (order.makerTraits.hasExtension()) {
                  if (extension.length == 0) return (false, MissingOrderExtension.selector);
                  // Lowest 160 bits of the order salt must be equal to the lowest 160 bits of the extension hash
                  if (uint256(keccak256(extension)) & type(uint160).max != order.salt & type(uint160).max) return (false, InvalidExtensionHash.selector);
              } else {
                  if (extension.length > 0) return (false, UnexpectedOrderExtension.selector);
              }
              return (true, 0x00000000);
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/helpers/[email protected]
      /// @title A helper contract for executing boolean functions on arbitrary target call results
      contract PredicateHelper {
          error ArbitraryStaticCallFailed();
          /// @notice Calls every target with corresponding data
          /// @return Result True if call to any target returned True. Otherwise, false
          function or(uint256 offsets, bytes calldata data) public view returns(bool) {
              uint256 previous;
              for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                  (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                  if (success && res == 1) {
                      return true;
                  }
                  previous = current;
              }
              return false;
          }
          /// @notice Calls every target with corresponding data
          /// @return Result True if calls to all targets returned True. Otherwise, false
          function and(uint256 offsets, bytes calldata data) public view returns(bool) {
              uint256 previous;
              for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                  (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                  if (!success || res != 1) {
                      return false;
                  }
                  previous = current;
              }
              return true;
          }
          /// @notice Calls target with specified data and tests if it's equal to 0
          /// @return Result True if call to target returns 0. Otherwise, false
          function not(bytes calldata data) public view returns(bool) {
              (bool success, uint256 res) = _staticcallForUint(address(this), data);
              return success && res == 0;
          }
          /// @notice Calls target with specified data and tests if it's equal to the value
          /// @param value Value to test
          /// @return Result True if call to target returns the same value as `value`. Otherwise, false
          function eq(uint256 value, bytes calldata data) public view returns(bool) {
              (bool success, uint256 res) = _staticcallForUint(address(this), data);
              return success && res == value;
          }
          /// @notice Calls target with specified data and tests if it's lower than value
          /// @param value Value to test
          /// @return Result True if call to target returns value which is lower than `value`. Otherwise, false
          function lt(uint256 value, bytes calldata data) public view returns(bool) {
              (bool success, uint256 res) = _staticcallForUint(address(this), data);
              return success && res < value;
          }
          /// @notice Calls target with specified data and tests if it's bigger than value
          /// @param value Value to test
          /// @return Result True if call to target returns value which is bigger than `value`. Otherwise, false
          function gt(uint256 value, bytes calldata data) public view returns(bool) {
              (bool success, uint256 res) = _staticcallForUint(address(this), data);
              return success && res > value;
          }
          /// @notice Performs an arbitrary call to target with data
          /// @return Result Bytes transmuted to uint256
          function arbitraryStaticCall(address target, bytes calldata data) public view returns(uint256) {
              (bool success, uint256 res) = _staticcallForUint(target, data);
              if (!success) revert ArbitraryStaticCallFailed();
              return res;
          }
          function _staticcallForUint(address target, bytes calldata data) internal view returns(bool success, uint256 res) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  calldatacopy(ptr, data.offset, data.length)
                  success := staticcall(gas(), target, ptr, data.length, 0x0, 0x20)
                  success := and(success, eq(returndatasize(), 32))
                  if success {
                      res := mload(0)
                  }
              }
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/helpers/[email protected]
      /// @title A helper contract to manage nonce with the series
      contract SeriesEpochManager {
          error AdvanceEpochFailed();
          event EpochIncreased(address indexed maker, uint256 series, uint256 newEpoch);
          // {
          //    1: {
          //        '0x762f73Ad...842Ffa8': 0,
          //        '0xd20c41ee...32aaDe2': 1
          //    },
          //    2: {
          //        '0x762f73Ad...842Ffa8': 3,
          //        '0xd20c41ee...32aaDe2': 15
          //    },
          //    ...
          // }
          mapping(uint256 seriesId => uint256 epoch) private _epochs;
          /// @notice Returns nonce for `maker` and `series`
          function epoch(address maker, uint96 series) public view returns(uint256) {
              return _epochs[uint160(maker) | (uint256(series) << 160)];
          }
          /// @notice Advances nonce by one
          function increaseEpoch(uint96 series) external {
              advanceEpoch(series, 1);
          }
          /// @notice Advances nonce by specified amount
          function advanceEpoch(uint96 series, uint256 amount) public {
              if (amount == 0 || amount > 255) revert AdvanceEpochFailed();
              unchecked {
                  uint256 key = uint160(msg.sender) | (uint256(series) << 160);
                  uint256 newEpoch = _epochs[key] + amount;
                  _epochs[key] = newEpoch;
                  emit EpochIncreased(msg.sender, series, newEpoch);
              }
          }
          /// @notice Checks if `maker` has specified `makerEpoch` for `series`
          /// @return Result True if `maker` has specified epoch. Otherwise, false
          function epochEquals(address maker, uint256 series, uint256 makerEpoch) public view returns(bool) {
              return _epochs[uint160(maker) | (uint256(series) << 160)] == makerEpoch;
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      /**
       * @title BitInvalidatorLib
       * @dev The library provides a mechanism to invalidate objects based on a bit invalidator.
       * The bit invalidator holds a mapping where each key represents a slot number and each value contains an integer.
       * Each bit of the integer represents whether the object with corresponding index is valid or has been invalidated (0 - valid, 1 - invalidated).
       * The nonce given to access or invalidate an entity's state follows this structure:
       * - bits [0..7] represent the object state index in the slot.
       * - bits [8..255] represent the slot number (mapping key).
       */
      library BitInvalidatorLib {
          /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
          error BitInvalidatedOrder();
          struct Data {
              mapping(uint256 slotIndex => uint256 slotData) _raw;
          }
          /**
           * @notice Retrieves the validity status of entities in a specific slot.
           * @dev Each bit in the returned value corresponds to the validity of an entity. 0 for valid, 1 for invalidated.
           * @param self The data structure.
           * @param nonce The nonce identifying the slot.
           * @return result The validity status of entities in the slot as a uint256.
           */
          function checkSlot(Data storage self, uint256 nonce) internal view returns(uint256) {
              uint256 invalidatorSlot = nonce >> 8;
              return self._raw[invalidatorSlot];
          }
          /**
           * @notice Checks the validity of a specific entity and invalidates it if valid.
           * @dev Throws an error if the entity has already been invalidated.
           * @param self The data structure.
           * @param nonce The nonce identifying the slot and the entity.
           */
          function checkAndInvalidate(Data storage self, uint256 nonce) internal {
              uint256 invalidatorSlot = nonce >> 8;
              uint256 invalidatorBit = 1 << (nonce & 0xff);
              uint256 invalidator = self._raw[invalidatorSlot];
              if (invalidator & invalidatorBit == invalidatorBit) revert BitInvalidatedOrder();
              self._raw[invalidatorSlot] = invalidator | invalidatorBit;
          }
          /**
           * @notice Invalidates multiple entities in a single slot.
           * @dev The entities to be invalidated are identified by setting their corresponding bits to 1 in a mask.
           * @param self The data structure.
           * @param nonce The nonce identifying the slot.
           * @param additionalMask A mask of bits to be invalidated.
           * @return result Resulting validity status of entities in the slot as a uint256.
           */
          function massInvalidate(Data storage self, uint256 nonce, uint256 additionalMask) internal returns(uint256 result) {
              uint256 invalidatorSlot = nonce >> 8;
              uint256 invalidatorBits = (1 << (nonce & 0xff)) | additionalMask;
              result = self._raw[invalidatorSlot] | invalidatorBits;
              self._raw[invalidatorSlot] = result;
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      library Errors {
          error InvalidMsgValue();
          error ETHTransferFailed();
      }
      // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
      type RemainingInvalidator is uint256;
      /**
       * @title RemainingInvalidatorLib
       * @notice The library provides a mechanism to invalidate order based on the remaining amount of the order.
       * @dev The remaining amount is used as a nonce to invalidate the order.
       * When order is created, the remaining invalidator is 0.
       * When order is filled, the remaining invalidator is the inverse of the remaining amount.
       */
      library RemainingInvalidatorLib {
          /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
          error RemainingInvalidatedOrder();
          /**
           * @notice Checks if an order is new based on the invalidator value.
           * @param invalidator The remaining invalidator of the order.
           * @return result Whether the order is new or not.
           */
          function isNewOrder(RemainingInvalidator invalidator) internal pure returns(bool) {
              return RemainingInvalidator.unwrap(invalidator) == 0;
          }
          /**
           * @notice Retrieves the remaining amount for an order.
           * @dev If the order is unknown, a RemainingInvalidatedOrder error is thrown.
           * @param invalidator The remaining invalidator for the order.
           * @return result The remaining amount for the order.
           */
          function remaining(RemainingInvalidator invalidator) internal pure returns(uint256) {
              uint256 value = RemainingInvalidator.unwrap(invalidator);
              if (value == 0) {
                  revert RemainingInvalidatedOrder();
              }
              unchecked {
                  return ~value;
              }
          }
          /**
           * @notice Calculates the remaining amount for an order.
           * @dev If the order is unknown, the order maker amount is returned.
           * @param invalidator The remaining invalidator for the order.
           * @param orderMakerAmount The amount to return if the order is new.
           * @return result The remaining amount for the order.
           */
          function remaining(RemainingInvalidator invalidator, uint256 orderMakerAmount) internal pure returns(uint256) {
              uint256 value = RemainingInvalidator.unwrap(invalidator);
              if (value == 0) {
                  return orderMakerAmount;
              }
              unchecked {
                  return ~value;
              }
          }
          /**
           * @notice Calculates the remaining invalidator of the order.
           * @param remainingMakingAmount The remaining making amount of the order.
           * @param makingAmount The making amount of the order.
           * @return result The remaining invalidator for the order.
           */
          function remains(uint256 remainingMakingAmount, uint256 makingAmount) internal pure returns(RemainingInvalidator) {
              unchecked {
                  return RemainingInvalidator.wrap(~(remainingMakingAmount - makingAmount));
              }
          }
          /**
           * @notice Provides the remaining invalidator for a fully filled order.
           * @return result The remaining invalidator for a fully filled order.
           */
          function fullyFilled() internal pure returns(RemainingInvalidator) {
              return RemainingInvalidator.wrap(type(uint256).max);
          }
      }
      // File @openzeppelin/contracts/token/ERC20/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // File @1inch/solidity-utils/contracts/interfaces/[email protected]
      interface IWETH is IERC20 {
          event Deposit(address indexed dst, uint256 wad);
          event Withdrawal(address indexed src, uint256 wad);
          function deposit() external payable;
          function withdraw(uint256 amount) external;
      }
      // File @1inch/solidity-utils/contracts/interfaces/[email protected]
      interface IDaiLikePermit {
          function permit(
              address holder,
              address spender,
              uint256 nonce,
              uint256 expiry,
              bool allowed,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      }
      // File @1inch/solidity-utils/contracts/interfaces/[email protected]
      interface IPermit2 {
          struct PermitDetails {
              // ERC20 token address
              address token;
              // the maximum amount allowed to spend
              uint160 amount;
              // timestamp at which a spender's token allowances become invalid
              uint48 expiration;
              // an incrementing value indexed per owner,token,and spender for each signature
              uint48 nonce;
          }
          /// @notice The permit message signed for a single token allownce
          struct PermitSingle {
              // the permit data for a single token alownce
              PermitDetails details;
              // address permissioned on the allowed tokens
              address spender;
              // deadline on the permit signature
              uint256 sigDeadline;
          }
          /// @notice Packed allowance
          struct PackedAllowance {
              // amount allowed
              uint160 amount;
              // permission expiry
              uint48 expiration;
              // an incrementing value indexed per owner,token,and spender for each signature
              uint48 nonce;
          }
          function transferFrom(address user, address spender, uint160 amount, address token) external;
          function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
          function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      /// @title Revert reason forwarder.
      library RevertReasonForwarder {
          /// @dev Forwards latest externall call revert.
          function reRevert() internal pure {
              // bubble up revert reason from latest external call
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  returndatacopy(ptr, 0, returndatasize())
                  revert(ptr, returndatasize())
              }
          }
          /// @dev Returns latest external call revert reason.
          function reReason() internal pure returns (bytes memory reason) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  reason := mload(0x40)
                  let length := returndatasize()
                  mstore(reason, length)
                  returndatacopy(add(reason, 0x20), 0, length)
                  mstore(0x40, add(reason, add(0x20, length)))
              }
          }
      }
      // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      /**
       * @title Implements efficient safe methods for ERC20 interface.
       * @notice Compared to the standard ERC20, this implementation offers several enhancements:
       * 1. more gas-efficient, providing significant savings in transaction costs.
       * 2. support for different permit implementations
       * 3. forceApprove functionality
       * 4. support for WETH deposit and withdraw
       */
      library SafeERC20 {
          error SafeTransferFailed();
          error SafeTransferFromFailed();
          error ForceApproveFailed();
          error SafeIncreaseAllowanceFailed();
          error SafeDecreaseAllowanceFailed();
          error SafePermitBadLength();
          error Permit2TransferAmountTooHigh();
          // Uniswap Permit2 address
          address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
          bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
          uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
          /**
           * @notice Fetches the balance of a specific ERC20 token held by an account.
           * Consumes less gas then regular `ERC20.balanceOf`.
           * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
           * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
           * @param token The IERC20 token contract for which the balance will be fetched.
           * @param account The address of the account whose token balance will be fetched.
           * @return tokenBalance The balance of the specified ERC20 token held by the account.
           */
          function safeBalanceOf(
              IERC20 token,
              address account
          ) internal view returns(uint256 tokenBalance) {
              bytes4 selector = IERC20.balanceOf.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  mstore(0x00, selector)
                  mstore(0x04, account)
                  let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
                  tokenBalance := mload(0)
                  if or(iszero(success), lt(returndatasize(), 0x20)) {
                      let ptr := mload(0x40)
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
              }
          }
          /**
           * @notice Attempts to safely transfer tokens from one address to another.
           * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
           * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
           * @param token The IERC20 token contract from which the tokens will be transferred.
           * @param from The address from which the tokens will be transferred.
           * @param to The address to which the tokens will be transferred.
           * @param amount The amount of tokens to transfer.
           * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
           */
          function safeTransferFromUniversal(
              IERC20 token,
              address from,
              address to,
              uint256 amount,
              bool permit2
          ) internal {
              if (permit2) {
                  safeTransferFromPermit2(token, from, to, amount);
              } else {
                  safeTransferFrom(token, from, to, amount);
              }
          }
          /**
           * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
           * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
           * @param token The IERC20 token contract from which the tokens will be transferred.
           * @param from The address from which the tokens will be transferred.
           * @param to The address to which the tokens will be transferred.
           * @param amount The amount of tokens to transfer.
           */
          function safeTransferFrom(
              IERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              bytes4 selector = token.transferFrom.selector;
              bool success;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
              if (!success) revert SafeTransferFromFailed();
          }
          /**
           * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
           * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
           * @param token The IERC20 token contract from which the tokens will be transferred.
           * @param from The address from which the tokens will be transferred.
           * @param to The address to which the tokens will be transferred.
           * @param amount The amount of tokens to transfer.
           */
          function safeTransferFromPermit2(
              IERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
              bytes4 selector = IPermit2.transferFrom.selector;
              bool success;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  mstore(add(data, 0x64), token)
                  success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
                  if success {
                      success := gt(extcodesize(_PERMIT2), 0)
                  }
              }
              if (!success) revert SafeTransferFromFailed();
          }
          /**
           * @notice Attempts to safely transfer tokens to another address.
           * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
           * @param token The IERC20 token contract from which the tokens will be transferred.
           * @param to The address to which the tokens will be transferred.
           * @param value The amount of tokens to transfer.
           */
          function safeTransfer(
              IERC20 token,
              address to,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.transfer.selector, to, value)) {
                  revert SafeTransferFailed();
              }
          }
          /**
           * @notice Attempts to approve a spender to spend a certain amount of tokens.
           * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
           * @param token The IERC20 token contract on which the call will be made.
           * @param spender The address which will spend the funds.
           * @param value The amount of tokens to be spent.
           */
          function forceApprove(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.approve.selector, spender, value)) {
                  if (
                      !_makeCall(token, token.approve.selector, spender, 0) ||
                      !_makeCall(token, token.approve.selector, spender, value)
                  ) {
                      revert ForceApproveFailed();
                  }
              }
          }
          /**
           * @notice Safely increases the allowance of a spender.
           * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
           * Then uses `forceApprove` to increase the allowance.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
           * @param token The IERC20 token contract on which the call will be made.
           * @param spender The address which will spend the funds.
           * @param value The amount of tokens to increase the allowance by.
           */
          function safeIncreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
              forceApprove(token, spender, allowance + value);
          }
          /**
           * @notice Safely decreases the allowance of a spender.
           * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
           * Then uses `forceApprove` to increase the allowance.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
           * @param token The IERC20 token contract on which the call will be made.
           * @param spender The address which will spend the funds.
           * @param value The amount of tokens to decrease the allowance by.
           */
          function safeDecreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > allowance) revert SafeDecreaseAllowanceFailed();
              forceApprove(token, spender, allowance - value);
          }
          /**
           * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
           * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
           * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
           * @param token The IERC20 token to execute the permit function on.
           * @param permit The permit data to be used in the function call.
           */
          function safePermit(IERC20 token, bytes calldata permit) internal {
              if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
          }
          /**
           * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
           * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
           * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
           * @param token The IERC20 token to execute the permit function on.
           * @param owner The owner of the tokens for which the permit is made.
           * @param spender The spender allowed to spend the tokens by the permit.
           * @param permit The permit data to be used in the function call.
           */
          function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
              if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
          }
          /**
           * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
           * @dev Invokes `tryPermit` with sender as owner and contract as spender.
           * @param token The IERC20 token to execute the permit function on.
           * @param permit The permit data to be used in the function call.
           * @return success Returns true if the permit function was successfully executed, false otherwise.
           */
          function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
              return tryPermit(token, msg.sender, address(this), permit);
          }
          /**
           * @notice The function attempts to call the permit function on a given ERC20 token.
           * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, and IPermit2.
           * It accommodates both Compact and Full formats of these permit types.
           * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
           * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
           * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
           * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
           * before invocation for optimized performance.
           * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
           * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
           * @param token The address of the ERC20 token on which to call the permit function.
           * @param owner The owner of the tokens. This address should have signed the off-chain permit.
           * @param spender The address which will be approved for transfer of tokens.
           * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
           * @return success A boolean indicating whether the permit call was successful.
           */
          function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
              // load function selectors for different permit standards
              bytes4 permitSelector = IERC20Permit.permit.selector;
              bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
              bytes4 permit2Selector = IPermit2.permit.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  // Switch case for different permit lengths, indicating different permit standards
                  switch permit.length
                  // Compact IERC20Permit
                  case 100 {
                      mstore(ptr, permitSelector)     // store selector
                      mstore(add(ptr, 0x04), owner)   // store owner
                      mstore(add(ptr, 0x24), spender) // store spender
                      // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                      {  // stack too deep
                          let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                          let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63
                          calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                          mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                          mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                          calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                          mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                      }
                      // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                      success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                  }
                  // Compact IDaiLikePermit
                  case 72 {
                      mstore(ptr, daiPermitSelector)  // store selector
                      mstore(add(ptr, 0x04), owner)   // store owner
                      mstore(add(ptr, 0x24), spender) // store spender
                      // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                      {  // stack too deep
                          let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                          let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47
                          mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                          mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                          mstore(add(ptr, 0x84), true)                                  // store allowed = true
                          mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                          calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                          mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                      }
                      // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                      success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                  }
                  // IERC20Permit
                  case 224 {
                      mstore(ptr, permitSelector)
                      calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                      // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                      success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                  }
                  // IDaiLikePermit
                  case 256 {
                      mstore(ptr, daiPermitSelector)
                      calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                      // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                      success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                  }
                  // Compact IPermit2
                  case 96 {
                      // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                      mstore(ptr, permit2Selector)  // store selector
                      mstore(add(ptr, 0x04), owner) // store owner
                      mstore(add(ptr, 0x24), token) // store token
                      calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                      // and(0xffffffffffff, ...) - conversion to uint48
                      mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                      mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                      mstore(add(ptr, 0xa4), spender)                               // store spender
                      // and(0xffffffffffff, ...) - conversion to uint48
                      mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                      mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                      mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                      calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                      calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                      // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                      success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                  }
                  // IPermit2
                  case 352 {
                      mstore(ptr, permit2Selector)
                      calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                      // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                      success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                  }
                  // Unknown
                  default {
                      mstore(ptr, _PERMIT_LENGTH_ERROR)
                      revert(ptr, 4)
                  }
              }
          }
          /**
           * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
           * @param token The IERC20 token contract on which the call will be made.
           * @param selector The function signature that is to be called on the token contract.
           * @param to The address to which the token amount will be transferred.
           * @param amount The token amount to be transferred.
           * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
           * In case of success but no returned data, validates that the contract code exists.
           * In case of returned data, ensures that it's a boolean `true`.
           */
          function _makeCall(
              IERC20 token,
              bytes4 selector,
              address to,
              uint256 amount
          ) private returns (bool success) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), to)
                  mstore(add(data, 0x24), amount)
                  success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
          }
          /**
           * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
           * @param weth The IWETH token contract.
           * @param amount The amount of Ether to deposit into the IWETH contract.
           */
          function safeDeposit(IWETH weth, uint256 amount) internal {
              if (amount > 0) {
                  bytes4 selector = IWETH.deposit.selector;
                  assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                      mstore(0, selector)
                      if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                          let ptr := mload(0x40)
                          returndatacopy(ptr, 0, returndatasize())
                          revert(ptr, returndatasize())
                      }
                  }
              }
          }
          /**
           * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
           * @dev Uses inline assembly to interact with the IWETH contract.
           * @param weth The IWETH token contract.
           * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
           */
          function safeWithdraw(IWETH weth, uint256 amount) internal {
              bytes4 selector = IWETH.withdraw.selector;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  mstore(0, selector)
                  mstore(4, amount)
                  if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                      let ptr := mload(0x40)
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
              }
          }
          /**
           * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
           * Consumes less gas then regular `IWETH.withdraw`.
           * @param weth The IWETH token contract.
           * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
           * @param to The recipient of the withdrawn Ether.
           */
          function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
              safeWithdraw(weth, amount);
              if (to != address(this)) {
                  assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                      if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                          let ptr := mload(0x40)
                          returndatacopy(ptr, 0, returndatasize())
                          revert(ptr, returndatasize())
                      }
                  }
              }
          }
      }
      // File @1inch/solidity-utils/contracts/[email protected]
      abstract contract EthReceiver {
          error EthDepositRejected();
          receive() external payable {
              _receive();
          }
          function _receive() internal virtual {
              // solhint-disable-next-line avoid-tx-origin
              if (msg.sender == tx.origin) revert EthDepositRejected();
          }
      }
      // File @1inch/solidity-utils/contracts/[email protected]
      abstract contract OnlyWethReceiver is EthReceiver {
          address private immutable _WETH; // solhint-disable-line var-name-mixedcase
          constructor(address weth) {
              _WETH = address(weth);
          }
          function _receive() internal virtual override {
              if (msg.sender != _WETH) revert EthDepositRejected();
          }
      }
      // File @1inch/solidity-utils/contracts/[email protected]
      abstract contract PermitAndCall {
          using SafeERC20 for IERC20;
          function permitAndCall(bytes calldata permit, bytes calldata action) external payable {
              IERC20(address(bytes20(permit))).tryPermit(permit[20:]);
              // solhint-disable-next-line no-inline-assembly
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  calldatacopy(ptr, action.offset, action.length)
                  let success := delegatecall(gas(), address(), ptr, action.length, 0, 0)
                  returndatacopy(ptr, 0, returndatasize())
                  switch success
                  case 0 {
                      revert(ptr, returndatasize())
                  }
                  default {
                      return(ptr, returndatasize())
                  }
              }
          }
      }
      // File @openzeppelin/contracts/interfaces/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
      interface IERC5267 {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // File @openzeppelin/contracts/utils/math/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          /**
           * @dev Muldiv operation overflow.
           */
          error MathOverflowedMulDiv();
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an overflow flag.
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a division by zero flag.
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  return a / b;
              }
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      revert MathOverflowedMulDiv();
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // File @openzeppelin/contracts/utils/math/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // File @openzeppelin/contracts/utils/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // File @openzeppelin/contracts/utils/cryptography/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
      /**
       * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
       *
       * The library provides methods for generating a hash of a message that conforms to the
       * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
       * specifications.
       */
      library MessageHashUtils {
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing a bytes32 `messageHash` with
           * `"\\x19Ethereum Signed Message:\
      32"` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
           * keccak256, although any bytes32 value can be safely used because the final digest will
           * be re-hashed.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32") // 32 is the bytes-length of messageHash
                  mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                  digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
              }
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing an arbitrary `message` with
           * `"\\x19Ethereum Signed Message:\
      " + len(message)` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
              return
                  keccak256(bytes.concat("\\x19Ethereum Signed Message:\
      ", bytes(Strings.toString(message.length)), message));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x00` (data with intended validator).
           *
           * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
           * `validator` address. Then hashing the result.
           *
           * See {ECDSA-recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(hex"19_00", validator, data));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
           *
           * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
           * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
           *
           * See {ECDSA-recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, hex"19_01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  digest := keccak256(ptr, 0x42)
              }
          }
      }
      // File @openzeppelin/contracts/utils/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // File @openzeppelin/contracts/utils/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
      // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
      // | length  | 0x                                                              BB |
      type ShortString is bytes32;
      /**
       * @dev This library provides functions to convert short memory strings
       * into a `ShortString` type that can be used as an immutable variable.
       *
       * Strings of arbitrary length can be optimized using this library if
       * they are short enough (up to 31 bytes) by packing them with their
       * length (1 byte) in a single EVM word (32 bytes). Additionally, a
       * fallback mechanism can be used for every other case.
       *
       * Usage example:
       *
       * ```solidity
       * contract Named {
       *     using ShortStrings for *;
       *
       *     ShortString private immutable _name;
       *     string private _nameFallback;
       *
       *     constructor(string memory contractName) {
       *         _name = contractName.toShortStringWithFallback(_nameFallback);
       *     }
       *
       *     function name() external view returns (string memory) {
       *         return _name.toStringWithFallback(_nameFallback);
       *     }
       * }
       * ```
       */
      library ShortStrings {
          // Used as an identifier for strings longer than 31 bytes.
          bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
          error StringTooLong(string str);
          error InvalidShortString();
          /**
           * @dev Encode a string of at most 31 chars into a `ShortString`.
           *
           * This will trigger a `StringTooLong` error is the input string is too long.
           */
          function toShortString(string memory str) internal pure returns (ShortString) {
              bytes memory bstr = bytes(str);
              if (bstr.length > 31) {
                  revert StringTooLong(str);
              }
              return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
          }
          /**
           * @dev Decode a `ShortString` back to a "normal" string.
           */
          function toString(ShortString sstr) internal pure returns (string memory) {
              uint256 len = byteLength(sstr);
              // using `new string(len)` would work locally but is not memory safe.
              string memory str = new string(32);
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(str, len)
                  mstore(add(str, 0x20), sstr)
              }
              return str;
          }
          /**
           * @dev Return the length of a `ShortString`.
           */
          function byteLength(ShortString sstr) internal pure returns (uint256) {
              uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
              if (result > 31) {
                  revert InvalidShortString();
              }
              return result;
          }
          /**
           * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
           */
          function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
              if (bytes(value).length < 32) {
                  return toShortString(value);
              } else {
                  StorageSlot.getStringSlot(store).value = value;
                  return ShortString.wrap(FALLBACK_SENTINEL);
              }
          }
          /**
           * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
           */
          function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return toString(value);
              } else {
                  return store;
              }
          }
          /**
           * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
           * {setWithFallback}.
           *
           * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
           * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
           */
          function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return byteLength(value);
              } else {
                  return bytes(store).length;
              }
          }
      }
      // File @openzeppelin/contracts/utils/cryptography/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
       * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
       * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
       * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       *
       * @custom:oz-upgrades-unsafe-allow state-variable-immutable
       */
      abstract contract EIP712 is IERC5267 {
          using ShortStrings for *;
          bytes32 private constant TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _cachedDomainSeparator;
          uint256 private immutable _cachedChainId;
          address private immutable _cachedThis;
          bytes32 private immutable _hashedName;
          bytes32 private immutable _hashedVersion;
          ShortString private immutable _name;
          ShortString private immutable _version;
          string private _nameFallback;
          string private _versionFallback;
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) {
              _name = name.toShortStringWithFallback(_nameFallback);
              _version = version.toShortStringWithFallback(_versionFallback);
              _hashedName = keccak256(bytes(name));
              _hashedVersion = keccak256(bytes(version));
              _cachedChainId = block.chainid;
              _cachedDomainSeparator = _buildDomainSeparator();
              _cachedThis = address(this);
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                  return _cachedDomainSeparator;
              } else {
                  return _buildDomainSeparator();
              }
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {IERC-5267}.
           */
          function eip712Domain()
              public
              view
              virtual
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _name which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Name() internal view returns (string memory) {
              return _name.toStringWithFallback(_nameFallback);
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _version which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Version() internal view returns (string memory) {
              return _version.toStringWithFallback(_versionFallback);
          }
      }
      // File @openzeppelin/contracts/utils/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // File @openzeppelin/contracts/utils/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
      /**
       * @dev Contract module which allows children to implement an emergency stop
       * mechanism that can be triggered by an authorized account.
       *
       * This module is used through inheritance. It will make available the
       * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
       * the functions of your contract. Note that they will not be pausable by
       * simply including this module, only once the modifiers are put in place.
       */
      abstract contract Pausable is Context {
          bool private _paused;
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          /**
           * @dev The operation failed because the contract is paused.
           */
          error EnforcedPause();
          /**
           * @dev The operation failed because the contract is not paused.
           */
          error ExpectedPause();
          /**
           * @dev Initializes the contract in unpaused state.
           */
          constructor() {
              _paused = false;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              _requireNotPaused();
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              _requirePaused();
              _;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              return _paused;
          }
          /**
           * @dev Throws if the contract is paused.
           */
          function _requireNotPaused() internal view virtual {
              if (paused()) {
                  revert EnforcedPause();
              }
          }
          /**
           * @dev Throws if the contract is not paused.
           */
          function _requirePaused() internal view virtual {
              if (!paused()) {
                  revert ExpectedPause();
              }
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              _paused = true;
              emit Paused(_msgSender());
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              _paused = false;
              emit Unpaused(_msgSender());
          }
      }
      // File @1inch/limit-order-protocol-contract/contracts/[email protected]
      /// @title Limit Order mixin
      abstract contract OrderMixin is IOrderMixin, EIP712, PredicateHelper, SeriesEpochManager, Pausable, OnlyWethReceiver, PermitAndCall {
          using SafeERC20 for IERC20;
          using SafeERC20 for IWETH;
          using OrderLib for IOrderMixin.Order;
          using ExtensionLib for bytes;
          using AddressLib for Address;
          using MakerTraitsLib for MakerTraits;
          using TakerTraitsLib for TakerTraits;
          using BitInvalidatorLib for BitInvalidatorLib.Data;
          using RemainingInvalidatorLib for RemainingInvalidator;
          IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
          mapping(address maker => BitInvalidatorLib.Data data) private _bitInvalidator;
          mapping(address maker => mapping(bytes32 orderHash => RemainingInvalidator remaining)) private _remainingInvalidator;
          constructor(IWETH weth) OnlyWethReceiver(address(weth)) {
              _WETH = weth;
          }
          /**
           * @notice See {IOrderMixin-bitInvalidatorForOrder}.
           */
          function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 /* result */) {
              return _bitInvalidator[maker].checkSlot(slot);
          }
          /**
           * @notice See {IOrderMixin-remainingInvalidatorForOrder}.
           */
          function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remaining */) {
              return _remainingInvalidator[maker][orderHash].remaining();
          }
          /**
           * @notice See {IOrderMixin-rawRemainingInvalidatorForOrder}.
           */
          function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remainingRaw */) {
              return RemainingInvalidator.unwrap(_remainingInvalidator[maker][orderHash]);
          }
          /**
           * @notice See {IOrderMixin-simulate}.
           */
          function simulate(address target, bytes calldata data) external {
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory result) = target.delegatecall(data);
              revert SimulationResults(success, result);
          }
          /**
           * @notice See {IOrderMixin-cancelOrder}.
           */
          function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) public {
              if (makerTraits.useBitInvalidator()) {
                  uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), 0);
                  emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
              } else {
                  _remainingInvalidator[msg.sender][orderHash] = RemainingInvalidatorLib.fullyFilled();
                  emit OrderCancelled(orderHash);
              }
          }
          /**
           * @notice See {IOrderMixin-cancelOrders}.
           */
          function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external {
              if (makerTraits.length != orderHashes.length) revert MismatchArraysLengths();
              unchecked {
                  for (uint256 i = 0; i < makerTraits.length; i++) {
                      cancelOrder(makerTraits[i], orderHashes[i]);
                  }
              }
          }
          /**
           * @notice See {IOrderMixin-bitsInvalidateForOrder}.
           */
          function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external {
              if (!makerTraits.useBitInvalidator()) revert OrderIsNotSuitableForMassInvalidation();
              uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), additionalMask);
              emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
          }
           /**
           * @notice See {IOrderMixin-hashOrder}.
           */
          function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32) {
              return order.hash(_domainSeparatorV4());
          }
          /**
           * @notice See {IOrderMixin-checkPredicate}.
           */
          function checkPredicate(bytes calldata predicate) public view returns(bool) {
              (bool success, uint256 res) = _staticcallForUint(address(this), predicate);
              return success && res == 1;
          }
          /**
           * @notice See {IOrderMixin-fillOrder}.
           */
          function fillOrder(
              IOrderMixin.Order calldata order,
              bytes32 r,
              bytes32 vs,
              uint256 amount,
              TakerTraits takerTraits
          ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
              return _fillOrder(order, r, vs, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
          }
          /**
           * @notice See {IOrderMixin-fillOrderArgs}.
           */
          function fillOrderArgs(
              IOrderMixin.Order calldata order,
              bytes32 r,
              bytes32 vs,
              uint256 amount,
              TakerTraits takerTraits,
              bytes calldata args
          ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
              (
                  address target,
                  bytes calldata extension,
                  bytes calldata interaction
              ) = _parseArgs(takerTraits, args);
              return _fillOrder(order, r, vs, amount, takerTraits, target, extension, interaction);
          }
          function _fillOrder(
              IOrderMixin.Order calldata order,
              bytes32 r,
              bytes32 vs,
              uint256 amount,
              TakerTraits takerTraits,
              address target,
              bytes calldata extension,
              bytes calldata interaction
          ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
              // Check signature and apply order/maker permit only on the first fill
              orderHash = order.hash(_domainSeparatorV4());
              uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
              if (remainingMakingAmount == order.makingAmount) {
                  address maker = order.maker.get();
                  if (maker == address(0) || maker != ECDSA.recover(orderHash, r, vs)) revert BadSignature();
                  if (!takerTraits.skipMakerPermit()) {
                      bytes calldata makerPermit = extension.makerPermit();
                      if (makerPermit.length >= 20) {
                          // proceed only if taker is willing to execute permit and its length is enough to store address
                          IERC20(address(bytes20(makerPermit))).tryPermit(maker, address(this), makerPermit[20:]);
                          if (!order.makerTraits.useBitInvalidator()) {
                              // Bit orders are not subjects for reentrancy, but we still need to check remaining-based orders for reentrancy
                              if (!_remainingInvalidator[order.maker.get()][orderHash].isNewOrder()) revert ReentrancyDetected();
                          }
                      }
                  }
              }
              (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
          }
          /**
           * @notice See {IOrderMixin-fillContractOrder}.
           */
          function fillContractOrder(
              IOrderMixin.Order calldata order,
              bytes calldata signature,
              uint256 amount,
              TakerTraits takerTraits
          ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
              return _fillContractOrder(order, signature, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
          }
          /**
           * @notice See {IOrderMixin-fillContractOrderArgs}.
           */
          function fillContractOrderArgs(
              IOrderMixin.Order calldata order,
              bytes calldata signature,
              uint256 amount,
              TakerTraits takerTraits,
              bytes calldata args
          ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
              (
                  address target,
                  bytes calldata extension,
                  bytes calldata interaction
              ) = _parseArgs(takerTraits, args);
              return _fillContractOrder(order, signature, amount, takerTraits, target, extension, interaction);
          }
          function _fillContractOrder(
              IOrderMixin.Order calldata order,
              bytes calldata signature,
              uint256 amount,
              TakerTraits takerTraits,
              address target,
              bytes calldata extension,
              bytes calldata interaction
          ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
              // Check signature only on the first fill
              orderHash = order.hash(_domainSeparatorV4());
              uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
              if (remainingMakingAmount == order.makingAmount) {
                  if (!ECDSA.isValidSignature(order.maker.get(), orderHash, signature)) revert BadSignature();
              }
              (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
          }
          /**
            * @notice Fills an order and transfers making amount to a specified target.
            * @dev If the target is zero assigns it the caller's address.
            * The function flow is as follows:
            * 1. Validate order
            * 2. Call maker pre-interaction
            * 3. Transfer maker asset to taker
            * 4. Call taker interaction
            * 5. Transfer taker asset to maker
            * 5. Call maker post-interaction
            * 6. Emit OrderFilled event
            * @param order The order details.
            * @param orderHash The hash of the order.
            * @param extension The extension calldata of the order.
            * @param remainingMakingAmount The remaining amount to be filled.
            * @param amount The order amount.
            * @param takerTraits The taker preferences for the order.
            * @param target The address to which the order is filled.
            * @param interaction The interaction calldata.
            * @return makingAmount The computed amount that the maker will get.
            * @return takingAmount The computed amount that the taker will send.
            */
          function _fill(
              IOrderMixin.Order calldata order,
              bytes32 orderHash,
              uint256 remainingMakingAmount,
              uint256 amount,
              TakerTraits takerTraits,
              address target,
              bytes calldata extension,
              bytes calldata interaction
          ) private whenNotPaused() returns(uint256 makingAmount, uint256 takingAmount) {
              // Validate order
              {
                  (bool valid, bytes4 validationResult) = order.isValidExtension(extension);
                  if (!valid) {
                      // solhint-disable-next-line no-inline-assembly
                      assembly ("memory-safe") {
                          mstore(0, validationResult)
                          revert(0, 4)
                      }
                  }
              }
              if (!order.makerTraits.isAllowedSender(msg.sender)) revert PrivateOrder();
              if (order.makerTraits.isExpired()) revert OrderExpired();
              if (order.makerTraits.needCheckEpochManager()) {
                  if (order.makerTraits.useBitInvalidator()) revert EpochManagerAndBitInvalidatorsAreIncompatible();
                  if (!epochEquals(order.maker.get(), order.makerTraits.series(), order.makerTraits.nonceOrEpoch())) revert WrongSeriesNonce();
              }
              // Check if orders predicate allows filling
              if (extension.length > 0) {
                  bytes calldata predicate = extension.predicate();
                  if (predicate.length > 0) {
                      if (!checkPredicate(predicate)) revert PredicateIsNotTrue();
                  }
              }
              // Compute maker and taker assets amount
              if (takerTraits.isMakingAmount()) {
                  makingAmount = Math.min(amount, remainingMakingAmount);
                  takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                  uint256 threshold = takerTraits.threshold();
                  if (threshold > 0) {
                      // Check rate: takingAmount / makingAmount <= threshold / amount
                      if (amount == makingAmount) {  // Gas optimization, no SafeMath.mul()
                          if (takingAmount > threshold) revert TakingAmountTooHigh();
                      } else {
                          if (takingAmount * amount > threshold * makingAmount) revert TakingAmountTooHigh();
                      }
                  }
              }
              else {
                  takingAmount = amount;
                  makingAmount = order.calculateMakingAmount(extension, takingAmount, remainingMakingAmount, orderHash);
                  if (makingAmount > remainingMakingAmount) {
                      // Try to decrease taking amount because computed making amount exceeds remaining amount
                      makingAmount = remainingMakingAmount;
                      takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                      if (takingAmount > amount) revert TakingAmountExceeded();
                  }
                  uint256 threshold = takerTraits.threshold();
                  if (threshold > 0) {
                      // Check rate: makingAmount / takingAmount >= threshold / amount
                      if (amount == takingAmount) { // Gas optimization, no SafeMath.mul()
                          if (makingAmount < threshold) revert MakingAmountTooLow();
                      } else {
                          if (makingAmount * amount < threshold * takingAmount) revert MakingAmountTooLow();
                      }
                  }
              }
              if (!order.makerTraits.allowPartialFills() && makingAmount != order.makingAmount) revert PartialFillNotAllowed();
              unchecked { if (makingAmount * takingAmount == 0) revert SwapWithZeroAmount(); }
              // Invalidate order depending on makerTraits
              if (order.makerTraits.useBitInvalidator()) {
                  _bitInvalidator[order.maker.get()].checkAndInvalidate(order.makerTraits.nonceOrEpoch());
              } else {
                  _remainingInvalidator[order.maker.get()][orderHash] = RemainingInvalidatorLib.remains(remainingMakingAmount, makingAmount);
              }
              // Pre interaction, where maker can prepare funds interactively
              if (order.makerTraits.needPreInteractionCall()) {
                  bytes calldata data = extension.preInteractionTargetAndData();
                  address listener = order.maker.get();
                  if (data.length > 19) {
                      listener = address(bytes20(data));
                      data = data[20:];
                  }
                  IPreInteraction(listener).preInteraction(
                      order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                  );
              }
              // Maker => Taker
              {
                  bool needUnwrap = order.makerAsset.get() == address(_WETH) && takerTraits.unwrapWeth();
                  address receiver = needUnwrap ? address(this) : target;
                  if (order.makerTraits.usePermit2()) {
                      if (extension.makerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                      IERC20(order.makerAsset.get()).safeTransferFromPermit2(order.maker.get(), receiver, makingAmount);
                  } else {
                      if (!_callTransferFromWithSuffix(
                          order.makerAsset.get(),
                          order.maker.get(),
                          receiver,
                          makingAmount,
                          extension.makerAssetSuffix()
                      )) revert TransferFromMakerToTakerFailed();
                  }
                  if (needUnwrap) {
                      _WETH.safeWithdrawTo(makingAmount, target);
                  }
              }
              if (interaction.length > 19) {
                  // proceed only if interaction length is enough to store address
                  ITakerInteraction(address(bytes20(interaction))).takerInteraction(
                      order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, interaction[20:]
                  );
              }
              // Taker => Maker
              if (order.takerAsset.get() == address(_WETH) && msg.value > 0) {
                  if (msg.value < takingAmount) revert Errors.InvalidMsgValue();
                  if (msg.value > takingAmount) {
                      unchecked {
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, ) = msg.sender.call{value: msg.value - takingAmount}("");
                          if (!success) revert Errors.ETHTransferFailed();
                      }
                  }
                  if (order.makerTraits.unwrapWeth()) {
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, ) = order.getReceiver().call{value: takingAmount}("");
                      if (!success) revert Errors.ETHTransferFailed();
                  } else {
                      _WETH.safeDeposit(takingAmount);
                      _WETH.safeTransfer(order.getReceiver(), takingAmount);
                  }
              } else {
                  if (msg.value != 0) revert Errors.InvalidMsgValue();
                  bool needUnwrap = order.takerAsset.get() == address(_WETH) && order.makerTraits.unwrapWeth();
                  address receiver = needUnwrap ? address(this) : order.getReceiver();
                  if (takerTraits.usePermit2()) {
                      if (extension.takerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                      IERC20(order.takerAsset.get()).safeTransferFromPermit2(msg.sender, receiver, takingAmount);
                  } else {
                      if (!_callTransferFromWithSuffix(
                          order.takerAsset.get(),
                          msg.sender,
                          receiver,
                          takingAmount,
                          extension.takerAssetSuffix()
                      )) revert TransferFromTakerToMakerFailed();
                  }
                  if (needUnwrap) {
                      _WETH.safeWithdrawTo(takingAmount, order.getReceiver());
                  }
              }
              // Post interaction, where maker can handle funds interactively
              if (order.makerTraits.needPostInteractionCall()) {
                  bytes calldata data = extension.postInteractionTargetAndData();
                  address listener = order.maker.get();
                  if (data.length > 19) {
                      listener = address(bytes20(data));
                      data = data[20:];
                  }
                  IPostInteraction(listener).postInteraction(
                      order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                  );
              }
              emit OrderFilled(orderHash, remainingMakingAmount - makingAmount);
          }
          /**
            * @notice Processes the taker interaction arguments.
            * @param takerTraits The taker preferences for the order.
            * @param args The taker interaction arguments.
            * @return target The address to which the order is filled.
            * @return extension The extension calldata of the order.
            * @return interaction The interaction calldata.
            */
          function _parseArgs(TakerTraits takerTraits, bytes calldata args)
              private
              view
              returns(
                  address target,
                  bytes calldata extension,
                  bytes calldata interaction
              )
          {
              if (takerTraits.argsHasTarget()) {
                  target = address(bytes20(args));
                  args = args[20:];
              } else {
                  target = msg.sender;
              }
              uint256 extensionLength = takerTraits.argsExtensionLength();
              if (extensionLength > 0) {
                  extension = args[:extensionLength];
                  args = args[extensionLength:];
              } else {
                  extension = msg.data[:0];
              }
              uint256 interactionLength = takerTraits.argsInteractionLength();
              if (interactionLength > 0) {
                  interaction = args[:interactionLength];
              } else {
                  interaction = msg.data[:0];
              }
          }
          /**
            * @notice Checks the remaining making amount for the order.
            * @dev If the order has been invalidated, the function will revert.
            * @param order The order to check.
            * @param orderHash The hash of the order.
            * @return remainingMakingAmount The remaining amount of the order.
            */
          function _checkRemainingMakingAmount(IOrderMixin.Order calldata order, bytes32 orderHash) private view returns(uint256 remainingMakingAmount) {
              if (order.makerTraits.useBitInvalidator()) {
                  remainingMakingAmount = order.makingAmount;
              } else {
                  remainingMakingAmount = _remainingInvalidator[order.maker.get()][orderHash].remaining(order.makingAmount);
              }
              if (remainingMakingAmount == 0) revert InvalidatedOrder();
          }
          /**
            * @notice Calls the transferFrom function with an arbitrary suffix.
            * @dev The suffix is appended to the end of the standard ERC20 transferFrom function parameters.
            * @param asset The token to be transferred.
            * @param from The address to transfer the token from.
            * @param to The address to transfer the token to.
            * @param amount The amount of the token to transfer.
            * @param suffix The suffix (additional data) to append to the end of the transferFrom call.
            * @return success A boolean indicating whether the transfer was successful.
            */
          function _callTransferFromWithSuffix(address asset, address from, address to, uint256 amount, bytes calldata suffix) private returns(bool success) {
              bytes4 selector = IERC20.transferFrom.selector;
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  if suffix.length {
                      calldatacopy(add(data, 0x64), suffix.offset, suffix.length)
                  }
                  let status := call(gas(), asset, 0, data, add(0x64, suffix.length), 0x0, 0x20)
                  success := and(status, or(iszero(returndatasize()), and(gt(returndatasize(), 31), eq(mload(0), 1))))
              }
          }
      }
      // File @1inch/solidity-utils/contracts/interfaces/[email protected]
      interface IERC20MetadataUppercase {
          function NAME() external view returns (string memory); // solhint-disable-line func-name-mixedcase
          function SYMBOL() external view returns (string memory); // solhint-disable-line func-name-mixedcase
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      /// @title Library with gas-efficient string operations
      library StringUtil {
          function toHex(uint256 value) internal pure returns (string memory) {
              return toHex(abi.encodePacked(value));
          }
          function toHex(address value) internal pure returns (string memory) {
              return toHex(abi.encodePacked(value));
          }
          /// @dev this is the assembly adaptation of highly optimized toHex16 code from Mikhail Vladimirov
          /// https://stackoverflow.com/a/69266989
          function toHex(bytes memory data) internal pure returns (string memory result) {
              assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                  function _toHex16(input) -> output {
                      output := or(
                          and(input, 0xFFFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000),
                          shr(64, and(input, 0x0000000000000000FFFFFFFFFFFFFFFF00000000000000000000000000000000))
                      )
                      output := or(
                          and(output, 0xFFFFFFFF000000000000000000000000FFFFFFFF000000000000000000000000),
                          shr(32, and(output, 0x00000000FFFFFFFF000000000000000000000000FFFFFFFF0000000000000000))
                      )
                      output := or(
                          and(output, 0xFFFF000000000000FFFF000000000000FFFF000000000000FFFF000000000000),
                          shr(16, and(output, 0x0000FFFF000000000000FFFF000000000000FFFF000000000000FFFF00000000))
                      )
                      output := or(
                          and(output, 0xFF000000FF000000FF000000FF000000FF000000FF000000FF000000FF000000),
                          shr(8, and(output, 0x00FF000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000))
                      )
                      output := or(
                          shr(4, and(output, 0xF000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000)),
                          shr(8, and(output, 0x0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00))
                      )
                      output := add(
                          add(0x3030303030303030303030303030303030303030303030303030303030303030, output),
                          mul(
                              and(
                                  shr(4, add(output, 0x0606060606060606060606060606060606060606060606060606060606060606)),
                                  0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
                              ),
                              7 // Change 7 to 39 for lower case output
                          )
                      )
                  }
                  result := mload(0x40)
                  let length := mload(data)
                  let resultLength := shl(1, length)
                  let toPtr := add(result, 0x22) // 32 bytes for length + 2 bytes for '0x'
                  mstore(0x40, add(toPtr, resultLength)) // move free memory pointer
                  mstore(add(result, 2), 0x3078) // 0x3078 is right aligned so we write to `result + 2`
                  // to store the last 2 bytes in the beginning of the string
                  mstore(result, add(resultLength, 2)) // extra 2 bytes for '0x'
                  for {
                      let fromPtr := add(data, 0x20)
                      let endPtr := add(fromPtr, length)
                  } lt(fromPtr, endPtr) {
                      fromPtr := add(fromPtr, 0x20)
                  } {
                      let rawData := mload(fromPtr)
                      let hexData := _toHex16(rawData)
                      mstore(toPtr, hexData)
                      toPtr := add(toPtr, 0x20)
                      hexData := _toHex16(shl(128, rawData))
                      mstore(toPtr, hexData)
                      toPtr := add(toPtr, 0x20)
                  }
              }
          }
      }
      // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      /// @title Library, which allows usage of ETH as ERC20 and ERC20 itself. Uses SafeERC20 library for ERC20 interface.
      library UniERC20 {
          using SafeERC20 for IERC20;
          error InsufficientBalance();
          error ApproveCalledOnETH();
          error NotEnoughValue();
          error FromIsNotSender();
          error ToIsNotThis();
          error ETHTransferFailed();
          uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
          IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
          IERC20 private constant _ZERO_ADDRESS = IERC20(address(0));
          /// @dev Returns true if `token` is ETH.
          function isETH(IERC20 token) internal pure returns (bool) {
              return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);
          }
          /// @dev Returns `account` ERC20 `token` balance.
          function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) {
              if (isETH(token)) {
                  return account.balance;
              } else {
                  return token.balanceOf(account);
              }
          }
          /// @dev `token` transfer `to` `amount`.
          /// Note that this function does nothing in case of zero amount.
          function uniTransfer(
              IERC20 token,
              address payable to,
              uint256 amount
          ) internal {
              if (amount > 0) {
                  if (isETH(token)) {
                      if (address(this).balance < amount) revert InsufficientBalance();
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, ) = to.call{value: amount, gas: _RAW_CALL_GAS_LIMIT}("");
                      if (!success) revert ETHTransferFailed();
                  } else {
                      token.safeTransfer(to, amount);
                  }
              }
          }
          /// @dev `token` transfer `from` `to` `amount`.
          /// Note that this function does nothing in case of zero amount.
          function uniTransferFrom(
              IERC20 token,
              address payable from,
              address to,
              uint256 amount
          ) internal {
              if (amount > 0) {
                  if (isETH(token)) {
                      if (msg.value < amount) revert NotEnoughValue();
                      if (from != msg.sender) revert FromIsNotSender();
                      if (to != address(this)) revert ToIsNotThis();
                      if (msg.value > amount) {
                          // Return remainder if exist
                          unchecked {
                              // solhint-disable-next-line avoid-low-level-calls
                              (bool success, ) = from.call{value: msg.value - amount, gas: _RAW_CALL_GAS_LIMIT}("");
                              if (!success) revert ETHTransferFailed();
                          }
                      }
                  } else {
                      token.safeTransferFrom(from, to, amount);
                  }
              }
          }
          /// @dev Returns `token` symbol from ERC20 metadata.
          function uniSymbol(IERC20 token) internal view returns (string memory) {
              return _uniDecode(token, IERC20Metadata.symbol.selector, IERC20MetadataUppercase.SYMBOL.selector);
          }
          /// @dev Returns `token` name from ERC20 metadata.
          function uniName(IERC20 token) internal view returns (string memory) {
              return _uniDecode(token, IERC20Metadata.name.selector, IERC20MetadataUppercase.NAME.selector);
          }
          /// @dev Reverts if `token` is ETH, otherwise performs ERC20 forceApprove.
          function uniApprove(
              IERC20 token,
              address to,
              uint256 amount
          ) internal {
              if (isETH(token)) revert ApproveCalledOnETH();
              token.forceApprove(to, amount);
          }
          /// @dev 20K gas is provided to account for possible implementations of name/symbol
          /// (token implementation might be behind proxy or store the value in storage)
          function _uniDecode(
              IERC20 token,
              bytes4 lowerCaseSelector,
              bytes4 upperCaseSelector
          ) private view returns (string memory result) {
              if (isETH(token)) {
                  return "ETH";
              }
              (bool success, bytes memory data) = address(token).staticcall{gas: 20000}(
                  abi.encodeWithSelector(lowerCaseSelector)
              );
              if (!success) {
                  (success, data) = address(token).staticcall{gas: 20000}(abi.encodeWithSelector(upperCaseSelector));
              }
              if (success && data.length >= 0x40) {
                  (uint256 offset, uint256 len) = abi.decode(data, (uint256, uint256));
                  /*
                      return data is padded up to 32 bytes with ABI encoder also sometimes
                      there is extra 32 bytes of zeros padded in the end:
                      https://github.com/ethereum/solidity/issues/10170
                      because of that we can't check for equality and instead check
                      that overall data length is greater or equal than string length + extra 64 bytes
                  */
                  if (offset == 0x20 && data.length >= 0x40 + len) {
                      assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                          result := add(data, 0x40)
                      }
                      return result;
                  }
              }
              if (success && data.length == 32) {
                  uint256 len = 0;
                  while (len < data.length && data[len] >= 0x20 && data[len] <= 0x7E) {
                      unchecked {
                          len++;
                      }
                  }
                  if (len > 0) {
                      assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                          mstore(data, len)
                      }
                      return string(data);
                  }
              }
              return StringUtil.toHex(address(token));
          }
      }
      // File @openzeppelin/contracts/access/[email protected]
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // File contracts/helpers/RouterErrors.sol
      library RouterErrors {
          error ReturnAmountIsNotEnough(uint256 result, uint256 minReturn);
          error InvalidMsgValue();
          error ERC20TransferFailed();
          error Permit2TransferFromFailed();
          error ApproveFailed();
      }
      // File contracts/interfaces/IClipperExchange.sol
      /// @title Clipper interface subset used in swaps
      interface IClipperExchange {
          struct Signature {
              uint8 v;
              bytes32 r;
              bytes32 s;
          }
          function sellEthForToken(address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external payable;
          function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
          function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
      }
      // File contracts/routers/ClipperRouter.sol
      /**
       * @title ClipperRouter
       * @notice Clipper router that allows to use `IClipperExchange` for swaps.
       */
      contract ClipperRouter is Pausable, EthReceiver {
          using SafeERC20 for IERC20;
          using SafeERC20 for IWETH;
          using AddressLib for Address;
          uint256 private constant _PERMIT2_FLAG = 1 << 255;
          uint256 private constant _SIGNATURE_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
          uint256 private constant _SIGNATURE_V_SHIFT = 255;
          bytes5 private constant _INCH_TAG = "1INCH";
          uint256 private constant _INCH_TAG_LENGTH = 5;
          IERC20 private constant _ETH = IERC20(address(0));
          IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
          constructor(IWETH weth) {
              _WETH = weth;
          }
          /**
          * @notice Same as `clipperSwapTo` but uses `msg.sender` as recipient.
          * @param clipperExchange Clipper pool address.
          * @param srcToken Source token and flags.
          * @param dstToken Destination token.
          * @param inputAmount Amount of source tokens to swap.
          * @param outputAmount Amount of destination tokens to receive.
          * @param goodUntil Clipper parameter.
          * @param r Clipper order signature (r part).
          * @param vs Clipper order signature (vs part).
          * @return returnAmount Amount of destination tokens received.
          */
          function clipperSwap(
              IClipperExchange clipperExchange,
              Address srcToken,
              IERC20 dstToken,
              uint256 inputAmount,
              uint256 outputAmount,
              uint256 goodUntil,
              bytes32 r,
              bytes32 vs
          ) external payable returns(uint256 returnAmount) {
              return clipperSwapTo(clipperExchange, payable(msg.sender), srcToken, dstToken, inputAmount, outputAmount, goodUntil, r, vs);
          }
          /**
          * @notice Performs swap using Clipper exchange. Wraps and unwraps ETH if required.
          *         Sending non-zero `msg.value` for anything but ETH swaps is prohibited.
          * @param clipperExchange Clipper pool address.
          * @param recipient Address that will receive swap funds.
          * @param srcToken Source token and flags.
          * @param dstToken Destination token.
          * @param inputAmount Amount of source tokens to swap.
          * @param outputAmount Amount of destination tokens to receive.
          * @param goodUntil Clipper parameter.
          * @param r Clipper order signature (r part).
          * @param vs Clipper order signature (vs part).
          * @return returnAmount Amount of destination tokens received.
          */
          function clipperSwapTo(
              IClipperExchange clipperExchange,
              address payable recipient,
              Address srcToken,
              IERC20 dstToken,
              uint256 inputAmount,
              uint256 outputAmount,
              uint256 goodUntil,
              bytes32 r,
              bytes32 vs
          ) public payable whenNotPaused() returns(uint256 returnAmount) {
              IERC20 srcToken_ = IERC20(srcToken.get());
              if (srcToken_ == _ETH) {
                  if (msg.value != inputAmount) revert RouterErrors.InvalidMsgValue();
              } else {
                  if (msg.value != 0) revert RouterErrors.InvalidMsgValue();
                  srcToken_.safeTransferFromUniversal(msg.sender, address(clipperExchange), inputAmount, srcToken.getFlag(_PERMIT2_FLAG));
              }
              if (srcToken_ == _ETH) {
                  // clipperExchange.sellEthForToken{value: inputAmount}(address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                  address clipper = address(clipperExchange);
                  bytes4 selector = clipperExchange.sellEthForToken.selector;
                  assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                      let ptr := mload(0x40)
                      mstore(ptr, selector)
                      mstore(add(ptr, 0x04), dstToken)
                      mstore(add(ptr, 0x24), inputAmount)
                      mstore(add(ptr, 0x44), outputAmount)
                      mstore(add(ptr, 0x64), goodUntil)
                      mstore(add(ptr, 0x84), recipient)
                      mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                      mstore(add(ptr, 0xc4), r)
                      mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                      mstore(add(ptr, 0x104), 0x120)
                      mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                      mstore(add(ptr, 0x144), _INCH_TAG)
                      if iszero(call(gas(), clipper, inputAmount, ptr, 0x149, 0, 0)) {
                          returndatacopy(ptr, 0, returndatasize())
                          revert(ptr, returndatasize())
                      }
                  }
              } else if (dstToken == _ETH) {
                  // clipperExchange.sellTokenForEth(address(srcToken_), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                  address clipper = address(clipperExchange);
                  bytes4 selector = clipperExchange.sellTokenForEth.selector;
                  assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                      let ptr := mload(0x40)
                      mstore(ptr, selector)
                      mstore(add(ptr, 0x04), srcToken_)
                      mstore(add(ptr, 0x24), inputAmount)
                      mstore(add(ptr, 0x44), outputAmount)
                      mstore(add(ptr, 0x64), goodUntil)
                      switch iszero(dstToken)
                      case 1 {
                          mstore(add(ptr, 0x84), recipient)
                      }
                      default {
                          mstore(add(ptr, 0x84), address())
                      }
                      mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                      mstore(add(ptr, 0xc4), r)
                      mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                      mstore(add(ptr, 0x104), 0x120)
                      mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                      mstore(add(ptr, 0x144), _INCH_TAG)
                      if iszero(call(gas(), clipper, 0, ptr, 0x149, 0, 0)) {
                          returndatacopy(ptr, 0, returndatasize())
                          revert(ptr, returndatasize())
                      }
                  }
              } else {
                  // clipperExchange.swap(address(srcToken_), address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                  address clipper = address(clipperExchange);
                  bytes4 selector = clipperExchange.swap.selector;
                  assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                      let ptr := mload(0x40)
                      mstore(ptr, selector)
                      mstore(add(ptr, 0x04), srcToken_)
                      mstore(add(ptr, 0x24), dstToken)
                      mstore(add(ptr, 0x44), inputAmount)
                      mstore(add(ptr, 0x64), outputAmount)
                      mstore(add(ptr, 0x84), goodUntil)
                      mstore(add(ptr, 0xa4), recipient)
                      mstore(add(ptr, 0xc4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                      mstore(add(ptr, 0xe4), r)
                      mstore(add(ptr, 0x104), and(vs, _SIGNATURE_S_MASK))
                      mstore(add(ptr, 0x124), 0x140)
                      mstore(add(ptr, 0x144), _INCH_TAG_LENGTH)
                      mstore(add(ptr, 0x164), _INCH_TAG)
                      if iszero(call(gas(), clipper, 0, ptr, 0x169, 0, 0)) {
                          returndatacopy(ptr, 0, returndatasize())
                          revert(ptr, returndatasize())
                      }
                  }
              }
              return outputAmount;
          }
      }
      // File contracts/interfaces/IAggregationExecutor.sol
      /// @title Interface for making arbitrary calls during swap
      interface IAggregationExecutor {
          /// @notice propagates information about original msg.sender and executes arbitrary data
          function execute(address msgSender) external payable returns(uint256);  // 0x4b64e492
      }
      // File contracts/routers/GenericRouter.sol
      /**
       * @title GenericRouter
       * @notice Router that allows to use `IAggregationExecutor` for swaps.
       */
      contract GenericRouter is Pausable, EthReceiver {
          using UniERC20 for IERC20;
          using SafeERC20 for IERC20;
          error ZeroMinReturn();
          uint256 private constant _PARTIAL_FILL = 1 << 0;
          uint256 private constant _REQUIRES_EXTRA_ETH = 1 << 1;
          uint256 private constant _USE_PERMIT2 = 1 << 2;
          struct SwapDescription {
              IERC20 srcToken;
              IERC20 dstToken;
              address payable srcReceiver;
              address payable dstReceiver;
              uint256 amount;
              uint256 minReturnAmount;
              uint256 flags;
          }
          /**
          * @notice Performs a swap, delegating all calls encoded in `data` to `executor`. See tests for usage examples.
          * @dev Router keeps 1 wei of every token on the contract balance for gas optimisations reasons.
          *      This affects first swap of every token by leaving 1 wei on the contract.
          * @param executor Aggregation executor that executes calls described in `data`.
          * @param desc Swap description.
          * @param data Encoded calls that `caller` should execute in between of swaps.
          * @return returnAmount Resulting token amount.
          * @return spentAmount Source token amount.
          */
          function swap(
              IAggregationExecutor executor,
              SwapDescription calldata desc,
              bytes calldata data
          )
              external
              payable
              whenNotPaused()
              returns (
                  uint256 returnAmount,
                  uint256 spentAmount
              )
          {
              if (desc.minReturnAmount == 0) revert ZeroMinReturn();
              IERC20 srcToken = desc.srcToken;
              IERC20 dstToken = desc.dstToken;
              bool srcETH = srcToken.isETH();
              if (desc.flags & _REQUIRES_EXTRA_ETH != 0) {
                  if (msg.value <= (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
              } else {
                  if (msg.value != (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
              }
              if (!srcETH) {
                  srcToken.safeTransferFromUniversal(msg.sender, desc.srcReceiver, desc.amount, desc.flags & _USE_PERMIT2 != 0);
              }
              returnAmount = _execute(executor, msg.sender, desc.amount, data);
              spentAmount = desc.amount;
              if (desc.flags & _PARTIAL_FILL != 0) {
                  uint256 unspentAmount = srcToken.uniBalanceOf(address(this));
                  if (unspentAmount > 1) {
                      // we leave 1 wei on the router for gas optimisations reasons
                      unchecked { unspentAmount--; }
                      spentAmount -= unspentAmount;
                      srcToken.uniTransfer(payable(msg.sender), unspentAmount);
                  }
                  if (returnAmount * desc.amount < desc.minReturnAmount * spentAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount * spentAmount / desc.amount);
              } else {
                  if (returnAmount < desc.minReturnAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount);
              }
              address payable dstReceiver = (desc.dstReceiver == address(0)) ? payable(msg.sender) : desc.dstReceiver;
              dstToken.uniTransfer(dstReceiver, returnAmount);
          }
          function _execute(
              IAggregationExecutor executor,
              address srcTokenOwner,
              uint256 inputAmount,
              bytes calldata data
          ) private returns(uint256 result) {
              bytes4 executeSelector = executor.execute.selector;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, executeSelector)
                  mstore(add(ptr, 0x04), srcTokenOwner)
                  calldatacopy(add(ptr, 0x24), data.offset, data.length)
                  mstore(add(add(ptr, 0x24), data.length), inputAmount)
                  if iszero(call(gas(), executor, callvalue(), ptr, add(0x44, data.length), 0, 0x20)) {
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  result := mload(0)
              }
          }
      }
      // File contracts/interfaces/IUniswapV3Pool.sol
      interface IUniswapV3Pool {
          /// @notice Emitted by the pool for any swaps between token0 and token1
          /// @param sender The address that initiated the swap call, and that received the callback
          /// @param recipient The address that received the output of the swap
          /// @param amount0 The delta of the token0 balance of the pool
          /// @param amount1 The delta of the token1 balance of the pool
          /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
          /// @param liquidity The liquidity of the pool after the swap
          /// @param tick The log base 1.0001 of price of the pool after the swap
          event Swap(
              address indexed sender,
              address indexed recipient,
              int256 amount0,
              int256 amount1,
              uint160 sqrtPriceX96,
              uint128 liquidity,
              int24 tick
          );
          /// @notice Swap token0 for token1, or token1 for token0
          /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
          /// @param recipient The address to receive the output of the swap
          /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
          /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
          /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
          /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
          /// @param data Any data to be passed through to the callback
          /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
          /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
          function swap(
              address recipient,
              bool zeroForOne,
              int256 amountSpecified,
              uint160 sqrtPriceLimitX96,
              bytes calldata data
          ) external returns (int256 amount0, int256 amount1);
          /// @notice The first of the two tokens of the pool, sorted by address
          /// @return The token contract address
          function token0() external view returns (address);
          /// @notice The second of the two tokens of the pool, sorted by address
          /// @return The token contract address
          function token1() external view returns (address);
          /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
          /// @return The fee
          function fee() external view returns (uint24);
      }
      // File contracts/interfaces/IUniswapV3SwapCallback.sol
      /// @title Callback for IUniswapV3PoolActions#swap
      /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
      interface IUniswapV3SwapCallback {
          /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
          /// @dev In the implementation you must pay the pool tokens owed for the swap.
          /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
          /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
          /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
          /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
          /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
          /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
          /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
          function uniswapV3SwapCallback(
              int256 amount0Delta,
              int256 amount1Delta,
              bytes calldata data
          ) external;
      }
      // File contracts/libs/ProtocolLib.sol
      library ProtocolLib {
          using AddressLib for Address;
          enum Protocol {
              UniswapV2,
              UniswapV3,
              Curve
          }
          uint256 private constant _PROTOCOL_OFFSET = 253;
          uint256 private constant _WETH_UNWRAP_FLAG = 1 << 252;
          uint256 private constant _WETH_NOT_WRAP_FLAG = 1 << 251;
          uint256 private constant _USE_PERMIT2_FLAG = 1 << 250;
          function protocol(Address self) internal pure returns(Protocol) {
              // there is no need to mask because protocol is stored in the highest 3 bits
              return Protocol((Address.unwrap(self) >> _PROTOCOL_OFFSET));
          }
          function shouldUnwrapWeth(Address self) internal pure returns(bool) {
              return self.getFlag(_WETH_UNWRAP_FLAG);
          }
          function shouldWrapWeth(Address self) internal pure returns(bool) {
              return !self.getFlag(_WETH_NOT_WRAP_FLAG);
          }
          function usePermit2(Address self) internal pure returns(bool) {
              return self.getFlag(_USE_PERMIT2_FLAG);
          }
          function addressForPreTransfer(Address self) internal view returns(address) {
              if (protocol(self) == Protocol.UniswapV2) {
                  return self.get();
              }
              return address(this);
          }
      }
      // File contracts/routers/UnoswapRouter.sol
      /**
       * @title UnoswapRouter
       * @notice A router contract for executing token swaps on Unoswap-compatible decentralized exchanges: UniswapV3, UniswapV2, Curve.
       */
      contract UnoswapRouter is Pausable, EthReceiver, IUniswapV3SwapCallback {
          using SafeERC20 for IERC20;
          using SafeERC20 for IWETH;
          using AddressLib for Address;
          using ProtocolLib for Address;
          error BadPool();
          error BadCurveSwapSelector();
          /// @dev WETH address is network-specific and needs to be changed before deployment.
          /// It can not be moved to immutable as immutables are not supported in assembly
          address private constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
          address private constant _ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
          address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
          bytes4 private constant _WETH_DEPOSIT_CALL_SELECTOR = 0xd0e30db0;
          bytes4 private constant _WETH_WITHDRAW_CALL_SELECTOR = 0x2e1a7d4d;
          uint256 private constant _ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
          uint256 private constant _SELECTORS = (
              (uint256(uint32(IUniswapV3Pool.token0.selector)) << 224) |
              (uint256(uint32(IUniswapV3Pool.token1.selector)) << 192) |
              (uint256(uint32(IUniswapV3Pool.fee.selector)) << 160) |
              (uint256(uint32(IERC20.transfer.selector)) << 128) |
              (uint256(uint32(IERC20.transferFrom.selector)) << 96) |
              (uint256(uint32(IPermit2.transferFrom.selector)) << 64)
          );
          uint256 private constant _TOKEN0_SELECTOR_OFFSET = 0;
          uint256 private constant _TOKEN1_SELECTOR_OFFSET = 4;
          uint256 private constant _FEE_SELECTOR_OFFSET = 8;
          uint256 private constant _TRANSFER_SELECTOR_OFFSET = 12;
          uint256 private constant _TRANSFER_FROM_SELECTOR_OFFSET = 16;
          uint256 private constant _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET = 20;
          bytes32 private constant _POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
          bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000;
          // =====================================================================
          //                          Methods with 1 pool
          // =====================================================================
          /**
          * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
          *         with a minimum return specified by `minReturn`.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap.
          */
          function unoswap(Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo(msg.sender, msg.sender, token, amount, minReturn, dex);
          }
          /**
          * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
          *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
          * @param to The address to receive the swapped tokens.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap.
          */
          function unoswapTo(Address to, Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo(msg.sender, to.get(), token, amount, minReturn, dex);
          }
          /**
          * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, with a minimum return specified by `minReturn`.
          *         The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap.
          */
          function ethUnoswap(uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
          }
          /**
          * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, sending the resulting tokens to the `to` address,
          *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param to The address to receive the swapped tokens.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap.
          */
          function ethUnoswapTo(Address to, uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
          }
          function _unoswapTo(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex) private whenNotPaused() returns(uint256 returnAmount) {
              if (dex.shouldUnwrapWeth()) {
                  returnAmount = _unoswap(from, address(this), token, amount, minReturn, dex);
                  IWETH(_WETH).safeWithdrawTo(returnAmount, to);
              } else {
                  returnAmount = _unoswap(from, to, token, amount, minReturn, dex);
              }
          }
          // =====================================================================
          //                    Methods with 2 sequential pools
          // =====================================================================
          /**
          * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
          *         with a minimum return specified by `minReturn`.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through both pools.
          */
          function unoswap2(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo2(msg.sender, msg.sender, token, amount, minReturn, dex, dex2);
          }
          /**
          * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
          *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
          * @param to The address to receive the swapped tokens.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through both pools.
          */
          function unoswapTo2(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo2(msg.sender, to.get(), token, amount, minReturn, dex, dex2);
          }
          /**
          * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
          *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through both pools.
          */
          function ethUnoswap2(uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo2(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
          }
          /**
          * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
          *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
          *         The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param to The address to receive the swapped tokens.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through both pools.
          */
          function ethUnoswapTo2(Address to, uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo2(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
          }
          function _unoswapTo2(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) private whenNotPaused() returns(uint256 returnAmount) {
              address pool2 = dex2.addressForPreTransfer();
              address target = dex2.shouldUnwrapWeth() ? address(this) : to;
              returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
              returnAmount = _unoswap(pool2, target, Address.wrap(0), returnAmount, minReturn, dex2);
              if (dex2.shouldUnwrapWeth()) {
                  IWETH(_WETH).safeWithdrawTo(returnAmount, to);
              }
          }
          // =====================================================================
          //                    Methods with 3 sequential pools
          // =====================================================================
          /**
          * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
          *         (`dex`, `dex2`, and `dex3`) sequentially, with a minimum return specified by `minReturn`.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @param dex3 The address of the third Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through all three pools.
          */
          function unoswap3(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo3(msg.sender, msg.sender, token, amount, minReturn, dex, dex2, dex3);
          }
          /**
          * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
          *         (`dex`, `dex2`, and `dex3`) sequentially, sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
          * @param to The address to receive the swapped tokens.
          * @param token The address of the token to be swapped.
          * @param amount The amount of tokens to be swapped.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @param dex3 The address of the third Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through all three pools.
          */
          function unoswapTo3(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
              returnAmount = _unoswapTo3(msg.sender, to.get(), token, amount, minReturn, dex, dex2, dex3);
          }
          /**
          * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
          *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @param dex3 The address of the third Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through all three pools.
          */
          function ethUnoswap3(uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo3(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
          }
          /**
          * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
          *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
          *         The function is payable and requires the sender to attach ETH.
          *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
          * @param to The address to receive the swapped tokens.
          * @param minReturn The minimum amount of tokens to be received after the swap.
          * @param dex The address of the first Unoswap-compatible exchange's pool.
          * @param dex2 The address of the second Unoswap-compatible exchange's pool.
          * @param dex3 The address of the third Unoswap-compatible exchange's pool.
          * @return returnAmount The actual amount of tokens received after the swap through all three pools.
          */
          function ethUnoswapTo3(Address to, uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
              if (dex.shouldWrapWeth()) {
                  IWETH(_WETH).safeDeposit(msg.value);
              }
              returnAmount = _unoswapTo3(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
          }
          function _unoswapTo3(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) private whenNotPaused() returns(uint256 returnAmount) {
              address pool2 = dex2.addressForPreTransfer();
              address pool3 = dex3.addressForPreTransfer();
              address target = dex3.shouldUnwrapWeth() ? address(this) : to;
              returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
              returnAmount = _unoswap(pool2, pool3, Address.wrap(0), returnAmount, 0, dex2);
              returnAmount = _unoswap(pool3, target, Address.wrap(0), returnAmount, minReturn, dex3);
              if (dex3.shouldUnwrapWeth()) {
                  IWETH(_WETH).safeWithdrawTo(returnAmount, to);
              }
          }
          function _unoswap(
              address spender,
              address recipient,
              Address token,
              uint256 amount,
              uint256 minReturn,
              Address dex
          ) private returns(uint256 returnAmount) {
              ProtocolLib.Protocol protocol = dex.protocol();
              if (protocol == ProtocolLib.Protocol.UniswapV3) {
                  returnAmount = _unoswapV3(spender, recipient, amount, minReturn, dex);
              } else if (protocol == ProtocolLib.Protocol.UniswapV2) {
                  if (spender == address(this)) {
                      IERC20(token.get()).safeTransfer(dex.get(), amount);
                  } else if (spender == msg.sender) {
                      IERC20(token.get()).safeTransferFromUniversal(msg.sender, dex.get(), amount, dex.usePermit2());
                  }
                  returnAmount = _unoswapV2(recipient, amount, minReturn, dex);
              } else if (protocol == ProtocolLib.Protocol.Curve) {
                  if (spender == msg.sender && msg.value == 0) {
                      IERC20(token.get()).safeTransferFromUniversal(msg.sender, address(this), amount, dex.usePermit2());
                  }
                  returnAmount = _curfe(recipient, amount, minReturn, dex);
              }
          }
          uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_OFFSET = 247;
          uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_MASK = 0x01;
          uint256 private constant _UNISWAP_V2_NUMERATOR_OFFSET = 160;
          uint256 private constant _UNISWAP_V2_NUMERATOR_MASK = 0xffffffff;
          bytes4 private constant _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR = 0x0902f1ac;
          bytes4 private constant _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR = 0x022c0d9f;
          uint256 private constant _UNISWAP_V2_DENOMINATOR = 1e9;
          uint256 private constant _UNISWAP_V2_DEFAULT_NUMERATOR = 997_000_000;
          error ReservesCallFailed();
          function _unoswapV2(
              address recipient,
              uint256 amount,
              uint256 minReturn,
              Address dex
          ) private returns(uint256 ret) {
              bytes4 returnAmountNotEnoughException = RouterErrors.ReturnAmountIsNotEnough.selector;
              bytes4 reservesCallFailedException = ReservesCallFailed.selector;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  let pool := and(dex, _ADDRESS_MASK)
                  let zeroForOne := and(shr(_UNISWAP_V2_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V2_ZERO_FOR_ONE_MASK)
                  let numerator := and(shr(_UNISWAP_V2_NUMERATOR_OFFSET, dex), _UNISWAP_V2_NUMERATOR_MASK)
                  if iszero(numerator) {
                      numerator := _UNISWAP_V2_DEFAULT_NUMERATOR
                  }
                  let ptr := mload(0x40)
                  mstore(0, _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR)
                  if iszero(staticcall(gas(), pool, 0, 4, 0, 0x40)) {
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  if sub(returndatasize(), 0x60) {
                      mstore(0, reservesCallFailedException)
                      revert(0, 4)
                  }
                  let reserve0 := mload(mul(0x20, iszero(zeroForOne)))
                  let reserve1 := mload(mul(0x20, zeroForOne))
                  // this will not overflow as reserve0, reserve1 and ret fit to 112 bit and numerator and _DENOMINATOR fit to 32 bit
                  ret := mul(amount, numerator)
                  ret := div(mul(ret, reserve1), add(ret, mul(reserve0, _UNISWAP_V2_DENOMINATOR)))
                  if lt(ret, minReturn) {
                      mstore(ptr, returnAmountNotEnoughException)
                      mstore(add(ptr, 0x04), ret)
                      mstore(add(ptr, 0x24), minReturn)
                      revert(ptr, 0x44)
                  }
                  mstore(ptr, _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR)
                  mstore(add(ptr, 0x04), mul(ret, iszero(zeroForOne)))
                  mstore(add(ptr, 0x24), mul(ret, zeroForOne))
                  mstore(add(ptr, 0x44), recipient)
                  mstore(add(ptr, 0x64), 0x80)
                  mstore(add(ptr, 0x84), 0)
                  if iszero(call(gas(), pool, 0, ptr, 0xa4, 0, 0)) {
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
              }
          }
          /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
          uint160 private constant _UNISWAP_V3_MIN_SQRT_RATIO = 4295128739 + 1;
          /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
          uint160 private constant _UNISWAP_V3_MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342 - 1;
          uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_OFFSET = 247;
          uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_MASK = 0x01;
          function _unoswapV3(
              address spender,
              address recipient,
              uint256 amount,
              uint256 minReturn,
              Address dex
          ) private returns(uint256 ret) {
              bytes4 swapSelector = IUniswapV3Pool.swap.selector;
              bool usePermit2 = dex.usePermit2();
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  let pool := and(dex, _ADDRESS_MASK)
                  let zeroForOne := and(shr(_UNISWAP_V3_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V3_ZERO_FOR_ONE_MASK)
                  let ptr := mload(0x40)
                  mstore(ptr, swapSelector)
                  mstore(add(ptr, 0x04), recipient)
                  mstore(add(ptr, 0x24), zeroForOne)
                  mstore(add(ptr, 0x44), amount)
                  switch zeroForOne
                  case 1 {
                      mstore(add(ptr, 0x64), _UNISWAP_V3_MIN_SQRT_RATIO)
                  }
                  case 0 {
                      mstore(add(ptr, 0x64), _UNISWAP_V3_MAX_SQRT_RATIO)
                  }
                  mstore(add(ptr, 0x84), 0xa0)
                  mstore(add(ptr, 0xa4), 0x40)
                  mstore(add(ptr, 0xc4), spender)
                  mstore(add(ptr, 0xe4), usePermit2)
                  if iszero(call(gas(), pool, 0, ptr, 0x0104, 0, 0x40)) {
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  ret := sub(0, mload(mul(0x20, zeroForOne)))
              }
              if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
          }
          uint256 private constant _CURVE_SWAP_SELECTOR_IDX_OFFSET = 184;
          uint256 private constant _CURVE_SWAP_SELECTOR_IDX_MASK = 0xff;
          uint256 private constant _CURVE_FROM_COINS_SELECTOR_OFFSET = 192;
          uint256 private constant _CURVE_FROM_COINS_SELECTOR_MASK = 0xff;
          uint256 private constant _CURVE_FROM_COINS_ARG_OFFSET = 200;
          uint256 private constant _CURVE_FROM_COINS_ARG_MASK = 0xff;
          uint256 private constant _CURVE_TO_COINS_SELECTOR_OFFSET = 208;
          uint256 private constant _CURVE_TO_COINS_SELECTOR_MASK = 0xff;
          uint256 private constant _CURVE_TO_COINS_ARG_OFFSET = 216;
          uint256 private constant _CURVE_TO_COINS_ARG_MASK = 0xff;
          uint256 private constant _CURVE_FROM_TOKEN_OFFSET = 224;
          uint256 private constant _CURVE_FROM_TOKEN_MASK = 0xff;
          uint256 private constant _CURVE_TO_TOKEN_OFFSET = 232;
          uint256 private constant _CURVE_TO_TOKEN_MASK = 0xff;
          uint256 private constant _CURVE_INPUT_WETH_DEPOSIT_OFFSET = 240;
          uint256 private constant _CURVE_INPUT_WETH_WITHDRAW_OFFSET = 241;
          uint256 private constant _CURVE_SWAP_USE_ETH_OFFSET = 242;
          uint256 private constant _CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET = 243;
          uint256 private constant _CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET = 244;
          uint256 private constant _CURVE_OUTPUT_WETH_DEPOSIT_OFFSET = 245;
          uint256 private constant _CURVE_OUTPUT_WETH_WITHDRAW_OFFSET = 246;
          uint256 private constant _CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET = 247;
          uint256 private constant _CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET = 249;
          // Curve Pool function selectors for different `coins` methods. For details, see contracts/interfaces/ICurvePool.sol
          bytes32 private constant _CURVE_COINS_SELECTORS = 0x87cb4f5723746eb8c6610657b739953eb9947eb0000000000000000000000000;
          // Curve Pool function selectors for different `exchange` methods. For details, see contracts/interfaces/ICurvePool.sol
          bytes32 private constant _CURVE_SWAP_SELECTORS_1 = 0x3df02124a6417ed6ddc1f59d44ee1986ed4ae2b8bf5ed0562f7865a837cab679;
          bytes32 private constant _CURVE_SWAP_SELECTORS_2 = 0x2a064e3c5b41b90865b2489ba64833a0e2ad025a394747c5cb7558f1ce7d6503;
          bytes32 private constant _CURVE_SWAP_SELECTORS_3 = 0xd2e2833add96994f000000000000000000000000000000000000000000000000;
          uint256 private constant _CURVE_MAX_SELECTOR_INDEX = 17;
          function _curfe(
              address recipient,
              uint256 amount,
              uint256 minReturn,
              Address dex
          ) private returns(uint256 ret) {
              bytes4 callbackSelector = this.curveSwapCallback.selector;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  function reRevert() {
                      let ptr := mload(0x40)
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  function callReturnSize(status) -> rds {
                      if iszero(status) {
                          reRevert()
                      }
                      rds := returndatasize()
                  }
                  function tokenBalanceOf(tokenAddress, accountAddress) -> tokenBalance {
                      mstore(0, 0x70a0823100000000000000000000000000000000000000000000000000000000)
                      mstore(4, accountAddress)
                      if iszero(callReturnSize(staticcall(gas(), tokenAddress, 0, 0x24, 0, 0x20))) {
                          revert(0, 0)
                      }
                      tokenBalance := mload(0)
                  }
                  function asmApprove(token, to, value, mem) {
                      let selector := 0x095ea7b300000000000000000000000000000000000000000000000000000000 // IERC20.approve.selector
                      let exception := 0x3e3f8f7300000000000000000000000000000000000000000000000000000000 // error ApproveFailed()
                      if iszero(_asmCall(token, selector, to, value, mem)) {
                          if iszero(_asmCall(token, selector, to, 0, mem)) {
                              mstore(mem, exception)
                              revert(mem, 4)
                          }
                          if iszero(_asmCall(token, selector, to, value, mem)) {
                              mstore(mem, exception)
                              revert(mem, 4)
                          }
                      }
                  }
                  function _asmCall(token, selector, to, value, mem) -> done {
                      mstore(mem, selector)
                      mstore(add(mem, 0x04), to)
                      mstore(add(mem, 0x24), value)
                      let success := call(gas(), token, 0, mem, 0x44, 0x0, 0x20)
                      done := and(
                          success,
                          or(
                              iszero(returndatasize()),
                              and(gt(returndatasize(), 31), eq(mload(0), 1))
                          )
                      )
                  }
                  function curveCoins(pool, selectorOffset, index) -> coin {
                      mstore(0, _CURVE_COINS_SELECTORS)
                      mstore(add(selectorOffset, 4), index)
                      if iszero(staticcall(gas(), pool, selectorOffset, 0x24, 0, 0x20)) {
                          reRevert()
                      }
                      coin := mload(0)
                  }
                  let pool := and(dex, _ADDRESS_MASK)
                  let useEth := and(shr(_CURVE_SWAP_USE_ETH_OFFSET, dex), 0x01)
                  let hasCallback := and(shr(_CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET, dex), 0x01)
                  if and(shr(_CURVE_INPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                      // Deposit ETH to WETH
                      mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                      if iszero(call(gas(), _WETH, amount, 0, 4, 0, 0)) {
                          reRevert()
                      }
                  }
                  if and(shr(_CURVE_INPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                      // Withdraw ETH from WETH
                      mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                      mstore(4, amount)
                      if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                          reRevert()
                      }
                  }
                  let toToken
                  {  // Stack too deep
                      let toSelectorOffset := and(shr(_CURVE_TO_COINS_SELECTOR_OFFSET, dex), _CURVE_TO_COINS_SELECTOR_MASK)
                      let toTokenIndex := and(shr(_CURVE_TO_COINS_ARG_OFFSET, dex), _CURVE_TO_COINS_ARG_MASK)
                      toToken := curveCoins(pool, toSelectorOffset, toTokenIndex)
                  }
                  let toTokenIsEth := or(eq(toToken, _ETH), eq(toToken, _WETH))
                  // use approve when the callback is not used AND (raw ether is not used at all OR ether is used on the output)
                  if and(iszero(hasCallback), or(iszero(useEth), toTokenIsEth)) {
                      let fromSelectorOffset := and(shr(_CURVE_FROM_COINS_SELECTOR_OFFSET, dex), _CURVE_FROM_COINS_SELECTOR_MASK)
                      let fromTokenIndex := and(shr(_CURVE_FROM_COINS_ARG_OFFSET, dex), _CURVE_FROM_COINS_ARG_MASK)
                      let fromToken := curveCoins(pool, fromSelectorOffset, fromTokenIndex)
                      if eq(fromToken, _ETH) {
                          fromToken := _WETH
                      }
                      asmApprove(fromToken, pool, amount, mload(0x40))
                  }
                  // Swap
                  let ptr := mload(0x40)
                  {  // stack too deep
                      let selectorIndex := and(shr(_CURVE_SWAP_SELECTOR_IDX_OFFSET, dex), _CURVE_SWAP_SELECTOR_IDX_MASK)
                      if gt(selectorIndex, _CURVE_MAX_SELECTOR_INDEX) {
                          mstore(0, 0xa231cb8200000000000000000000000000000000000000000000000000000000)  // BadCurveSwapSelector()
                          revert(0, 4)
                      }
                      mstore(ptr, _CURVE_SWAP_SELECTORS_1)
                      mstore(add(ptr, 0x20), _CURVE_SWAP_SELECTORS_2)
                      mstore(add(ptr, 0x40), _CURVE_SWAP_SELECTORS_3)
                      ptr := add(ptr, mul(selectorIndex, 4))
                  }
                  mstore(add(ptr, 0x04), and(shr(_CURVE_FROM_TOKEN_OFFSET, dex), _CURVE_FROM_TOKEN_MASK))
                  mstore(add(ptr, 0x24), and(shr(_CURVE_TO_TOKEN_OFFSET, dex), _CURVE_TO_TOKEN_MASK))
                  mstore(add(ptr, 0x44), amount)
                  mstore(add(ptr, 0x64), minReturn)
                  let offset := 0x84
                  if and(shr(_CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET, dex), 0x01) {
                      mstore(add(ptr, offset), useEth)
                      offset := add(offset, 0x20)
                  }
                  switch hasCallback
                  case 1 {
                      mstore(add(ptr, offset), address())
                      mstore(add(ptr, add(offset, 0x20)), recipient)
                      mstore(add(ptr, add(offset, 0x40)), callbackSelector)
                      offset := add(offset, 0x60)
                  }
                  default {
                      if and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01) {
                          mstore(add(ptr, offset), recipient)
                          offset := add(offset, 0x20)
                      }
                  }
                  // swap call
                  // value is passed when useEth is set but toToken is not ETH
                  switch callReturnSize(call(gas(), pool, mul(mul(amount, useEth), iszero(toTokenIsEth)), ptr, offset, 0, 0x40))
                  case 0 {
                      // we expect that curve pools that do not return any value also do not have the recipient argument
                      switch and(useEth, toTokenIsEth)
                      case 1 {
                          ret := balance(address())
                      }
                      default {
                          ret := tokenBalanceOf(toToken, address())
                      }
                      ret := sub(ret, 1)  // keep 1 wei
                  }
                  default {
                      ret := mload(mul(0x20, and(shr(_CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET, dex), 0x01)))
                  }
                  if iszero(and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01)) {
                      if and(shr(_CURVE_OUTPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                          // Deposit ETH to WETH
                          mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                          if iszero(call(gas(), _WETH, ret, 0, 4, 0, 0)) {
                              reRevert()
                          }
                      }
                      if and(shr(_CURVE_OUTPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                          // Withdraw ETH from WETH
                          mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                          mstore(4, ret)
                          if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                              reRevert()
                          }
                      }
                      // Post transfer toToken if needed
                      if xor(recipient, address()) {
                          switch and(useEth, toTokenIsEth)
                          case 1 {
                              if iszero(call(gas(), recipient, ret, 0, 0, 0, 0)) {
                                  reRevert()
                              }
                          }
                          default {
                              if eq(toToken, _ETH) {
                                  toToken := _WETH
                              }
                              // toToken.transfer(recipient, ret)
                              if iszero(_asmCall(toToken, 0xa9059cbb00000000000000000000000000000000000000000000000000000000, recipient, ret, ptr)) {
                                  mstore(ptr, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // error ERC20TransferFailed()
                                  revert(ptr, 4)
                              }
                          }
                      }
                  }
              }
              if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
          }
          /**
           * @notice Called by Curve pool during the swap operation initiated by `_curfe`.
           * @dev This function can be called by anyone assuming there are no tokens
           * stored on this contract between transactions.
           * @param inCoin Address of the token to be exchanged.
           * @param dx Amount of tokens to be exchanged.
           */
          function curveSwapCallback(
              address /* sender */,
              address /* receiver */,
              address inCoin,
              uint256 dx,
              uint256 /* dy */
          ) external {
              IERC20(inCoin).safeTransfer(msg.sender, dx);
          }
          /**
           * @notice See {IUniswapV3SwapCallback-uniswapV3SwapCallback}
           *         Called by UniswapV3 pool during the swap operation initiated by `_unoswapV3`.
           *         This callback function ensures the proper transfer of tokens based on the swap's
           *         configuration. It handles the transfer of tokens by either directly transferring
           *         the tokens from the payer to the recipient, or by using a secondary permit contract
           *         to transfer the tokens if required by the pool. It verifies the correct pool is
           *         calling the function and uses inline assembly for efficient execution and to access
           *         low-level EVM features.
           */
          function uniswapV3SwapCallback(
              int256 amount0Delta,
              int256 amount1Delta,
              bytes calldata /* data */
          ) external override {
              uint256 selectors = _SELECTORS;
              assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                  function reRevert() {
                      let ptr := mload(0x40)
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  function safeERC20(target, value, mem, memLength, outLen) {
                      let status := call(gas(), target, value, mem, memLength, 0, outLen)
                      if iszero(status) {
                          reRevert()
                      }
                      let success := or(
                          iszero(returndatasize()),                       // empty return data
                          and(gt(returndatasize(), 31), eq(mload(0), 1))  // true in return data
                      )
                      if iszero(success) {
                          mstore(0, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // ERC20TransferFailed()
                          revert(0, 4)
                      }
                  }
                  let emptyPtr := mload(0x40)
                  let resultPtr := add(emptyPtr, 0x15)  // 0x15 = _FF_FACTORY size
                  mstore(emptyPtr, selectors)
                  let amount
                  let token
                  switch sgt(amount0Delta, 0)
                  case 1 {
                      if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                          reRevert()
                      }
                      token := mload(resultPtr)
                      amount := amount0Delta
                  }
                  default {
                      if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                          reRevert()
                      }
                      token := mload(add(resultPtr, 0x20))
                      amount := amount1Delta
                  }
                  let payer := calldataload(0x84)
                  let usePermit2 := calldataload(0xa4)
                  switch eq(payer, address())
                  case 1 {
                      // IERC20(token.get()).safeTransfer(msg.sender,amount)
                      mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x04)), caller())
                      mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x24)), amount)
                      safeERC20(token, 0, add(emptyPtr, _TRANSFER_SELECTOR_OFFSET), 0x44, 0x20)
                  }
                  default {
                      switch sgt(amount0Delta, 0)
                      case 1 {
                          if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                              reRevert()
                          }
                      }
                      default {
                          if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                              reRevert()
                          }
                      }
                      if iszero(staticcall(gas(), caller(), add(emptyPtr, _FEE_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x40), 0x20)) {
                          reRevert()
                      }
                      mstore(emptyPtr, _FF_FACTORY)
                      mstore(resultPtr, keccak256(resultPtr, 0x60)) // Compute the inner hash in-place
                      mstore(add(resultPtr, 0x20), _POOL_INIT_CODE_HASH)
                      let pool := and(keccak256(emptyPtr, 0x55), _ADDRESS_MASK)
                      if xor(pool, caller()) {
                          mstore(0, 0xb2c0272200000000000000000000000000000000000000000000000000000000)  // BadPool()
                          revert(0, 4)
                      }
                      switch usePermit2
                      case 1 {
                          // permit2.transferFrom(payer, msg.sender, amount, token);
                          mstore(emptyPtr, selectors)
                          emptyPtr := add(emptyPtr, _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET)
                          mstore(add(emptyPtr, 0x04), payer)
                          mstore(add(emptyPtr, 0x24), caller())
                          mstore(add(emptyPtr, 0x44), amount)
                          mstore(add(emptyPtr, 0x64), token)
                          let success := call(gas(), _PERMIT2, 0, emptyPtr, 0x84, 0, 0)
                          if success {
                              success := gt(extcodesize(_PERMIT2), 0)
                          }
                          if iszero(success) {
                              mstore(0, 0xc3f9d33200000000000000000000000000000000000000000000000000000000)  // Permit2TransferFromFailed()
                              revert(0, 4)
                          }
                      }
                      case 0 {
                          // IERC20(token.get()).safeTransferFrom(payer, msg.sender, amount);
                          mstore(emptyPtr, selectors)
                          emptyPtr := add(emptyPtr, _TRANSFER_FROM_SELECTOR_OFFSET)
                          mstore(add(emptyPtr, 0x04), payer)
                          mstore(add(emptyPtr, 0x24), caller())
                          mstore(add(emptyPtr, 0x44), amount)
                          safeERC20(token, 0, emptyPtr, 0x64, 0x20)
                      }
                  }
              }
          }
      }
      // File contracts/AggregationRouterV6.sol
      /// @notice Main contract incorporates a number of routers to perform swaps and limit orders protocol to fill limit orders
      contract AggregationRouterV6 is EIP712("1inch Aggregation Router", "6"), Ownable, Pausable,
          ClipperRouter, GenericRouter, UnoswapRouter, PermitAndCall, OrderMixin
      {
          using UniERC20 for IERC20;
          error ZeroAddress();
          /**
           * @dev Sets the wrapped eth token and clipper exhange interface
           * Both values are immutable: they can only be set once during
           * construction.
           */
          constructor(IWETH weth)
              ClipperRouter(weth)
              OrderMixin(weth)
              Ownable(msg.sender)
          {
              if (address(weth) == address(0)) revert ZeroAddress();
          }
          /**
           * @notice Retrieves funds accidently sent directly to the contract address
           * @param token ERC20 token to retrieve
           * @param amount amount to retrieve
           */
          function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
              token.uniTransfer(payable(msg.sender), amount);
          }
          /**
           * @notice Pauses all the trading functionality in the contract.
           */
          function pause() external onlyOwner {
              _pause();
          }
          /**
           * @notice Unpauses all the trading functionality in the contract.
           */
          function unpause() external onlyOwner {
              _unpause();
          }
          function _receive() internal override(EthReceiver, OnlyWethReceiver) {
              EthReceiver._receive();
          }
      }
      

      File 2 of 4: UniswapV2Pair
      // File: contracts/interfaces/IUniswapV2Pair.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Pair {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          function MINIMUM_LIQUIDITY() external pure returns (uint);
          function factory() external view returns (address);
          function token0() external view returns (address);
          function token1() external view returns (address);
          function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
          function price0CumulativeLast() external view returns (uint);
          function price1CumulativeLast() external view returns (uint);
          function kLast() external view returns (uint);
      
          function mint(address to) external returns (uint liquidity);
          function burn(address to) external returns (uint amount0, uint amount1);
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
          function skim(address to) external;
          function sync() external;
      
          function initialize(address, address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2ERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2ERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      }
      
      // File: contracts/libraries/SafeMath.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
      
      library SafeMath {
          function add(uint x, uint y) internal pure returns (uint z) {
              require((z = x + y) >= x, 'ds-math-add-overflow');
          }
      
          function sub(uint x, uint y) internal pure returns (uint z) {
              require((z = x - y) <= x, 'ds-math-sub-underflow');
          }
      
          function mul(uint x, uint y) internal pure returns (uint z) {
              require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
          }
      }
      
      // File: contracts/UniswapV2ERC20.sol
      
      pragma solidity =0.5.16;
      
      
      
      contract UniswapV2ERC20 is IUniswapV2ERC20 {
          using SafeMath for uint;
      
          string public constant name = 'Uniswap V2';
          string public constant symbol = 'UNI-V2';
          uint8 public constant decimals = 18;
          uint  public totalSupply;
          mapping(address => uint) public balanceOf;
          mapping(address => mapping(address => uint)) public allowance;
      
          bytes32 public DOMAIN_SEPARATOR;
          // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
          mapping(address => uint) public nonces;
      
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          constructor() public {
              uint chainId;
              assembly {
                  chainId := chainid
              }
              DOMAIN_SEPARATOR = keccak256(
                  abi.encode(
                      keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                      keccak256(bytes(name)),
                      keccak256(bytes('1')),
                      chainId,
                      address(this)
                  )
              );
          }
      
          function _mint(address to, uint value) internal {
              totalSupply = totalSupply.add(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(address(0), to, value);
          }
      
          function _burn(address from, uint value) internal {
              balanceOf[from] = balanceOf[from].sub(value);
              totalSupply = totalSupply.sub(value);
              emit Transfer(from, address(0), value);
          }
      
          function _approve(address owner, address spender, uint value) private {
              allowance[owner][spender] = value;
              emit Approval(owner, spender, value);
          }
      
          function _transfer(address from, address to, uint value) private {
              balanceOf[from] = balanceOf[from].sub(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(from, to, value);
          }
      
          function approve(address spender, uint value) external returns (bool) {
              _approve(msg.sender, spender, value);
              return true;
          }
      
          function transfer(address to, uint value) external returns (bool) {
              _transfer(msg.sender, to, value);
              return true;
          }
      
          function transferFrom(address from, address to, uint value) external returns (bool) {
              if (allowance[from][msg.sender] != uint(-1)) {
                  allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
              }
              _transfer(from, to, value);
              return true;
          }
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
              require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
              bytes32 digest = keccak256(
                  abi.encodePacked(
                      '\x19\x01',
                      DOMAIN_SEPARATOR,
                      keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                  )
              );
              address recoveredAddress = ecrecover(digest, v, r, s);
              require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
              _approve(owner, spender, value);
          }
      }
      
      // File: contracts/libraries/Math.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing various math operations
      
      library Math {
          function min(uint x, uint y) internal pure returns (uint z) {
              z = x < y ? x : y;
          }
      
          // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
          function sqrt(uint y) internal pure returns (uint z) {
              if (y > 3) {
                  z = y;
                  uint x = y / 2 + 1;
                  while (x < z) {
                      z = x;
                      x = (y / x + x) / 2;
                  }
              } else if (y != 0) {
                  z = 1;
              }
          }
      }
      
      // File: contracts/libraries/UQ112x112.sol
      
      pragma solidity =0.5.16;
      
      // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
      
      // range: [0, 2**112 - 1]
      // resolution: 1 / 2**112
      
      library UQ112x112 {
          uint224 constant Q112 = 2**112;
      
          // encode a uint112 as a UQ112x112
          function encode(uint112 y) internal pure returns (uint224 z) {
              z = uint224(y) * Q112; // never overflows
          }
      
          // divide a UQ112x112 by a uint112, returning a UQ112x112
          function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
              z = x / uint224(y);
          }
      }
      
      // File: contracts/interfaces/IERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external view returns (string memory);
          function symbol() external view returns (string memory);
          function decimals() external view returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      }
      
      // File: contracts/interfaces/IUniswapV2Factory.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Factory {
          event PairCreated(address indexed token0, address indexed token1, address pair, uint);
      
          function feeTo() external view returns (address);
          function feeToSetter() external view returns (address);
      
          function getPair(address tokenA, address tokenB) external view returns (address pair);
          function allPairs(uint) external view returns (address pair);
          function allPairsLength() external view returns (uint);
      
          function createPair(address tokenA, address tokenB) external returns (address pair);
      
          function setFeeTo(address) external;
          function setFeeToSetter(address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2Callee.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Callee {
          function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
      }
      
      // File: contracts/UniswapV2Pair.sol
      
      pragma solidity =0.5.16;
      
      
      
      
      
      
      
      
      contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
          using SafeMath  for uint;
          using UQ112x112 for uint224;
      
          uint public constant MINIMUM_LIQUIDITY = 10**3;
          bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
      
          address public factory;
          address public token0;
          address public token1;
      
          uint112 private reserve0;           // uses single storage slot, accessible via getReserves
          uint112 private reserve1;           // uses single storage slot, accessible via getReserves
          uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
      
          uint public price0CumulativeLast;
          uint public price1CumulativeLast;
          uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
      
          uint private unlocked = 1;
          modifier lock() {
              require(unlocked == 1, 'UniswapV2: LOCKED');
              unlocked = 0;
              _;
              unlocked = 1;
          }
      
          function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
              _reserve0 = reserve0;
              _reserve1 = reserve1;
              _blockTimestampLast = blockTimestampLast;
          }
      
          function _safeTransfer(address token, address to, uint value) private {
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
          }
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          constructor() public {
              factory = msg.sender;
          }
      
          // called once by the factory at time of deployment
          function initialize(address _token0, address _token1) external {
              require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
              token0 = _token0;
              token1 = _token1;
          }
      
          // update reserves and, on the first call per block, price accumulators
          function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
              require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
              uint32 blockTimestamp = uint32(block.timestamp % 2**32);
              uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
              if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                  // * never overflows, and + overflow is desired
                  price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                  price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
              }
              reserve0 = uint112(balance0);
              reserve1 = uint112(balance1);
              blockTimestampLast = blockTimestamp;
              emit Sync(reserve0, reserve1);
          }
      
          // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
          function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
              address feeTo = IUniswapV2Factory(factory).feeTo();
              feeOn = feeTo != address(0);
              uint _kLast = kLast; // gas savings
              if (feeOn) {
                  if (_kLast != 0) {
                      uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                      uint rootKLast = Math.sqrt(_kLast);
                      if (rootK > rootKLast) {
                          uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                          uint denominator = rootK.mul(5).add(rootKLast);
                          uint liquidity = numerator / denominator;
                          if (liquidity > 0) _mint(feeTo, liquidity);
                      }
                  }
              } else if (_kLast != 0) {
                  kLast = 0;
              }
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function mint(address to) external lock returns (uint liquidity) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              uint balance0 = IERC20(token0).balanceOf(address(this));
              uint balance1 = IERC20(token1).balanceOf(address(this));
              uint amount0 = balance0.sub(_reserve0);
              uint amount1 = balance1.sub(_reserve1);
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              if (_totalSupply == 0) {
                  liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
              } else {
                  liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
              }
              require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
              _mint(to, liquidity);
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Mint(msg.sender, amount0, amount1);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function burn(address to) external lock returns (uint amount0, uint amount1) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              address _token0 = token0;                                // gas savings
              address _token1 = token1;                                // gas savings
              uint balance0 = IERC20(_token0).balanceOf(address(this));
              uint balance1 = IERC20(_token1).balanceOf(address(this));
              uint liquidity = balanceOf[address(this)];
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
              amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
              require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
              _burn(address(this), liquidity);
              _safeTransfer(_token0, to, amount0);
              _safeTransfer(_token1, to, amount1);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Burn(msg.sender, amount0, amount1, to);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
              require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
      
              uint balance0;
              uint balance1;
              { // scope for _token{0,1}, avoids stack too deep errors
              address _token0 = token0;
              address _token1 = token1;
              require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
              if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
              if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
              if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
              }
              uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
              uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
              require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
              { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
              uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
              uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
              require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
              }
      
              _update(balance0, balance1, _reserve0, _reserve1);
              emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
          }
      
          // force balances to match reserves
          function skim(address to) external lock {
              address _token0 = token0; // gas savings
              address _token1 = token1; // gas savings
              _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
              _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
          }
      
          // force reserves to match balances
          function sync() external lock {
              _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
          }
      }

      File 3 of 4: WETH9
      // Copyright (C) 2015, 2016, 2017 Dapphub
      
      // This program is free software: you can redistribute it and/or modify
      // it under the terms of the GNU General Public License as published by
      // the Free Software Foundation, either version 3 of the License, or
      // (at your option) any later version.
      
      // This program is distributed in the hope that it will be useful,
      // but WITHOUT ANY WARRANTY; without even the implied warranty of
      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      // GNU General Public License for more details.
      
      // You should have received a copy of the GNU General Public License
      // along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      pragma solidity ^0.4.18;
      
      contract WETH9 {
          string public name     = "Wrapped Ether";
          string public symbol   = "WETH";
          uint8  public decimals = 18;
      
          event  Approval(address indexed src, address indexed guy, uint wad);
          event  Transfer(address indexed src, address indexed dst, uint wad);
          event  Deposit(address indexed dst, uint wad);
          event  Withdrawal(address indexed src, uint wad);
      
          mapping (address => uint)                       public  balanceOf;
          mapping (address => mapping (address => uint))  public  allowance;
      
          function() public payable {
              deposit();
          }
          function deposit() public payable {
              balanceOf[msg.sender] += msg.value;
              Deposit(msg.sender, msg.value);
          }
          function withdraw(uint wad) public {
              require(balanceOf[msg.sender] >= wad);
              balanceOf[msg.sender] -= wad;
              msg.sender.transfer(wad);
              Withdrawal(msg.sender, wad);
          }
      
          function totalSupply() public view returns (uint) {
              return this.balance;
          }
      
          function approve(address guy, uint wad) public returns (bool) {
              allowance[msg.sender][guy] = wad;
              Approval(msg.sender, guy, wad);
              return true;
          }
      
          function transfer(address dst, uint wad) public returns (bool) {
              return transferFrom(msg.sender, dst, wad);
          }
      
          function transferFrom(address src, address dst, uint wad)
              public
              returns (bool)
          {
              require(balanceOf[src] >= wad);
      
              if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                  require(allowance[src][msg.sender] >= wad);
                  allowance[src][msg.sender] -= wad;
              }
      
              balanceOf[src] -= wad;
              balanceOf[dst] += wad;
      
              Transfer(src, dst, wad);
      
              return true;
          }
      }
      
      
      /*
                          GNU GENERAL PUBLIC LICENSE
                             Version 3, 29 June 2007
      
       Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
       Everyone is permitted to copy and distribute verbatim copies
       of this license document, but changing it is not allowed.
      
                                  Preamble
      
        The GNU General Public License is a free, copyleft license for
      software and other kinds of works.
      
        The licenses for most software and other practical works are designed
      to take away your freedom to share and change the works.  By contrast,
      the GNU General Public License is intended to guarantee your freedom to
      share and change all versions of a program--to make sure it remains free
      software for all its users.  We, the Free Software Foundation, use the
      GNU General Public License for most of our software; it applies also to
      any other work released this way by its authors.  You can apply it to
      your programs, too.
      
        When we speak of free software, we are referring to freedom, not
      price.  Our General Public Licenses are designed to make sure that you
      have the freedom to distribute copies of free software (and charge for
      them if you wish), that you receive source code or can get it if you
      want it, that you can change the software or use pieces of it in new
      free programs, and that you know you can do these things.
      
        To protect your rights, we need to prevent others from denying you
      these rights or asking you to surrender the rights.  Therefore, you have
      certain responsibilities if you distribute copies of the software, or if
      you modify it: responsibilities to respect the freedom of others.
      
        For example, if you distribute copies of such a program, whether
      gratis or for a fee, you must pass on to the recipients the same
      freedoms that you received.  You must make sure that they, too, receive
      or can get the source code.  And you must show them these terms so they
      know their rights.
      
        Developers that use the GNU GPL protect your rights with two steps:
      (1) assert copyright on the software, and (2) offer you this License
      giving you legal permission to copy, distribute and/or modify it.
      
        For the developers' and authors' protection, the GPL clearly explains
      that there is no warranty for this free software.  For both users' and
      authors' sake, the GPL requires that modified versions be marked as
      changed, so that their problems will not be attributed erroneously to
      authors of previous versions.
      
        Some devices are designed to deny users access to install or run
      modified versions of the software inside them, although the manufacturer
      can do so.  This is fundamentally incompatible with the aim of
      protecting users' freedom to change the software.  The systematic
      pattern of such abuse occurs in the area of products for individuals to
      use, which is precisely where it is most unacceptable.  Therefore, we
      have designed this version of the GPL to prohibit the practice for those
      products.  If such problems arise substantially in other domains, we
      stand ready to extend this provision to those domains in future versions
      of the GPL, as needed to protect the freedom of users.
      
        Finally, every program is threatened constantly by software patents.
      States should not allow patents to restrict development and use of
      software on general-purpose computers, but in those that do, we wish to
      avoid the special danger that patents applied to a free program could
      make it effectively proprietary.  To prevent this, the GPL assures that
      patents cannot be used to render the program non-free.
      
        The precise terms and conditions for copying, distribution and
      modification follow.
      
                             TERMS AND CONDITIONS
      
        0. Definitions.
      
        "This License" refers to version 3 of the GNU General Public License.
      
        "Copyright" also means copyright-like laws that apply to other kinds of
      works, such as semiconductor masks.
      
        "The Program" refers to any copyrightable work licensed under this
      License.  Each licensee is addressed as "you".  "Licensees" and
      "recipients" may be individuals or organizations.
      
        To "modify" a work means to copy from or adapt all or part of the work
      in a fashion requiring copyright permission, other than the making of an
      exact copy.  The resulting work is called a "modified version" of the
      earlier work or a work "based on" the earlier work.
      
        A "covered work" means either the unmodified Program or a work based
      on the Program.
      
        To "propagate" a work means to do anything with it that, without
      permission, would make you directly or secondarily liable for
      infringement under applicable copyright law, except executing it on a
      computer or modifying a private copy.  Propagation includes copying,
      distribution (with or without modification), making available to the
      public, and in some countries other activities as well.
      
        To "convey" a work means any kind of propagation that enables other
      parties to make or receive copies.  Mere interaction with a user through
      a computer network, with no transfer of a copy, is not conveying.
      
        An interactive user interface displays "Appropriate Legal Notices"
      to the extent that it includes a convenient and prominently visible
      feature that (1) displays an appropriate copyright notice, and (2)
      tells the user that there is no warranty for the work (except to the
      extent that warranties are provided), that licensees may convey the
      work under this License, and how to view a copy of this License.  If
      the interface presents a list of user commands or options, such as a
      menu, a prominent item in the list meets this criterion.
      
        1. Source Code.
      
        The "source code" for a work means the preferred form of the work
      for making modifications to it.  "Object code" means any non-source
      form of a work.
      
        A "Standard Interface" means an interface that either is an official
      standard defined by a recognized standards body, or, in the case of
      interfaces specified for a particular programming language, one that
      is widely used among developers working in that language.
      
        The "System Libraries" of an executable work include anything, other
      than the work as a whole, that (a) is included in the normal form of
      packaging a Major Component, but which is not part of that Major
      Component, and (b) serves only to enable use of the work with that
      Major Component, or to implement a Standard Interface for which an
      implementation is available to the public in source code form.  A
      "Major Component", in this context, means a major essential component
      (kernel, window system, and so on) of the specific operating system
      (if any) on which the executable work runs, or a compiler used to
      produce the work, or an object code interpreter used to run it.
      
        The "Corresponding Source" for a work in object code form means all
      the source code needed to generate, install, and (for an executable
      work) run the object code and to modify the work, including scripts to
      control those activities.  However, it does not include the work's
      System Libraries, or general-purpose tools or generally available free
      programs which are used unmodified in performing those activities but
      which are not part of the work.  For example, Corresponding Source
      includes interface definition files associated with source files for
      the work, and the source code for shared libraries and dynamically
      linked subprograms that the work is specifically designed to require,
      such as by intimate data communication or control flow between those
      subprograms and other parts of the work.
      
        The Corresponding Source need not include anything that users
      can regenerate automatically from other parts of the Corresponding
      Source.
      
        The Corresponding Source for a work in source code form is that
      same work.
      
        2. Basic Permissions.
      
        All rights granted under this License are granted for the term of
      copyright on the Program, and are irrevocable provided the stated
      conditions are met.  This License explicitly affirms your unlimited
      permission to run the unmodified Program.  The output from running a
      covered work is covered by this License only if the output, given its
      content, constitutes a covered work.  This License acknowledges your
      rights of fair use or other equivalent, as provided by copyright law.
      
        You may make, run and propagate covered works that you do not
      convey, without conditions so long as your license otherwise remains
      in force.  You may convey covered works to others for the sole purpose
      of having them make modifications exclusively for you, or provide you
      with facilities for running those works, provided that you comply with
      the terms of this License in conveying all material for which you do
      not control copyright.  Those thus making or running the covered works
      for you must do so exclusively on your behalf, under your direction
      and control, on terms that prohibit them from making any copies of
      your copyrighted material outside their relationship with you.
      
        Conveying under any other circumstances is permitted solely under
      the conditions stated below.  Sublicensing is not allowed; section 10
      makes it unnecessary.
      
        3. Protecting Users' Legal Rights From Anti-Circumvention Law.
      
        No covered work shall be deemed part of an effective technological
      measure under any applicable law fulfilling obligations under article
      11 of the WIPO copyright treaty adopted on 20 December 1996, or
      similar laws prohibiting or restricting circumvention of such
      measures.
      
        When you convey a covered work, you waive any legal power to forbid
      circumvention of technological measures to the extent such circumvention
      is effected by exercising rights under this License with respect to
      the covered work, and you disclaim any intention to limit operation or
      modification of the work as a means of enforcing, against the work's
      users, your or third parties' legal rights to forbid circumvention of
      technological measures.
      
        4. Conveying Verbatim Copies.
      
        You may convey verbatim copies of the Program's source code as you
      receive it, in any medium, provided that you conspicuously and
      appropriately publish on each copy an appropriate copyright notice;
      keep intact all notices stating that this License and any
      non-permissive terms added in accord with section 7 apply to the code;
      keep intact all notices of the absence of any warranty; and give all
      recipients a copy of this License along with the Program.
      
        You may charge any price or no price for each copy that you convey,
      and you may offer support or warranty protection for a fee.
      
        5. Conveying Modified Source Versions.
      
        You may convey a work based on the Program, or the modifications to
      produce it from the Program, in the form of source code under the
      terms of section 4, provided that you also meet all of these conditions:
      
          a) The work must carry prominent notices stating that you modified
          it, and giving a relevant date.
      
          b) The work must carry prominent notices stating that it is
          released under this License and any conditions added under section
          7.  This requirement modifies the requirement in section 4 to
          "keep intact all notices".
      
          c) You must license the entire work, as a whole, under this
          License to anyone who comes into possession of a copy.  This
          License will therefore apply, along with any applicable section 7
          additional terms, to the whole of the work, and all its parts,
          regardless of how they are packaged.  This License gives no
          permission to license the work in any other way, but it does not
          invalidate such permission if you have separately received it.
      
          d) If the work has interactive user interfaces, each must display
          Appropriate Legal Notices; however, if the Program has interactive
          interfaces that do not display Appropriate Legal Notices, your
          work need not make them do so.
      
        A compilation of a covered work with other separate and independent
      works, which are not by their nature extensions of the covered work,
      and which are not combined with it such as to form a larger program,
      in or on a volume of a storage or distribution medium, is called an
      "aggregate" if the compilation and its resulting copyright are not
      used to limit the access or legal rights of the compilation's users
      beyond what the individual works permit.  Inclusion of a covered work
      in an aggregate does not cause this License to apply to the other
      parts of the aggregate.
      
        6. Conveying Non-Source Forms.
      
        You may convey a covered work in object code form under the terms
      of sections 4 and 5, provided that you also convey the
      machine-readable Corresponding Source under the terms of this License,
      in one of these ways:
      
          a) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by the
          Corresponding Source fixed on a durable physical medium
          customarily used for software interchange.
      
          b) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by a
          written offer, valid for at least three years and valid for as
          long as you offer spare parts or customer support for that product
          model, to give anyone who possesses the object code either (1) a
          copy of the Corresponding Source for all the software in the
          product that is covered by this License, on a durable physical
          medium customarily used for software interchange, for a price no
          more than your reasonable cost of physically performing this
          conveying of source, or (2) access to copy the
          Corresponding Source from a network server at no charge.
      
          c) Convey individual copies of the object code with a copy of the
          written offer to provide the Corresponding Source.  This
          alternative is allowed only occasionally and noncommercially, and
          only if you received the object code with such an offer, in accord
          with subsection 6b.
      
          d) Convey the object code by offering access from a designated
          place (gratis or for a charge), and offer equivalent access to the
          Corresponding Source in the same way through the same place at no
          further charge.  You need not require recipients to copy the
          Corresponding Source along with the object code.  If the place to
          copy the object code is a network server, the Corresponding Source
          may be on a different server (operated by you or a third party)
          that supports equivalent copying facilities, provided you maintain
          clear directions next to the object code saying where to find the
          Corresponding Source.  Regardless of what server hosts the
          Corresponding Source, you remain obligated to ensure that it is
          available for as long as needed to satisfy these requirements.
      
          e) Convey the object code using peer-to-peer transmission, provided
          you inform other peers where the object code and Corresponding
          Source of the work are being offered to the general public at no
          charge under subsection 6d.
      
        A separable portion of the object code, whose source code is excluded
      from the Corresponding Source as a System Library, need not be
      included in conveying the object code work.
      
        A "User Product" is either (1) a "consumer product", which means any
      tangible personal property which is normally used for personal, family,
      or household purposes, or (2) anything designed or sold for incorporation
      into a dwelling.  In determining whether a product is a consumer product,
      doubtful cases shall be resolved in favor of coverage.  For a particular
      product received by a particular user, "normally used" refers to a
      typical or common use of that class of product, regardless of the status
      of the particular user or of the way in which the particular user
      actually uses, or expects or is expected to use, the product.  A product
      is a consumer product regardless of whether the product has substantial
      commercial, industrial or non-consumer uses, unless such uses represent
      the only significant mode of use of the product.
      
        "Installation Information" for a User Product means any methods,
      procedures, authorization keys, or other information required to install
      and execute modified versions of a covered work in that User Product from
      a modified version of its Corresponding Source.  The information must
      suffice to ensure that the continued functioning of the modified object
      code is in no case prevented or interfered with solely because
      modification has been made.
      
        If you convey an object code work under this section in, or with, or
      specifically for use in, a User Product, and the conveying occurs as
      part of a transaction in which the right of possession and use of the
      User Product is transferred to the recipient in perpetuity or for a
      fixed term (regardless of how the transaction is characterized), the
      Corresponding Source conveyed under this section must be accompanied
      by the Installation Information.  But this requirement does not apply
      if neither you nor any third party retains the ability to install
      modified object code on the User Product (for example, the work has
      been installed in ROM).
      
        The requirement to provide Installation Information does not include a
      requirement to continue to provide support service, warranty, or updates
      for a work that has been modified or installed by the recipient, or for
      the User Product in which it has been modified or installed.  Access to a
      network may be denied when the modification itself materially and
      adversely affects the operation of the network or violates the rules and
      protocols for communication across the network.
      
        Corresponding Source conveyed, and Installation Information provided,
      in accord with this section must be in a format that is publicly
      documented (and with an implementation available to the public in
      source code form), and must require no special password or key for
      unpacking, reading or copying.
      
        7. Additional Terms.
      
        "Additional permissions" are terms that supplement the terms of this
      License by making exceptions from one or more of its conditions.
      Additional permissions that are applicable to the entire Program shall
      be treated as though they were included in this License, to the extent
      that they are valid under applicable law.  If additional permissions
      apply only to part of the Program, that part may be used separately
      under those permissions, but the entire Program remains governed by
      this License without regard to the additional permissions.
      
        When you convey a copy of a covered work, you may at your option
      remove any additional permissions from that copy, or from any part of
      it.  (Additional permissions may be written to require their own
      removal in certain cases when you modify the work.)  You may place
      additional permissions on material, added by you to a covered work,
      for which you have or can give appropriate copyright permission.
      
        Notwithstanding any other provision of this License, for material you
      add to a covered work, you may (if authorized by the copyright holders of
      that material) supplement the terms of this License with terms:
      
          a) Disclaiming warranty or limiting liability differently from the
          terms of sections 15 and 16 of this License; or
      
          b) Requiring preservation of specified reasonable legal notices or
          author attributions in that material or in the Appropriate Legal
          Notices displayed by works containing it; or
      
          c) Prohibiting misrepresentation of the origin of that material, or
          requiring that modified versions of such material be marked in
          reasonable ways as different from the original version; or
      
          d) Limiting the use for publicity purposes of names of licensors or
          authors of the material; or
      
          e) Declining to grant rights under trademark law for use of some
          trade names, trademarks, or service marks; or
      
          f) Requiring indemnification of licensors and authors of that
          material by anyone who conveys the material (or modified versions of
          it) with contractual assumptions of liability to the recipient, for
          any liability that these contractual assumptions directly impose on
          those licensors and authors.
      
        All other non-permissive additional terms are considered "further
      restrictions" within the meaning of section 10.  If the Program as you
      received it, or any part of it, contains a notice stating that it is
      governed by this License along with a term that is a further
      restriction, you may remove that term.  If a license document contains
      a further restriction but permits relicensing or conveying under this
      License, you may add to a covered work material governed by the terms
      of that license document, provided that the further restriction does
      not survive such relicensing or conveying.
      
        If you add terms to a covered work in accord with this section, you
      must place, in the relevant source files, a statement of the
      additional terms that apply to those files, or a notice indicating
      where to find the applicable terms.
      
        Additional terms, permissive or non-permissive, may be stated in the
      form of a separately written license, or stated as exceptions;
      the above requirements apply either way.
      
        8. Termination.
      
        You may not propagate or modify a covered work except as expressly
      provided under this License.  Any attempt otherwise to propagate or
      modify it is void, and will automatically terminate your rights under
      this License (including any patent licenses granted under the third
      paragraph of section 11).
      
        However, if you cease all violation of this License, then your
      license from a particular copyright holder is reinstated (a)
      provisionally, unless and until the copyright holder explicitly and
      finally terminates your license, and (b) permanently, if the copyright
      holder fails to notify you of the violation by some reasonable means
      prior to 60 days after the cessation.
      
        Moreover, your license from a particular copyright holder is
      reinstated permanently if the copyright holder notifies you of the
      violation by some reasonable means, this is the first time you have
      received notice of violation of this License (for any work) from that
      copyright holder, and you cure the violation prior to 30 days after
      your receipt of the notice.
      
        Termination of your rights under this section does not terminate the
      licenses of parties who have received copies or rights from you under
      this License.  If your rights have been terminated and not permanently
      reinstated, you do not qualify to receive new licenses for the same
      material under section 10.
      
        9. Acceptance Not Required for Having Copies.
      
        You are not required to accept this License in order to receive or
      run a copy of the Program.  Ancillary propagation of a covered work
      occurring solely as a consequence of using peer-to-peer transmission
      to receive a copy likewise does not require acceptance.  However,
      nothing other than this License grants you permission to propagate or
      modify any covered work.  These actions infringe copyright if you do
      not accept this License.  Therefore, by modifying or propagating a
      covered work, you indicate your acceptance of this License to do so.
      
        10. Automatic Licensing of Downstream Recipients.
      
        Each time you convey a covered work, the recipient automatically
      receives a license from the original licensors, to run, modify and
      propagate that work, subject to this License.  You are not responsible
      for enforcing compliance by third parties with this License.
      
        An "entity transaction" is a transaction transferring control of an
      organization, or substantially all assets of one, or subdividing an
      organization, or merging organizations.  If propagation of a covered
      work results from an entity transaction, each party to that
      transaction who receives a copy of the work also receives whatever
      licenses to the work the party's predecessor in interest had or could
      give under the previous paragraph, plus a right to possession of the
      Corresponding Source of the work from the predecessor in interest, if
      the predecessor has it or can get it with reasonable efforts.
      
        You may not impose any further restrictions on the exercise of the
      rights granted or affirmed under this License.  For example, you may
      not impose a license fee, royalty, or other charge for exercise of
      rights granted under this License, and you may not initiate litigation
      (including a cross-claim or counterclaim in a lawsuit) alleging that
      any patent claim is infringed by making, using, selling, offering for
      sale, or importing the Program or any portion of it.
      
        11. Patents.
      
        A "contributor" is a copyright holder who authorizes use under this
      License of the Program or a work on which the Program is based.  The
      work thus licensed is called the contributor's "contributor version".
      
        A contributor's "essential patent claims" are all patent claims
      owned or controlled by the contributor, whether already acquired or
      hereafter acquired, that would be infringed by some manner, permitted
      by this License, of making, using, or selling its contributor version,
      but do not include claims that would be infringed only as a
      consequence of further modification of the contributor version.  For
      purposes of this definition, "control" includes the right to grant
      patent sublicenses in a manner consistent with the requirements of
      this License.
      
        Each contributor grants you a non-exclusive, worldwide, royalty-free
      patent license under the contributor's essential patent claims, to
      make, use, sell, offer for sale, import and otherwise run, modify and
      propagate the contents of its contributor version.
      
        In the following three paragraphs, a "patent license" is any express
      agreement or commitment, however denominated, not to enforce a patent
      (such as an express permission to practice a patent or covenant not to
      sue for patent infringement).  To "grant" such a patent license to a
      party means to make such an agreement or commitment not to enforce a
      patent against the party.
      
        If you convey a covered work, knowingly relying on a patent license,
      and the Corresponding Source of the work is not available for anyone
      to copy, free of charge and under the terms of this License, through a
      publicly available network server or other readily accessible means,
      then you must either (1) cause the Corresponding Source to be so
      available, or (2) arrange to deprive yourself of the benefit of the
      patent license for this particular work, or (3) arrange, in a manner
      consistent with the requirements of this License, to extend the patent
      license to downstream recipients.  "Knowingly relying" means you have
      actual knowledge that, but for the patent license, your conveying the
      covered work in a country, or your recipient's use of the covered work
      in a country, would infringe one or more identifiable patents in that
      country that you have reason to believe are valid.
      
        If, pursuant to or in connection with a single transaction or
      arrangement, you convey, or propagate by procuring conveyance of, a
      covered work, and grant a patent license to some of the parties
      receiving the covered work authorizing them to use, propagate, modify
      or convey a specific copy of the covered work, then the patent license
      you grant is automatically extended to all recipients of the covered
      work and works based on it.
      
        A patent license is "discriminatory" if it does not include within
      the scope of its coverage, prohibits the exercise of, or is
      conditioned on the non-exercise of one or more of the rights that are
      specifically granted under this License.  You may not convey a covered
      work if you are a party to an arrangement with a third party that is
      in the business of distributing software, under which you make payment
      to the third party based on the extent of your activity of conveying
      the work, and under which the third party grants, to any of the
      parties who would receive the covered work from you, a discriminatory
      patent license (a) in connection with copies of the covered work
      conveyed by you (or copies made from those copies), or (b) primarily
      for and in connection with specific products or compilations that
      contain the covered work, unless you entered into that arrangement,
      or that patent license was granted, prior to 28 March 2007.
      
        Nothing in this License shall be construed as excluding or limiting
      any implied license or other defenses to infringement that may
      otherwise be available to you under applicable patent law.
      
        12. No Surrender of Others' Freedom.
      
        If conditions are imposed on you (whether by court order, agreement or
      otherwise) that contradict the conditions of this License, they do not
      excuse you from the conditions of this License.  If you cannot convey a
      covered work so as to satisfy simultaneously your obligations under this
      License and any other pertinent obligations, then as a consequence you may
      not convey it at all.  For example, if you agree to terms that obligate you
      to collect a royalty for further conveying from those to whom you convey
      the Program, the only way you could satisfy both those terms and this
      License would be to refrain entirely from conveying the Program.
      
        13. Use with the GNU Affero General Public License.
      
        Notwithstanding any other provision of this License, you have
      permission to link or combine any covered work with a work licensed
      under version 3 of the GNU Affero General Public License into a single
      combined work, and to convey the resulting work.  The terms of this
      License will continue to apply to the part which is the covered work,
      but the special requirements of the GNU Affero General Public License,
      section 13, concerning interaction through a network will apply to the
      combination as such.
      
        14. Revised Versions of this License.
      
        The Free Software Foundation may publish revised and/or new versions of
      the GNU General Public License from time to time.  Such new versions will
      be similar in spirit to the present version, but may differ in detail to
      address new problems or concerns.
      
        Each version is given a distinguishing version number.  If the
      Program specifies that a certain numbered version of the GNU General
      Public License "or any later version" applies to it, you have the
      option of following the terms and conditions either of that numbered
      version or of any later version published by the Free Software
      Foundation.  If the Program does not specify a version number of the
      GNU General Public License, you may choose any version ever published
      by the Free Software Foundation.
      
        If the Program specifies that a proxy can decide which future
      versions of the GNU General Public License can be used, that proxy's
      public statement of acceptance of a version permanently authorizes you
      to choose that version for the Program.
      
        Later license versions may give you additional or different
      permissions.  However, no additional obligations are imposed on any
      author or copyright holder as a result of your choosing to follow a
      later version.
      
        15. Disclaimer of Warranty.
      
        THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
      APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
      HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
      OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
      THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
      IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
      ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
      
        16. Limitation of Liability.
      
        IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
      WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
      THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
      GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
      USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
      DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
      PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
      EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
      SUCH DAMAGES.
      
        17. Interpretation of Sections 15 and 16.
      
        If the disclaimer of warranty and limitation of liability provided
      above cannot be given local legal effect according to their terms,
      reviewing courts shall apply local law that most closely approximates
      an absolute waiver of all civil liability in connection with the
      Program, unless a warranty or assumption of liability accompanies a
      copy of the Program in return for a fee.
      
                           END OF TERMS AND CONDITIONS
      
                  How to Apply These Terms to Your New Programs
      
        If you develop a new program, and you want it to be of the greatest
      possible use to the public, the best way to achieve this is to make it
      free software which everyone can redistribute and change under these terms.
      
        To do so, attach the following notices to the program.  It is safest
      to attach them to the start of each source file to most effectively
      state the exclusion of warranty; and each file should have at least
      the "copyright" line and a pointer to where the full notice is found.
      
          <one line to give the program's name and a brief idea of what it does.>
          Copyright (C) <year>  <name of author>
      
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
          the Free Software Foundation, either version 3 of the License, or
          (at your option) any later version.
      
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
          GNU General Public License for more details.
      
          You should have received a copy of the GNU General Public License
          along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      Also add information on how to contact you by electronic and paper mail.
      
        If the program does terminal interaction, make it output a short
      notice like this when it starts in an interactive mode:
      
          <program>  Copyright (C) <year>  <name of author>
          This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
          This is free software, and you are welcome to redistribute it
          under certain conditions; type `show c' for details.
      
      The hypothetical commands `show w' and `show c' should show the appropriate
      parts of the General Public License.  Of course, your program's commands
      might be different; for a GUI interface, you would use an "about box".
      
        You should also get your employer (if you work as a programmer) or school,
      if any, to sign a "copyright disclaimer" for the program, if necessary.
      For more information on this, and how to apply and follow the GNU GPL, see
      <http://www.gnu.org/licenses/>.
      
        The GNU General Public License does not permit incorporating your program
      into proprietary programs.  If your program is a subroutine library, you
      may consider it more useful to permit linking proprietary applications with
      the library.  If this is what you want to do, use the GNU Lesser General
      Public License instead of this License.  But first, please read
      <http://www.gnu.org/philosophy/why-not-lgpl.html>.
      
      */

      File 4 of 4: ERC20ByMetadrop
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B7~&@@@@@@@@@@@@@@@@G!:&@@@@@@@@@@@@@@@&5~.&@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&P~    P@@@@@@@@@@@@&Y^    G@@@@@@@@@@@@#J:    G@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@#J:       G@@@@@@@@@B7.       G@@@@@@@@&G!.       G@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@G!.          G@@@@@&P~           B@@@@@&Y:           G@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@&Y^              ~&&#J:              ^#&B7.              G@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@#7.                                                         &@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@G                                                         ^5&@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@J              ^5&@&:              ~P&@&:             .7B@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@J          .!G@@@@@@J          .?B@@@@@@J          :Y#@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@J       :J#@@@@@@@@@J       ^5&@@@@@@@@@?      .~P&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@J    ~P&@@@@@@@@@@@@J   .7B@@@@@@@@@@@@@?   :?#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@B^?B@@@@@@@@@@@@@@@@B~J#@@@@@@@@@@@@@@@@#!5&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      //
      //          Telegram: t.me/zyncoinerc20
      //          Twitter:  twitter.com/ZynCoinERC20
      //          Website:  https://www.zyncoin.website
      //
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@                                                                                                @@
      // @@   This token was launched using software provided by Metadrop. To learn more or to launch      @@
      // @@   your own token, visit: https://metadrop.com. See legal info at the end of this file.         @@
      // @@                                                                                                @@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      //
      // SPDX-License-Identifier: BUSL-1.1
      // Metadrop Contracts (v2.1.0)
      //// Sources flattened with hardhat v2.17.2 https://hardhat.org
      
      // File @openzeppelin/contracts/token/ERC20/[email protected]
      
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
      }
      
      // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
      
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
      
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
      
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      
      // File @uniswap/v2-periphery/contracts/interfaces/[email protected]
      
      pragma solidity >=0.6.2;
      
      interface IUniswapV2Router01 {
          function factory() external pure returns (address);
          function WETH() external pure returns (address);
      
          function addLiquidity(
              address tokenA,
              address tokenB,
              uint amountADesired,
              uint amountBDesired,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) external returns (uint amountA, uint amountB, uint liquidity);
          function addLiquidityETH(
              address token,
              uint amountTokenDesired,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
          function removeLiquidity(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) external returns (uint amountA, uint amountB);
          function removeLiquidityETH(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external returns (uint amountToken, uint amountETH);
          function removeLiquidityWithPermit(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountA, uint amountB);
          function removeLiquidityETHWithPermit(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountToken, uint amountETH);
          function swapExactTokensForTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external returns (uint[] memory amounts);
          function swapTokensForExactTokens(
              uint amountOut,
              uint amountInMax,
              address[] calldata path,
              address to,
              uint deadline
          ) external returns (uint[] memory amounts);
          function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              payable
              returns (uint[] memory amounts);
          function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
              external
              returns (uint[] memory amounts);
          function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              returns (uint[] memory amounts);
          function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
              external
              payable
              returns (uint[] memory amounts);
      
          function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
          function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
          function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
          function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
          function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
      }
      
      // File @uniswap/v2-periphery/contracts/interfaces/[email protected]
      
      pragma solidity >=0.6.2;
      
      interface IUniswapV2Router02 is IUniswapV2Router01 {
          function removeLiquidityETHSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external returns (uint amountETH);
          function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountETH);
      
          function swapExactTokensForTokensSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external;
          function swapExactETHForTokensSupportingFeeOnTransferTokens(
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external payable;
          function swapExactTokensForETHSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external;
      }
      
      // File @openzeppelin/contracts/utils/[email protected]
      
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      
      // File @openzeppelin/contracts/utils/structs/[email protected]
      
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
      // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```solidity
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       *
       * [WARNING]
       * ====
       * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
       * unusable.
       * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
       *
       * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
       * array of EnumerableSet.
       * ====
       */
      library EnumerableSet {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
      
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
      
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
      
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
      
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
      
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
      
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastValue = set._values[lastIndex];
      
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastValue;
                      // Update the index for the moved value
                      set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                  }
      
                  // Delete the slot where the moved value was stored
                  set._values.pop();
      
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
      
                  return true;
              } else {
                  return false;
              }
          }
      
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
      
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
      
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
      
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
      
          // Bytes32Set
      
          struct Bytes32Set {
              Set _inner;
          }
      
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
      
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
      
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
      
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
      
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
      
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              bytes32[] memory store = _values(set._inner);
              bytes32[] memory result;
      
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
      
              return result;
          }
      
          // AddressSet
      
          struct AddressSet {
              Set _inner;
          }
      
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
      
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
      
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
      
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
      
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
      
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
      
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
      
              return result;
          }
      
          // UintSet
      
          struct UintSet {
              Set _inner;
          }
      
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
      
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
      
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
      
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
      
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
      
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
      
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
      
              return result;
          }
      }
      
      // File @uniswap/v2-core/contracts/interfaces/[email protected]
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Factory {
          event PairCreated(address indexed token0, address indexed token1, address pair, uint);
      
          function feeTo() external view returns (address);
          function feeToSetter() external view returns (address);
      
          function getPair(address tokenA, address tokenB) external view returns (address pair);
          function allPairs(uint) external view returns (address pair);
          function allPairsLength() external view returns (uint);
      
          function createPair(address tokenA, address tokenB) external returns (address pair);
      
          function setFeeTo(address) external;
          function setFeeToSetter(address) external;
      }
      
      // File contracts/ERC20Factory/ERC20/IERC20ConfigByMetadrop.sol
      
      // Metadrop Contracts (v2.1.0)
      
      /**
       *
       * @title IERC20ByMetadrop.sol. Interface for metadrop ERC20 standard
       *
       * @author metadrop
       *
       */
      
      pragma solidity 0.8.21;
      
      interface IERC20ConfigByMetadrop {
        enum VaultType {
          unicrypt,
          metavault
        }
      
        struct ERC20Config {
          bytes baseParameters;
          bytes supplyParameters;
          bytes taxParameters;
          bytes poolParameters;
        }
      
        struct ERC20BaseParameters {
          string name;
          string symbol;
          bool addLiquidityOnCreate;
          bool usesDRIPool;
        }
      
        struct ERC20SupplyParameters {
          uint256 maxSupply;
          uint256 lpSupply;
          uint256 projectSupply;
          uint256 maxTokensPerWallet;
          uint256 maxTokensPerTxn;
          uint256 lpLockupInDays;
          uint256 botProtectionDurationInSeconds;
          address projectSupplyRecipient;
          address projectLPOwner;
          bool burnLPTokens;
        }
      
        struct ERC20TaxParameters {
          uint256 projectBuyTaxBasisPoints;
          uint256 projectSellTaxBasisPoints;
          uint256 taxSwapThresholdBasisPoints;
          uint256 metadropBuyTaxBasisPoints;
          uint256 metadropSellTaxBasisPoints;
          uint256 metadropTaxPeriodInDays;
          address projectTaxRecipient;
          address metadropTaxRecipient;
          uint256 metadropMinBuyTaxBasisPoints; // new in v5
          uint256 metadropMinSellTaxBasisPoints; // new in v5
          uint256 metadropBuyTaxProportionBasisPoints; // new in v5
          uint256 metadropSellTaxProportionBasisPoints; // new in v5
          uint256 autoBurnDurationInBlocks; // new in v5
          uint256 autoBurnBasisPoints; // new in v5
        }
      
        struct ERC20PoolParameters {
          uint256 poolSupply;
          uint256 poolStartDate;
          uint256 poolEndDate;
          uint256 poolVestingInDays;
          uint256 poolMaxETH;
          uint256 poolPerAddressMaxETH;
          uint256 poolMinETH;
          uint256 poolPerTransactionMinETH;
        }
      }
      
      // File contracts/Global/IConfigStructures.sol
      
      // Metadrop Contracts (v2.1.0)
      
      /**
       *
       * @title IConfigStructures.sol. Interface for common config structures used accross the platform
       *
       * @author metadrop
       *
       */
      
      pragma solidity 0.8.21;
      
      interface IConfigStructures {
        enum DropStatus {
          approved,
          deployed,
          cancelled
        }
      
        enum TemplateStatus {
          live,
          terminated
        }
      
        // The current status of the mint:
        //   - notEnabled: This type of mint is not part of this drop
        //   - notYetOpen: This type of mint is part of the drop, but it hasn't started yet
        //   - open: it's ready for ya, get in there.
        //   - finished: been and gone.
        //   - unknown: theoretically impossible.
        enum MintStatus {
          notEnabled,
          notYetOpen,
          open,
          finished,
          unknown
        }
      
        struct SubListConfig {
          uint256 start;
          uint256 end;
          uint256 phaseMaxSupply;
        }
      
        struct PrimarySaleModuleInstance {
          address instanceAddress;
          string instanceDescription;
        }
      
        struct NFTModuleConfig {
          uint256 templateId;
          bytes configData;
          bytes vestingData;
        }
      
        struct PrimarySaleModuleConfig {
          uint256 templateId;
          bytes configData;
        }
      
        struct ProjectBeneficiary {
          address payable payeeAddress;
          uint256 payeeShares;
        }
      
        struct VestingConfig {
          uint256 start;
          uint256 projectUpFrontShare;
          uint256 projectVestedShare;
          uint256 vestingPeriodInDays;
          uint256 vestingCliff;
          ProjectBeneficiary[] projectPayees;
        }
      
        struct RoyaltySplitterModuleConfig {
          uint256 templateId;
          bytes configData;
        }
      
        struct InLifeModuleConfig {
          uint256 templateId;
          bytes configData;
        }
      
        struct InLifeModules {
          InLifeModuleConfig[] modules;
        }
      
        struct NFTConfig {
          uint256 supply;
          string name;
          string symbol;
          bytes32 positionProof;
          bool includePriorPhasesInMintTracking;
          bool singleMetadataCollection;
          uint256 reservedAllocation;
          uint256 assistanceRequestWindowInSeconds;
        }
      
        struct Template {
          TemplateStatus status;
          uint16 templateNumber;
          uint32 loadedDate;
          address payable templateAddress;
          string templateDescription;
        }
      
        struct RoyaltyDetails {
          address newRoyaltyPaymentSplitterInstance;
          uint96 royaltyFromSalesInBasisPoints;
        }
      
        struct SignedDropMessageDetails {
          uint256 messageTimeStamp;
          bytes32 messageHash;
          bytes messageSignature;
        }
      }
      
      // File contracts/ERC20Factory/ERC20/IERC20ByMetadrop.sol
      
      // Metadrop Contracts (v2.1.0)
      
      pragma solidity 0.8.21;
      
      /**
       * @dev Metadrop core ERC-20 contract, interface
       */
      interface IERC20ByMetadrop is
        IConfigStructures,
        IERC20,
        IERC20ConfigByMetadrop,
        IERC20Metadata
      {
        event AutoSwapThresholdUpdated(uint256 oldThreshold, uint256 newThreshold);
      
        event ExternalCallError(uint256 identifier);
      
        event InitialLiquidityAdded(uint256 tokenA, uint256 tokenB, uint256 lpToken);
      
        event LimitsUpdated(
          uint256 oldMaxTokensPerTransaction,
          uint256 newMaxTokensPerTransaction,
          uint256 oldMaxTokensPerWallet,
          uint256 newMaxTokensPerWallet
        );
      
        event LiquidityLocked(uint256 lpTokens, uint256 lpLockupInDays);
      
        event LiquidityBurned(uint256 lpTokens);
      
        event LiquidityPoolCreated(address addedPool);
      
        event LiquidityPoolAdded(address addedPool);
      
        event LiquidityPoolRemoved(address removedPool);
      
        event MetadropTaxBasisPointsChanged(
          uint256 oldBuyBasisPoints,
          uint256 newBuyBasisPoints,
          uint256 oldSellBasisPoints,
          uint256 newSellBasisPoints
        );
      
        event ProjectTaxBasisPointsChanged(
          uint256 oldBuyBasisPoints,
          uint256 newBuyBasisPoints,
          uint256 oldSellBasisPoints,
          uint256 newSellBasisPoints
        );
      
        event RevenueAutoSwap();
      
        event ProjectTaxRecipientUpdated(address treasury);
      
        event UnlimitedAddressAdded(address addedUnlimted);
      
        event UnlimitedAddressRemoved(address removedUnlimted);
      
        event ValidCallerAdded(bytes32 addedValidCaller);
      
        event ValidCallerRemoved(bytes32 removedValidCaller);
      
        /**
         * @dev function {addInitialLiquidity}
         *
         * Add initial liquidity to the uniswap pair
         *
         * @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
         * @param lpLockupInDaysOverride_ The number of days to lock liquidity NOTE you can pass 0 to use the stored value.
         * This value is an override, and will override a stored value which is LOWER that it. If the value you are passing is
         * LOWER than the stored value the stored value will not be reduced.
         *
         * Example usage 1: When creating the coin the lpLockupInDays is set to 0. This means that on this call the
         * user can set the lockup to any value they like, as all integer values greater than zero will be used to override
         * that set in storage.
         *
         * Example usage 2: When using a DRI Pool the lockup period is set on this contract and the pool need not know anything
         * about this setting. The pool can pass back a 0 on this call and know that the existing value stored on this contract
         * will be used.
         * @param burnLPTokensOverride_ If the LP tokens should be burned (otherwise they are locked). This is an override field
         * that can ONLY be used to override a held value of FALSE with a new value of TRUE.
         *
         * Example usage 1: When creating the coin the user didn't add liquidity, or specify that the LP tokens were to be burned.
         * So burnLPTokens is held as FALSE. When they add liquidity they want to lock tokens, so they pass this in as FALSE again,
         * and it remains FALSE.
         *
         * Example usage 2: As above, but when later adding liquidity the user wants to burn the LP. So the stored value is FALSE
         * and the user passes TRUE into this method. The TRUE overrides the held value of FALSE and the tokens are burned.
         *
         * Example uusage 3: The user is using a DRI pool and they have specified on the coin creation that the LP tokens are to
         * be burned. This contract therefore holds TRUE for burnLPTokens. The DRI pool does not need to know what the user has
         * selected. It can safely pass back FALSE to this method call and the stored value of TRUE will remain, resulting in the
         * LP tokens being burned.
         */
        function addInitialLiquidity(
          uint256 vaultFee_,
          uint256 lpLockupInDaysOverride_,
          bool burnLPTokensOverride_
        ) external payable;
      
        /**
         * @dev function {isLiquidityPool}
         *
         * Return if an address is a liquidity pool
         *
         * @param queryAddress_ The address being queried
         * @return bool The address is / isn't a liquidity pool
         */
        function isLiquidityPool(address queryAddress_) external view returns (bool);
      
        /**
         * @dev function {liquidityPools}
         *
         * Returns a list of all liquidity pools
         *
         * @return liquidityPools_ a list of all liquidity pools
         */
        function liquidityPools()
          external
          view
          returns (address[] memory liquidityPools_);
      
        /**
         * @dev function {addLiquidityPool} onlyOwner
         *
         * Allows the manager to add a liquidity pool to the pool enumerable set
         *
         * @param newLiquidityPool_ The address of the new liquidity pool
         */
        function addLiquidityPool(address newLiquidityPool_) external;
      
        /**
         * @dev function {removeLiquidityPool} onlyOwner
         *
         * Allows the manager to remove a liquidity pool
         *
         * @param removedLiquidityPool_ The address of the old removed liquidity pool
         */
        function removeLiquidityPool(address removedLiquidityPool_) external;
      
        /**
         * @dev function {isUnlimited}
         *
         * Return if an address is unlimited (is not subject to per txn and per wallet limits)
         *
         * @param queryAddress_ The address being queried
         * @return bool The address is / isn't unlimited
         */
        function isUnlimited(address queryAddress_) external view returns (bool);
      
        /**
         * @dev function {unlimitedAddresses}
         *
         * Returns a list of all unlimited addresses
         *
         * @return unlimitedAddresses_ a list of all unlimited addresses
         */
        function unlimitedAddresses()
          external
          view
          returns (address[] memory unlimitedAddresses_);
      
        /**
         * @dev function {addUnlimited} onlyOwner
         *
         * Allows the manager to add an unlimited address
         *
         * @param newUnlimited_ The address of the new unlimited address
         */
        function addUnlimited(address newUnlimited_) external;
      
        /**
         * @dev function {removeUnlimited} onlyOwner
         *
         * Allows the manager to remove an unlimited address
         *
         * @param removedUnlimited_ The address of the old removed unlimited address
         */
        function removeUnlimited(address removedUnlimited_) external;
      
        /**
         * @dev function {isValidCaller}
         *
         * Return if an address is a valid caller
         *
         * @param queryHash_ The code hash being queried
         * @return bool The address is / isn't a valid caller
         */
        function isValidCaller(bytes32 queryHash_) external view returns (bool);
      
        /**
         * @dev function {validCallers}
         *
         * Returns a list of all valid caller code hashes
         *
         * @return validCallerHashes_ a list of all valid caller code hashes
         */
        function validCallers()
          external
          view
          returns (bytes32[] memory validCallerHashes_);
      
        /**
         * @dev function {addValidCaller} onlyOwner
         *
         * Allows the owner to add the hash of a valid caller
         *
         * @param newValidCallerHash_ The hash of the new valid caller
         */
        function addValidCaller(bytes32 newValidCallerHash_) external;
      
        /**
         * @dev function {removeValidCaller} onlyOwner
         *
         * Allows the owner to remove a valid caller
         *
         * @param removedValidCallerHash_ The hash of the old removed valid caller
         */
        function removeValidCaller(bytes32 removedValidCallerHash_) external;
      
        /**
         * @dev function {setProjectTaxRecipient} onlyOwner
         *
         * Allows the manager to set the project tax recipient address
         *
         * @param projectTaxRecipient_ New recipient address
         */
        function setProjectTaxRecipient(address projectTaxRecipient_) external;
      
        /**
         * @dev function {setSwapThresholdBasisPoints} onlyOwner
         *
         * Allows the manager to set the autoswap threshold
         *
         * @param swapThresholdBasisPoints_ New swap threshold in basis points
         */
        function setSwapThresholdBasisPoints(
          uint16 swapThresholdBasisPoints_
        ) external;
      
        /**
         * @dev function {setProjectTaxRates} onlyOwner
         *
         * Change the tax rates, subject to only ever decreasing
         *
         * @param newProjectBuyTaxBasisPoints_ The new buy tax rate
         * @param newProjectSellTaxBasisPoints_ The new sell tax rate
         */
        function setProjectTaxRates(
          uint16 newProjectBuyTaxBasisPoints_,
          uint16 newProjectSellTaxBasisPoints_
        ) external;
      
        /**
         * @dev function {setLimits} onlyOwner
         *
         * Change the limits on transactions and holdings
         *
         * @param newMaxTokensPerTransaction_ The new per txn limit
         * @param newMaxTokensPerWallet_ The new tokens per wallet limit
         */
        function setLimits(
          uint256 newMaxTokensPerTransaction_,
          uint256 newMaxTokensPerWallet_
        ) external;
      
        /**
         * @dev function {limitsEnforced}
         *
         * Return if limits are enforced on this contract
         *
         * @return bool : they are / aren't
         */
        function limitsEnforced() external view returns (bool);
      
        /**
         * @dev getMetadropBuyTaxBasisPoints
         *
         * Return the metadrop buy tax basis points given the timed expiry
         */
        function getMetadropBuyTaxBasisPoints() external view returns (uint256);
      
        /**
         * @dev getMetadropSellTaxBasisPoints
         *
         * Return the metadrop sell tax basis points given the timed expiry
         */
        function getMetadropSellTaxBasisPoints() external view returns (uint256);
      
        /**
         * @dev totalBuyTaxBasisPoints
         *
         * Provide easy to view tax total:
         */
        function totalBuyTaxBasisPoints() external view returns (uint256);
      
        /**
         * @dev totalSellTaxBasisPoints
         *
         * Provide easy to view tax total:
         */
        function totalSellTaxBasisPoints() external view returns (uint256);
      
        /**
         * @dev distributeTaxTokens
         *
         * Allows the distribution of tax tokens to the designated recipient(s)
         *
         * As part of standard processing the tax token balance being above the threshold
         * will trigger an autoswap to ETH and distribution of this ETH to the designated
         * recipients. This is automatic and there is no need for user involvement.
         *
         * As part of this swap there are a number of calculations performed, particularly
         * if the tax balance is above MAX_SWAP_THRESHOLD_MULTIPLE.
         *
         * Testing indicates that these calculations are safe. But given the data / code
         * interactions it remains possible that some edge case set of scenarios may cause
         * an issue with these calculations.
         *
         * This method is therefore provided as a 'fallback' option to safely distribute
         * accumulated taxes from the contract, with a direct transfer of the ERC20 tokens
         * themselves.
         */
        function distributeTaxTokens() external;
      
        /**
         * @dev function {rescueETH} onlyOwner
         *
         * A withdraw function to allow ETH to be rescued.
         *
         * This contract should never hold ETH. The only envisaged scenario where
         * it might hold ETH is a failed autoswap where the uniswap swap has completed,
         * the recipient of ETH reverts, the contract then wraps to WETH and the
         * wrap to WETH fails.
         *
         * This feels unlikely. But, for safety, we include this method.
         *
         * @param amount_ The amount to withdraw
         */
        function rescueETH(uint256 amount_) external;
      
        /**
         * @dev function {rescueERC20}
         *
         * A withdraw function to allow ERC20s (except address(this)) to be rescued.
         *
         * This contract should never hold ERC20s other than tax tokens. The only envisaged
         * scenario where it might hold an ERC20 is a failed autoswap where the uniswap swap
         * has completed, the recipient of ETH reverts, the contract then wraps to WETH, the
         * wrap to WETH succeeds, BUT then the transfer of WETH fails.
         *
         * This feels even less likely than the scenario where ETH is held on the contract.
         * But, for safety, we include this method.
         *
         * @param token_ The ERC20 contract
         * @param amount_ The amount to withdraw
         */
        function rescueERC20(address token_, uint256 amount_) external;
      
        /**
         * @dev function {rescueExcessToken}
         *
         * A withdraw function to allow ERC20s from this address that are above
         * the accrued tax balance to be rescued.
         */
        function rescueExcessToken(uint256 amount_) external;
      
        /**
         * @dev Destroys a `value` amount of tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 value) external;
      
        /**
         * @dev Destroys a `value` amount of tokens from `account`, deducting from
         * the caller's allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `value`.
         */
        function burnFrom(address account, uint256 value) external;
      }
      
      // File contracts/Global/IErrors.sol
      
      // Metadrop Contracts (v2.1.0)
      
      /**
       *
       * @title IErrors.sol. Interface for error definitions used across the platform
       *
       * @author metadrop
       *
       */
      
      pragma solidity 0.8.21;
      
      interface IErrors {
        enum BondingCurveErrorType {
          OK, //                                                  No error
          INVALID_NUMITEMS, //                                    The numItem value is 0
          SPOT_PRICE_OVERFLOW //                                  The updated spot price doesn't fit into 128 bits
        }
      
        error AdapterParamsMustBeEmpty(); //                      The adapter parameters on this LZ call must be empty.
      
        error AdditionToPoolIsBelowPerTransactionMinimum(); //    The contribution amount is less than the minimum.
      
        error AdditionToPoolWouldExceedPoolCap(); //              This addition to the pool would exceed the pool cap.
      
        error AdditionToPoolWouldExceedPerAddressCap(); //        This addition to the pool would exceed the per address cap.
      
        error AddressAlreadySet(); //                             The address being set can only be set once, and is already non-0.
      
        error AllowanceDecreasedBelowZero(); //                   You cannot decrease the allowance below zero.
      
        error AlreadyInitialised(); //                            The contract is already initialised: it cannot be initialised twice!
      
        error AmountExceedsAvailable(); //                        You are requesting more token than is available.
      
        error ApprovalCallerNotOwnerNorApproved(); //             The caller must own the token or be an approved operator.
      
        error ApproveFromTheZeroAddress(); //                     Approval cannot be called from the zero address (indeed, how have you??).
      
        error ApproveToTheZeroAddress(); //                       Approval cannot be given to the zero address.
      
        error ApprovalQueryForNonexistentToken(); //              The token does not exist.
      
        error AuctionStatusIsNotEnded(); //                       Throw if the action required the auction to be closed, and it isn't.
      
        error AuctionStatusIsNotOpen(); //                        Throw if the action requires the auction to be open, and it isn't.
      
        error AuxCallFailed(
          address[] modules,
          uint256 value,
          bytes data,
          uint256 txGas
        ); //                                                     An auxilliary call from the drop factory failed.
      
        error BalanceMismatch(); //                               An error when comparing balance amounts.
      
        error BalanceQueryForZeroAddress(); //                    Cannot query the balance for the zero address.
      
        error BidMustBeBelowTheFloorWhenReducingQuantity(); //    Only bids that are below the floor can reduce the quantity of the bid.
      
        error BidMustBeBelowTheFloorForRefundDuringAuction(); //  Only bids that are below the floor can be refunded during the auction.
      
        error BondingCurveError(BondingCurveErrorType error); //  An error of the type specified has occured in bonding curve processing.
      
        error botProtectionDurationInSecondsMustFitUint128(); //  botProtectionDurationInSeconds cannot be too large.
      
        error BurnExceedsBalance(); //                            The amount you have selected to burn exceeds the addresses balance.
      
        error BurnFromTheZeroAddress(); //                        Tokens cannot be burned from the zero address. (Also, how have you called this!?!)
      
        error CallerIsNotDepositBoxOwner(); //                    The caller is not the owner of the deposit box.
      
        error CallerIsNotFactory(); //                            The caller of this function must match the factory address in storage.
      
        error CallerIsNotFactoryOrProjectOwner(); //              The caller of this function must match the factory address OR project owner address.
      
        error CallerIsNotFactoryProjectOwnerOrPool(); //          The caller of this function must match the factory address, project owner or pool address.
      
        error CallerIsNotTheOwner(); //                           The caller is not the owner of this contract.
      
        error CallerIsNotTheManager(); //                         The caller is not the manager of this contract.
      
        error CallerMustBeLzApp(); //                             The caller must be an LZ application.
      
        error CallerIsNotPlatformAdmin(address caller); //        The caller of this function must be part of the platformAdmin group.
      
        error CallerIsNotSuperAdmin(address caller); //           The caller of this function must match the superAdmin address in storage.
      
        error CannotAddLiquidityOnCreateAndUseDRIPool(); //       Cannot use both liquidity added on create and a DRIPool in the same token.
      
        error CannotPerformDuringAutoswap(); //                   Cannot call this function during an autoswap.
      
        error CannotSetNewOwnerToTheZeroAddress(); //             You can't set the owner of this contract to the zero address (address(0)).
      
        error CannotSetToZeroAddress(); //                        The corresponding address cannot be set to the zero address (address(0)).
      
        error CannotSetNewManagerToTheZeroAddress(); //           Cannot transfer the manager to the zero address (address(0)).
      
        error CannotWithdrawThisToken(); //                       Cannot withdraw the specified token.
      
        error CanOnlyReduce(); //                                 The given operation can only reduce the value specified.
      
        error CollectionAlreadyRevealed(); //                     The collection is already revealed; you cannot call reveal again.
      
        error ContractIsDecommissioned(); //                      This contract is decommissioned!
      
        error ContractIsPaused(); //                              The call requires the contract to be unpaused, and it is paused.
      
        error ContractIsNotPaused(); //                           The call required the contract to be paused, and it is NOT paused.
      
        error DecreasedAllowanceBelowZero(); //                   The request would decrease the allowance below zero, and that is not allowed.
      
        error DestinationIsNotTrustedSource(); //                 The destination that is being called through LZ has not been set as trusted.
      
        error DeductionsOnBuyExceedOrEqualOneHundredPercent(); // The total of all buy deductions cannot equal or exceed 100%.
      
        error DeployerOnly(); //                                  This method can only be called by the deployer address.
      
        error DeploymentError(); //                               Error on deployment.
      
        error DepositBoxIsNotOpen(); //                           This action cannot complete as the deposit box is not open.
      
        error DriPoolAddressCannotBeAddressZero(); //             The Dri Pool address cannot be the zero address.
      
        error GasLimitIsTooLow(); //                              The gas limit for the LayerZero call is too low.
      
        error IncorrectConfirmationValue(); //                    You need to enter the right confirmation value to call this funtion (usually 69420).
      
        error IncorrectPayment(); //                              The function call did not include passing the correct payment.
      
        error InitialLiquidityAlreadyAdded(); //                  Initial liquidity has already been added. You can't do it again.
      
        error InitialLiquidityNotYetAdded(); //                   Initial liquidity needs to have been added for this to succedd.
      
        error InsufficientAllowance(); //                         There is not a high enough allowance for this operation.
      
        error InvalidAdapterParams(); //                          The current adapter params for LayerZero on this contract won't work :(.
      
        error InvalidAddress(); //                                An address being processed in the function is not valid.
      
        error InvalidEndpointCaller(); //                         The calling address is not a valid LZ endpoint. The LZ endpoint was set at contract creation
        //                                                        and cannot be altered after. Check the address LZ endpoint address on the contract.
      
        error InvalidHash(); //                                   The passed hash does not meet requirements.
      
        error InvalidMinGas(); //                                 The minimum gas setting for LZ in invalid.
      
        error InvalidOracleSignature(); //                        The signature provided with the contract call is not valid, either in format or signer.
      
        error InvalidPayload(); //                                The LZ payload is invalid
      
        error InvalidReceiver(); //                               The address used as a target for funds is not valid.
      
        error InvalidSourceSendingContract(); //                  The LZ message is being related from a source contract on another chain that is NOT trusted.
      
        error InvalidTotalShares(); //                            Total shares must equal 100 percent in basis points.
      
        error LimitsCanOnlyBeRaised(); //                         Limits are UP ONLY.
      
        error LimitTooHigh(); //                                  The limit has been set too high.
      
        error ListLengthMismatch(); //                            Two or more lists were compared and they did not match length.
      
        error LiquidityPoolMustBeAContractAddress(); //           Cannot add a non-contract as a liquidity pool.
      
        error LiquidityPoolCannotBeAddressZero(); //              Cannot add a liquidity pool from the zero address.
      
        error LPLockUpMustFitUint88(); //                         LP lockup is held in a uint88, so must fit.
      
        error NoTrustedPathRecord(); //                           LZ needs a trusted path record for this to work. What's that, you ask?
      
        error MachineAddressCannotBeAddressZero(); //             Cannot set the machine address to the zero address.
      
        error ManagerUnauthorizedAccount(); //                    The caller is not the pending manager.
      
        error MaxBidQuantityIs255(); //                           Validation: as we use a uint8 array to track bid positions the max bid quantity is 255.
      
        error MaxPublicMintAllowanceExceeded(
          uint256 requested,
          uint256 alreadyMinted,
          uint256 maxAllowance
        ); //                                                     The calling address has requested a quantity that would exceed the max allowance.
      
        error MaxSupplyTooHigh(); //                              Max supply must fit in a uint128.
      
        error MaxTokensPerWalletExceeded(); //                    The transfer would exceed the max tokens per wallet limit.
      
        error MaxTokensPerTxnExceeded(); //                       The transfer would exceed the max tokens per transaction limit.
      
        error MetadataIsLocked(); //                              The metadata on this contract is locked; it cannot be altered!
      
        error MetadropFactoryOnlyOncePerReveal(); //              This function can only be called (a) by the factory and, (b) just one time!
      
        error MetadropModulesOnly(); //                           Can only be called from a metadrop contract.
      
        error MetadropOracleCannotBeAddressZero(); //             The metadrop Oracle cannot be the zero address (address(0)).
      
        error MinGasLimitNotSet(); //                             The minimum gas limit for LayerZero has not been set.
      
        error MintERC2309QuantityExceedsLimit(); //               The `quantity` minted with ERC2309 exceeds the safety limit.
      
        error MintingIsClosedForever(); //                        Minting is, as the error suggests, so over (and locked forever).
      
        error MintToZeroAddress(); //                             Cannot mint to the zero address.
      
        error MintZeroQuantity(); //                              The quantity of tokens minted must be more than zero.
      
        error NewBuyTaxBasisPointsExceedsMaximum(); //            Project owner trying to set the tax rate too high.
      
        error NewSellTaxBasisPointsExceedsMaximum(); //           Project owner trying to set the tax rate too high.
      
        error NoETHForLiquidityPair(); //                         No ETH has been provided for the liquidity pair.
      
        error TaxPeriodStillInForce(); //                         The minimum tax period has not yet expired.
      
        error NoPaymentDue(); //                                  No payment is due for this address.
      
        error NoRefundForCaller(); //                             Error thrown when the calling address has no refund owed.
      
        error NoStoredMessage(); //                               There is no stored message matching the passed parameters.
      
        error NothingToClaim(); //                                The calling address has nothing to claim.
      
        error NoTokenForLiquidityPair(); //                       There is no token to add to the LP.
      
        error OperationDidNotSucceed(); //                        The operation failed (vague much?).
      
        error OracleSignatureHasExpired(); //                     A signature has been provided but it is too old.
      
        error OwnableUnauthorizedAccount(); //                    The caller is not the pending owner.
      
        error OwnershipNotInitializedForExtraData(); //           The `extraData` cannot be set on an uninitialized ownership slot.
      
        error OwnerQueryForNonexistentToken(); //                 The token does not exist.
      
        error ParametersDoNotMatchSignedMessage(); //             The parameters passed with the signed message do not match the message itself.
      
        error ParamTooLargeStartDate(); //                        The passed parameter exceeds the var type max.
      
        error ParamTooLargeEndDate(); //                          The passed parameter exceeds the var type max.
      
        error ParamTooLargeMinETH(); //                           The passed parameter exceeds the var type max.
      
        error ParamTooLargePerAddressMax(); //                    The passed parameter exceeds the var type max.
      
        error ParamTooLargeVestingDays(); //                      The passed parameter exceeds the var type max.
      
        error ParamTooLargePoolSupply(); //                       The passed parameter exceeds the var type max.
      
        error ParamTooLargePoolPerTxnMinETH(); //                 The passed parameter exceeds the var type max.
      
        error PassedConfigDoesNotMatchApproved(); //              The config provided on the call does not match the approved config.
      
        error PauseCutOffHasPassed(); //                          The time period in which we can pause has passed; this contract can no longer be paused.
      
        error PaymentMustCoverPerMintFee(); //                    The payment passed must at least cover the per mint fee for the quantity requested.
      
        error PermitDidNotSucceed(); //                           The safeERC20 permit failed.
      
        error PlatformAdminCannotBeAddressZero(); //              We cannot use the zero address (address(0)) as a platformAdmin.
      
        error PlatformTreasuryCannotBeAddressZero(); //           The treasury address cannot be set to the zero address.
      
        error PoolIsAboveMinimum(); //                            You required the pool to be below the minimum, and it is not
      
        error PoolIsBelowMinimum(); //                            You required the pool to be above the minimum, and it is not
      
        error PoolPhaseIsClosed(); //                             The block.timestamp is either before the pool is open or after it is closed.
      
        error PoolPhaseIsNotAfter(); //                           The block.timestamp is either before or during the pool open phase.
      
        error PoolVestingNotYetComplete(); //                     Tokens in the pool are not yet vested.
      
        error ProjectOwnerCannotBeAddressZero(); //               The project owner has to be a non zero address.
      
        error ProofInvalid(); //                                  The provided proof is not valid with the provided arguments.
      
        error QuantityExceedsRemainingCollectionSupply(); //      The requested quantity would breach the collection supply.
      
        error QuantityExceedsRemainingPhaseSupply(); //           The requested quantity would breach the phase supply.
      
        error QuantityExceedsMaxPossibleCollectionSupply(); //    The requested quantity would breach the maximum trackable supply
      
        error ReferralIdAlreadyUsed(); //                         This referral ID has already been used; they are one use only.
      
        error RequestingMoreThanAvailableBalance(); //             The request exceeds the available balance.
      
        error RequestingMoreThanRemainingAllocation(
          uint256 previouslyMinted,
          uint256 requested,
          uint256 remainingAllocation
        ); //                                                     Number of tokens requested for this mint exceeds the remaining allocation (taking the
        //                                                        original allocation from the list and deducting minted tokens).
      
        error RoyaltyFeeWillExceedSalePrice(); //                 The ERC2981 royalty specified will exceed the sale price.
      
        error ShareTotalCannotBeZero(); //                        The total of all the shares cannot be nothing.
      
        error SliceOutOfBounds(); //                              The bytes slice operation was out of bounds.
      
        error SliceOverflow(); //                                 The bytes slice operation overlowed.
      
        error SuperAdminCannotBeAddressZero(); //                 The superAdmin cannot be the sero address (address(0)).
      
        error SupplyTotalMismatch(); //                           The sum of the team supply and lp supply does not match.
      
        error SupportWindowIsNotOpen(); //                        The project owner has not requested support within the support request expiry window.
      
        error SwapThresholdTooLow(); // The select swap threshold is below the minimum.
      
        error TaxFreeAddressCannotBeAddressZero(); //             A tax free address cannot be address(0)
      
        error TemplateCannotBeAddressZero(); //                   The address for a template cannot be address zero (address(0)).
      
        error TemplateNotFound(); //                              There is no template that matches the passed template Id.
      
        error ThisMintIsClosed(); //                              It's over (well, this mint is, anyway).
      
        error TotalSharesMustMatchDenominator(); //               The total of all shares must equal the denominator value.
      
        error TransferAmountExceedsBalance(); //                  The transfer amount exceeds the accounts available balance.
      
        error TransferCallerNotOwnerNorApproved(); //             The caller must own the token or be an approved operator.
      
        error TransferFailed(); //                                The transfer has failed.
      
        error TransferFromIncorrectOwner(); //                    The token must be owned by `from`.
      
        error TransferToNonERC721ReceiverImplementer(); //        Cannot safely transfer to a contract that does not implement the ERC721Receiver interface.
      
        error TransferFromZeroAddress(); //                       Cannot transfer from the zero address. Indeed, this surely is impossible, and likely a waste to check??
      
        error TransferToZeroAddress(); //                         Cannot transfer to the zero address.
      
        error UnrecognisedVRFMode(); //                           Currently supported VRF modes are 0: chainlink and 1: arrng
      
        error URIQueryForNonexistentToken(); //                   The token does not exist.
      
        error ValueExceedsMaximum(); //                           The value sent exceeds the maximum allowed (super useful explanation huh?).
      
        error VRFCoordinatorCannotBeAddressZero(); //             The VRF coordinator cannot be the zero address (address(0)).
      }
      
      // File contracts/ERC20Factory/ERC20Factory/IERC20FactoryByMetadrop.sol
      
      // Metadrop Contracts (v2.1.0)
      
      pragma solidity 0.8.21;
      
      /**
       * @dev Metadrop ERC-20 factory, interface
       */
      interface IERC20FactoryByMetadrop is
        IConfigStructures,
        IErrors,
        IERC20ConfigByMetadrop
      {
        event DriPoolAddressUpdated(address oldAddress, address newAddress);
      
        event ERC20Created(
          string metaId,
          address indexed deployer,
          address contractInstance,
          address driPoolInstance,
          string symbol,
          string name,
          bytes constructorArgs
        );
      
        event MachineAddressUpdated(address oldAddress, address newAddress);
      
        event OracleAddressUpdated(address oldAddress, address newAddress);
      
        event MessageValidityInSecondsUpdated(
          uint256 oldMessageValidityInSeconds,
          uint256 newMessageValidityInSeconds
        );
      
        event PlatformTreasuryUpdated(address oldAddress, address newAddress);
      
        /**
         * @dev function {initialiseMachineAddress}
         *
         * Initialise the machine template address. This needs to be separate from
         * the constructor as the machine needs the factory address on its constructor.
         *
         * This must ALWAYS be called as part of deployment.
         *
         * @param machineTemplate_ the machine address
         */
        function initialiseMachineAddress(address machineTemplate_) external;
      
        /**
         * @dev function {decommissionFactory} onlySuperAdmin
         *
         * Make this factory unusable for creating new ERC20s, forever
         *
         */
        function decommissionFactory() external;
      
        /**
         * @dev function {setMetadropOracleAddress} onlyPlatformAdmin
         *
         * Set the metadrop trusted oracle address
         *
         * @param metadropOracleAddress_ Trusted metadrop oracle address
         */
        function setMetadropOracleAddress(address metadropOracleAddress_) external;
      
        /**
         * @dev function {setMessageValidityInSeconds} onlyPlatformAdmin
         *
         * Set the validity period of signed messages
         *
         * @param messageValidityInSeconds_ Validity period in seconds for messages signed by the trusted oracle
         */
        function setMessageValidityInSeconds(
          uint256 messageValidityInSeconds_
        ) external;
      
        /**
         * @dev function {setPlatformTreasury} onlySuperAdmin
         *
         * Set the address that platform fees will be paid to / can be withdrawn to.
         * Note that this is restricted to the highest authority level, the super
         * admin. Platform admins can trigger a withdrawal to the treasury, but only
         * the default admin can set or alter the treasury address. It is recommended
         * that the default admin is highly secured and restrited e.g. a multi-sig.
         *
         * @param platformTreasury_ New treasury address
         */
        function setPlatformTreasury(address platformTreasury_) external;
      
        /**
         * @dev function {setMachineAddress} onlyPlatformAdmin
         *
         * Set a new machine template address
         *
         * @param newMachineAddress_ the new machine address
         */
        function setMachineAddress(address newMachineAddress_) external;
      
        /**
         * @dev function {setDriPoolAddress} onlyPlatformAdmin
         *
         * Set a new launch pool template address
         *
         * @param newDriPoolAddress_ the new launch pool address
         */
        function setDriPoolAddress(address newDriPoolAddress_) external;
      
        /**
         * @dev function {withdrawETH} onlyPlatformAdmin
         *
         * A withdraw function to allow ETH to be withdrawn to the treasury
         *
         * @param amount_ The amount to withdraw
         */
        function withdrawETH(uint256 amount_) external;
      
        /**
         * @dev function {withdrawERC20} onlyPlatformAdmin
         *
         * A withdraw function to allow ERC20s to be withdrawn to the treasury
         *
         * @param token_ The contract address of the token being withdrawn
         * @param amount_ The amount to withdraw
         */
        function withdrawERC20(IERC20 token_, uint256 amount_) external;
      
        /**
         * @dev function {createERC20}
         *
         * Create an ERC-20
         *
         * @param metaId_ The drop Id being approved
         * @param salt_ Salt for create2
         * @param erc20Config_ ERC20 configuration
         * @param signedMessage_ The signed message object
         * @param vaultFee_ The fee for the token vault
         * @param deploymentFee_ The fee for deployment, if any
         * @return deployedAddress_ The deployed ERC20 contract address
         */
        function createERC20(
          string calldata metaId_,
          bytes32 salt_,
          ERC20Config calldata erc20Config_,
          SignedDropMessageDetails calldata signedMessage_,
          uint256 vaultFee_,
          uint256 deploymentFee_
        ) external payable returns (address deployedAddress_);
      
        /**
         * @dev function {createConfigHash}
         *
         * Create the config hash
         *
         * @param metaId_ The drop Id being approved
         * @param salt_ Salt for create2
         * @param erc20Config_ ERC20 configuration
         * @param messageTimeStamp_ When the message for this config hash was signed
         * @param vaultFee_ The fee for the token vault
         * @param deploymentFee_ The fee for deployment, if any
         * @param deployer_ Address performing the deployment
         * @return configHash_ The bytes32 config hash
         */
        function createConfigHash(
          string calldata metaId_,
          bytes32 salt_,
          ERC20Config calldata erc20Config_,
          uint256 messageTimeStamp_,
          uint256 vaultFee_,
          uint256 deploymentFee_,
          address deployer_
        ) external pure returns (bytes32 configHash_);
      }
      
      // File contracts/Global/Revert.sol
      
      // Metadrop Contracts (v2.1.0)
      
      /**
       *
       * @title Revert.sol. For efficient reverts
       *
       * @author metadrop
       *
       */
      
      pragma solidity 0.8.21;
      
      abstract contract Revert {
        /**
         * @dev For more efficient reverts.
         */
        function _revert(bytes4 errorSelector) internal pure {
          assembly {
            mstore(0x00, errorSelector)
            revert(0x00, 0x04)
          }
        }
      }
      
      // File contracts/Global/OZ/Ownable.sol
      
      // Metadrop Contracts (v2.1.0)
      // Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
      
      pragma solidity 0.8.21;
      
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is IErrors, Revert, Context {
        address private _owner;
      
        event OwnershipTransferred(
          address indexed previousOwner,
          address indexed newOwner
        );
      
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
          _transferOwnership(_msgSender());
        }
      
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
          _checkOwner();
          _;
        }
      
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
          return _owner;
        }
      
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
          if (owner() != _msgSender()) {
            _revert(CallerIsNotTheOwner.selector);
          }
        }
      
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
          _transferOwnership(address(0));
        }
      
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
          if (newOwner == address(0)) {
            _revert(CannotSetNewOwnerToTheZeroAddress.selector);
          }
          _transferOwnership(newOwner);
        }
      
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
          address oldOwner = _owner;
          _owner = newOwner;
          emit OwnershipTransferred(oldOwner, newOwner);
        }
      }
      
      // File contracts/Global/OZ/Ownable2Step.sol
      
      // Metadrop Contracts (v2.1.0)
      // Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
      
      pragma solidity 0.8.21;
      
      /**
       * @dev Contract module which provides access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is specified at deployment time in the constructor for `Ownable`. This
       * can later be changed with {transferOwnership} and {acceptOwnership}.
       *
       * This module is used through inheritance. It will make available all functions
       * from parent (Ownable).
       */
      abstract contract Ownable2Step is Ownable {
        address private _pendingOwner;
      
        event OwnershipTransferStarted(
          address indexed previousOwner,
          address indexed newOwner
        );
      
        /**
         * @dev Returns the address of the pending owner.
         */
        function pendingOwner() public view virtual returns (address) {
          return _pendingOwner;
        }
      
        /**
         * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
         * Can only be called by the current owner.
         */
        function transferOwnership(
          address newOwner
        ) public virtual override onlyOwner {
          _pendingOwner = newOwner;
          emit OwnershipTransferStarted(owner(), newOwner);
        }
      
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual override {
          delete _pendingOwner;
          super._transferOwnership(newOwner);
        }
      
        /**
         * @dev The new owner accepts the ownership transfer.
         */
        function acceptOwnership() public virtual {
          address sender = _msgSender();
          if (pendingOwner() != sender) {
            _revert(OwnableUnauthorizedAccount.selector);
          }
          _transferOwnership(sender);
        }
      }
      
      // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
      
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
      
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      
      // File @openzeppelin/contracts/utils/[email protected]
      
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
      
      pragma solidity ^0.8.1;
      
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
      
              return account.code.length > 0;
          }
      
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
      
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
      
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
      
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
      
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
      
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      
      // File contracts/Global/OZ/SafeERC20.sol
      
      // Metadrop Contracts (v2.1.0)
      // Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
      
      pragma solidity 0.8.21;
      
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20 {
        using Address for address;
      
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
          _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
      
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(
          IERC20 token,
          address from,
          address to,
          uint256 value
        ) internal {
          _callOptionalReturn(
            token,
            abi.encodeCall(token.transferFrom, (from, to, value))
          );
        }
      
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(
          IERC20 token,
          address spender,
          uint256 value
        ) internal {
          uint256 oldAllowance = token.allowance(address(this), spender);
          forceApprove(token, spender, oldAllowance + value);
        }
      
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(
          IERC20 token,
          address spender,
          uint256 value
        ) internal {
          unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            if (oldAllowance < value) {
              revert IErrors.DecreasedAllowanceBelowZero();
            }
            forceApprove(token, spender, oldAllowance - value);
          }
        }
      
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
         * 0 before setting it to a non-zero value.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
          bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
      
          if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
          }
        }
      
        /**
         * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
         * Revert on invalid signature.
         */
        function safePermit(
          IERC20Permit token,
          address owner,
          address spender,
          uint256 value,
          uint256 deadline,
          uint8 v,
          bytes32 r,
          bytes32 s
        ) internal {
          uint256 nonceBefore = token.nonces(owner);
          token.permit(owner, spender, value, deadline, v, r, s);
          uint256 nonceAfter = token.nonces(owner);
          if (nonceAfter != (nonceBefore + 1)) {
            revert IErrors.PermitDidNotSucceed();
          }
        }
      
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
          // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
          // the target address contains contract code and also asserts for success in the low-level call.
      
          bytes memory returndata = address(token).functionCall(data, "call fail");
          if ((returndata.length != 0) && !abi.decode(returndata, (bool))) {
            revert IErrors.OperationDidNotSucceed();
          }
        }
      
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(
          IERC20 token,
          bytes memory data
        ) private returns (bool) {
          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
          // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
          // and not revert is the subcall reverts.
      
          (bool success, bytes memory returndata) = address(token).call(data);
          return
            success &&
            (returndata.length == 0 || abi.decode(returndata, (bool))) &&
            address(token).code.length > 0;
        }
      }
      
      // File contracts/ThirdParty/Unicrypt/IUniswapV2Locker.sol
      
      // Interface definition for UniswapV2Locker.sol
      
      pragma solidity 0.8.21;
      
      interface IERCBurn {
        function burn(uint256 _amount) external;
      
        function approve(address spender, uint256 amount) external returns (bool);
      
        function allowance(address owner, address spender) external returns (uint256);
      
        function balanceOf(address account) external view returns (uint256);
      }
      
      interface IMigrator {
        function migrate(
          address lpToken,
          uint256 amount,
          uint256 unlockDate,
          address owner
        ) external returns (bool);
      }
      
      interface IUniswapV2Locker {
        struct UserInfo {
          EnumerableSet.AddressSet lockedTokens; // records all tokens the user has locked
          mapping(address => uint256[]) locksForToken; // map erc20 address to lock id for that token
        }
      
        struct TokenLock {
          uint256 lockDate; // the date the token was locked
          uint256 amount; // the amount of tokens still locked (initialAmount minus withdrawls)
          uint256 initialAmount; // the initial lock amount
          uint256 unlockDate; // the date the token can be withdrawn
          uint256 lockID; // lockID nonce per uni pair
          address owner;
        }
      
        struct FeeStruct {
          uint256 ethFee; // Small eth fee to prevent spam on the platform
          IERCBurn secondaryFeeToken; // UNCX or UNCL
          uint256 secondaryTokenFee; // optional, UNCX or UNCL
          uint256 secondaryTokenDiscount; // discount on liquidity fee for burning secondaryToken
          uint256 liquidityFee; // fee on univ2 liquidity tokens
          uint256 referralPercent; // fee for referrals
          IERCBurn referralToken; // token the refferer must hold to qualify as a referrer
          uint256 referralHold; // balance the referrer must hold to qualify as a referrer
          uint256 referralDiscount; // discount on flatrate fees for using a valid referral address
        }
      
        function setDev(address payable _devaddr) external;
      
        /**
         * @notice set the migrator contract which allows locked lp tokens to be migrated to uniswap v3
         */
        function setMigrator(IMigrator _migrator) external;
      
        function setSecondaryFeeToken(address _secondaryFeeToken) external;
      
        /**
         * @notice referrers need to hold the specified token and hold amount to be elegible for referral fees
         */
        function setReferralTokenAndHold(
          IERCBurn _referralToken,
          uint256 _hold
        ) external;
      
        function setFees(
          uint256 _referralPercent,
          uint256 _referralDiscount,
          uint256 _ethFee,
          uint256 _secondaryTokenFee,
          uint256 _secondaryTokenDiscount,
          uint256 _liquidityFee
        ) external;
      
        /**
         * @notice whitelisted accounts dont pay flatrate fees on locking
         */
        function whitelistFeeAccount(address _user, bool _add) external;
      
        /**
         * @notice Creates a new lock
         * @param _lpToken the univ2 token address
         * @param _amount amount of LP tokens to lock
         * @param _unlock_date the unix timestamp (in seconds) until unlock
         * @param _referral the referrer address if any or address(0) for none
         * @param _fee_in_eth fees can be paid in eth or in a secondary token such as UNCX with a discount on univ2 tokens
         * @param _withdrawer the user who can withdraw liquidity once the lock expires.
         */
        function lockLPToken(
          address _lpToken,
          uint256 _amount,
          uint256 _unlock_date,
          address payable _referral,
          bool _fee_in_eth,
          address payable _withdrawer
        ) external payable;
      
        /**
         * @notice extend a lock with a new unlock date, _index and _lockID ensure the correct lock is changed
         * this prevents errors when a user performs multiple tx per block possibly with varying gas prices
         */
        function relock(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          uint256 _unlock_date
        ) external;
      
        /**
         * @notice withdraw a specified amount from a lock. _index and _lockID ensure the correct lock is changed
         * this prevents errors when a user performs multiple tx per block possibly with varying gas prices
         */
        function withdraw(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          uint256 _amount
        ) external;
      
        /**
         * @notice increase the amount of tokens per a specific lock, this is preferable to creating a new lock, less fees, and faster loading on our live block explorer
         */
        function incrementLock(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          uint256 _amount
        ) external;
      
        /**
         * @notice split a lock into two seperate locks, useful when a lock is about to expire and youd like to relock a portion
         * and withdraw a smaller portion
         */
        function splitLock(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          uint256 _amount
        ) external payable;
      
        /**
         * @notice transfer a lock to a new owner, e.g. presale project -> project owner
         */
        function transferLockOwnership(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          address payable _newOwner
        ) external;
      
        /**
         * @notice migrates liquidity to uniswap v3
         */
        function migrate(
          address _lpToken,
          uint256 _index,
          uint256 _lockID,
          uint256 _amount
        ) external;
      
        function getNumLocksForToken(
          address _lpToken
        ) external view returns (uint256);
      
        function getNumLockedTokens() external view returns (uint256);
      
        function getLockedTokenAtIndex(
          uint256 _index
        ) external view returns (address);
      
        // user functions
        function getUserNumLockedTokens(
          address _user
        ) external view returns (uint256);
      
        function getUserLockedTokenAtIndex(
          address _user,
          uint256 _index
        ) external view returns (address);
      
        function getUserNumLocksForToken(
          address _user,
          address _lpToken
        ) external view returns (uint256);
      
        function getUserLockForTokenAtIndex(
          address _user,
          address _lpToken,
          uint256 _index
        )
          external
          view
          returns (uint256, uint256, uint256, uint256, uint256, address);
      
        // whitelist
        function getWhitelistedUsersLength() external view returns (uint256);
      
        function getWhitelistedUserAtIndex(
          uint256 _index
        ) external view returns (address);
      
        function getUserWhitelistStatus(address _user) external view returns (bool);
      }
      
      // File contracts/ThirdParty/WETH/IWETH.sol
      
      pragma solidity 0.8.21;
      
      interface IWETH is IERC20 {
        function deposit() external payable;
      
        function withdraw(uint256 wad) external;
      }
      
      // File contracts/ERC20Factory/ERC20/ERC20ByMetadrop.sol
      
      // Metadrop Contracts (v2.1.0)
      
      pragma solidity 0.8.21;
      
      /**
       * @dev Metadrop core ERC-20 contract
       *
       * @dev Implementation of the {IERC20} interface.
       *
       */
      contract ERC20ByMetadrop is Context, IERC20ByMetadrop, Ownable2Step {
        bytes32 public constant x_META_ID_HASH =
          0xa9f18d25db37bd5468f98b224be382e9e1d24dba9523003f468b507bef726abc;
      
        using EnumerableSet for EnumerableSet.AddressSet;
        using EnumerableSet for EnumerableSet.Bytes32Set;
        using SafeERC20 for IERC20;
      
        uint256 public constant x_CONST_VERSION = 100020001000000000;
        uint256 internal constant CONST_BP_DENOM = 10000;
        uint256 internal constant CONST_ROUND_DEC = 100000000000;
        uint256 internal constant CONST_CALL_GAS_LIMIT = 50000;
        uint256 internal constant CONST_MAX_SWAP_THRESHOLD_MULTIPLE = 20;
        uint256 internal constant CONST_MIN_SWAP_THRESHOLD_BP = 1;
      
        uint256 public immutable lpSupply;
        uint256 public immutable projectSupply;
        uint256 public immutable botProtectionDurationInSeconds;
        uint256 public immutable metadropTaxPeriodInDays;
        uint256 public immutable metadropBuyTaxProportionBasisPoints;
        uint256 public immutable metadropSellTaxProportionBasisPoints;
        uint256 public immutable metadropMinBuyTaxBasisPoints;
        uint256 public immutable metadropMinSellTaxBasisPoints;
        uint256 public immutable autoBurnDurationInBlocks;
        uint256 public immutable autoBurnBasisPoints;
        address public immutable metadropTaxRecipient;
        address public immutable uniswapV2Pair;
        address public immutable driPool;
        address public immutable lpOwner;
        address public immutable projectSupplyRecipient;
        address public immutable metadropFactory;
      
        bool internal immutable _tokenHasTax;
        IUniswapV2Locker internal immutable _tokenVault;
        IUniswapV2Router02 internal immutable _uniswapRouter;
        VaultType public immutable vaultType;
      
        /** @dev {Storage Slot 1} Vars read as part of transfers packed to a single
         * slot for warm reads.
         *   Slot 1:
         *      120
         *       32
         *       32
         *   16 * 4
         *        8
         *   ------
         *      256
         *   ------ */
        uint120 private _totalSupply;
        uint32 public fundedDate;
        uint32 public fundedBlock;
        uint16 public projectBuyTaxBasisPoints;
        uint16 public projectSellTaxBasisPoints;
        uint16 public metadropBuyTaxBasisPoints;
        uint16 public metadropSellTaxBasisPoints;
        /** @dev {_autoSwapInProgress} We start with {_autoSwapInProgress} ON, as we don't want to
         * call autoswap when processing initial liquidity from this address. We turn this OFF when
         * liquidity has been loaded, and use this bool to control processing during auto-swaps
         * from that point onwards. */
        bool private _autoSwapInProgress = true;
      
        /** @dev {Storage Slot 2} Vars read as part of transfers packed to a single
         * slot for warm reads.
         *   Slot 1:
         *      120
         *      120
         *       16
         *   ------
         *      256
         *   ------ */
        uint120 public maxTokensPerTransaction;
        uint120 public maxTokensPerWallet;
        uint16 public swapThresholdBasisPoints;
      
        /** @dev {Storage Slot 3} Not read / written in transfers (unless autoswap taking place):
         *      160
         *       88
         *        8
         *   ------
         *      256
         *   ------ */
        address public projectTaxRecipient;
        uint88 public lpLockupInDays;
        bool public burnLPTokens;
      
        /** @dev {Storage Slot 4} Potentially written in transfers:
         *   Slot 3:
         *      128
         *      128
         *   ------
         *      256
         *   ------ */
        uint128 public projectTaxPendingSwap;
        uint128 public metadropTaxPendingSwap;
      
        /** @dev {Storage Slot 5 to n} Not read as part of transfers etc. */
        string private _name;
        string private _symbol;
      
        /** @dev {_balances} Addresses balances */
        mapping(address => uint256) private _balances;
      
        /** @dev {_allowances} Addresses allocance details */
        mapping(address => mapping(address => uint256)) private _allowances;
      
        /** @dev {_validCallerCodeHashes} Code hashes of callers we consider valid */
        EnumerableSet.Bytes32Set private _validCallerCodeHashes;
      
        /** @dev {_liquidityPools} Enumerable set for liquidity pool addresses */
        EnumerableSet.AddressSet private _liquidityPools;
      
        /** @dev {_unlimited} Enumerable set for addresses where limits do not apply */
        EnumerableSet.AddressSet private _unlimited;
      
        /**
         * @dev {constructor}
         *
         * @param integrationAddresses_ The project owner, uniswap router, unicrypt vault, metadrop factory and pool template.
         * @param baseParams_ configuration of this ERC20.
         * @param supplyParams_ Supply configuration of this ERC20.
         * @param taxParams_  Tax configuration of this ERC20
         * @param taxParams_  Launch pool configuration of this ERC20
         */
        constructor(
          address[5] memory integrationAddresses_,
          bytes memory baseParams_,
          bytes memory supplyParams_,
          bytes memory taxParams_,
          bytes memory poolParams_
        ) {
          _decodeBaseParams(integrationAddresses_[0], baseParams_);
          _uniswapRouter = IUniswapV2Router02(integrationAddresses_[1]);
          _tokenVault = IUniswapV2Locker(integrationAddresses_[2]);
          metadropFactory = (integrationAddresses_[3]);
      
          ERC20SupplyParameters memory supplyParams = abi.decode(
            supplyParams_,
            (ERC20SupplyParameters)
          );
      
          ERC20TaxParameters memory taxParams = abi.decode(
            taxParams_,
            (ERC20TaxParameters)
          );
      
          driPool = integrationAddresses_[4];
      
          ERC20PoolParameters memory poolParams;
      
          if (integrationAddresses_[4] != address(0)) {
            poolParams = abi.decode(poolParams_, (ERC20PoolParameters));
          }
      
          _processSupplyParams(supplyParams, poolParams);
          projectSupplyRecipient = supplyParams.projectSupplyRecipient;
          lpSupply = supplyParams.lpSupply * (10 ** decimals());
          projectSupply = supplyParams.projectSupply * (10 ** decimals());
          botProtectionDurationInSeconds = supplyParams
            .botProtectionDurationInSeconds;
          lpOwner = supplyParams.projectLPOwner;
      
          _tokenHasTax = _processTaxParams(taxParams);
      
          metadropTaxPeriodInDays = taxParams.metadropTaxPeriodInDays;
          metadropTaxRecipient = taxParams.metadropTaxRecipient;
          metadropBuyTaxProportionBasisPoints = taxParams
            .metadropBuyTaxProportionBasisPoints;
          metadropSellTaxProportionBasisPoints = taxParams
            .metadropSellTaxProportionBasisPoints;
          metadropMinBuyTaxBasisPoints = uint16(
            taxParams.metadropMinBuyTaxBasisPoints
          );
          metadropMinSellTaxBasisPoints = uint16(
            taxParams.metadropMinSellTaxBasisPoints
          );
          autoBurnDurationInBlocks = taxParams.autoBurnDurationInBlocks;
          autoBurnBasisPoints = taxParams.autoBurnBasisPoints;
      
          vaultType = VaultType.unicrypt;
      
          _mintBalances(
            lpSupply,
            projectSupply,
            poolParams.poolSupply * (10 ** decimals())
          );
      
          uniswapV2Pair = _createPair();
        }
      
        /**
         * @dev {onlyOwnerFactoryOrPool}
         *
         * Throws if called by any account other than the owner, factory or pool.
         */
        modifier onlyOwnerFactoryOrPool() {
          if (
            metadropFactory != _msgSender() &&
            owner() != _msgSender() &&
            driPool != _msgSender()
          ) {
            _revert(CallerIsNotFactoryProjectOwnerOrPool.selector);
          }
          _;
        }
      
        /**
         * @dev {notDuringAutoswap}
         *
         * Throws if called during an autoswap
         */
        modifier notDuringAutoswap() {
          if (_autoSwapInProgress) {
            _revert(CannotPerformDuringAutoswap.selector);
          }
          _;
        }
      
        /**
         * @dev function {_decodeBaseParams}
         *
         * Decode NFT Parameters
         *
         * @param projectOwner_ The owner of this contract
         * @param encodedBaseParams_ The base params encoded into a bytes array
         */
        function _decodeBaseParams(
          address projectOwner_,
          bytes memory encodedBaseParams_
        ) internal {
          _transferOwnership(projectOwner_);
      
          (_name, _symbol) = abi.decode(encodedBaseParams_, (string, string));
        }
      
        /**
         * @dev function {_processSupplyParams}
         *
         * Process provided supply params
         *
         * @param erc20SupplyParameters_ The supply params
         * @param erc20PoolParameters_ The pool params
         */
        function _processSupplyParams(
          ERC20SupplyParameters memory erc20SupplyParameters_,
          ERC20PoolParameters memory erc20PoolParameters_
        ) internal {
          if (
            erc20SupplyParameters_.maxSupply !=
            (erc20SupplyParameters_.lpSupply +
              erc20SupplyParameters_.projectSupply +
              erc20PoolParameters_.poolSupply)
          ) {
            _revert(SupplyTotalMismatch.selector);
          }
      
          if (erc20SupplyParameters_.maxSupply > type(uint120).max) {
            _revert(MaxSupplyTooHigh.selector);
          }
      
          if (erc20SupplyParameters_.lpLockupInDays > type(uint88).max) {
            _revert(LPLockUpMustFitUint88.selector);
          }
      
          if (
            erc20SupplyParameters_.botProtectionDurationInSeconds > type(uint128).max
          ) {
            _revert(botProtectionDurationInSecondsMustFitUint128.selector);
          }
      
          if (erc20SupplyParameters_.maxTokensPerWallet > type(uint120).max) {
            _revert(LimitTooHigh.selector);
          }
      
          if (erc20SupplyParameters_.maxTokensPerTxn > type(uint120).max) {
            _revert(LimitTooHigh.selector);
          }
      
          maxTokensPerWallet = uint120(
            erc20SupplyParameters_.maxTokensPerWallet * (10 ** decimals())
          );
          maxTokensPerTransaction = uint120(
            erc20SupplyParameters_.maxTokensPerTxn * (10 ** decimals())
          );
          lpLockupInDays = uint88(erc20SupplyParameters_.lpLockupInDays);
          burnLPTokens = erc20SupplyParameters_.burnLPTokens;
      
          _unlimited.add(erc20SupplyParameters_.projectSupplyRecipient);
          _unlimited.add(address(this));
          _unlimited.add(address(0));
        }
      
        /**
         * @dev function {_processTaxParams}
         *
         * Process provided tax params
         *
         * @param erc20TaxParameters_ The tax params
         */
        function _processTaxParams(
          ERC20TaxParameters memory erc20TaxParameters_
        ) internal returns (bool tokenHasTax_) {
          /**
           * @dev We use the immutable var {_tokenHasTax} to avoid unneccesary storage writes and reads. If this
           * token does NOT have tax applied then there is no need to store or read these parameters, and we can
           * avoid this simply by checking the immutable var. Pass back the value for this var from this method.
           */
          if (
            erc20TaxParameters_.projectBuyTaxBasisPoints == 0 &&
            erc20TaxParameters_.projectSellTaxBasisPoints == 0 &&
            erc20TaxParameters_.metadropBuyTaxBasisPoints == 0 &&
            erc20TaxParameters_.metadropSellTaxBasisPoints == 0
          ) {
            return false;
          } else {
            // Validate that the sum of all buy deductions does not equal or exceed
            // 10,000 basis points (i.e. 100%).
            if (
              (erc20TaxParameters_.projectBuyTaxBasisPoints +
                erc20TaxParameters_.metadropBuyTaxBasisPoints +
                erc20TaxParameters_.autoBurnBasisPoints) >= CONST_BP_DENOM
            ) {
              _revert(DeductionsOnBuyExceedOrEqualOneHundredPercent.selector);
            }
      
            projectBuyTaxBasisPoints = uint16(
              erc20TaxParameters_.projectBuyTaxBasisPoints
            );
            projectSellTaxBasisPoints = uint16(
              erc20TaxParameters_.projectSellTaxBasisPoints
            );
            metadropBuyTaxBasisPoints = uint16(
              erc20TaxParameters_.metadropBuyTaxBasisPoints
            );
            metadropSellTaxBasisPoints = uint16(
              erc20TaxParameters_.metadropSellTaxBasisPoints
            );
      
            if (
              erc20TaxParameters_.taxSwapThresholdBasisPoints <
              CONST_MIN_SWAP_THRESHOLD_BP
            ) {
              _revert(SwapThresholdTooLow.selector);
            }
      
            swapThresholdBasisPoints = uint16(
              erc20TaxParameters_.taxSwapThresholdBasisPoints
            );
      
            projectTaxRecipient = erc20TaxParameters_.projectTaxRecipient;
            return true;
          }
        }
      
        /**
         * @dev function {_mintBalances}
         *
         * Mint initial balances
         *
         * @param lpMint_ The number of tokens for liquidity
         * @param projectMint_ The number of tokens for the project treasury
         * @param poolMint_ The number of tokens for the launch pool
         */
        function _mintBalances(
          uint256 lpMint_,
          uint256 projectMint_,
          uint256 poolMint_
        ) internal {
          if (lpMint_ > 0) {
            _mint(address(this), lpMint_);
          }
      
          if (projectMint_ > 0) {
            _mint(projectSupplyRecipient, projectMint_);
          }
      
          if (poolMint_ > 0) {
            _mint(driPool, poolMint_);
          }
        }
      
        /**
         * @dev function {_createPair}
         *
         * Create the uniswap pair
         *
         * @return uniswapV2Pair_ The pair address
         */
        function _createPair() internal returns (address uniswapV2Pair_) {
          if (_totalSupply > 0) {
            uniswapV2Pair_ = IUniswapV2Factory(_uniswapRouter.factory()).createPair(
              address(this),
              _uniswapRouter.WETH()
            );
      
            _liquidityPools.add(uniswapV2Pair_);
            emit LiquidityPoolCreated(uniswapV2Pair_);
          }
          _unlimited.add(address(_uniswapRouter));
          _unlimited.add(uniswapV2Pair_);
          return (uniswapV2Pair_);
        }
      
        /**
         * @dev function {addInitialLiquidity}
         *
         * Add initial liquidity to the uniswap pair
         *
         * @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
         * @param lpLockupInDaysOverride_ The number of days to lock liquidity NOTE you can pass 0 to use the stored value.
         * This value is an override, and will override a stored value which is LOWER that it. If the value you are passing is
         * LOWER than the stored value the stored value will not be reduced.
         *
         * Example usage 1: When creating the coin the lpLockupInDays is set to 0. This means that on this call the
         * user can set the lockup to any value they like, as all integer values greater than zero will be used to override
         * that set in storage.
         *
         * Example usage 2: When using a DRI Pool the lockup period is set on this contract and the pool need not know anything
         * about this setting. The pool can pass back a 0 on this call and know that the existing value stored on this contract
         * will be used.
         * @param burnLPTokensOverride_ If the LP tokens should be burned (otherwise they are locked). This is an override field
         * that can ONLY be used to override a held value of FALSE with a new value of TRUE.
         *
         * Example usage 1: When creating the coin the user didn't add liquidity, or specify that the LP tokens were to be burned.
         * So burnLPTokens is held as FALSE. When they add liquidity they want to lock tokens, so they pass this in as FALSE again,
         * and it remains FALSE.
         *
         * Example usage 2: As above, but when later adding liquidity the user wants to burn the LP. So the stored value is FALSE
         * and the user passes TRUE into this method. The TRUE overrides the held value of FALSE and the tokens are burned.
         *
         * Example uusage 3: The user is using a DRI pool and they have specified on the coin creation that the LP tokens are to
         * be burned. This contract therefore holds TRUE for burnLPTokens. The DRI pool does not need to know what the user has
         * selected. It can safely pass back FALSE to this method call and the stored value of TRUE will remain, resulting in the
         * LP tokens being burned.
         */
        function addInitialLiquidity(
          uint256 vaultFee_,
          uint256 lpLockupInDaysOverride_,
          bool burnLPTokensOverride_
        ) external payable onlyOwnerFactoryOrPool {
          uint256 ethForLiquidity;
      
          if ((burnLPTokens == false) && (burnLPTokensOverride_ == true)) {
            burnLPTokens = true;
          }
      
          if (burnLPTokens) {
            if (msg.value == 0) {
              _revert(NoETHForLiquidityPair.selector);
            }
            ethForLiquidity = msg.value;
          } else {
            if (vaultFee_ >= msg.value) {
              // The amount of ETH MUST exceed the vault fee, otherwise what liquidity are we adding?
              _revert(NoETHForLiquidityPair.selector);
            }
            ethForLiquidity = msg.value - vaultFee_;
          }
      
          if (lpLockupInDaysOverride_ > lpLockupInDays) {
            lpLockupInDays = uint88(lpLockupInDaysOverride_);
          }
      
          _addInitialLiquidity(ethForLiquidity, vaultFee_);
        }
      
        /**
         * @dev function {_addInitialLiquidity}
         *
         * Add initial liquidity to the uniswap pair (internal function that does processing)
         *
         * @param ethAmount_ The amount of ETH passed into the call
         * @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
         */
        function _addInitialLiquidity(
          uint256 ethAmount_,
          uint256 vaultFee_
        ) internal {
          // Funded date is the date of first funding. We can only add initial liquidity once. If this date is set,
          // we cannot proceed
          if (fundedDate != 0) {
            _revert(InitialLiquidityAlreadyAdded.selector);
          }
      
          fundedDate = uint32(block.timestamp);
          fundedBlock = uint32(block.number);
      
          // Can only do this if this contract holds tokens:
          if (balanceOf(address(this)) == 0) {
            _revert(NoTokenForLiquidityPair.selector);
          }
      
          // Approve the uniswap router for an inifinite amount (max uint256)
          // This means that we don't need to worry about later incrememtal
          // approvals on tax swaps, as the uniswap router allowance will never
          // be decreased (see code in decreaseAllowance for reference)
          _approve(address(this), address(_uniswapRouter), type(uint256).max);
      
          // Add the liquidity:
          (uint256 amountA, uint256 amountB, uint256 lpTokens) = _uniswapRouter
            .addLiquidityETH{value: ethAmount_}(
            address(this),
            balanceOf(address(this)),
            0,
            0,
            address(this),
            block.timestamp
          );
      
          emit InitialLiquidityAdded(amountA, amountB, lpTokens);
      
          // We now set this to false so that future transactions can be eligibile for autoswaps
          _autoSwapInProgress = false;
      
          // Are we locking, or burning?
          if (burnLPTokens) {
            _burnLiquidity(lpTokens);
          } else {
            // Lock the liquidity:
            _addLiquidityToVault(vaultFee_, lpTokens);
          }
        }
      
        /**
         * @dev function {_addLiquidityToVault}
         *
         * Lock initial liquidity on vault contract
         *
         * @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract.
         * @param lpTokens_ The amount of LP tokens to be locked
         */
        function _addLiquidityToVault(uint256 vaultFee_, uint256 lpTokens_) internal {
          IERC20(uniswapV2Pair).approve(address(_tokenVault), lpTokens_);
      
          _tokenVault.lockLPToken{value: vaultFee_}(
            uniswapV2Pair,
            IERC20(uniswapV2Pair).balanceOf(address(this)),
            block.timestamp + (lpLockupInDays * 1 days),
            payable(address(0)),
            true,
            payable(lpOwner)
          );
      
          emit LiquidityLocked(lpTokens_, lpLockupInDays);
        }
      
        /**
         * @dev function {_burnLiquidity}
         *
         * Burn LP tokens
         *
         * @param lpTokens_ The amount of LP tokens to be locked
         */
        function _burnLiquidity(uint256 lpTokens_) internal {
          IERC20(uniswapV2Pair).transfer(address(0), lpTokens_);
      
          emit LiquidityBurned(lpTokens_);
        }
      
        /**
         * @dev function {isLiquidityPool}
         *
         * Return if an address is a liquidity pool
         *
         * @param queryAddress_ The address being queried
         * @return bool The address is / isn't a liquidity pool
         */
        function isLiquidityPool(address queryAddress_) public view returns (bool) {
          /** @dev We check the uniswapV2Pair address first as this is an immutable variable and therefore does not need
           * to be fetched from storage, saving gas if this address IS the uniswapV2Pool. We also add this address
           * to the enumerated set for ease of reference (for example it is returned in the getter), and it does
           * not add gas to any other calls, that still complete in 0(1) time.
           */
          return (queryAddress_ == uniswapV2Pair ||
            _liquidityPools.contains(queryAddress_));
        }
      
        /**
         * @dev function {liquidityPools}
         *
         * Returns a list of all liquidity pools
         *
         * @return liquidityPools_ a list of all liquidity pools
         */
        function liquidityPools()
          external
          view
          returns (address[] memory liquidityPools_)
        {
          return (_liquidityPools.values());
        }
      
        /**
         * @dev function {addLiquidityPool} onlyOwner
         *
         * Allows the manager to add a liquidity pool to the pool enumerable set
         *
         * @param newLiquidityPool_ The address of the new liquidity pool
         */
        function addLiquidityPool(address newLiquidityPool_) public onlyOwner {
          // Don't allow calls that didn't pass an address:
          if (newLiquidityPool_ == address(0)) {
            _revert(LiquidityPoolCannotBeAddressZero.selector);
          }
          // Only allow smart contract addresses to be added, as only these can be pools:
          if (newLiquidityPool_.code.length == 0) {
            _revert(LiquidityPoolMustBeAContractAddress.selector);
          }
          // Add this to the enumerated list:
          _liquidityPools.add(newLiquidityPool_);
          emit LiquidityPoolAdded(newLiquidityPool_);
        }
      
        /**
         * @dev function {removeLiquidityPool} onlyOwner
         *
         * Allows the manager to remove a liquidity pool
         *
         * @param removedLiquidityPool_ The address of the old removed liquidity pool
         */
        function removeLiquidityPool(
          address removedLiquidityPool_
        ) external onlyOwner {
          // Remove this from the enumerated list:
          _liquidityPools.remove(removedLiquidityPool_);
          emit LiquidityPoolRemoved(removedLiquidityPool_);
        }
      
        /**
         * @dev function {isUnlimited}
         *
         * Return if an address is unlimited (is not subject to per txn and per wallet limits)
         *
         * @param queryAddress_ The address being queried
         * @return bool The address is / isn't unlimited
         */
        function isUnlimited(address queryAddress_) public view returns (bool) {
          return (_unlimited.contains(queryAddress_));
        }
      
        /**
         * @dev function {unlimitedAddresses}
         *
         * Returns a list of all unlimited addresses
         *
         * @return unlimitedAddresses_ a list of all unlimited addresses
         */
        function unlimitedAddresses()
          external
          view
          returns (address[] memory unlimitedAddresses_)
        {
          return (_unlimited.values());
        }
      
        /**
         * @dev function {addUnlimited} onlyOwner
         *
         * Allows the manager to add an unlimited address
         *
         * @param newUnlimited_ The address of the new unlimited address
         */
        function addUnlimited(address newUnlimited_) external onlyOwner {
          // Add this to the enumerated list:
          _unlimited.add(newUnlimited_);
          emit UnlimitedAddressAdded(newUnlimited_);
        }
      
        /**
         * @dev function {removeUnlimited} onlyOwner
         *
         * Allows the manager to remove an unlimited address
         *
         * @param removedUnlimited_ The address of the old removed unlimited address
         */
        function removeUnlimited(address removedUnlimited_) external onlyOwner {
          // Remove this from the enumerated list:
          _unlimited.remove(removedUnlimited_);
          emit UnlimitedAddressRemoved(removedUnlimited_);
        }
      
        /**
         * @dev function {isValidCaller}
         *
         * Return if an address is a valid caller
         *
         * @param queryHash_ The code hash being queried
         * @return bool The address is / isn't a valid caller
         */
        function isValidCaller(bytes32 queryHash_) public view returns (bool) {
          return (_validCallerCodeHashes.contains(queryHash_));
        }
      
        /**
         * @dev function {validCallers}
         *
         * Returns a list of all valid caller code hashes
         *
         * @return validCallerHashes_ a list of all valid caller code hashes
         */
        function validCallers()
          external
          view
          returns (bytes32[] memory validCallerHashes_)
        {
          return (_validCallerCodeHashes.values());
        }
      
        /**
         * @dev function {addValidCaller} onlyOwner
         *
         * Allows the owner to add the hash of a valid caller
         *
         * @param newValidCallerHash_ The hash of the new valid caller
         */
        function addValidCaller(bytes32 newValidCallerHash_) external onlyOwner {
          _validCallerCodeHashes.add(newValidCallerHash_);
          emit ValidCallerAdded(newValidCallerHash_);
        }
      
        /**
         * @dev function {removeValidCaller} onlyOwner
         *
         * Allows the owner to remove a valid caller
         *
         * @param removedValidCallerHash_ The hash of the old removed valid caller
         */
        function removeValidCaller(
          bytes32 removedValidCallerHash_
        ) external onlyOwner {
          // Remove this from the enumerated list:
          _validCallerCodeHashes.remove(removedValidCallerHash_);
          emit ValidCallerRemoved(removedValidCallerHash_);
        }
      
        /**
         * @dev function {setProjectTaxRecipient} onlyOwner
         *
         * Allows the manager to set the project tax recipient address
         *
         * @param projectTaxRecipient_ New recipient address
         */
        function setProjectTaxRecipient(
          address projectTaxRecipient_
        ) external onlyOwner {
          projectTaxRecipient = projectTaxRecipient_;
          emit ProjectTaxRecipientUpdated(projectTaxRecipient_);
        }
      
        /**
         * @dev function {setSwapThresholdBasisPoints} onlyOwner
         *
         * Allows the manager to set the autoswap threshold
         *
         * @param swapThresholdBasisPoints_ New swap threshold in basis points
         */
        function setSwapThresholdBasisPoints(
          uint16 swapThresholdBasisPoints_
        ) external onlyOwner {
          if (swapThresholdBasisPoints < CONST_MIN_SWAP_THRESHOLD_BP) {
            _revert(SwapThresholdTooLow.selector);
          }
          uint256 oldswapThresholdBasisPoints = swapThresholdBasisPoints;
          swapThresholdBasisPoints = swapThresholdBasisPoints_;
          emit AutoSwapThresholdUpdated(
            oldswapThresholdBasisPoints,
            swapThresholdBasisPoints_
          );
        }
      
        /**
         * @dev function {setProjectTaxRates} onlyOwner
         *
         * Change the tax rates, subject to only ever decreasing
         *
         * @param newProjectBuyTaxBasisPoints_ The new buy tax rate
         * @param newProjectSellTaxBasisPoints_ The new sell tax rate
         */
        function setProjectTaxRates(
          uint16 newProjectBuyTaxBasisPoints_,
          uint16 newProjectSellTaxBasisPoints_
        ) external onlyOwner {
          uint16 oldBuyTaxBasisPoints = projectBuyTaxBasisPoints;
          uint16 oldSellTaxBasisPoints = projectSellTaxBasisPoints;
          // Cannot increase, down only
          if (newProjectBuyTaxBasisPoints_ > oldBuyTaxBasisPoints) {
            _revert(CanOnlyReduce.selector);
          }
          // Cannot increase, down only
          if (newProjectSellTaxBasisPoints_ > oldSellTaxBasisPoints) {
            _revert(CanOnlyReduce.selector);
          }
          projectBuyTaxBasisPoints = newProjectBuyTaxBasisPoints_;
          projectSellTaxBasisPoints = newProjectSellTaxBasisPoints_;
      
          // We set the metadrop tax rates off of the project tax rates:
          //
          // 1) If the project tax rate is zero then the metadrop tax rate is zero
          // 2) If the project tax rate is not zero the metadrop tax rate is the
          //    greater of:
          //    a) The metadrop tax proportion basis points of the project rate
          //    b) the base metadrop tax rate.
          //
          // Examples:
          //
          // A) The project buy tax rate is zero and the sell tax rate is 3%. The metadrop
          // tax proportion basis points is 1000, meaning the metadrop proportion is 10% of the
          // project tax rate. The base metadrop tax rate is 50 basis points i.e. 0.5%.
          //
          // * Metadrop buy tax = 0% (as the project buy tax is zero)
          // * Metadrop sell tax = 0.5%. 10% of the project sell tax is 0.3%. As this is below
          // the base level of 0.5% we set the metadrop tax to 0.5%
          //
          // B) The project buy tax rate is 4% and the sell tax rate is 20%. The metadrop tax
          // proportion basis points is 1000, meaning the metadrop proportion is 10% of the
          // project tax rate. The base metadrop tax rate is 50 basis points i.e. 0.5%.
          //
          // * Metadrop buy tax = 0.5%. 10% of the project rate would be 0.4%, so we use the base rate)
          // * Metadrop sell tax = 2%. 10% of the project rate is 2%, which is higher than the
          //   base rate of 0.5%.
      
          uint16 oldMetadropBuyTaxBasisPoints = metadropBuyTaxBasisPoints;
          uint16 oldMetadropSellTaxBasisPoints = metadropSellTaxBasisPoints;
      
          // Process the buy tax rate first:
          if (newProjectBuyTaxBasisPoints_ == 0) {
            metadropBuyTaxBasisPoints = 0;
          } else {
            uint256 derivedMetadropBuyTaxRate = (newProjectBuyTaxBasisPoints_ *
              metadropBuyTaxProportionBasisPoints) / CONST_BP_DENOM;
            if (derivedMetadropBuyTaxRate < metadropMinBuyTaxBasisPoints) {
              metadropBuyTaxBasisPoints = uint16(metadropMinBuyTaxBasisPoints);
            } else {
              metadropBuyTaxBasisPoints = uint16(derivedMetadropBuyTaxRate);
            }
          }
      
          // And now the sell tax rate:
          if (newProjectSellTaxBasisPoints_ == 0) {
            metadropSellTaxBasisPoints = 0;
          } else {
            uint256 derivedMetadropSellTaxRate = (newProjectSellTaxBasisPoints_ *
              metadropSellTaxProportionBasisPoints) / CONST_BP_DENOM;
            if (derivedMetadropSellTaxRate < metadropMinSellTaxBasisPoints) {
              metadropSellTaxBasisPoints = uint16(metadropMinSellTaxBasisPoints);
            } else {
              metadropSellTaxBasisPoints = uint16(derivedMetadropSellTaxRate);
            }
          }
      
          // Emit a message if there has been a change:
          if (
            oldMetadropBuyTaxBasisPoints != metadropBuyTaxBasisPoints ||
            oldMetadropSellTaxBasisPoints != metadropSellTaxBasisPoints
          ) {
            emit MetadropTaxBasisPointsChanged(
              oldMetadropBuyTaxBasisPoints,
              metadropBuyTaxBasisPoints,
              oldMetadropSellTaxBasisPoints,
              metadropSellTaxBasisPoints
            );
          }
      
          emit ProjectTaxBasisPointsChanged(
            oldBuyTaxBasisPoints,
            newProjectBuyTaxBasisPoints_,
            oldSellTaxBasisPoints,
            newProjectSellTaxBasisPoints_
          );
        }
      
        /**
         * @dev function {setLimits} onlyOwner
         *
         * Change the limits on transactions and holdings
         *
         * @param newMaxTokensPerTransaction_ The new per txn limit
         * @param newMaxTokensPerWallet_ The new tokens per wallet limit
         */
        function setLimits(
          uint256 newMaxTokensPerTransaction_,
          uint256 newMaxTokensPerWallet_
        ) external onlyOwner {
          if (newMaxTokensPerWallet_ > type(uint120).max) {
            _revert(LimitTooHigh.selector);
          }
      
          if (newMaxTokensPerTransaction_ > type(uint120).max) {
            _revert(LimitTooHigh.selector);
          }
      
          uint256 oldMaxTokensPerTransaction = maxTokensPerTransaction;
          uint256 oldMaxTokensPerWallet = maxTokensPerWallet;
          // Limit can only be increased:
          if (
            (oldMaxTokensPerTransaction == 0 && newMaxTokensPerTransaction_ != 0) ||
            (oldMaxTokensPerWallet == 0 && newMaxTokensPerWallet_ != 0)
          ) {
            _revert(LimitsCanOnlyBeRaised.selector);
          }
          if (
            ((newMaxTokensPerTransaction_ != 0) &&
              newMaxTokensPerTransaction_ < oldMaxTokensPerTransaction) ||
            ((newMaxTokensPerWallet_ != 0) &&
              newMaxTokensPerWallet_ < oldMaxTokensPerWallet)
          ) {
            _revert(LimitsCanOnlyBeRaised.selector);
          }
      
          maxTokensPerTransaction = uint120(newMaxTokensPerTransaction_);
          maxTokensPerWallet = uint120(newMaxTokensPerWallet_);
      
          emit LimitsUpdated(
            oldMaxTokensPerTransaction,
            newMaxTokensPerTransaction_,
            oldMaxTokensPerWallet,
            newMaxTokensPerWallet_
          );
        }
      
        /**
         * @dev function {limitsEnforced}
         *
         * Return if limits are enforced on this contract
         *
         * @return bool : they are / aren't
         */
        function limitsEnforced() public view returns (bool) {
          // Limits are not enforced if
          // this is renounced AND after then protection end date
          // OR prior to LP funding:
          // The second clause of 'fundedDate == 0' isn't strictly needed, since with a funded
          // date of 0 we would always expect the block.timestamp to be less than 0 plus
          // the botProtectionDurationInSeconds. But, to cover the miniscule chance of a user
          // selecting a truly enormous bot protection period, such that when added to 0 it
          // is more than the current block.timestamp, we have included this second clause. There
          // is no permanent gas overhead (the logic will be returning from the first clause after
          // the bot protection period has expired). During the bot protection period there is a minor
          // gas overhead from evaluating the fundedDate == 0 (which will be false), but this is minimal.
          if (
            (owner() == address(0) &&
              block.timestamp > fundedDate + botProtectionDurationInSeconds) ||
            fundedDate == 0
          ) {
            return false;
          } else {
            // LP has been funded AND we are within the protection period:
            return true;
          }
        }
      
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
          return _name;
        }
      
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
          return _symbol;
        }
      
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
          return 18;
        }
      
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
          return _totalSupply;
        }
      
        /**
         * @dev getMetadropBuyTaxBasisPoints
         *
         * Return the metadrop buy tax basis points given the timed expiry
         */
        function getMetadropBuyTaxBasisPoints() public view returns (uint256) {
          // If we are outside the metadrop tax period this is ZERO
          if (block.timestamp > (fundedDate + (metadropTaxPeriodInDays * 1 days))) {
            return 0;
          } else {
            return metadropBuyTaxBasisPoints;
          }
        }
      
        /**
         * @dev getMetadropSellTaxBasisPoints
         *
         * Return the metadrop sell tax basis points given the timed expiry
         */
        function getMetadropSellTaxBasisPoints() public view returns (uint256) {
          // If we are outside the metadrop tax period this is ZERO
          if (block.timestamp > (fundedDate + (metadropTaxPeriodInDays * 1 days))) {
            return 0;
          } else {
            return metadropSellTaxBasisPoints;
          }
        }
      
        /**
         * @dev totalBuyTaxBasisPoints
         *
         * Provide easy to view tax total:
         */
        function totalBuyTaxBasisPoints() public view returns (uint256) {
          return projectBuyTaxBasisPoints + getMetadropBuyTaxBasisPoints();
        }
      
        /**
         * @dev totalSellTaxBasisPoints
         *
         * Provide easy to view tax total:
         */
        function totalSellTaxBasisPoints() public view returns (uint256) {
          return projectSellTaxBasisPoints + getMetadropSellTaxBasisPoints();
        }
      
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(
          address account
        ) public view virtual override returns (uint256) {
          return _balances[account];
        }
      
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(
          address to,
          uint256 amount
        ) public virtual override(IERC20) returns (bool) {
          address owner = _msgSender();
          _transfer(
            owner,
            to,
            amount,
            (isLiquidityPool(owner) || isLiquidityPool(to))
          );
          return true;
        }
      
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(
          address owner,
          address spender
        ) public view virtual override returns (uint256) {
          return _allowances[owner][spender];
        }
      
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(
          address spender,
          uint256 amount
        ) public virtual override returns (bool) {
          address owner = _msgSender();
          _approve(owner, spender, amount);
          return true;
        }
      
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
          address from,
          address to,
          uint256 amount
        ) public virtual override returns (bool) {
          address spender = _msgSender();
          _spendAllowance(from, spender, amount);
          _transfer(from, to, amount, (isLiquidityPool(from) || isLiquidityPool(to)));
          return true;
        }
      
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(
          address spender,
          uint256 addedValue
        ) public virtual returns (bool) {
          address owner = _msgSender();
          _approve(owner, spender, allowance(owner, spender) + addedValue);
          return true;
        }
      
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(
          address spender,
          uint256 subtractedValue
        ) public virtual returns (bool) {
          address owner = _msgSender();
          uint256 currentAllowance = allowance(owner, spender);
          if (currentAllowance < subtractedValue) {
            _revert(AllowanceDecreasedBelowZero.selector);
          }
          unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
          }
      
          return true;
        }
      
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
          address from,
          address to,
          uint256 amount,
          bool applyTax
        ) internal virtual {
          _beforeTokenTransfer(from, to, amount);
      
          // Perform pre-tax validation (e.g. amount doesn't exceed balance, max txn amount)
          uint256 fromBalance = _pretaxValidationAndLimits(from, to, amount);
      
          // Perform autoswap if eligible
          _autoSwap(from, to);
      
          // Process taxes
          uint256 amountMinusDeductions = _taxProcessing(applyTax, to, from, amount);
      
          // Process autoburn
          amountMinusDeductions = _autoburnProcessing(
            from,
            amount,
            amountMinusDeductions
          );
      
          // Perform post-tax validation (e.g. total balance after post-tax amount applied)
          _posttaxValidationAndLimits(from, to, amountMinusDeductions);
      
          _balances[from] = fromBalance - amount;
          _balances[to] += amountMinusDeductions;
      
          emit Transfer(from, to, amountMinusDeductions);
      
          _afterTokenTransfer(from, to, amount);
        }
      
        /**
         * @dev function {_pretaxValidationAndLimits}
         *
         * Perform validation on pre-tax amounts
         *
         * @param from_ From address for the transaction
         * @param to_ To address for the transaction
         * @param amount_ Amount of the transaction
         */
        function _pretaxValidationAndLimits(
          address from_,
          address to_,
          uint256 amount_
        ) internal view returns (uint256 fromBalance_) {
          // This can't be a transfer to the liquidity pool before the funding date
          // UNLESS the from address is this contract. This ensures that the initial
          // LP funding transaction is from this contract using the supply of tokens
          // designated for the LP pool, and therefore the initial price in the pool
          // is being set as expected.
          //
          // This protects from, for example, tokens from a team minted supply being
          // paired with ETH and added to the pool, setting the initial price, BEFORE
          // the initial liquidity is added through this contract.
          if (to_ == uniswapV2Pair && from_ != address(this) && fundedDate == 0) {
            _revert(InitialLiquidityNotYetAdded.selector);
          }
      
          if (from_ == address(0)) {
            _revert(TransferFromZeroAddress.selector);
          }
      
          if (to_ == address(0)) {
            _revert(TransferToZeroAddress.selector);
          }
      
          fromBalance_ = _balances[from_];
      
          if (fromBalance_ < amount_) {
            _revert(TransferAmountExceedsBalance.selector);
          }
      
          if (
            limitsEnforced() &&
            (maxTokensPerTransaction != 0) &&
            ((isLiquidityPool(from_) && !isUnlimited(to_)) ||
              (isLiquidityPool(to_) && !isUnlimited(from_)))
          ) {
            // Liquidity pools aren't always going to round cleanly. This can (and does)
            // mean that a limit of 5,000 tokens (for example) will trigger on a transfer
            // of 5,000 tokens, as the transfer is actually for 5,000.00000000000000213.
            // While 4,999 will work fine, it isn't hugely user friendly. So we buffer
            // the limit with rounding decimals, which in all cases are considerably less
            // than one whole token:
            uint256 roundedLimited;
      
            unchecked {
              roundedLimited = maxTokensPerTransaction + CONST_ROUND_DEC;
            }
      
            if (amount_ > roundedLimited) {
              _revert(MaxTokensPerTxnExceeded.selector);
            }
          }
      
          return (fromBalance_);
        }
      
        /**
         * @dev function {_posttaxValidationAndLimits}
         *
         * Perform validation on post-tax amounts
         *
         * @param to_ To address for the transaction
         * @param amount_ Amount of the transaction
         */
        function _posttaxValidationAndLimits(
          address from_,
          address to_,
          uint256 amount_
        ) internal view {
          if (
            limitsEnforced() &&
            (maxTokensPerWallet != 0) &&
            !isUnlimited(to_) &&
            // If this is a buy (from a liquidity pool), we apply if the to_
            // address isn't noted as unlimited:
            (isLiquidityPool(from_) && !isUnlimited(to_))
          ) {
            // Liquidity pools aren't always going to round cleanly. This can (and does)
            // mean that a limit of 5,000 tokens (for example) will trigger on a max holding
            // of 5,000 tokens, as the transfer to achieve that is actually for
            // 5,000.00000000000000213. While 4,999 will work fine, it isn't hugely user friendly.
            // So we buffer the limit with rounding decimals, which in all cases are considerably
            // less than one whole token:
            uint256 roundedLimited;
      
            unchecked {
              roundedLimited = maxTokensPerWallet + CONST_ROUND_DEC;
            }
      
            if ((amount_ + balanceOf(to_) > roundedLimited)) {
              _revert(MaxTokensPerWalletExceeded.selector);
            }
          }
        }
      
        /**
         * @dev function {_taxProcessing}
         *
         * Perform tax processing
         *
         * @param applyTax_ Do we apply tax to this transaction?
         * @param to_ The reciever of the token
         * @param from_ The sender of the token
         * @param sentAmount_ The amount being send
         * @return amountLessTax_ The amount that will be recieved, i.e. the send amount minus tax
         */
        function _taxProcessing(
          bool applyTax_,
          address to_,
          address from_,
          uint256 sentAmount_
        ) internal returns (uint256 amountLessTax_) {
          amountLessTax_ = sentAmount_;
          if (_tokenHasTax && applyTax_ && !_autoSwapInProgress) {
            uint256 tax;
      
            // on sell
            if (isLiquidityPool(to_) && totalSellTaxBasisPoints() > 0) {
              if (projectSellTaxBasisPoints > 0) {
                uint256 projectTax = ((sentAmount_ * projectSellTaxBasisPoints) /
                  CONST_BP_DENOM);
                projectTaxPendingSwap += uint128(projectTax);
                tax += projectTax;
              }
              uint256 metadropSellTax = getMetadropSellTaxBasisPoints();
              if (metadropSellTax > 0) {
                uint256 metadropTax = ((sentAmount_ * metadropSellTax) /
                  CONST_BP_DENOM);
                metadropTaxPendingSwap += uint128(metadropTax);
                tax += metadropTax;
              }
            }
            // on buy
            else if (isLiquidityPool(from_) && totalBuyTaxBasisPoints() > 0) {
              if (projectBuyTaxBasisPoints > 0) {
                uint256 projectTax = ((sentAmount_ * projectBuyTaxBasisPoints) /
                  CONST_BP_DENOM);
                projectTaxPendingSwap += uint128(projectTax);
                tax += projectTax;
              }
              uint256 metadropBuyTax = getMetadropBuyTaxBasisPoints();
              if (metadropBuyTax > 0) {
                uint256 metadropTax = ((sentAmount_ * metadropBuyTax) /
                  CONST_BP_DENOM);
                metadropTaxPendingSwap += uint128(metadropTax);
                tax += metadropTax;
              }
            }
      
            if (tax > 0) {
              _balances[address(this)] += tax;
              emit Transfer(from_, address(this), tax);
              amountLessTax_ -= tax;
            }
          }
          return (amountLessTax_);
        }
      
        /**
         * @dev function {_autoburnProcessing}
         *
         * Perform autoburn processing
         *
         * @param from_ The sender of the token
         * @param originalSentAmount_ The original amount being sent, before any deductions (if appropriate)
         * @param currentRecipientAmount_ The amount the recipient is currently due to receive
         * @return amountLessBurn_ The amount that will be recieved, i.e. the currentRecipientAmount_
         * minus the burn applied here
         */
        function _autoburnProcessing(
          address from_,
          uint256 originalSentAmount_,
          uint256 currentRecipientAmount_
        ) internal returns (uint256 amountLessBurn_) {
          amountLessBurn_ = currentRecipientAmount_;
          // Perform autoBurn processing, if appropriate:
          if (
            autoBurnDurationInBlocks != 0 &&
            autoBurnBasisPoints != 0 &&
            !_autoSwapInProgress &&
            isLiquidityPool(from_)
          ) {
            uint256 blocksElapsed = block.number - fundedBlock;
            if (blocksElapsed < autoBurnDurationInBlocks) {
              // Get the blocks remaining in the autoburn period. The more blocks
              // remaining, the higher the proportion of the burn we apply:
              uint256 burnBlocksRemaining = autoBurnDurationInBlocks - blocksElapsed;
              // Calculate the linear burn basis point per remaining block. For example, if our
              // burn basis points = 1500 (15%) and we are burning for three blocks then this
              // will be 1500 / 3 = 500 (5%):
              uint256 linearBurnPerRemainingBlock = autoBurnBasisPoints /
                autoBurnDurationInBlocks;
              // Finally, determine the burn basis points for this block by multiplying the per remaining
              // block burn % by the number of blocks remaining. To follow our example, in the 0th
              // block since funding there are three blocks remaining in the burn period, therefore
              // 500 * 3 = 1500 (15%). Two blocks after funding we have one block remaining in the burn
              // period, and therefore are burning 500 * 1 = 500 (5%). Three blocks after funding we do not
              // reach this point in the logic, as the blocksElapsed is 3 and needs to be UNDER 3 to enter
              // this code.
              uint256 burnBasisPointsForThisBlock = burnBlocksRemaining *
                linearBurnPerRemainingBlock;
      
              // This is eligible for burn. Send the basis points amount of
              // the originalSentAmount_ to the zero address:
              uint256 burnAmount = ((originalSentAmount_ *
                burnBasisPointsForThisBlock) / CONST_BP_DENOM);
      
              _burn(from_, burnAmount);
              amountLessBurn_ -= burnAmount;
            }
          }
          return (amountLessBurn_);
        }
      
        /**
         * @dev totalTaxPendingSwap
         *
         * Return the total tax awaiting swap:
         */
        function totalTaxPendingSwap() public view returns (uint256) {
          return projectTaxPendingSwap + metadropTaxPendingSwap;
        }
      
        /**
         * @dev function {_autoSwap}
         *
         * Automate the swap of accumulated tax fees to native token
         *
         * @param from_ The sender of the token
         * @param to_ The recipient of the token
         */
        function _autoSwap(address from_, address to_) internal {
          if (_tokenHasTax) {
            uint256 totalTaxBalance = totalTaxPendingSwap();
            uint256 swapBalance = totalTaxBalance;
      
            uint256 swapThresholdInTokens = (_totalSupply *
              swapThresholdBasisPoints) / CONST_BP_DENOM;
      
            if (_eligibleForSwap(from_, to_, swapBalance, swapThresholdInTokens)) {
              // Store that a swap back is in progress:
              _autoSwapInProgress = true;
              // Check if we need to reduce the amount of tokens for this swap:
              if (
                swapBalance >
                swapThresholdInTokens * CONST_MAX_SWAP_THRESHOLD_MULTIPLE
              ) {
                swapBalance =
                  swapThresholdInTokens *
                  CONST_MAX_SWAP_THRESHOLD_MULTIPLE;
              }
              // Perform the auto swap to native token:
              _swapTaxForNative(swapBalance, totalTaxBalance);
              // Flag that the autoswap is complete:
              _autoSwapInProgress = false;
            }
          }
        }
      
        /**
         * @dev function {_eligibleForSwap}
         *
         * Is the current transfer eligible for autoswap
         *
         * @param from_ The sender of the token
         * @param to_ The recipient of the token
         * @param taxBalance_ The current accumulated tax balance
         * @param swapThresholdInTokens_ The swap threshold as a token amount
         */
        function _eligibleForSwap(
          address from_,
          address to_,
          uint256 taxBalance_,
          uint256 swapThresholdInTokens_
        ) internal view returns (bool) {
          return (taxBalance_ >= swapThresholdInTokens_ &&
            !_autoSwapInProgress &&
            !isLiquidityPool(from_) &&
            from_ != address(_uniswapRouter) &&
            to_ != address(_uniswapRouter));
        }
      
        /**
         * @dev function {_swapTaxForNative}
         *
         * Swap tokens taken as tax for native token
         *
         * @param swapBalance_ The current accumulated tax balance to swap
         * @param totalTaxBalance_ The current accumulated total tax balance
         */
        function _swapTaxForNative(
          uint256 swapBalance_,
          uint256 totalTaxBalance_
        ) internal {
          uint256 preSwapBalance = address(this).balance;
      
          address[] memory path = new address[](2);
          path[0] = address(this);
          path[1] = _uniswapRouter.WETH();
      
          // Wrap external calls in try / catch to handle errors
          try
            _uniswapRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
              swapBalance_,
              0,
              path,
              address(this),
              block.timestamp + 600
            )
          {
            uint256 postSwapBalance = address(this).balance;
      
            uint256 balanceToDistribute = postSwapBalance - preSwapBalance;
      
            uint256 projectBalanceToDistribute = (balanceToDistribute *
              projectTaxPendingSwap) / totalTaxBalance_;
      
            uint256 metadropBalanceToDistribute = (balanceToDistribute *
              metadropTaxPendingSwap) / totalTaxBalance_;
      
            // We will not have swapped all tax tokens IF the amount was greater than the max auto swap.
            // We therefore cannot just set the pending swap counters to 0. Instead, in this scenario,
            // we must reduce them in proportion to the swap amount vs the remaining balance + swap
            // amount.
            //
            // For example:
            //  * swap Balance is 250
            //  * contract balance is 385.
            //  * projectTaxPendingSwap is 300
            //  * metadropTaxPendingSwap is 85.
            //
            // The new total for the projectTaxPendingSwap is:
            //   = 300 - ((300 * 250) / 385)
            //   = 300 - 194
            //   = 106
            // The new total for the metadropTaxPendingSwap is:
            //   = 85 - ((85 * 250) / 385)
            //   = 85 - 55
            //   = 30
            //
      
            if (swapBalance_ < totalTaxBalance_) {
              // Calculate the project tax spending swap reduction amount:
              uint256 projectTaxPendingSwapReduction = (projectTaxPendingSwap *
                swapBalance_) / totalTaxBalance_;
              projectTaxPendingSwap -= uint128(projectTaxPendingSwapReduction);
      
              // The metadrop tax pending swap reduction is therefore the total swap amount minus the
              // project tax spending swap reduction:
              metadropTaxPendingSwap -= uint128(
                swapBalance_ - projectTaxPendingSwapReduction
              );
            } else {
              (projectTaxPendingSwap, metadropTaxPendingSwap) = (0, 0);
            }
      
            // Distribute to treasuries:
            bool success;
            address weth;
            uint256 gas;
      
            if (projectBalanceToDistribute > 0) {
              // If no gas limit was provided or provided gas limit greater than gas left, just use the remaining gas.
              gas = (CONST_CALL_GAS_LIMIT == 0 || CONST_CALL_GAS_LIMIT > gasleft())
                ? gasleft()
                : CONST_CALL_GAS_LIMIT;
      
              // We limit the gas passed so that a called address cannot cause a block out of gas error:
              (success, ) = projectTaxRecipient.call{
                value: projectBalanceToDistribute,
                gas: gas
              }("");
      
              // If the ETH transfer fails, wrap the ETH and send it as WETH. We do this so that a called
              // address cannot cause this transfer to fail, either intentionally or by mistake:
              if (!success) {
                if (weth == address(0)) {
                  weth = _uniswapRouter.WETH();
                }
      
                try IWETH(weth).deposit{value: projectBalanceToDistribute}() {
                  try
                    IERC20(address(weth)).transfer(
                      projectTaxRecipient,
                      projectBalanceToDistribute
                    )
                  {} catch {
                    // Dont allow a failed external call (in this case to WETH) to stop a transfer.
                    // Emit that this has occured and continue.
                    emit ExternalCallError(1);
                  }
                } catch {
                  // Dont allow a failed external call (in this case to WETH) to stop a transfer.
                  // Emit that this has occured and continue.
                  emit ExternalCallError(2);
                }
              }
            }
      
            if (metadropBalanceToDistribute > 0) {
              // If no gas limit was provided or provided gas limit greater than gas left, just use the remaining gas.
              gas = (CONST_CALL_GAS_LIMIT == 0 || CONST_CALL_GAS_LIMIT > gasleft())
                ? gasleft()
                : CONST_CALL_GAS_LIMIT;
      
              (success, ) = metadropTaxRecipient.call{
                value: metadropBalanceToDistribute,
                gas: gas
              }("");
      
              // If the ETH transfer fails, wrap the ETH and send it as WETH. We do this so that a called
              // address cannot cause this transfer to fail, either intentionally or by mistake:
              if (!success) {
                if (weth == address(0)) {
                  weth = _uniswapRouter.WETH();
                }
                try IWETH(weth).deposit{value: metadropBalanceToDistribute}() {
                  try
                    IERC20(address(weth)).transfer(
                      metadropTaxRecipient,
                      metadropBalanceToDistribute
                    )
                  {} catch {
                    // Dont allow a failed external call (in this case to WETH) to stop a transfer.
                    // Emit that this has occured and continue.
                    emit ExternalCallError(3);
                  }
                } catch {
                  // Dont allow a failed external call (in this case to WETH) to stop a transfer.
                  // Emit that this has occured and continue.
                  emit ExternalCallError(4);
                }
              }
            }
          } catch {
            // Dont allow a failed external call (in this case to uniswap) to stop a transfer.
            // Emit that this has occured and continue.
            emit ExternalCallError(5);
          }
        }
      
        /**
         * @dev distributeTaxTokens
         *
         * Allows the distribution of tax tokens to the designated recipient(s)
         *
         * As part of standard processing the tax token balance being above the threshold
         * will trigger an autoswap to ETH and distribution of this ETH to the designated
         * recipients. This is automatic and there is no need for user involvement.
         *
         * As part of this swap there are a number of calculations performed, particularly
         * if the tax balance is above CONST_MAX_SWAP_THRESHOLD_MULTIPLE.
         *
         * Testing indicates that these calculations are safe. But given the data / code
         * interactions it remains possible that some edge case set of scenarios may cause
         * an issue with these calculations.
         *
         * This method is therefore provided as a 'fallback' option to safely distribute
         * accumulated taxes from the contract, with a direct transfer of the ERC20 tokens
         * themselves.
         */
        function distributeTaxTokens() external notDuringAutoswap {
          if (projectTaxPendingSwap > 0) {
            uint256 projectDistribution = projectTaxPendingSwap;
            projectTaxPendingSwap = 0;
            _transfer(address(this), projectTaxRecipient, projectDistribution, false);
          }
      
          if (metadropTaxPendingSwap > 0) {
            uint256 metadropDistribution = metadropTaxPendingSwap;
            metadropTaxPendingSwap = 0;
            _transfer(
              address(this),
              metadropTaxRecipient,
              metadropDistribution,
              false
            );
          }
        }
      
        /**
         * @dev function {rescueETH}
         *
         * A withdraw function to allow ETH to be rescued.
         *
         * This contract should never hold ETH. The only envisaged scenario where
         * it might hold ETH is a failed autoswap where the uniswap swap has completed,
         * the recipient of ETH reverts, the contract then wraps to WETH and the
         * wrap to WETH fails.
         *
         * This feels unlikely. But, for safety, we include this method.
         *
         * @param amount_ The amount to withdraw
         */
        function rescueETH(uint256 amount_) external notDuringAutoswap {
          (bool success, ) = projectTaxRecipient.call{value: amount_}("");
          if (!success) {
            _revert(TransferFailed.selector);
          }
        }
      
        /**
         * @dev function {rescueERC20}
         *
         * A withdraw function to allow ERC20s (except address(this)) to be rescued.
         *
         * This contract should never hold ERC20s other than tax tokens. The only envisaged
         * scenario where it might hold an ERC20 is a failed autoswap where the uniswap swap
         * has completed, the recipient of ETH reverts, the contract then wraps to WETH, the
         * wrap to WETH succeeds, BUT then the transfer of WETH fails.
         *
         * This feels even less likely than the scenario where ETH is held on the contract.
         * But, for safety, we include this method.
         *
         * @param token_ The ERC20 contract
         * @param amount_ The amount to withdraw
         */
        function rescueERC20(
          address token_,
          uint256 amount_
        ) external notDuringAutoswap {
          if (token_ == address(this)) {
            _revert(CannotWithdrawThisToken.selector);
          }
          IERC20(token_).safeTransfer(projectTaxRecipient, amount_);
        }
      
        /**
         * @dev function {rescueExcessToken}
         *
         * A withdraw function to allow ERC20s from this address that are above
         * the accrued tax balance to be rescued.
         */
        function rescueExcessToken(uint256 amount_) external notDuringAutoswap {
          uint256 excessToken = balanceOf(address(this)) - totalTaxPendingSwap();
      
          if (amount_ > excessToken) {
            _revert(AmountExceedsAvailable.selector);
          }
      
          IERC20(address(this)).safeTransfer(projectTaxRecipient, amount_);
        }
      
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
          if (account == address(0)) {
            _revert(MintToZeroAddress.selector);
          }
      
          _beforeTokenTransfer(address(0), account, amount);
      
          _totalSupply += uint120(amount);
          unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
          }
          emit Transfer(address(0), account, amount);
      
          _afterTokenTransfer(address(0), account, amount);
        }
      
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
          if (account == address(0)) {
            _revert(BurnFromTheZeroAddress.selector);
          }
      
          _beforeTokenTransfer(account, address(0), amount);
      
          uint256 accountBalance = _balances[account];
          if (accountBalance < amount) {
            _revert(BurnExceedsBalance.selector);
          }
      
          unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= uint120(amount);
          }
      
          emit Transfer(account, address(0), amount);
      
          _afterTokenTransfer(account, address(0), amount);
        }
      
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
          address owner,
          address spender,
          uint256 amount
        ) internal virtual {
          if (owner == address(0)) {
            _revert(ApproveFromTheZeroAddress.selector);
          }
      
          if (spender == address(0)) {
            _revert(ApproveToTheZeroAddress.selector);
          }
      
          _allowances[owner][spender] = amount;
          emit Approval(owner, spender, amount);
        }
      
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
          address owner,
          address spender,
          uint256 amount
        ) internal virtual {
          uint256 currentAllowance = allowance(owner, spender);
          if (currentAllowance != type(uint256).max) {
            if (currentAllowance < amount) {
              _revert(InsufficientAllowance.selector);
            }
      
            unchecked {
              _approve(owner, spender, currentAllowance - amount);
            }
          }
        }
      
        /**
         * @dev Destroys a `value` amount of tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 value) public virtual {
          _burn(_msgSender(), value);
        }
      
        /**
         * @dev Destroys a `value` amount of tokens from `account`, deducting from
         * the caller's allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `value`.
         */
        function burnFrom(address account, uint256 value) public virtual {
          _spendAllowance(account, _msgSender(), value);
          _burn(account, value);
        }
      
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
          address from,
          address to,
          uint256 amount
        ) internal virtual {}
      
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
          address from,
          address to,
          uint256 amount
        ) internal virtual {}
      
        receive() external payable {}
      }
      
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
      // @@                                                                                                @@
      // @@   Metadrop has no affiliation with and does not endorse this token or its creators in any      @@
      // @@   way, unless otherwise stated. For all terms and conditions associated with tokens launched   @@
      // @@   using Metadrop software, refer to the terms published at metadrop[dot]com/legal.             @@
      // @@                                                                                                @@
      // @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@