ETH Price: $2,395.26 (-1.29%)
Gas: 1.97 Gwei

Transaction Decoder

Block:
22787205 at Jun-26-2025 07:44:59 AM +UTC
Transaction Fee:
0.000484599958101396 ETH $1.16
Gas Used:
161,676 Gas / 2.997352471 Gwei

Emitted Events:

1 FeeCollector.FeesCollected( _token=0x00000000...000000000, _integrator=0x6f6426a9...c1085999b, _integratorFee=15000000000000, _lifiFee=10000000000000 )
2 LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, c977d04a5a73f02a0b09ba6feda9ce5d6a2e2a0dfdd420ce9ea0caba9b3bc3eb, 000000000000000000000000bd6c7b0d2f68c2b7805d88388319cfb6ecb50ea9, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000011c37937e08000, 0000000000000000000000000000000000000000000000000011acbc73c1f000, 00000000000000000000000000000000000000000000000000000000685cfa7b )
3 RelayReceiver.FundsForwardedWithData( data=0xFA75F76FF7EBB8145B0D63BED901AC0DE290B7EADFC38A0A3B25D72DB5F38472 )
4 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, c977d04a5a73f02a0b09ba6feda9ce5d6a2e2a0dfdd420ce9ea0caba9b3bc3eb, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000640e64d7b3c643d3b029dc6edc99a61e525c5d5c, 0000000000000000000000000000000000000000000000000011acbc73c1f000, 0000000000000000000000000000000000000000000000000000000000000ab5, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000005, 72656c6179000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 61627374726163742d6272696467650000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1231DEB6...7486F4EaE
(LI.FI: LiFi Diamond)
(MEV Builder: 0x7dbf...c6c)
1.000633946794327 Eth1.000957298794327 Eth0.000323352
0xb8494Ba6...248Aa67B7
0.010000805473147926 Eth
Nonce: 17
0.00451620551504653 Eth
Nonce: 19
0.005484599958101396From: 0 To: 22892026855592066050609947431602401211538835161166308139
0xbD6C7B0d...6EcB50eA9 839.529373820064248445 Eth839.529398820064248445 Eth0.000025
0xf70da978...8dfA3dbEF
(Relay: Solver)
871.248019562052433035 Eth871.252994562052433035 Eth0.004975

Execution Trace

0xb8494ba6b26451429197c59c862e035248aa67b7.e9ae5c53( )
  • ETH 0.005 LiFiDiamond.25d374e8( )
    • ETH 0.005 RelayFacet.swapAndStartBridgeTokensViaRelay( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:C977D04A5A73F02A0B09BA6FEDA9CE5D6A2E2A0DFDD420CE9EA0CABA9B3BC3EB, valueString:C977D04A5A73F02A0B09BA6FEDA9CE5D6A2E2A0DFDD420CE9EA0CABA9B3BC3EB}, {name:bridge, type:string, order:2, indexed:false, value:relay, valueString:relay}, {name:integrator, type:string, order:3, indexed:false, value:abstract-bridge, valueString:abstract-bridge}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0x640e64D7B3c643D3B029dC6EDC99A61e525c5D5C, valueString:0x640e64D7B3c643D3B029dC6EDC99A61e525c5D5C}, {name:minAmount, type:uint256, order:7, indexed:false, value:4975000000000000, valueString:4975000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:2741, valueString:2741}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:true, valueString:True}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _swapData=, _relayData=[{name:requestId, type:bytes32, order:1, indexed:false, value:FA75F76FF7EBB8145B0D63BED901AC0DE290B7EADFC38A0A3B25D72DB5F38472, valueString:FA75F76FF7EBB8145B0D63BED901AC0DE290B7EADFC38A0A3B25D72DB5F38472}, {name:nonEVMReceiver, type:bytes32, order:2, indexed:false, value:000000000000000000000000640E64D7B3C643D3B029DC6EDC99A61E525C5D5C, valueString:000000000000000000000000640E64D7B3C643D3B029DC6EDC99A61E525C5D5C}, {name:receivingAssetId, type:bytes32, order:3, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:signature, type:bytes, order:4, indexed:false, value:0xED74111CC107CF46A547FB255AA4D68383D8E9C69057E860BD13D1AB7A212DA432E2CF51EA60DD88A4AF03149B598D82D7E26309AA94C378CA3B7EC0EBC3581C1B, valueString:0xED74111CC107CF46A547FB255AA4D68383D8E9C69057E860BD13D1AB7A212DA432E2CF51EA60DD88A4AF03149B598D82D7E26309AA94C378CA3B7EC0EBC3581C1B}] )
      • Null: 0x000...001.0a78ad28( )
      • ETH 0.005 FeeCollector.collectNativeFees( integratorFee=15000000000000, lifiFee=10000000000000, integratorAddress=0x6f6426a9b93a7567fCCcBfE5d0d6F26c1085999b )
        • ETH 0.004975 LiFiDiamond.CALL( )
        • ETH 0.004975 RelayReceiver.fa75f76f( )
          • ETH 0.004975 Relay: Solver.CALL( )
            File 1 of 4: FeeCollector
            // SPDX-License-Identifier: UNLICENSED
            pragma solidity 0.8.13;
            import { LibAsset } from "../Libraries/LibAsset.sol";
            /// @title Fee Collector
            /// @author LI.FI (https://li.fi)
            /// @notice Provides functionality for collecting integrator fees
            contract FeeCollector {
                /// State ///
                // Integrator -> TokenAddress -> Balance
                mapping(address => mapping(address => uint256)) private _balances;
                // TokenAddress -> Balance
                mapping(address => uint256) private _lifiBalances;
                address public owner;
                address public pendingOwner;
                /// Errors ///
                error Unauthorized(address);
                error NoNullOwner();
                error NewOwnerMustNotBeSelf();
                error NoPendingOwnershipTransfer();
                error NotPendingOwner();
                error TransferFailure();
                /// Events ///
                event FeesCollected(address indexed _token, address indexed _integrator, uint256 _integratorFee, uint256 _lifiFee);
                event FeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
                event LiFiFeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
                event OwnershipTransferRequested(address indexed _from, address indexed _to);
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /// Constructor ///
                constructor(address _owner) {
                    owner = _owner;
                }
                /// External Methods ///
                /// @notice Collects fees for the integrator
                /// @param tokenAddress address of the token to collect fees for
                /// @param integratorFee amount of fees to collect going to the integrator
                /// @param lifiFee amount of fees to collect going to lifi
                /// @param integratorAddress address of the integrator
                function collectTokenFees(
                    address tokenAddress,
                    uint256 integratorFee,
                    uint256 lifiFee,
                    address integratorAddress
                ) external {
                    LibAsset.depositAsset(tokenAddress, integratorFee + lifiFee);
                    _balances[integratorAddress][tokenAddress] += integratorFee;
                    _lifiBalances[tokenAddress] += lifiFee;
                    emit FeesCollected(tokenAddress, integratorAddress, integratorFee, lifiFee);
                }
                /// @notice Collects fees for the integrator in native token
                /// @param integratorFee amount of fees to collect going to the integrator
                /// @param lifiFee amount of fees to collect going to lifi
                /// @param integratorAddress address of the integrator
                function collectNativeFees(
                    uint256 integratorFee,
                    uint256 lifiFee,
                    address integratorAddress
                ) external payable {
                    _balances[integratorAddress][LibAsset.NULL_ADDRESS] += integratorFee;
                    _lifiBalances[LibAsset.NULL_ADDRESS] += lifiFee;
                    uint256 remaining = msg.value - (integratorFee + lifiFee);
                    // Prevent extra native token from being locked in the contract
                    if (remaining > 0) {
                        (bool success, ) = msg.sender.call{ value: remaining }("");
                        if (!success) {
                            revert TransferFailure();
                        }
                    }
                    emit FeesCollected(LibAsset.NULL_ADDRESS, integratorAddress, integratorFee, lifiFee);
                }
                /// @notice Withdraw fees and sends to the integrator
                /// @param tokenAddress address of the token to withdraw fees for
                function withdrawIntegratorFees(address tokenAddress) external {
                    uint256 balance = _balances[msg.sender][tokenAddress];
                    if (balance == 0) {
                        return;
                    }
                    _balances[msg.sender][tokenAddress] = 0;
                    LibAsset.transferAsset(tokenAddress, payable(msg.sender), balance);
                    emit FeesWithdrawn(tokenAddress, msg.sender, balance);
                }
                /// @notice Batch withdraw fees and sends to the integrator
                /// @param tokenAddresses addresses of the tokens to withdraw fees for
                function batchWithdrawIntegratorFees(address[] memory tokenAddresses) external {
                    uint256 length = tokenAddresses.length;
                    uint256 balance;
                    for (uint256 i = 0; i < length; i++) {
                        balance = _balances[msg.sender][tokenAddresses[i]];
                        if (balance == 0) {
                            continue;
                        }
                        _balances[msg.sender][tokenAddresses[i]] = 0;
                        LibAsset.transferAsset(tokenAddresses[i], payable(msg.sender), balance);
                        emit FeesWithdrawn(tokenAddresses[i], msg.sender, balance);
                    }
                }
                /// @notice Withdraws fees and sends to lifi
                /// @param tokenAddress address of the token to withdraw fees for
                function withdrawLifiFees(address tokenAddress) external {
                    _enforceIsContractOwner();
                    uint256 balance = _lifiBalances[tokenAddress];
                    if (balance == 0) {
                        return;
                    }
                    _lifiBalances[tokenAddress] = 0;
                    LibAsset.transferAsset(tokenAddress, payable(owner), balance);
                    emit LiFiFeesWithdrawn(tokenAddress, msg.sender, balance);
                }
                /// @notice Batch withdraws fees and sends to lifi
                /// @param tokenAddresses addresses of the tokens to withdraw fees for
                function batchWithdrawLifiFees(address[] memory tokenAddresses) external {
                    _enforceIsContractOwner();
                    uint256 length = tokenAddresses.length;
                    uint256 balance;
                    for (uint256 i = 0; i < length; i++) {
                        balance = _lifiBalances[tokenAddresses[i]];
                        if (balance == 0) {
                            continue;
                        }
                        _lifiBalances[tokenAddresses[i]] = 0;
                        LibAsset.transferAsset(tokenAddresses[i], payable(owner), balance);
                        emit LiFiFeesWithdrawn(tokenAddresses[i], msg.sender, balance);
                    }
                }
                /// @notice Returns the balance of the integrator
                /// @param integratorAddress address of the integrator
                /// @param tokenAddress address of the token to get the balance of
                function getTokenBalance(address integratorAddress, address tokenAddress) external view returns (uint256) {
                    return _balances[integratorAddress][tokenAddress];
                }
                /// @notice Returns the balance of lifi
                /// @param tokenAddress address of the token to get the balance of
                function getLifiTokenBalance(address tokenAddress) external view returns (uint256) {
                    return _lifiBalances[tokenAddress];
                }
                /// @notice Intitiates transfer of ownership to a new address
                /// @param _newOwner the address to transfer ownership to
                function transferOwnership(address _newOwner) external {
                    _enforceIsContractOwner();
                    if (_newOwner == LibAsset.NULL_ADDRESS) revert NoNullOwner();
                    if (_newOwner == owner) revert NewOwnerMustNotBeSelf();
                    pendingOwner = _newOwner;
                    emit OwnershipTransferRequested(msg.sender, pendingOwner);
                }
                /// @notice Cancel transfer of ownership
                function cancelOnwershipTransfer() external {
                    _enforceIsContractOwner();
                    if (pendingOwner == LibAsset.NULL_ADDRESS) revert NoPendingOwnershipTransfer();
                    pendingOwner = LibAsset.NULL_ADDRESS;
                }
                /// @notice Confirms transfer of ownership to the calling address (msg.sender)
                function confirmOwnershipTransfer() external {
                    if (msg.sender != pendingOwner) revert NotPendingOwner();
                    owner = pendingOwner;
                    pendingOwner = LibAsset.NULL_ADDRESS;
                    emit OwnershipTransferred(owner, pendingOwner);
                }
                /// Private Methods ///
                /// @notice Ensures that the calling address is the owner of the contract
                function _enforceIsContractOwner() private view {
                    if (msg.sender != owner) {
                        revert Unauthorized(msg.sender);
                    }
                }
            }
            // SPDX-License-Identifier: UNLICENSED
            pragma solidity 0.8.13;
            import { NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
            import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
            import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
            /// @title LibAsset
            /// @author Connext <[email protected]>
            /// @notice This library contains helpers for dealing with onchain transfers
            ///         of assets, including accounting for the native asset `assetId`
            ///         conventions and any noncompliant ERC20 transfers
            library LibAsset {
                uint256 private constant MAX_INT = type(uint256).max;
                address internal constant NULL_ADDRESS = 0x0000000000000000000000000000000000000000; //address(0)
                /// @dev All native assets use the empty address for their asset id
                ///      by convention
                address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                /// @notice Gets the balance of the inheriting contract for the given asset
                /// @param assetId The asset identifier to get the balance of
                /// @return Balance held by contracts using this library
                function getOwnBalance(address assetId) internal view returns (uint256) {
                    return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this));
                }
                /// @notice Transfers ether from the inheriting contract to a given
                ///         recipient
                /// @param recipient Address to send ether to
                /// @param amount Amount to send to given recipient
                function transferNativeAsset(address payable recipient, uint256 amount) private {
                    if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                    // solhint-disable-next-line avoid-low-level-calls
                    (bool success, ) = recipient.call{ value: amount }("");
                    if (!success) revert NativeAssetTransferFailed();
                }
                /// @notice Gives MAX approval for another address to spend tokens
                /// @param assetId Token address to transfer
                /// @param spender Address to give spend approval to
                /// @param amount Amount to approve for spending
                function maxApproveERC20(
                    IERC20 assetId,
                    address spender,
                    uint256 amount
                ) internal {
                    if (address(assetId) == NATIVE_ASSETID) return;
                    if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                    uint256 allowance = assetId.allowance(address(this), spender);
                    if (allowance < amount) SafeERC20.safeApprove(IERC20(assetId), spender, MAX_INT);
                }
                /// @notice Transfers tokens from the inheriting contract to a given
                ///         recipient
                /// @param assetId Token address to transfer
                /// @param recipient Address to send token to
                /// @param amount Amount to send to given recipient
                function transferERC20(
                    address assetId,
                    address recipient,
                    uint256 amount
                ) private {
                    if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                    SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                }
                /// @notice Transfers tokens from a sender to a given recipient
                /// @param assetId Token address to transfer
                /// @param from Address of sender/owner
                /// @param to Address of recipient/spender
                /// @param amount Amount to transfer from owner to spender
                function transferFromERC20(
                    address assetId,
                    address from,
                    address to,
                    uint256 amount
                ) internal {
                    if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                    if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                    SafeERC20.safeTransferFrom(IERC20(assetId), from, to, amount);
                }
                /// @notice Deposits an asset into the contract and performs checks to avoid NativeValueWithERC
                /// @param tokenId Token to deposit
                /// @param amount Amount to deposit
                /// @param isNative Wether the token is native or ERC20
                function depositAsset(
                    address tokenId,
                    uint256 amount,
                    bool isNative
                ) internal {
                    if (amount == 0) revert InvalidAmount();
                    if (isNative) {
                        if (msg.value != amount) revert InvalidAmount();
                    } else {
                        if (msg.value != 0) revert NativeValueWithERC();
                        uint256 _fromTokenBalance = LibAsset.getOwnBalance(tokenId);
                        LibAsset.transferFromERC20(tokenId, msg.sender, address(this), amount);
                        if (LibAsset.getOwnBalance(tokenId) - _fromTokenBalance != amount) revert InvalidAmount();
                    }
                }
                /// @notice Overload for depositAsset(address tokenId, uint256 amount, bool isNative)
                /// @param tokenId Token to deposit
                /// @param amount Amount to deposit
                function depositAsset(address tokenId, uint256 amount) internal {
                    return depositAsset(tokenId, amount, tokenId == NATIVE_ASSETID);
                }
                /// @notice Determines whether the given assetId is the native asset
                /// @param assetId The asset identifier to evaluate
                /// @return Boolean indicating if the asset is the native asset
                function isNativeAsset(address assetId) internal pure returns (bool) {
                    return assetId == NATIVE_ASSETID;
                }
                /// @notice Wrapper function to transfer a given asset (native or erc20) to
                ///         some recipient. Should handle all non-compliant return value
                ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                /// @param assetId Asset id for transfer (address(0) for native asset,
                ///                token address for erc20s)
                /// @param recipient Address to send asset to
                /// @param amount Amount to send to given recipient
                function transferAsset(
                    address assetId,
                    address payable recipient,
                    uint256 amount
                ) internal {
                    (assetId == NATIVE_ASSETID)
                        ? transferNativeAsset(recipient, amount)
                        : transferERC20(assetId, recipient, amount);
                }
                /// @dev Checks whether the given address is a contract and contains code
                function isContract(address _contractAddr) internal view returns (bool) {
                    uint256 size;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        size := extcodesize(_contractAddr)
                    }
                    return size > 0;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.13;
            error InvalidAmount();
            error TokenAddressIsZero();
            error CannotBridgeToSameNetwork();
            error ZeroPostSwapBalance();
            error InvalidBridgeConfigLength();
            error NoSwapDataProvided();
            error NativeValueWithERC();
            error ContractCallNotAllowed();
            error NullAddrIsNotAValidSpender();
            error NullAddrIsNotAnERC20Token();
            error NoTransferToNullAddress();
            error NativeAssetTransferFailed();
            error InvalidContract();
            error InvalidConfig();
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            import "../../../utils/Address.sol";
            /**
             * @title SafeERC20
             * @dev Wrappers around ERC20 operations that throw on failure (when the token
             * contract returns false). Tokens that return no value (and instead revert or
             * throw on failure) are also supported, non-reverting calls are assumed to be
             * successful.
             * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
             * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
             */
            library SafeERC20 {
                using Address for address;
                function safeTransfer(
                    IERC20 token,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                }
                function safeTransferFrom(
                    IERC20 token,
                    address from,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                }
                /**
                 * @dev Deprecated. This function has issues similar to the ones found in
                 * {IERC20-approve}, and its usage is discouraged.
                 *
                 * Whenever possible, use {safeIncreaseAllowance} and
                 * {safeDecreaseAllowance} instead.
                 */
                function safeApprove(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    // safeApprove should only be called when setting an initial allowance,
                    // or when resetting it to zero. To increase and decrease it, use
                    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                    require(
                        (value == 0) || (token.allowance(address(this), spender) == 0),
                        "SafeERC20: approve from non-zero to non-zero allowance"
                    );
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                }
                function safeIncreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    uint256 newAllowance = token.allowance(address(this), spender) + value;
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
                function safeDecreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    unchecked {
                        uint256 oldAllowance = token.allowance(address(this), spender);
                        require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                        uint256 newAllowance = oldAllowance - value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                }
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 */
                function _callOptionalReturn(IERC20 token, bytes memory data) private {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                    // the target address contains contract code and also asserts for success in the low-level call.
                    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                    if (returndata.length > 0) {
                        // Return data is optional
                        require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves `amount` tokens from the caller's account to `recipient`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address recipient, uint256 amount) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
                /**
                 * @dev Moves `amount` tokens from `sender` to `recipient` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(
                    address sender,
                    address recipient,
                    uint256 amount
                ) external returns (bool);
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize, which returns 0 for contracts in
                    // construction, since the code is only stored at the end of the
                    // constructor execution.
                    uint256 size;
                    assembly {
                        size := extcodesize(account)
                    }
                    return size > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            

            File 2 of 4: LiFiDiamond
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            error TokenAddressIsZero();
            error TokenNotSupported();
            error CannotBridgeToSameNetwork();
            error ZeroPostSwapBalance();
            error NoSwapDataProvided();
            error NativeValueWithERC();
            error ContractCallNotAllowed();
            error NullAddrIsNotAValidSpender();
            error NullAddrIsNotAnERC20Token();
            error NoTransferToNullAddress();
            error NativeAssetTransferFailed();
            error InvalidBridgeConfigLength();
            error InvalidAmount();
            error InvalidContract();
            error InvalidConfig();
            error UnsupportedChainId(uint256 chainId);
            error InvalidReceiver();
            error InvalidDestinationChain();
            error InvalidSendingToken();
            error InvalidCaller();
            error AlreadyInitialized();
            error NotInitialized();
            error OnlyContractOwner();
            error CannotAuthoriseSelf();
            error RecoveryAddressCannotBeZero();
            error CannotDepositNativeToken();
            error InvalidCallData();
            error NativeAssetNotSupported();
            error UnAuthorized();
            error NoSwapFromZeroBalance();
            error InvalidFallbackAddress();
            error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
            error InsufficientBalance(uint256 required, uint256 balance);
            error ZeroAmount();
            error InvalidFee();
            error InformationMismatch();
            error NotAContract();
            error NotEnoughBalance(uint256 requested, uint256 available);
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            interface IDiamondCut {
                enum FacetCutAction {
                    Add,
                    Replace,
                    Remove
                }
                // Add=0, Replace=1, Remove=2
                struct FacetCut {
                    address facetAddress;
                    FacetCutAction action;
                    bytes4[] functionSelectors;
                }
                /// @notice Add/replace/remove any number of functions and optionally execute
                ///         a function with delegatecall
                /// @param _diamondCut Contains the facet addresses and function selectors
                /// @param _init The address of the contract or facet to execute _calldata
                /// @param _calldata A function call, including function selector and arguments
                ///                  _calldata is executed with delegatecall on _init
                function diamondCut(
                    FacetCut[] calldata _diamondCut,
                    address _init,
                    bytes calldata _calldata
                ) external;
                event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { LibDiamond } from "./Libraries/LibDiamond.sol";
            import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
            import { LibUtil } from "./Libraries/LibUtil.sol";
            contract LiFiDiamond {
                constructor(address _contractOwner, address _diamondCutFacet) payable {
                    LibDiamond.setContractOwner(_contractOwner);
                    // Add the diamondCut external function from the diamondCutFacet
                    IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                    bytes4[] memory functionSelectors = new bytes4[](1);
                    functionSelectors[0] = IDiamondCut.diamondCut.selector;
                    cut[0] = IDiamondCut.FacetCut({
                        facetAddress: _diamondCutFacet,
                        action: IDiamondCut.FacetCutAction.Add,
                        functionSelectors: functionSelectors
                    });
                    LibDiamond.diamondCut(cut, address(0), "");
                }
                // Find facet for function that is called and execute the
                // function if a facet is found and return any value.
                // solhint-disable-next-line no-complex-fallback
                fallback() external payable {
                    LibDiamond.DiamondStorage storage ds;
                    bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                    // get diamond storage
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        ds.slot := position
                    }
                    // get facet from function selector
                    address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                    if (facet == address(0)) {
                        revert LibDiamond.FunctionDoesNotExist();
                    }
                    // Execute external function from facet using delegatecall and return any value.
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        // copy function selector and any arguments
                        calldatacopy(0, 0, calldatasize())
                        // execute function call using the facet
                        let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                        // get any return value
                        returndatacopy(0, 0, returndatasize())
                        // return any return value or error back to the caller
                        switch result
                        case 0 {
                            revert(0, returndatasize())
                        }
                        default {
                            return(0, returndatasize())
                        }
                    }
                }
                // Able to receive ether
                // solhint-disable-next-line no-empty-blocks
                receive() external payable {}
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            library LibBytes {
                // solhint-disable no-inline-assembly
                // LibBytes specific errors
                error SliceOverflow();
                error SliceOutOfBounds();
                error AddressOutOfBounds();
                error UintOutOfBounds();
                // -------------------------
                function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                    bytes memory tempBytes;
                    assembly {
                        // Get a location of some free memory and store it in tempBytes as
                        // Solidity does for memory variables.
                        tempBytes := mload(0x40)
                        // Store the length of the first bytes array at the beginning of
                        // the memory for tempBytes.
                        let length := mload(_preBytes)
                        mstore(tempBytes, length)
                        // Maintain a memory counter for the current write location in the
                        // temp bytes array by adding the 32 bytes for the array length to
                        // the starting location.
                        let mc := add(tempBytes, 0x20)
                        // Stop copying when the memory counter reaches the length of the
                        // first bytes array.
                        let end := add(mc, length)
                        for {
                            // Initialize a copy counter to the start of the _preBytes data,
                            // 32 bytes into its memory.
                            let cc := add(_preBytes, 0x20)
                        } lt(mc, end) {
                            // Increase both counters by 32 bytes each iteration.
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            // Write the _preBytes data into the tempBytes memory 32 bytes
                            // at a time.
                            mstore(mc, mload(cc))
                        }
                        // Add the length of _postBytes to the current length of tempBytes
                        // and store it as the new length in the first 32 bytes of the
                        // tempBytes memory.
                        length := mload(_postBytes)
                        mstore(tempBytes, add(length, mload(tempBytes)))
                        // Move the memory counter back from a multiple of 0x20 to the
                        // actual end of the _preBytes data.
                        mc := end
                        // Stop copying when the memory counter reaches the new combined
                        // length of the arrays.
                        end := add(mc, length)
                        for {
                            let cc := add(_postBytes, 0x20)
                        } lt(mc, end) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            mstore(mc, mload(cc))
                        }
                        // Update the free-memory pointer by padding our last write location
                        // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                        // next 32 byte block, then round down to the nearest multiple of
                        // 32. If the sum of the length of the two arrays is zero then add
                        // one before rounding down to leave a blank 32 bytes (the length block with 0).
                        mstore(
                            0x40,
                            and(
                                add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                not(31) // Round down to the nearest 32 bytes.
                            )
                        )
                    }
                    return tempBytes;
                }
                function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                    assembly {
                        // Read the first 32 bytes of _preBytes storage, which is the length
                        // of the array. (We don't need to use the offset into the slot
                        // because arrays use the entire slot.)
                        let fslot := sload(_preBytes.slot)
                        // Arrays of 31 bytes or less have an even value in their slot,
                        // while longer arrays have an odd value. The actual length is
                        // the slot divided by two for odd values, and the lowest order
                        // byte divided by two for even values.
                        // If the slot is even, bitwise and the slot with 255 and divide by
                        // two to get the length. If the slot is odd, bitwise and the slot
                        // with -1 and divide by two.
                        let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                        let mlength := mload(_postBytes)
                        let newlength := add(slength, mlength)
                        // slength can contain both the length and contents of the array
                        // if length < 32 bytes so let's prepare for that
                        // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                        switch add(lt(slength, 32), lt(newlength, 32))
                        case 2 {
                            // Since the new array still fits in the slot, we just need to
                            // update the contents of the slot.
                            // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                            sstore(
                                _preBytes.slot,
                                // all the modifications to the slot are inside this
                                // next block
                                add(
                                    // we can just add to the slot contents because the
                                    // bytes we want to change are the LSBs
                                    fslot,
                                    add(
                                        mul(
                                            div(
                                                // load the bytes from memory
                                                mload(add(_postBytes, 0x20)),
                                                // zero all bytes to the right
                                                exp(0x100, sub(32, mlength))
                                            ),
                                            // and now shift left the number of bytes to
                                            // leave space for the length in the slot
                                            exp(0x100, sub(32, newlength))
                                        ),
                                        // increase length by the double of the memory
                                        // bytes length
                                        mul(mlength, 2)
                                    )
                                )
                            )
                        }
                        case 1 {
                            // The stored value fits in the slot, but the combined value
                            // will exceed it.
                            // get the keccak hash to get the contents of the array
                            mstore(0x0, _preBytes.slot)
                            let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                            // save new length
                            sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                            // The contents of the _postBytes array start 32 bytes into
                            // the structure. Our first read should obtain the `submod`
                            // bytes that can fit into the unused space in the last word
                            // of the stored array. To get this, we read 32 bytes starting
                            // from `submod`, so the data we read overlaps with the array
                            // contents by `submod` bytes. Masking the lowest-order
                            // `submod` bytes allows us to add that value directly to the
                            // stored value.
                            let submod := sub(32, slength)
                            let mc := add(_postBytes, submod)
                            let end := add(_postBytes, mlength)
                            let mask := sub(exp(0x100, submod), 1)
                            sstore(
                                sc,
                                add(
                                    and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                    and(mload(mc), mask)
                                )
                            )
                            for {
                                mc := add(mc, 0x20)
                                sc := add(sc, 1)
                            } lt(mc, end) {
                                sc := add(sc, 1)
                                mc := add(mc, 0x20)
                            } {
                                sstore(sc, mload(mc))
                            }
                            mask := exp(0x100, sub(mc, end))
                            sstore(sc, mul(div(mload(mc), mask), mask))
                        }
                        default {
                            // get the keccak hash to get the contents of the array
                            mstore(0x0, _preBytes.slot)
                            // Start copying to the last used word of the stored array.
                            let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                            // save new length
                            sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                            // Copy over the first `submod` bytes of the new data as in
                            // case 1 above.
                            let slengthmod := mod(slength, 32)
                            let submod := sub(32, slengthmod)
                            let mc := add(_postBytes, submod)
                            let end := add(_postBytes, mlength)
                            let mask := sub(exp(0x100, submod), 1)
                            sstore(sc, add(sload(sc), and(mload(mc), mask)))
                            for {
                                sc := add(sc, 1)
                                mc := add(mc, 0x20)
                            } lt(mc, end) {
                                sc := add(sc, 1)
                                mc := add(mc, 0x20)
                            } {
                                sstore(sc, mload(mc))
                            }
                            mask := exp(0x100, sub(mc, end))
                            sstore(sc, mul(div(mload(mc), mask), mask))
                        }
                    }
                }
                function slice(
                    bytes memory _bytes,
                    uint256 _start,
                    uint256 _length
                ) internal pure returns (bytes memory) {
                    if (_length + 31 < _length) revert SliceOverflow();
                    if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                    bytes memory tempBytes;
                    assembly {
                        switch iszero(_length)
                        case 0 {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // The first word of the slice result is potentially a partial
                            // word read from the original array. To read it, we calculate
                            // the length of that partial word and start copying that many
                            // bytes into the array. The first word we copy will start with
                            // data we don't care about, but the last `lengthmod` bytes will
                            // land at the beginning of the contents of the new array. When
                            // we're done copying, we overwrite the full first word with
                            // the actual length of the slice.
                            let lengthmod := and(_length, 31)
                            // The multiplication in the next line is necessary
                            // because when slicing multiples of 32 bytes (lengthmod == 0)
                            // the following copy loop was copying the origin's length
                            // and then ending prematurely not copying everything it should.
                            let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                            let end := add(mc, _length)
                            for {
                                // The multiplication in the next line has the same exact purpose
                                // as the one above.
                                let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                mstore(mc, mload(cc))
                            }
                            mstore(tempBytes, _length)
                            //update free-memory pointer
                            //allocating the array padded to 32 bytes like the compiler does now
                            mstore(0x40, and(add(mc, 31), not(31)))
                        }
                        //if we want a zero-length slice let's just return a zero-length array
                        default {
                            tempBytes := mload(0x40)
                            //zero out the 32 bytes slice we are about to return
                            //we need to do it because Solidity does not garbage collect
                            mstore(tempBytes, 0)
                            mstore(0x40, add(tempBytes, 0x20))
                        }
                    }
                    return tempBytes;
                }
                function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                    if (_bytes.length < _start + 20) {
                        revert AddressOutOfBounds();
                    }
                    address tempAddress;
                    assembly {
                        tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                    }
                    return tempAddress;
                }
                function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                    if (_bytes.length < _start + 1) {
                        revert UintOutOfBounds();
                    }
                    uint8 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x1), _start))
                    }
                    return tempUint;
                }
                function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                    if (_bytes.length < _start + 2) {
                        revert UintOutOfBounds();
                    }
                    uint16 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x2), _start))
                    }
                    return tempUint;
                }
                function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                    if (_bytes.length < _start + 4) {
                        revert UintOutOfBounds();
                    }
                    uint32 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x4), _start))
                    }
                    return tempUint;
                }
                function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                    if (_bytes.length < _start + 8) {
                        revert UintOutOfBounds();
                    }
                    uint64 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x8), _start))
                    }
                    return tempUint;
                }
                function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                    if (_bytes.length < _start + 12) {
                        revert UintOutOfBounds();
                    }
                    uint96 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0xc), _start))
                    }
                    return tempUint;
                }
                function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                    if (_bytes.length < _start + 16) {
                        revert UintOutOfBounds();
                    }
                    uint128 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x10), _start))
                    }
                    return tempUint;
                }
                function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                    if (_bytes.length < _start + 32) {
                        revert UintOutOfBounds();
                    }
                    uint256 tempUint;
                    assembly {
                        tempUint := mload(add(add(_bytes, 0x20), _start))
                    }
                    return tempUint;
                }
                function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                    if (_bytes.length < _start + 32) {
                        revert UintOutOfBounds();
                    }
                    bytes32 tempBytes32;
                    assembly {
                        tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                    }
                    return tempBytes32;
                }
                function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                    bool success = true;
                    assembly {
                        let length := mload(_preBytes)
                        // if lengths don't match the arrays are not equal
                        switch eq(length, mload(_postBytes))
                        case 1 {
                            // cb is a circuit breaker in the for loop since there's
                            //  no said feature for inline assembly loops
                            // cb = 1 - don't breaker
                            // cb = 0 - break
                            let cb := 1
                            let mc := add(_preBytes, 0x20)
                            let end := add(mc, length)
                            for {
                                let cc := add(_postBytes, 0x20)
                                // the next line is the loop condition:
                                // while(uint256(mc < end) + cb == 2)
                            } eq(add(lt(mc, end), cb), 2) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                // if any of these checks fails then arrays are not equal
                                if iszero(eq(mload(mc), mload(cc))) {
                                    // unsuccess:
                                    success := 0
                                    cb := 0
                                }
                            }
                        }
                        default {
                            // unsuccess:
                            success := 0
                        }
                    }
                    return success;
                }
                function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                    bool success = true;
                    assembly {
                        // we know _preBytes_offset is 0
                        let fslot := sload(_preBytes.slot)
                        // Decode the length of the stored array like in concatStorage().
                        let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                        let mlength := mload(_postBytes)
                        // if lengths don't match the arrays are not equal
                        switch eq(slength, mlength)
                        case 1 {
                            // slength can contain both the length and contents of the array
                            // if length < 32 bytes so let's prepare for that
                            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                            if iszero(iszero(slength)) {
                                switch lt(slength, 32)
                                case 1 {
                                    // blank the last byte which is the length
                                    fslot := mul(div(fslot, 0x100), 0x100)
                                    if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                        // unsuccess:
                                        success := 0
                                    }
                                }
                                default {
                                    // cb is a circuit breaker in the for loop since there's
                                    //  no said feature for inline assembly loops
                                    // cb = 1 - don't breaker
                                    // cb = 0 - break
                                    let cb := 1
                                    // get the keccak hash to get the contents of the array
                                    mstore(0x0, _preBytes.slot)
                                    let sc := keccak256(0x0, 0x20)
                                    let mc := add(_postBytes, 0x20)
                                    let end := add(mc, mlength)
                                    // the next line is the loop condition:
                                    // while(uint256(mc < end) + cb == 2)
                                    // solhint-disable-next-line no-empty-blocks
                                    for {
                                    } eq(add(lt(mc, end), cb), 2) {
                                        sc := add(sc, 1)
                                        mc := add(mc, 0x20)
                                    } {
                                        if iszero(eq(sload(sc), mload(mc))) {
                                            // unsuccess:
                                            success := 0
                                            cb := 0
                                        }
                                    }
                                }
                            }
                        }
                        default {
                            // unsuccess:
                            success := 0
                        }
                    }
                    return success;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
            import { LibUtil } from "../Libraries/LibUtil.sol";
            import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
            /// Implementation of EIP-2535 Diamond Standard
            /// https://eips.ethereum.org/EIPS/eip-2535
            library LibDiamond {
                bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                // Diamond specific errors
                error IncorrectFacetCutAction();
                error NoSelectorsInFace();
                error FunctionAlreadyExists();
                error FacetAddressIsZero();
                error FacetAddressIsNotZero();
                error FacetContainsNoCode();
                error FunctionDoesNotExist();
                error FunctionIsImmutable();
                error InitZeroButCalldataNotEmpty();
                error CalldataEmptyButInitNotZero();
                error InitReverted();
                // ----------------
                struct FacetAddressAndPosition {
                    address facetAddress;
                    uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                }
                struct FacetFunctionSelectors {
                    bytes4[] functionSelectors;
                    uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                }
                struct DiamondStorage {
                    // maps function selector to the facet address and
                    // the position of the selector in the facetFunctionSelectors.selectors array
                    mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                    // maps facet addresses to function selectors
                    mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                    // facet addresses
                    address[] facetAddresses;
                    // Used to query if a contract implements an interface.
                    // Used to implement ERC-165.
                    mapping(bytes4 => bool) supportedInterfaces;
                    // owner of the contract
                    address contractOwner;
                }
                function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                    bytes32 position = DIAMOND_STORAGE_POSITION;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        ds.slot := position
                    }
                }
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                function setContractOwner(address _newOwner) internal {
                    DiamondStorage storage ds = diamondStorage();
                    address previousOwner = ds.contractOwner;
                    ds.contractOwner = _newOwner;
                    emit OwnershipTransferred(previousOwner, _newOwner);
                }
                function contractOwner() internal view returns (address contractOwner_) {
                    contractOwner_ = diamondStorage().contractOwner;
                }
                function enforceIsContractOwner() internal view {
                    if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                }
                event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                // Internal function version of diamondCut
                function diamondCut(
                    IDiamondCut.FacetCut[] memory _diamondCut,
                    address _init,
                    bytes memory _calldata
                ) internal {
                    for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                        IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                        if (action == IDiamondCut.FacetCutAction.Add) {
                            addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                        } else if (action == IDiamondCut.FacetCutAction.Replace) {
                            replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                        } else if (action == IDiamondCut.FacetCutAction.Remove) {
                            removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                        } else {
                            revert IncorrectFacetCutAction();
                        }
                        unchecked {
                            ++facetIndex;
                        }
                    }
                    emit DiamondCut(_diamondCut, _init, _calldata);
                    initializeDiamondCut(_init, _calldata);
                }
                function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                    if (_functionSelectors.length == 0) {
                        revert NoSelectorsInFace();
                    }
                    DiamondStorage storage ds = diamondStorage();
                    if (LibUtil.isZeroAddress(_facetAddress)) {
                        revert FacetAddressIsZero();
                    }
                    uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                    // add new facet address if it does not exist
                    if (selectorPosition == 0) {
                        addFacet(ds, _facetAddress);
                    }
                    for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                        bytes4 selector = _functionSelectors[selectorIndex];
                        address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                        if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                            revert FunctionAlreadyExists();
                        }
                        addFunction(ds, selector, selectorPosition, _facetAddress);
                        unchecked {
                            ++selectorPosition;
                            ++selectorIndex;
                        }
                    }
                }
                function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                    if (_functionSelectors.length == 0) {
                        revert NoSelectorsInFace();
                    }
                    DiamondStorage storage ds = diamondStorage();
                    if (LibUtil.isZeroAddress(_facetAddress)) {
                        revert FacetAddressIsZero();
                    }
                    uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                    // add new facet address if it does not exist
                    if (selectorPosition == 0) {
                        addFacet(ds, _facetAddress);
                    }
                    for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                        bytes4 selector = _functionSelectors[selectorIndex];
                        address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                        if (oldFacetAddress == _facetAddress) {
                            revert FunctionAlreadyExists();
                        }
                        removeFunction(ds, oldFacetAddress, selector);
                        addFunction(ds, selector, selectorPosition, _facetAddress);
                        unchecked {
                            ++selectorPosition;
                            ++selectorIndex;
                        }
                    }
                }
                function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                    if (_functionSelectors.length == 0) {
                        revert NoSelectorsInFace();
                    }
                    DiamondStorage storage ds = diamondStorage();
                    // if function does not exist then do nothing and return
                    if (!LibUtil.isZeroAddress(_facetAddress)) {
                        revert FacetAddressIsNotZero();
                    }
                    for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                        bytes4 selector = _functionSelectors[selectorIndex];
                        address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                        removeFunction(ds, oldFacetAddress, selector);
                        unchecked {
                            ++selectorIndex;
                        }
                    }
                }
                function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                    enforceHasContractCode(_facetAddress);
                    ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                    ds.facetAddresses.push(_facetAddress);
                }
                function addFunction(
                    DiamondStorage storage ds,
                    bytes4 _selector,
                    uint96 _selectorPosition,
                    address _facetAddress
                ) internal {
                    ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                    ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                    ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                }
                function removeFunction(
                    DiamondStorage storage ds,
                    address _facetAddress,
                    bytes4 _selector
                ) internal {
                    if (LibUtil.isZeroAddress(_facetAddress)) {
                        revert FunctionDoesNotExist();
                    }
                    // an immutable function is a function defined directly in a diamond
                    if (_facetAddress == address(this)) {
                        revert FunctionIsImmutable();
                    }
                    // replace selector with last selector, then delete last selector
                    uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                    uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                    // if not the same then replace _selector with lastSelector
                    if (selectorPosition != lastSelectorPosition) {
                        bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                        ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                        ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                    }
                    // delete the last selector
                    ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                    delete ds.selectorToFacetAndPosition[_selector];
                    // if no more selectors for facet address then delete the facet address
                    if (lastSelectorPosition == 0) {
                        // replace facet address with last facet address and delete last facet address
                        uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                        uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                        if (facetAddressPosition != lastFacetAddressPosition) {
                            address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                            ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                            ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                        }
                        ds.facetAddresses.pop();
                        delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                    }
                }
                function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                    if (LibUtil.isZeroAddress(_init)) {
                        if (_calldata.length != 0) {
                            revert InitZeroButCalldataNotEmpty();
                        }
                    } else {
                        if (_calldata.length == 0) {
                            revert CalldataEmptyButInitNotZero();
                        }
                        if (_init != address(this)) {
                            enforceHasContractCode(_init);
                        }
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, bytes memory error) = _init.delegatecall(_calldata);
                        if (!success) {
                            if (error.length > 0) {
                                // bubble up the error
                                revert(string(error));
                            } else {
                                revert InitReverted();
                            }
                        }
                    }
                }
                function enforceHasContractCode(address _contract) internal view {
                    uint256 contractSize;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        contractSize := extcodesize(_contract)
                    }
                    if (contractSize == 0) {
                        revert FacetContainsNoCode();
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import "./LibBytes.sol";
            library LibUtil {
                using LibBytes for bytes;
                function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                    // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                    if (_res.length < 68) return "Transaction reverted silently";
                    bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                    return abi.decode(revertData, (string)); // All that remains is the revert string
                }
                /// @notice Determines whether the given address is the zero address
                /// @param addr The address to verify
                /// @return Boolean indicating if the address is the zero address
                function isZeroAddress(address addr) internal pure returns (bool) {
                    return addr == address(0);
                }
            }
            

            File 3 of 4: RelayReceiver
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.23;
            contract RelayReceiver {
                // --- Structs ---
                struct Call {
                    address to;
                    bytes data;
                    uint256 value;
                }
                // --- Errors ---
                error CallFailed();
                error NativeTransferFailed();
                error Unauthorized();
                // --- Events ---
                event FundsForwardedWithData(bytes data);
                // --- Fields ---
                address private immutable SOLVER;
                // --- Constructor ---
                constructor(address solver) {
                    SOLVER = solver;
                }
                // --- Public methods ---
                fallback() external payable {
                    send(SOLVER, msg.value);
                    emit FundsForwardedWithData(msg.data);
                }
                function forward(bytes calldata data) external payable {
                    send(SOLVER, msg.value);
                    emit FundsForwardedWithData(data);
                }
                // --- Restricted methods ---
                function makeCalls(Call[] calldata calls) external payable {
                    if (msg.sender != SOLVER) {
                        revert Unauthorized();
                    }
                    unchecked {
                        uint256 length = calls.length;
                        for (uint256 i; i < length; i++) {
                            Call memory c = calls[i];
                            (bool success, ) = c.to.call{value: c.value}(c.data);
                            if (!success) {
                                revert CallFailed();
                            }
                        }
                    }
                }
                // --- Internal methods ---
                function send(address to, uint256 value) internal {
                    bool success;
                    assembly {
                        // Save gas by avoiding copying the return data to memory.
                        // Provide at most 100k gas to the internal call, which is
                        // more than enough to cover common use-cases of logic for
                        // receiving native tokens (eg. SCW payable fallbacks).
                        success := call(100000, to, value, 0, 0, 0, 0)
                    }
                    if (!success) {
                        revert NativeTransferFailed();
                    }
                }
            }
            

            File 4 of 4: RelayFacet
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.17;
            import { ILiFi } from "../Interfaces/ILiFi.sol";
            import { LibAsset } from "../Libraries/LibAsset.sol";
            import { LibSwap } from "../Libraries/LibSwap.sol";
            import { LibUtil } from "../Libraries/LibUtil.sol";
            import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
            import { SwapperV2 } from "../Helpers/SwapperV2.sol";
            import { Validatable } from "../Helpers/Validatable.sol";
            import { ECDSA } from "solady/utils/ECDSA.sol";
            /// @title Relay Facet
            /// @author LI.FI (https://li.fi)
            /// @notice Provides functionality for bridging through Relay Protocol
            /// @custom:version 1.0.0
            contract RelayFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
                // Receiver for native transfers
                address public immutable relayReceiver;
                // Relayer wallet for ERC20 transfers
                address public immutable relaySolver;
                /// Storage ///
                mapping(bytes32 => bool) public consumedIds;
                /// Types ///
                /// @dev Relay specific parameters
                /// @param requestId Relay API request ID
                /// @param nonEVMReceiver set only if bridging to non-EVM chain
                /// @params receivingAssetId address of receiving asset
                /// @params signature attestation signature provided by the Relay solver
                struct RelayData {
                    bytes32 requestId;
                    bytes32 nonEVMReceiver;
                    bytes32 receivingAssetId;
                    bytes signature;
                }
                /// Events ///
                event BridgeToNonEVMChain(
                    bytes32 indexed transactionId,
                    uint256 indexed destinationChainId,
                    bytes32 receiver
                );
                /// Errors ///
                error InvalidQuote();
                /// Modifiers ///
                /// @param _bridgeData The core information needed for bridging
                /// @param _relayData Data specific to Relay
                modifier onlyValidQuote(
                    ILiFi.BridgeData memory _bridgeData,
                    RelayData calldata _relayData
                ) {
                    // Ensure that the id isn't already consumed
                    if (consumedIds[_relayData.requestId]) {
                        revert InvalidQuote();
                    }
                    // Ensure nonEVMAddress is not empty
                    if (
                        _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS &&
                        _relayData.nonEVMReceiver == bytes32(0)
                    ) {
                        revert InvalidQuote();
                    }
                    // Verify that the bridging quote has been signed by the Relay solver
                    // as attested using the attestation API
                    // API URL: https://api.relay.link/requests/{requestId}/signature/v2
                    bytes32 message = ECDSA.toEthSignedMessageHash(
                        keccak256(
                            abi.encodePacked(
                                _relayData.requestId,
                                block.chainid,
                                bytes32(uint256(uint160(address(this)))),
                                bytes32(uint256(uint160(_bridgeData.sendingAssetId))),
                                _getMappedChainId(_bridgeData.destinationChainId),
                                _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS
                                    ? _relayData.nonEVMReceiver
                                    : bytes32(uint256(uint160(_bridgeData.receiver))),
                                _relayData.receivingAssetId
                            )
                        )
                    );
                    address signer = ECDSA.recover(message, _relayData.signature);
                    if (signer != relaySolver) {
                        revert InvalidQuote();
                    }
                    _;
                }
                /// Constructor ///
                /// @param _relayReceiver The receiver for native transfers
                /// @param _relaySolver The relayer wallet for ERC20 transfers
                constructor(address _relayReceiver, address _relaySolver) {
                    relayReceiver = _relayReceiver;
                    relaySolver = _relaySolver;
                }
                /// External Methods ///
                /// @notice Bridges tokens via Relay
                /// @param _bridgeData The core information needed for bridging
                /// @param _relayData Data specific to Relay
                function startBridgeTokensViaRelay(
                    ILiFi.BridgeData calldata _bridgeData,
                    RelayData calldata _relayData
                )
                    external
                    payable
                    nonReentrant
                    onlyValidQuote(_bridgeData, _relayData)
                    refundExcessNative(payable(msg.sender))
                    validateBridgeData(_bridgeData)
                    doesNotContainSourceSwaps(_bridgeData)
                    doesNotContainDestinationCalls(_bridgeData)
                {
                    LibAsset.depositAsset(
                        _bridgeData.sendingAssetId,
                        _bridgeData.minAmount
                    );
                    _startBridge(_bridgeData, _relayData);
                }
                /// @notice Performs a swap before bridging via Relay
                /// @param _bridgeData The core information needed for bridging
                /// @param _swapData An array of swap related data for performing swaps before bridging
                /// @param _relayData Data specific to Relay
                function swapAndStartBridgeTokensViaRelay(
                    ILiFi.BridgeData memory _bridgeData,
                    LibSwap.SwapData[] calldata _swapData,
                    RelayData calldata _relayData
                )
                    external
                    payable
                    nonReentrant
                    onlyValidQuote(_bridgeData, _relayData)
                    refundExcessNative(payable(msg.sender))
                    containsSourceSwaps(_bridgeData)
                    doesNotContainDestinationCalls(_bridgeData)
                    validateBridgeData(_bridgeData)
                {
                    _bridgeData.minAmount = _depositAndSwap(
                        _bridgeData.transactionId,
                        _bridgeData.minAmount,
                        _swapData,
                        payable(msg.sender)
                    );
                    _startBridge(_bridgeData, _relayData);
                }
                /// Internal Methods ///
                /// @dev Contains the business logic for the bridge via Relay
                /// @param _bridgeData The core information needed for bridging
                /// @param _relayData Data specific to Relay
                function _startBridge(
                    ILiFi.BridgeData memory _bridgeData,
                    RelayData calldata _relayData
                ) internal {
                    // check if sendingAsset is native or ERC20
                    if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                        // Native
                        // Send Native to relayReceiver along with requestId as extra data
                        (bool success, bytes memory reason) = relayReceiver.call{
                            value: _bridgeData.minAmount
                        }(abi.encode(_relayData.requestId));
                        if (!success) {
                            revert(LibUtil.getRevertMsg(reason));
                        }
                    } else {
                        // ERC20
                        // We build the calldata from scratch to ensure that we can only
                        // send to the solver address
                        bytes memory transferCallData = bytes.concat(
                            abi.encodeWithSignature(
                                "transfer(address,uint256)",
                                relaySolver,
                                _bridgeData.minAmount
                            ),
                            abi.encode(_relayData.requestId)
                        );
                        (bool success, bytes memory reason) = address(
                            _bridgeData.sendingAssetId
                        ).call(transferCallData);
                        if (!success) {
                            revert(LibUtil.getRevertMsg(reason));
                        }
                    }
                    consumedIds[_relayData.requestId] = true;
                    // Emit special event if bridging to non-EVM chain
                    if (_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS) {
                        emit BridgeToNonEVMChain(
                            _bridgeData.transactionId,
                            _getMappedChainId(_bridgeData.destinationChainId),
                            _relayData.nonEVMReceiver
                        );
                    }
                    emit LiFiTransferStarted(_bridgeData);
                }
                /// @notice get Relay specific chain id for non-EVM chains
                ///         IDs found here  https://li.quest/v1/chains?chainTypes=UTXO,SVM
                /// @param chainId LIFI specific chain id
                function _getMappedChainId(
                    uint256 chainId
                ) internal pure returns (uint256) {
                    // Bitcoin
                    if (chainId == 20000000000001) {
                        return 8253038;
                    }
                    // Solana
                    if (chainId == 1151111081099710) {
                        return 792703809;
                    }
                    return chainId;
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            interface ILiFi {
                /// Structs ///
                struct BridgeData {
                    bytes32 transactionId;
                    string bridge;
                    string integrator;
                    address referrer;
                    address sendingAssetId;
                    address receiver;
                    uint256 minAmount;
                    uint256 destinationChainId;
                    bool hasSourceSwaps;
                    bool hasDestinationCall;
                }
                /// Events ///
                event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
                event LiFiTransferCompleted(
                    bytes32 indexed transactionId,
                    address receivingAssetId,
                    address receiver,
                    uint256 amount,
                    uint256 timestamp
                );
                event LiFiTransferRecovered(
                    bytes32 indexed transactionId,
                    address receivingAssetId,
                    address receiver,
                    uint256 amount,
                    uint256 timestamp
                );
                event LiFiGenericSwapCompleted(
                    bytes32 indexed transactionId,
                    string integrator,
                    string referrer,
                    address receiver,
                    address fromAssetId,
                    address toAssetId,
                    uint256 fromAmount,
                    uint256 toAmount
                );
                // Deprecated but kept here to include in ABI to parse historic events
                event LiFiSwappedGeneric(
                    bytes32 indexed transactionId,
                    string integrator,
                    string referrer,
                    address fromAssetId,
                    address toAssetId,
                    uint256 fromAmount,
                    uint256 toAmount
                );
            }
            // SPDX-License-Identifier: UNLICENSED
            pragma solidity ^0.8.17;
            import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
            import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
            import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
            import { LibSwap } from "./LibSwap.sol";
            /// @title LibAsset
            /// @custom:version 1.0.1
            /// @notice This library contains helpers for dealing with onchain transfers
            ///         of assets, including accounting for the native asset `assetId`
            ///         conventions and any noncompliant ERC20 transfers
            library LibAsset {
                uint256 private constant MAX_UINT = type(uint256).max;
                address internal constant NULL_ADDRESS = address(0);
                address internal constant NON_EVM_ADDRESS =
                    0x11f111f111f111F111f111f111F111f111f111F1;
                /// @dev All native assets use the empty address for their asset id
                ///      by convention
                address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                /// @notice Gets the balance of the inheriting contract for the given asset
                /// @param assetId The asset identifier to get the balance of
                /// @return Balance held by contracts using this library
                function getOwnBalance(address assetId) internal view returns (uint256) {
                    return
                        isNativeAsset(assetId)
                            ? address(this).balance
                            : IERC20(assetId).balanceOf(address(this));
                }
                /// @notice Transfers ether from the inheriting contract to a given
                ///         recipient
                /// @param recipient Address to send ether to
                /// @param amount Amount to send to given recipient
                function transferNativeAsset(
                    address payable recipient,
                    uint256 amount
                ) private {
                    if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                    if (amount > address(this).balance)
                        revert InsufficientBalance(amount, address(this).balance);
                    // solhint-disable-next-line avoid-low-level-calls
                    (bool success, ) = recipient.call{ value: amount }("");
                    if (!success) revert NativeAssetTransferFailed();
                }
                /// @notice If the current allowance is insufficient, the allowance for a given spender
                /// is set to MAX_UINT.
                /// @param assetId Token address to transfer
                /// @param spender Address to give spend approval to
                /// @param amount Amount to approve for spending
                function maxApproveERC20(
                    IERC20 assetId,
                    address spender,
                    uint256 amount
                ) internal {
                    if (isNativeAsset(address(assetId))) {
                        return;
                    }
                    if (spender == NULL_ADDRESS) {
                        revert NullAddrIsNotAValidSpender();
                    }
                    if (assetId.allowance(address(this), spender) < amount) {
                        SafeERC20.safeApprove(IERC20(assetId), spender, 0);
                        SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
                    }
                }
                /// @notice Transfers tokens from the inheriting contract to a given
                ///         recipient
                /// @param assetId Token address to transfer
                /// @param recipient Address to send token to
                /// @param amount Amount to send to given recipient
                function transferERC20(
                    address assetId,
                    address recipient,
                    uint256 amount
                ) private {
                    if (isNativeAsset(assetId)) {
                        revert NullAddrIsNotAnERC20Token();
                    }
                    if (recipient == NULL_ADDRESS) {
                        revert NoTransferToNullAddress();
                    }
                    uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                    if (amount > assetBalance) {
                        revert InsufficientBalance(amount, assetBalance);
                    }
                    SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                }
                /// @notice Transfers tokens from a sender to a given recipient
                /// @param assetId Token address to transfer
                /// @param from Address of sender/owner
                /// @param to Address of recipient/spender
                /// @param amount Amount to transfer from owner to spender
                function transferFromERC20(
                    address assetId,
                    address from,
                    address to,
                    uint256 amount
                ) internal {
                    if (isNativeAsset(assetId)) {
                        revert NullAddrIsNotAnERC20Token();
                    }
                    if (to == NULL_ADDRESS) {
                        revert NoTransferToNullAddress();
                    }
                    IERC20 asset = IERC20(assetId);
                    uint256 prevBalance = asset.balanceOf(to);
                    SafeERC20.safeTransferFrom(asset, from, to, amount);
                    if (asset.balanceOf(to) - prevBalance != amount) {
                        revert InvalidAmount();
                    }
                }
                function depositAsset(address assetId, uint256 amount) internal {
                    if (amount == 0) revert InvalidAmount();
                    if (isNativeAsset(assetId)) {
                        if (msg.value < amount) revert InvalidAmount();
                    } else {
                        uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                        if (balance < amount) revert InsufficientBalance(amount, balance);
                        transferFromERC20(assetId, msg.sender, address(this), amount);
                    }
                }
                function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                    for (uint256 i = 0; i < swaps.length; ) {
                        LibSwap.SwapData calldata swap = swaps[i];
                        if (swap.requiresDeposit) {
                            depositAsset(swap.sendingAssetId, swap.fromAmount);
                        }
                        unchecked {
                            i++;
                        }
                    }
                }
                /// @notice Determines whether the given assetId is the native asset
                /// @param assetId The asset identifier to evaluate
                /// @return Boolean indicating if the asset is the native asset
                function isNativeAsset(address assetId) internal pure returns (bool) {
                    return assetId == NATIVE_ASSETID;
                }
                /// @notice Wrapper function to transfer a given asset (native or erc20) to
                ///         some recipient. Should handle all non-compliant return value
                ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                /// @param assetId Asset id for transfer (address(0) for native asset,
                ///                token address for erc20s)
                /// @param recipient Address to send asset to
                /// @param amount Amount to send to given recipient
                function transferAsset(
                    address assetId,
                    address payable recipient,
                    uint256 amount
                ) internal {
                    isNativeAsset(assetId)
                        ? transferNativeAsset(recipient, amount)
                        : transferERC20(assetId, recipient, amount);
                }
                /// @dev Checks whether the given address is a contract and contains code
                function isContract(address _contractAddr) internal view returns (bool) {
                    uint256 size;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        size := extcodesize(_contractAddr)
                    }
                    return size > 0;
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            import { LibAsset } from "./LibAsset.sol";
            import { LibUtil } from "./LibUtil.sol";
            import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
            import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
            library LibSwap {
                struct SwapData {
                    address callTo;
                    address approveTo;
                    address sendingAssetId;
                    address receivingAssetId;
                    uint256 fromAmount;
                    bytes callData;
                    bool requiresDeposit;
                }
                event AssetSwapped(
                    bytes32 transactionId,
                    address dex,
                    address fromAssetId,
                    address toAssetId,
                    uint256 fromAmount,
                    uint256 toAmount,
                    uint256 timestamp
                );
                function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                    if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                    uint256 fromAmount = _swap.fromAmount;
                    if (fromAmount == 0) revert NoSwapFromZeroBalance();
                    uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                        ? _swap.fromAmount
                        : 0;
                    uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                        _swap.sendingAssetId
                    );
                    uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                        _swap.receivingAssetId
                    );
                    if (nativeValue == 0) {
                        LibAsset.maxApproveERC20(
                            IERC20(_swap.sendingAssetId),
                            _swap.approveTo,
                            _swap.fromAmount
                        );
                    }
                    if (initialSendingAssetBalance < _swap.fromAmount) {
                        revert InsufficientBalance(
                            _swap.fromAmount,
                            initialSendingAssetBalance
                        );
                    }
                    // solhint-disable-next-line avoid-low-level-calls
                    (bool success, bytes memory res) = _swap.callTo.call{
                        value: nativeValue
                    }(_swap.callData);
                    if (!success) {
                        LibUtil.revertWith(res);
                    }
                    uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                    emit AssetSwapped(
                        transactionId,
                        _swap.callTo,
                        _swap.sendingAssetId,
                        _swap.receivingAssetId,
                        _swap.fromAmount,
                        newBalance > initialReceivingAssetBalance
                            ? newBalance - initialReceivingAssetBalance
                            : newBalance,
                        block.timestamp
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            import "./LibBytes.sol";
            library LibUtil {
                using LibBytes for bytes;
                function getRevertMsg(
                    bytes memory _res
                ) internal pure returns (string memory) {
                    // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                    if (_res.length < 68) return "Transaction reverted silently";
                    bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                    return abi.decode(revertData, (string)); // All that remains is the revert string
                }
                /// @notice Determines whether the given address is the zero address
                /// @param addr The address to verify
                /// @return Boolean indicating if the address is the zero address
                function isZeroAddress(address addr) internal pure returns (bool) {
                    return addr == address(0);
                }
                function revertWith(bytes memory data) internal pure {
                    assembly {
                        let dataSize := mload(data) // Load the size of the data
                        let dataPtr := add(data, 0x20) // Advance data pointer to the next word
                        revert(dataPtr, dataSize) // Revert with the given data
                    }
                }
            }
            // SPDX-License-Identifier: UNLICENSED
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            /// @title Reentrancy Guard
            /// @author LI.FI (https://li.fi)
            /// @notice Abstract contract to provide protection against reentrancy
            abstract contract ReentrancyGuard {
                /// Storage ///
                bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
                /// Types ///
                struct ReentrancyStorage {
                    uint256 status;
                }
                /// Errors ///
                error ReentrancyError();
                /// Constants ///
                uint256 private constant _NOT_ENTERED = 0;
                uint256 private constant _ENTERED = 1;
                /// Modifiers ///
                modifier nonReentrant() {
                    ReentrancyStorage storage s = reentrancyStorage();
                    if (s.status == _ENTERED) revert ReentrancyError();
                    s.status = _ENTERED;
                    _;
                    s.status = _NOT_ENTERED;
                }
                /// Private Methods ///
                /// @dev fetch local storage
                function reentrancyStorage()
                    private
                    pure
                    returns (ReentrancyStorage storage data)
                {
                    bytes32 position = NAMESPACE;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        data.slot := position
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            import { ILiFi } from "../Interfaces/ILiFi.sol";
            import { LibSwap } from "../Libraries/LibSwap.sol";
            import { LibAsset } from "../Libraries/LibAsset.sol";
            import { LibAllowList } from "../Libraries/LibAllowList.sol";
            import { ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
            /// @title Swapper
            /// @author LI.FI (https://li.fi)
            /// @notice Abstract contract to provide swap functionality
            contract SwapperV2 is ILiFi {
                /// Types ///
                /// @dev only used to get around "Stack Too Deep" errors
                struct ReserveData {
                    bytes32 transactionId;
                    address payable leftoverReceiver;
                    uint256 nativeReserve;
                }
                /// Modifiers ///
                /// @dev Sends any leftover balances back to the user
                /// @notice Sends any leftover balances to the user
                /// @param _swaps Swap data array
                /// @param _leftoverReceiver Address to send leftover tokens to
                /// @param _initialBalances Array of initial token balances
                modifier noLeftovers(
                    LibSwap.SwapData[] calldata _swaps,
                    address payable _leftoverReceiver,
                    uint256[] memory _initialBalances
                ) {
                    uint256 numSwaps = _swaps.length;
                    if (numSwaps != 1) {
                        address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                        uint256 curBalance;
                        _;
                        for (uint256 i = 0; i < numSwaps - 1; ) {
                            address curAsset = _swaps[i].receivingAssetId;
                            // Handle multi-to-one swaps
                            if (curAsset != finalAsset) {
                                curBalance =
                                    LibAsset.getOwnBalance(curAsset) -
                                    _initialBalances[i];
                                if (curBalance > 0) {
                                    LibAsset.transferAsset(
                                        curAsset,
                                        _leftoverReceiver,
                                        curBalance
                                    );
                                }
                            }
                            unchecked {
                                ++i;
                            }
                        }
                    } else {
                        _;
                    }
                }
                /// @dev Sends any leftover balances back to the user reserving native tokens
                /// @notice Sends any leftover balances to the user
                /// @param _swaps Swap data array
                /// @param _leftoverReceiver Address to send leftover tokens to
                /// @param _initialBalances Array of initial token balances
                modifier noLeftoversReserve(
                    LibSwap.SwapData[] calldata _swaps,
                    address payable _leftoverReceiver,
                    uint256[] memory _initialBalances,
                    uint256 _nativeReserve
                ) {
                    uint256 numSwaps = _swaps.length;
                    if (numSwaps != 1) {
                        address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                        uint256 curBalance;
                        _;
                        for (uint256 i = 0; i < numSwaps - 1; ) {
                            address curAsset = _swaps[i].receivingAssetId;
                            // Handle multi-to-one swaps
                            if (curAsset != finalAsset) {
                                curBalance =
                                    LibAsset.getOwnBalance(curAsset) -
                                    _initialBalances[i];
                                uint256 reserve = LibAsset.isNativeAsset(curAsset)
                                    ? _nativeReserve
                                    : 0;
                                if (curBalance > 0) {
                                    LibAsset.transferAsset(
                                        curAsset,
                                        _leftoverReceiver,
                                        curBalance - reserve
                                    );
                                }
                            }
                            unchecked {
                                ++i;
                            }
                        }
                    } else {
                        _;
                    }
                }
                /// @dev Refunds any excess native asset sent to the contract after the main function
                /// @notice Refunds any excess native asset sent to the contract after the main function
                /// @param _refundReceiver Address to send refunds to
                modifier refundExcessNative(address payable _refundReceiver) {
                    uint256 initialBalance = address(this).balance - msg.value;
                    _;
                    uint256 finalBalance = address(this).balance;
                    if (finalBalance > initialBalance) {
                        LibAsset.transferAsset(
                            LibAsset.NATIVE_ASSETID,
                            _refundReceiver,
                            finalBalance - initialBalance
                        );
                    }
                }
                /// Internal Methods ///
                /// @dev Deposits value, executes swaps, and performs minimum amount check
                /// @param _transactionId the transaction id associated with the operation
                /// @param _minAmount the minimum amount of the final asset to receive
                /// @param _swaps Array of data used to execute swaps
                /// @param _leftoverReceiver The address to send leftover funds to
                /// @return uint256 result of the swap
                function _depositAndSwap(
                    bytes32 _transactionId,
                    uint256 _minAmount,
                    LibSwap.SwapData[] calldata _swaps,
                    address payable _leftoverReceiver
                ) internal returns (uint256) {
                    uint256 numSwaps = _swaps.length;
                    if (numSwaps == 0) {
                        revert NoSwapDataProvided();
                    }
                    address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                    uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                    if (LibAsset.isNativeAsset(finalTokenId)) {
                        initialBalance -= msg.value;
                    }
                    uint256[] memory initialBalances = _fetchBalances(_swaps);
                    LibAsset.depositAssets(_swaps);
                    _executeSwaps(
                        _transactionId,
                        _swaps,
                        _leftoverReceiver,
                        initialBalances
                    );
                    uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                        initialBalance;
                    if (newBalance < _minAmount) {
                        revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                    }
                    return newBalance;
                }
                /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
                /// @param _transactionId the transaction id associated with the operation
                /// @param _minAmount the minimum amount of the final asset to receive
                /// @param _swaps Array of data used to execute swaps
                /// @param _leftoverReceiver The address to send leftover funds to
                /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
                function _depositAndSwap(
                    bytes32 _transactionId,
                    uint256 _minAmount,
                    LibSwap.SwapData[] calldata _swaps,
                    address payable _leftoverReceiver,
                    uint256 _nativeReserve
                ) internal returns (uint256) {
                    uint256 numSwaps = _swaps.length;
                    if (numSwaps == 0) {
                        revert NoSwapDataProvided();
                    }
                    address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                    uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                    if (LibAsset.isNativeAsset(finalTokenId)) {
                        initialBalance -= msg.value;
                    }
                    uint256[] memory initialBalances = _fetchBalances(_swaps);
                    LibAsset.depositAssets(_swaps);
                    ReserveData memory rd = ReserveData(
                        _transactionId,
                        _leftoverReceiver,
                        _nativeReserve
                    );
                    _executeSwaps(rd, _swaps, initialBalances);
                    uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                        initialBalance;
                    if (LibAsset.isNativeAsset(finalTokenId)) {
                        newBalance -= _nativeReserve;
                    }
                    if (newBalance < _minAmount) {
                        revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                    }
                    return newBalance;
                }
                /// Private Methods ///
                /// @dev Executes swaps and checks that DEXs used are in the allowList
                /// @param _transactionId the transaction id associated with the operation
                /// @param _swaps Array of data used to execute swaps
                /// @param _leftoverReceiver Address to send leftover tokens to
                /// @param _initialBalances Array of initial balances
                function _executeSwaps(
                    bytes32 _transactionId,
                    LibSwap.SwapData[] calldata _swaps,
                    address payable _leftoverReceiver,
                    uint256[] memory _initialBalances
                ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                    uint256 numSwaps = _swaps.length;
                    for (uint256 i = 0; i < numSwaps; ) {
                        LibSwap.SwapData calldata currentSwap = _swaps[i];
                        if (
                            !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                LibAllowList.selectorIsAllowed(
                                    bytes4(currentSwap.callData[:4])
                                ))
                        ) revert ContractCallNotAllowed();
                        LibSwap.swap(_transactionId, currentSwap);
                        unchecked {
                            ++i;
                        }
                    }
                }
                /// @dev Executes swaps and checks that DEXs used are in the allowList
                /// @param _reserveData Data passed used to reserve native tokens
                /// @param _swaps Array of data used to execute swaps
                function _executeSwaps(
                    ReserveData memory _reserveData,
                    LibSwap.SwapData[] calldata _swaps,
                    uint256[] memory _initialBalances
                )
                    internal
                    noLeftoversReserve(
                        _swaps,
                        _reserveData.leftoverReceiver,
                        _initialBalances,
                        _reserveData.nativeReserve
                    )
                {
                    uint256 numSwaps = _swaps.length;
                    for (uint256 i = 0; i < numSwaps; ) {
                        LibSwap.SwapData calldata currentSwap = _swaps[i];
                        if (
                            !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                LibAllowList.selectorIsAllowed(
                                    bytes4(currentSwap.callData[:4])
                                ))
                        ) revert ContractCallNotAllowed();
                        LibSwap.swap(_reserveData.transactionId, currentSwap);
                        unchecked {
                            ++i;
                        }
                    }
                }
                /// @dev Fetches balances of tokens to be swapped before swapping.
                /// @param _swaps Array of data used to execute swaps
                /// @return uint256[] Array of token balances.
                function _fetchBalances(
                    LibSwap.SwapData[] calldata _swaps
                ) private view returns (uint256[] memory) {
                    uint256 numSwaps = _swaps.length;
                    uint256[] memory balances = new uint256[](numSwaps);
                    address asset;
                    for (uint256 i = 0; i < numSwaps; ) {
                        asset = _swaps[i].receivingAssetId;
                        balances[i] = LibAsset.getOwnBalance(asset);
                        if (LibAsset.isNativeAsset(asset)) {
                            balances[i] -= msg.value;
                        }
                        unchecked {
                            ++i;
                        }
                    }
                    return balances;
                }
            }
            // SPDX-License-Identifier: UNLICENSED
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            import { LibAsset } from "../Libraries/LibAsset.sol";
            import { LibUtil } from "../Libraries/LibUtil.sol";
            import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
            import { ILiFi } from "../Interfaces/ILiFi.sol";
            import { LibSwap } from "../Libraries/LibSwap.sol";
            contract Validatable {
                modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                    if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                        revert InvalidReceiver();
                    }
                    if (_bridgeData.minAmount == 0) {
                        revert InvalidAmount();
                    }
                    if (_bridgeData.destinationChainId == block.chainid) {
                        revert CannotBridgeToSameNetwork();
                    }
                    _;
                }
                modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                    if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                        revert NativeAssetNotSupported();
                    }
                    _;
                }
                modifier onlyAllowSourceToken(
                    ILiFi.BridgeData memory _bridgeData,
                    address _token
                ) {
                    if (_bridgeData.sendingAssetId != _token) {
                        revert InvalidSendingToken();
                    }
                    _;
                }
                modifier onlyAllowDestinationChain(
                    ILiFi.BridgeData memory _bridgeData,
                    uint256 _chainId
                ) {
                    if (_bridgeData.destinationChainId != _chainId) {
                        revert InvalidDestinationChain();
                    }
                    _;
                }
                modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                    if (!_bridgeData.hasSourceSwaps) {
                        revert InformationMismatch();
                    }
                    _;
                }
                modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                    if (_bridgeData.hasSourceSwaps) {
                        revert InformationMismatch();
                    }
                    _;
                }
                modifier doesNotContainDestinationCalls(
                    ILiFi.BridgeData memory _bridgeData
                ) {
                    if (_bridgeData.hasDestinationCall) {
                        revert InformationMismatch();
                    }
                    _;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.4;
            /// @notice Gas optimized ECDSA wrapper.
            /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
            /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
            /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
            ///
            /// @dev Note:
            /// - The recovery functions use the ecrecover precompile (0x1).
            /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
            ///   This is for more safety by default.
            ///   Use the `tryRecover` variants if you need to get the zero address back
            ///   upon recovery failure instead.
            /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
            ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
            ///   See: https://eips.ethereum.org/EIPS/eip-2098
            ///   This is for calldata efficiency on smart accounts prevalent on L2s.
            ///
            /// WARNING! Do NOT use signatures as unique identifiers:
            /// - Use a nonce in the digest to prevent replay attacks on the same contract.
            /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
            ///   EIP-712 also enables readable signing of typed data for better user safety.
            /// This implementation does NOT check if a signature is non-malleable.
            library ECDSA {
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                        CUSTOM ERRORS                       */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev The signature is invalid.
                error InvalidSignature();
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                    RECOVERY OPERATIONS                     */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := 1
                        let m := mload(0x40) // Cache the free memory pointer.
                        for {} 1 {} {
                            mstore(0x00, hash)
                            mstore(0x40, mload(add(signature, 0x20))) // `r`.
                            if eq(mload(signature), 64) {
                                let vs := mload(add(signature, 0x40))
                                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                break
                            }
                            if eq(mload(signature), 65) {
                                mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                break
                            }
                            result := 0
                            break
                        }
                        result :=
                            mload(
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    result, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(returndatasize()) {
                            mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                            revert(0x1c, 0x04)
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                function recoverCalldata(bytes32 hash, bytes calldata signature)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := 1
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        for {} 1 {} {
                            if eq(signature.length, 64) {
                                let vs := calldataload(add(signature.offset, 0x20))
                                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                mstore(0x40, calldataload(signature.offset)) // `r`.
                                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                break
                            }
                            if eq(signature.length, 65) {
                                mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                                break
                            }
                            result := 0
                            break
                        }
                        result :=
                            mload(
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    result, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(returndatasize()) {
                            mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                            revert(0x1c, 0x04)
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`,
                /// and the EIP-2098 short form signature defined by `r` and `vs`.
                function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        mstore(0x20, add(shr(255, vs), 27)) // `v`.
                        mstore(0x40, r)
                        mstore(0x60, shr(1, shl(1, vs))) // `s`.
                        result :=
                            mload(
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(returndatasize()) {
                            mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                            revert(0x1c, 0x04)
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`,
                /// and the signature defined by `v`, `r`, `s`.
                function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        mstore(0x20, and(v, 0xff))
                        mstore(0x40, r)
                        mstore(0x60, s)
                        result :=
                            mload(
                                staticcall(
                                    gas(), // Amount of gas left for the transaction.
                                    1, // Address of `ecrecover`.
                                    0x00, // Start of input.
                                    0x80, // Size of input.
                                    0x01, // Start of output.
                                    0x20 // Size of output.
                                )
                            )
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        if iszero(returndatasize()) {
                            mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                            revert(0x1c, 0x04)
                        }
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                   TRY-RECOVER OPERATIONS                   */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                // WARNING!
                // These functions will NOT revert upon recovery failure.
                // Instead, they will return the zero address upon recovery failure.
                // It is critical that the returned address is NEVER compared against
                // a zero address (e.g. an uninitialized address variable).
                /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                function tryRecover(bytes32 hash, bytes memory signature)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := 1
                        let m := mload(0x40) // Cache the free memory pointer.
                        for {} 1 {} {
                            mstore(0x00, hash)
                            mstore(0x40, mload(add(signature, 0x20))) // `r`.
                            if eq(mload(signature), 64) {
                                let vs := mload(add(signature, 0x40))
                                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                break
                            }
                            if eq(mload(signature), 65) {
                                mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                break
                            }
                            result := 0
                            break
                        }
                        pop(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                result, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x40, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        result := mload(xor(0x60, returndatasize()))
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := 1
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        for {} 1 {} {
                            if eq(signature.length, 64) {
                                let vs := calldataload(add(signature.offset, 0x20))
                                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                mstore(0x40, calldataload(signature.offset)) // `r`.
                                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                break
                            }
                            if eq(signature.length, 65) {
                                mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                                break
                            }
                            result := 0
                            break
                        }
                        pop(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                result, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x40, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        result := mload(xor(0x60, returndatasize()))
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`,
                /// and the EIP-2098 short form signature defined by `r` and `vs`.
                function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        mstore(0x20, add(shr(255, vs), 27)) // `v`.
                        mstore(0x40, r)
                        mstore(0x60, shr(1, shl(1, vs))) // `s`.
                        pop(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x40, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        result := mload(xor(0x60, returndatasize()))
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /// @dev Recovers the signer's address from a message digest `hash`,
                /// and the signature defined by `v`, `r`, `s`.
                function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                    internal
                    view
                    returns (address result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let m := mload(0x40) // Cache the free memory pointer.
                        mstore(0x00, hash)
                        mstore(0x20, and(v, 0xff))
                        mstore(0x40, r)
                        mstore(0x60, s)
                        pop(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x40, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                        mstore(0x60, 0) // Restore the zero slot.
                        // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                        result := mload(xor(0x60, returndatasize()))
                        mstore(0x40, m) // Restore the free memory pointer.
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                     HASHING OPERATIONS                     */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Returns an Ethereum Signed Message, created from a `hash`.
                /// This produces a hash corresponding to the one signed with the
                /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                /// JSON-RPC method as part of EIP-191.
                function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore(0x20, hash) // Store into scratch space for keccak256.
                        mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
            32") // 28 bytes.
                        result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                    }
                }
                /// @dev Returns an Ethereum Signed Message, created from `s`.
                /// This produces a hash corresponding to the one signed with the
                /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                /// JSON-RPC method as part of EIP-191.
                /// Note: Supports lengths of `s` up to 999999 bytes.
                function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let sLength := mload(s)
                        let o := 0x20
                        mstore(o, "\\x19Ethereum Signed Message:\
            ") // 26 bytes, zero-right-padded.
                        mstore(0x00, 0x00)
                        // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                        for { let temp := sLength } 1 {} {
                            o := sub(o, 1)
                            mstore8(o, add(48, mod(temp, 10)))
                            temp := div(temp, 10)
                            if iszero(temp) { break }
                        }
                        let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                        // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                        returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                        mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                        result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                        mstore(s, sLength) // Restore the length.
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                   EMPTY CALLDATA HELPERS                   */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Returns an empty calldata bytes.
                function emptySignature() internal pure returns (bytes calldata signature) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        signature.length := 0
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            error AlreadyInitialized();
            error CannotAuthoriseSelf();
            error CannotBridgeToSameNetwork();
            error ContractCallNotAllowed();
            error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
            error DiamondIsPaused();
            error ExternalCallFailed();
            error FunctionDoesNotExist();
            error InformationMismatch();
            error InsufficientBalance(uint256 required, uint256 balance);
            error InvalidAmount();
            error InvalidCallData();
            error InvalidConfig();
            error InvalidContract();
            error InvalidDestinationChain();
            error InvalidFallbackAddress();
            error InvalidReceiver();
            error InvalidSendingToken();
            error NativeAssetNotSupported();
            error NativeAssetTransferFailed();
            error NoSwapDataProvided();
            error NoSwapFromZeroBalance();
            error NotAContract();
            error NotInitialized();
            error NoTransferToNullAddress();
            error NullAddrIsNotAnERC20Token();
            error NullAddrIsNotAValidSpender();
            error OnlyContractOwner();
            error RecoveryAddressCannotBeZero();
            error ReentrancyError();
            error TokenNotSupported();
            error UnAuthorized();
            error UnsupportedChainId(uint256 chainId);
            error WithdrawFailed();
            error ZeroAmount();
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            import "../extensions/IERC20Permit.sol";
            import "../../../utils/Address.sol";
            /**
             * @title SafeERC20
             * @dev Wrappers around ERC20 operations that throw on failure (when the token
             * contract returns false). Tokens that return no value (and instead revert or
             * throw on failure) are also supported, non-reverting calls are assumed to be
             * successful.
             * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
             * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
             */
            library SafeERC20 {
                using Address for address;
                /**
                 * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
                 * non-reverting calls are assumed to be successful.
                 */
                function safeTransfer(IERC20 token, address to, uint256 value) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                }
                /**
                 * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
                 * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
                 */
                function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                }
                /**
                 * @dev Deprecated. This function has issues similar to the ones found in
                 * {IERC20-approve}, and its usage is discouraged.
                 *
                 * Whenever possible, use {safeIncreaseAllowance} and
                 * {safeDecreaseAllowance} instead.
                 */
                function safeApprove(IERC20 token, address spender, uint256 value) internal {
                    // safeApprove should only be called when setting an initial allowance,
                    // or when resetting it to zero. To increase and decrease it, use
                    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                    require(
                        (value == 0) || (token.allowance(address(this), spender) == 0),
                        "SafeERC20: approve from non-zero to non-zero allowance"
                    );
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                }
                /**
                 * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                 * non-reverting calls are assumed to be successful.
                 */
                function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                    uint256 oldAllowance = token.allowance(address(this), spender);
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
                }
                /**
                 * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                 * non-reverting calls are assumed to be successful.
                 */
                function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                    unchecked {
                        uint256 oldAllowance = token.allowance(address(this), spender);
                        require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                    }
                }
                /**
                 * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
                 * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
                 * 0 before setting it to a non-zero value.
                 */
                function forceApprove(IERC20 token, address spender, uint256 value) internal {
                    bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                    if (!_callOptionalReturnBool(token, approvalCall)) {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                        _callOptionalReturn(token, approvalCall);
                    }
                }
                /**
                 * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
                 * Revert on invalid signature.
                 */
                function safePermit(
                    IERC20Permit token,
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) internal {
                    uint256 nonceBefore = token.nonces(owner);
                    token.permit(owner, spender, value, deadline, v, r, s);
                    uint256 nonceAfter = token.nonces(owner);
                    require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                }
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 */
                function _callOptionalReturn(IERC20 token, bytes memory data) private {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                    // the target address contains contract code and also asserts for success in the low-level call.
                    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                    require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                }
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 *
                 * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
                 */
                function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                    // and not revert is the subcall reverts.
                    (bool success, bytes memory returndata) = address(token).call(data);
                    return
                        success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves `amount` tokens from the caller's account to `to`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address to, uint256 amount) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
                /**
                 * @dev Moves `amount` tokens from `from` to `to` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(address from, address to, uint256 amount) external returns (bool);
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            library LibBytes {
                // solhint-disable no-inline-assembly
                // LibBytes specific errors
                error SliceOverflow();
                error SliceOutOfBounds();
                error AddressOutOfBounds();
                bytes16 private constant _SYMBOLS = "0123456789abcdef";
                // -------------------------
                function slice(
                    bytes memory _bytes,
                    uint256 _start,
                    uint256 _length
                ) internal pure returns (bytes memory) {
                    if (_length + 31 < _length) revert SliceOverflow();
                    if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                    bytes memory tempBytes;
                    assembly {
                        switch iszero(_length)
                        case 0 {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // The first word of the slice result is potentially a partial
                            // word read from the original array. To read it, we calculate
                            // the length of that partial word and start copying that many
                            // bytes into the array. The first word we copy will start with
                            // data we don't care about, but the last `lengthmod` bytes will
                            // land at the beginning of the contents of the new array. When
                            // we're done copying, we overwrite the full first word with
                            // the actual length of the slice.
                            let lengthmod := and(_length, 31)
                            // The multiplication in the next line is necessary
                            // because when slicing multiples of 32 bytes (lengthmod == 0)
                            // the following copy loop was copying the origin's length
                            // and then ending prematurely not copying everything it should.
                            let mc := add(
                                add(tempBytes, lengthmod),
                                mul(0x20, iszero(lengthmod))
                            )
                            let end := add(mc, _length)
                            for {
                                // The multiplication in the next line has the same exact purpose
                                // as the one above.
                                let cc := add(
                                    add(
                                        add(_bytes, lengthmod),
                                        mul(0x20, iszero(lengthmod))
                                    ),
                                    _start
                                )
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                mstore(mc, mload(cc))
                            }
                            mstore(tempBytes, _length)
                            //update free-memory pointer
                            //allocating the array padded to 32 bytes like the compiler does now
                            mstore(0x40, and(add(mc, 31), not(31)))
                        }
                        //if we want a zero-length slice let's just return a zero-length array
                        default {
                            tempBytes := mload(0x40)
                            //zero out the 32 bytes slice we are about to return
                            //we need to do it because Solidity does not garbage collect
                            mstore(tempBytes, 0)
                            mstore(0x40, add(tempBytes, 0x20))
                        }
                    }
                    return tempBytes;
                }
                function toAddress(
                    bytes memory _bytes,
                    uint256 _start
                ) internal pure returns (address) {
                    if (_bytes.length < _start + 20) {
                        revert AddressOutOfBounds();
                    }
                    address tempAddress;
                    assembly {
                        tempAddress := div(
                            mload(add(add(_bytes, 0x20), _start)),
                            0x1000000000000000000000000
                        )
                    }
                    return tempAddress;
                }
                /// Copied from OpenZeppelin's `Strings.sol` utility library.
                /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
                function toHexString(
                    uint256 value,
                    uint256 length
                ) internal pure returns (string memory) {
                    bytes memory buffer = new bytes(2 * length + 2);
                    buffer[0] = "0";
                    buffer[1] = "x";
                    for (uint256 i = 2 * length + 1; i > 1; --i) {
                        buffer[i] = _SYMBOLS[value & 0xf];
                        value >>= 4;
                    }
                    require(value == 0, "Strings: hex length insufficient");
                    return string(buffer);
                }
            }
            // SPDX-License-Identifier: MIT
            /// @custom:version 1.0.0
            pragma solidity ^0.8.17;
            import { InvalidContract } from "../Errors/GenericErrors.sol";
            /// @title Lib Allow List
            /// @author LI.FI (https://li.fi)
            /// @notice Library for managing and accessing the conract address allow list
            library LibAllowList {
                /// Storage ///
                bytes32 internal constant NAMESPACE =
                    keccak256("com.lifi.library.allow.list");
                struct AllowListStorage {
                    mapping(address => bool) allowlist;
                    mapping(bytes4 => bool) selectorAllowList;
                    address[] contracts;
                }
                /// @dev Adds a contract address to the allow list
                /// @param _contract the contract address to add
                function addAllowedContract(address _contract) internal {
                    _checkAddress(_contract);
                    AllowListStorage storage als = _getStorage();
                    if (als.allowlist[_contract]) return;
                    als.allowlist[_contract] = true;
                    als.contracts.push(_contract);
                }
                /// @dev Checks whether a contract address has been added to the allow list
                /// @param _contract the contract address to check
                function contractIsAllowed(
                    address _contract
                ) internal view returns (bool) {
                    return _getStorage().allowlist[_contract];
                }
                /// @dev Remove a contract address from the allow list
                /// @param _contract the contract address to remove
                function removeAllowedContract(address _contract) internal {
                    AllowListStorage storage als = _getStorage();
                    if (!als.allowlist[_contract]) {
                        return;
                    }
                    als.allowlist[_contract] = false;
                    uint256 length = als.contracts.length;
                    // Find the contract in the list
                    for (uint256 i = 0; i < length; i++) {
                        if (als.contracts[i] == _contract) {
                            // Move the last element into the place to delete
                            als.contracts[i] = als.contracts[length - 1];
                            // Remove the last element
                            als.contracts.pop();
                            break;
                        }
                    }
                }
                /// @dev Fetch contract addresses from the allow list
                function getAllowedContracts() internal view returns (address[] memory) {
                    return _getStorage().contracts;
                }
                /// @dev Add a selector to the allow list
                /// @param _selector the selector to add
                function addAllowedSelector(bytes4 _selector) internal {
                    _getStorage().selectorAllowList[_selector] = true;
                }
                /// @dev Removes a selector from the allow list
                /// @param _selector the selector to remove
                function removeAllowedSelector(bytes4 _selector) internal {
                    _getStorage().selectorAllowList[_selector] = false;
                }
                /// @dev Returns if selector has been added to the allow list
                /// @param _selector the selector to check
                function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                    return _getStorage().selectorAllowList[_selector];
                }
                /// @dev Fetch local storage struct
                function _getStorage()
                    internal
                    pure
                    returns (AllowListStorage storage als)
                {
                    bytes32 position = NAMESPACE;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        als.slot := position
                    }
                }
                /// @dev Contains business logic for validating a contract address.
                /// @param _contract address of the dex to check
                function _checkAddress(address _contract) private view {
                    if (_contract == address(0)) revert InvalidContract();
                    if (_contract.code.length == 0) revert InvalidContract();
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
             * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
             *
             * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
             * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
             * need to send a transaction, and thus is not required to hold Ether at all.
             */
            interface IERC20Permit {
                /**
                 * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                 * given ``owner``'s signed approval.
                 *
                 * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                 * ordering also apply here.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `deadline` must be a timestamp in the future.
                 * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                 * over the EIP712-formatted function arguments.
                 * - the signature must use ``owner``'s current nonce (see {nonces}).
                 *
                 * For more information on the signature format, see the
                 * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                 * section].
                 */
                function permit(
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external;
                /**
                 * @dev Returns the current nonce for `owner`. This value must be
                 * included whenever a signature is generated for {permit}.
                 *
                 * Every successful call to {permit} increases ``owner``'s nonce by one. This
                 * prevents a signature from being used multiple times.
                 */
                function nonces(address owner) external view returns (uint256);
                /**
                 * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                 */
                // solhint-disable-next-line func-name-mixedcase
                function DOMAIN_SEPARATOR() external view returns (bytes32);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 *
                 * Furthermore, `isContract` will also return true if the target contract within
                 * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                 * which only has an effect at the end of a transaction.
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                 * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                 *
                 * _Available since v4.8._
                 */
                function verifyCallResultFromTarget(
                    address target,
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    if (success) {
                        if (returndata.length == 0) {
                            // only check isContract if the call was successful and the return data is empty
                            // otherwise we already know that it was a contract
                            require(isContract(target), "Address: call to non-contract");
                        }
                        return returndata;
                    } else {
                        _revert(returndata, errorMessage);
                    }
                }
                /**
                 * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason or using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        _revert(returndata, errorMessage);
                    }
                }
                function _revert(bytes memory returndata, string memory errorMessage) private pure {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }