Transaction Hash:
Block:
14830632 at May-23-2022 04:31:46 PM +UTC
Transaction Fee:
0.001316499478472279 ETH
$3.32
Gas Used:
31,093 Gas / 42.340703003 Gwei
Emitted Events:
316 |
EthCustodian.Deposited( sender=[Sender] 0xb681e94cadf59bb445dd30439912e3e8e6c8ea32, recipient=aurora:b681e94cadf59bb445dd30439912e3e8e6c8ea32, amount=10000000000000000, fee=0 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x3EcEf08D...8bFf2D5bB
Miner
| (MiningPoolHub) | 4,898.397248931633568233 Eth | 4,898.397295571133568233 Eth | 0.0000466395 | |
0x6BFaD42c...A8B89FA52 | 54,161.761845516143780399 Eth | 54,161.771845516143780399 Eth | 0.01 | ||
0xb681e94c...8e6C8eA32 |
0.058499761984467144 Eth
Nonce: 22
|
0.047183262505994865 Eth
Nonce: 23
| 0.011316499478472279 |
Execution Trace
ETH 0.01
EthCustodian.depositToEVM( ethRecipientOnNear=b681e94cadf59bb445dd30439912e3e8e6c8ea32, fee=0 )
depositToEVM[EthCustodian (ln:45)]
Deposited[EthCustodian (ln:64)]
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.6.12; import 'rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol'; import 'rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol'; import 'rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol'; import { INearProver, ProofKeeper } from './ProofKeeper.sol'; contract EthCustodian is ProofKeeper, AdminControlled { uint constant UNPAUSED_ALL = 0; uint constant PAUSED_DEPOSIT_TO_EVM = 1 << 0; uint constant PAUSED_DEPOSIT_TO_NEAR = 1 << 1; uint constant PAUSED_WITHDRAW = 1 << 2; event Deposited ( address indexed sender, string recipient, uint256 amount, uint256 fee ); event Withdrawn( address indexed recipient, uint128 amount ); // Function output from burning nETH on Near side. struct BurnResult { uint128 amount; address recipient; address ethCustodian; } /// EthCustodian is linked to the EVM on NEAR side. /// It also links to the prover that it uses to withdraw the tokens. constructor( bytes memory nearEvm, INearProver prover, uint64 minBlockAcceptanceHeight, address _admin, uint pausedFlags ) AdminControlled(_admin, pausedFlags) ProofKeeper(nearEvm, prover, minBlockAcceptanceHeight) public { } /// Deposits the specified amount of provided ETH (except from the relayer's fee) into the smart contract. /// `ethRecipientOnNear` - the ETH address of the recipient in NEAR EVM /// `fee` - the amount of fee that will be paid to the near-relayer in nETH. function depositToEVM( string memory ethRecipientOnNear, uint256 fee ) external payable pausable(PAUSED_DEPOSIT_TO_EVM) { require( fee < msg.value, 'The fee cannot be bigger than the transferred amount.' ); string memory separator = ':'; string memory protocolMessage = string( abi.encodePacked( string(nearProofProducerAccount_), separator, ethRecipientOnNear ) ); emit Deposited( msg.sender, protocolMessage, msg.value, fee ); } /// Deposits the specified amount of provided ETH (except from the relayer's fee) into the smart contract. /// `nearRecipientAccountId` - the AccountID of the recipient in NEAR /// `fee` - the amount of fee that will be paid to the near-relayer in nETH. function depositToNear( string memory nearRecipientAccountId, uint256 fee ) external payable pausable(PAUSED_DEPOSIT_TO_NEAR) { require( fee < msg.value, 'The fee cannot be bigger than the transferred amount.' ); emit Deposited( msg.sender, nearRecipientAccountId, msg.value, fee ); } /// Withdraws the appropriate amount of ETH which is encoded in `proofData` function withdraw( bytes calldata proofData, uint64 proofBlockHeight ) external pausable(PAUSED_WITHDRAW) { ProofDecoder.ExecutionStatus memory status = _parseAndConsumeProof(proofData, proofBlockHeight); BurnResult memory result = _decodeBurnResult(status.successValue); require( result.ethCustodian == address(this), 'Can only withdraw coins that were expected for the current contract' ); payable(result.recipient).transfer(result.amount); emit Withdrawn( result.recipient, result.amount ); } function _decodeBurnResult(bytes memory data) internal pure returns (BurnResult memory result) { Borsh.Data memory borshData = Borsh.from(data); result.amount = borshData.decodeU128(); bytes20 recipient = borshData.decodeBytes20(); result.recipient = address(uint160(recipient)); bytes20 ethCustodian = borshData.decodeBytes20(); result.ethCustodian = address(uint160(ethCustodian)); } } pragma solidity ^0.6; contract AdminControlled { address public admin; uint public paused; constructor(address _admin, uint flags) public { admin = _admin; paused = flags; } modifier onlyAdmin { require(msg.sender == admin); _; } modifier pausable(uint flag) { require((paused & flag) == 0 || msg.sender == admin); _; } function adminPause(uint flags) public onlyAdmin { paused = flags; } function adminSstore(uint key, uint value) public onlyAdmin { assembly { sstore(key, value) } } function adminSstoreWithMask( uint key, uint value, uint mask ) public onlyAdmin { assembly { let oldval := sload(key) sstore(key, xor(and(xor(value, oldval), mask), oldval)) } } function adminSendEth(address payable destination, uint amount) public onlyAdmin { destination.transfer(amount); } function adminReceiveEth() public payable onlyAdmin {} function adminDelegatecall(address target, bytes memory data) public payable onlyAdmin returns (bytes memory) { (bool success, bytes memory rdata) = target.delegatecall(data); require(success); return rdata; } } pragma solidity ^0.6; import "@openzeppelin/contracts/math/SafeMath.sol"; library Borsh { using SafeMath for uint256; struct Data { uint256 offset; bytes raw; } function from(bytes memory data) internal pure returns (Data memory) { return Data({offset: 0, raw: data}); } modifier shift(Data memory data, uint256 size) { require(data.raw.length >= data.offset + size, "Borsh: Out of range"); _; data.offset += size; } function finished(Data memory data) internal pure returns (bool) { return data.offset == data.raw.length; } function peekKeccak256(Data memory data, uint256 length) internal pure returns (bytes32 res) { return bytesKeccak256(data.raw, data.offset, length); } function bytesKeccak256( bytes memory ptr, uint256 offset, uint256 length ) internal pure returns (bytes32 res) { // solium-disable-next-line security/no-inline-assembly assembly { res := keccak256(add(add(ptr, 32), offset), length) } } function peekSha256(Data memory data, uint256 length) internal view returns (bytes32) { return bytesSha256(data.raw, data.offset, length); } function bytesSha256( bytes memory ptr, uint256 offset, uint256 length ) internal view returns (bytes32) { bytes32[1] memory result; // solium-disable-next-line security/no-inline-assembly assembly { pop(staticcall(gas(), 0x02, add(add(ptr, 32), offset), length, result, 32)) } return result[0]; } function decodeU8(Data memory data) internal pure shift(data, 1) returns (uint8 value) { value = uint8(data.raw[data.offset]); } function decodeI8(Data memory data) internal pure shift(data, 1) returns (int8 value) { value = int8(data.raw[data.offset]); } function decodeU16(Data memory data) internal pure returns (uint16 value) { value = uint16(decodeU8(data)); value |= (uint16(decodeU8(data)) << 8); } function decodeI16(Data memory data) internal pure returns (int16 value) { value = int16(decodeI8(data)); value |= (int16(decodeI8(data)) << 8); } function decodeU32(Data memory data) internal pure returns (uint32 value) { value = uint32(decodeU16(data)); value |= (uint32(decodeU16(data)) << 16); } function decodeI32(Data memory data) internal pure returns (int32 value) { value = int32(decodeI16(data)); value |= (int32(decodeI16(data)) << 16); } function decodeU64(Data memory data) internal pure returns (uint64 value) { value = uint64(decodeU32(data)); value |= (uint64(decodeU32(data)) << 32); } function decodeI64(Data memory data) internal pure returns (int64 value) { value = int64(decodeI32(data)); value |= (int64(decodeI32(data)) << 32); } function decodeU128(Data memory data) internal pure returns (uint128 value) { value = uint128(decodeU64(data)); value |= (uint128(decodeU64(data)) << 64); } function decodeI128(Data memory data) internal pure returns (int128 value) { value = int128(decodeI64(data)); value |= (int128(decodeI64(data)) << 64); } function decodeU256(Data memory data) internal pure returns (uint256 value) { value = uint256(decodeU128(data)); value |= (uint256(decodeU128(data)) << 128); } function decodeI256(Data memory data) internal pure returns (int256 value) { value = int256(decodeI128(data)); value |= (int256(decodeI128(data)) << 128); } function decodeBool(Data memory data) internal pure returns (bool value) { value = (decodeU8(data) != 0); } function decodeBytes(Data memory data) internal pure returns (bytes memory value) { value = new bytes(decodeU32(data)); for (uint i = 0; i < value.length; i++) { value[i] = byte(decodeU8(data)); } } function decodeBytes32(Data memory data) internal pure shift(data, 32) returns (bytes32 value) { bytes memory raw = data.raw; uint256 offset = data.offset; // solium-disable-next-line security/no-inline-assembly assembly { value := mload(add(add(raw, 32), offset)) } } function decodeBytes20(Data memory data) internal pure returns (bytes20 value) { for (uint i = 0; i < 20; i++) { value |= bytes20(byte(decodeU8(data)) & 0xFF) >> (i * 8); } } // Public key struct SECP256K1PublicKey { uint256 x; uint256 y; } function decodeSECP256K1PublicKey(Borsh.Data memory data) internal pure returns (SECP256K1PublicKey memory key) { key.x = decodeU256(data); key.y = decodeU256(data); } struct ED25519PublicKey { bytes32 xy; } function decodeED25519PublicKey(Borsh.Data memory data) internal pure returns (ED25519PublicKey memory key) { key.xy = decodeBytes32(data); } // Signature struct SECP256K1Signature { bytes32 r; bytes32 s; uint8 v; } function decodeSECP256K1Signature(Borsh.Data memory data) internal pure returns (SECP256K1Signature memory sig) { sig.r = decodeBytes32(data); sig.s = decodeBytes32(data); sig.v = decodeU8(data); } struct ED25519Signature { bytes32[2] rs; } function decodeED25519Signature(Borsh.Data memory data) internal pure returns (ED25519Signature memory sig) { sig.rs[0] = decodeBytes32(data); sig.rs[1] = decodeBytes32(data); } } pragma solidity ^0.6; import "../../nearbridge/contracts/Borsh.sol"; import "../../nearbridge/contracts/NearDecoder.sol"; library ProofDecoder { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; using NearDecoder for Borsh.Data; struct FullOutcomeProof { ExecutionOutcomeWithIdAndProof outcome_proof; MerklePath outcome_root_proof; // TODO: now empty array BlockHeaderLight block_header_lite; MerklePath block_proof; } function decodeFullOutcomeProof(Borsh.Data memory data) internal view returns (FullOutcomeProof memory proof) { proof.outcome_proof = data.decodeExecutionOutcomeWithIdAndProof(); proof.outcome_root_proof = data.decodeMerklePath(); proof.block_header_lite = data.decodeBlockHeaderLight(); proof.block_proof = data.decodeMerklePath(); } struct BlockHeaderLight { bytes32 prev_block_hash; bytes32 inner_rest_hash; NearDecoder.BlockHeaderInnerLite inner_lite; bytes32 hash; // Computable } function decodeBlockHeaderLight(Borsh.Data memory data) internal view returns (BlockHeaderLight memory header) { header.prev_block_hash = data.decodeBytes32(); header.inner_rest_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); } struct ExecutionStatus { uint8 enumIndex; bool unknown; bool failed; bytes successValue; /// The final action succeeded and returned some value or an empty vec. bytes32 successReceiptId; /// The final action of the receipt returned a promise or the signed /// transaction was converted to a receipt. Contains the receipt_id of the generated receipt. } function decodeExecutionStatus(Borsh.Data memory data) internal pure returns (ExecutionStatus memory executionStatus) { executionStatus.enumIndex = data.decodeU8(); if (executionStatus.enumIndex == 0) { executionStatus.unknown = true; } else if (executionStatus.enumIndex == 1) { //revert("NearDecoder: decodeExecutionStatus failure case not implemented yet"); // Can avoid revert since ExecutionStatus is latest field in all parent structures executionStatus.failed = true; } else if (executionStatus.enumIndex == 2) { executionStatus.successValue = data.decodeBytes(); } else if (executionStatus.enumIndex == 3) { executionStatus.successReceiptId = data.decodeBytes32(); } else { revert("NearDecoder: decodeExecutionStatus index out of range"); } } struct ExecutionOutcome { bytes[] logs; /// Logs from this transaction or receipt. bytes32[] receipt_ids; /// Receipt IDs generated by this transaction or receipt. uint64 gas_burnt; /// The amount of the gas burnt by the given transaction or receipt. uint128 tokens_burnt; /// The total number of the tokens burnt by the given transaction or receipt. bytes executor_id; /// Hash of the transaction or receipt id that produced this outcome. ExecutionStatus status; /// Execution status. Contains the result in case of successful execution. bytes32[] merkelization_hashes; } function decodeExecutionOutcome(Borsh.Data memory data) internal view returns (ExecutionOutcome memory outcome) { outcome.logs = new bytes[](data.decodeU32()); for (uint i = 0; i < outcome.logs.length; i++) { outcome.logs[i] = data.decodeBytes(); } uint256 start = data.offset; outcome.receipt_ids = new bytes32[](data.decodeU32()); for (uint i = 0; i < outcome.receipt_ids.length; i++) { outcome.receipt_ids[i] = data.decodeBytes32(); } outcome.gas_burnt = data.decodeU64(); outcome.tokens_burnt = data.decodeU128(); outcome.executor_id = data.decodeBytes(); outcome.status = data.decodeExecutionStatus(); uint256 stop = data.offset; outcome.merkelization_hashes = new bytes32[](1 + outcome.logs.length); data.offset = start; outcome.merkelization_hashes[0] = data.peekSha256(stop - start); data.offset = stop; for (uint i = 0; i < outcome.logs.length; i++) { outcome.merkelization_hashes[i + 1] = sha256(outcome.logs[i]); } } struct ExecutionOutcomeWithId { bytes32 id; /// The transaction hash or the receipt ID. ExecutionOutcome outcome; bytes32 hash; } function decodeExecutionOutcomeWithId(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithId memory outcome) { outcome.id = data.decodeBytes32(); outcome.outcome = data.decodeExecutionOutcome(); uint256 len = 1 + outcome.outcome.merkelization_hashes.length; outcome.hash = sha256( abi.encodePacked( uint8((len >> 0) & 0xFF), uint8((len >> 8) & 0xFF), uint8((len >> 16) & 0xFF), uint8((len >> 24) & 0xFF), outcome.id, outcome.outcome.merkelization_hashes ) ); } struct MerklePathItem { bytes32 hash; uint8 direction; // 0 = left, 1 = right } function decodeMerklePathItem(Borsh.Data memory data) internal pure returns (MerklePathItem memory item) { item.hash = data.decodeBytes32(); item.direction = data.decodeU8(); require(item.direction < 2, "ProofDecoder: MerklePathItem direction should be 0 or 1"); } struct MerklePath { MerklePathItem[] items; } function decodeMerklePath(Borsh.Data memory data) internal pure returns (MerklePath memory path) { path.items = new MerklePathItem[](data.decodeU32()); for (uint i = 0; i < path.items.length; i++) { path.items[i] = data.decodeMerklePathItem(); } } struct ExecutionOutcomeWithIdAndProof { MerklePath proof; bytes32 block_hash; ExecutionOutcomeWithId outcome_with_id; } function decodeExecutionOutcomeWithIdAndProof(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithIdAndProof memory outcome) { outcome.proof = data.decodeMerklePath(); outcome.block_hash = data.decodeBytes32(); outcome.outcome_with_id = data.decodeExecutionOutcomeWithId(); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.6.12; import 'rainbow-bridge/contracts/eth/nearprover/contracts/INearProver.sol'; import 'rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol'; import 'rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol'; contract ProofKeeper { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; INearProver public prover_; bytes public nearProofProducerAccount_; /// Proofs from blocks that are below the acceptance height will be rejected. // If `minBlockAcceptanceHeight_` value is zero - proofs from block with any height are accepted. uint64 public minBlockAcceptanceHeight_; // OutcomeReciptId -> Used mapping(bytes32 => bool) public usedEvents_; constructor( bytes memory nearProofProducerAccount, INearProver prover, uint64 minBlockAcceptanceHeight ) public { require( nearProofProducerAccount.length > 0, 'Invalid Near ProofProducer address' ); require( address(prover) != address(0), 'Invalid Near prover address' ); nearProofProducerAccount_ = nearProofProducerAccount; prover_ = prover; minBlockAcceptanceHeight_ = minBlockAcceptanceHeight; } /// Parses the provided proof and consumes it if it's not already used. /// The consumed event cannot be reused for future calls. function _parseAndConsumeProof( bytes memory proofData, uint64 proofBlockHeight ) internal returns(ProofDecoder.ExecutionStatus memory result) { require( proofBlockHeight >= minBlockAcceptanceHeight_, 'Proof is from the ancient block' ); require( prover_.proveOutcome(proofData,proofBlockHeight), 'Proof should be valid' ); // Unpack the proof and extract the execution outcome. Borsh.Data memory borshData = Borsh.from(proofData); ProofDecoder.FullOutcomeProof memory fullOutcomeProof = borshData.decodeFullOutcomeProof(); require( borshData.finished(), 'Argument should be exact borsh serialization' ); bytes32 receiptId = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.receipt_ids[0]; require( !usedEvents_[receiptId], 'The burn event cannot be reused' ); usedEvents_[receiptId] = true; require( keccak256(fullOutcomeProof.outcome_proof.outcome_with_id.outcome.executor_id) == keccak256(nearProofProducerAccount_), 'Can only withdraw coins from the linked proof producer on Near blockchain' ); result = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.status; require( !result.failed, 'Cannot use failed execution outcome for unlocking the tokens' ); require( !result.unknown, 'Cannot use unknown execution outcome for unlocking the tokens' ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } pragma solidity ^0.6; import "@openzeppelin/contracts/math/SafeMath.sol"; import "./Borsh.sol"; library NearDecoder { using Borsh for Borsh.Data; using NearDecoder for Borsh.Data; struct PublicKey { uint8 enumIndex; Borsh.ED25519PublicKey ed25519; Borsh.SECP256K1PublicKey secp256k1; } function decodePublicKey(Borsh.Data memory data) internal pure returns (PublicKey memory key) { key.enumIndex = data.decodeU8(); if (key.enumIndex == 0) { key.ed25519 = data.decodeED25519PublicKey(); } else if (key.enumIndex == 1) { key.secp256k1 = data.decodeSECP256K1PublicKey(); } else { revert("NearBridge: Only ED25519 and SECP256K1 public keys are supported"); } } struct ValidatorStake { string account_id; PublicKey public_key; uint128 stake; } function decodeValidatorStake(Borsh.Data memory data) internal pure returns (ValidatorStake memory validatorStake) { validatorStake.account_id = string(data.decodeBytes()); validatorStake.public_key = data.decodePublicKey(); validatorStake.stake = data.decodeU128(); } struct OptionalValidatorStakes { bool none; ValidatorStake[] validatorStakes; bytes32 hash; // Additional computable element } function decodeOptionalValidatorStakes(Borsh.Data memory data) internal view returns (OptionalValidatorStakes memory stakes) { stakes.none = (data.decodeU8() == 0); if (!stakes.none) { uint256 start = data.offset; stakes.validatorStakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < stakes.validatorStakes.length; i++) { stakes.validatorStakes[i] = data.decodeValidatorStake(); } uint256 stop = data.offset; data.offset = start; stakes.hash = data.peekSha256(stop - start); data.offset = stop; } } struct Signature { uint8 enumIndex; Borsh.ED25519Signature ed25519; Borsh.SECP256K1Signature secp256k1; } function decodeSignature(Borsh.Data memory data) internal pure returns (Signature memory sig) { sig.enumIndex = data.decodeU8(); if (sig.enumIndex == 0) { sig.ed25519 = data.decodeED25519Signature(); } else if (sig.enumIndex == 1) { sig.secp256k1 = data.decodeSECP256K1Signature(); } else { revert("NearBridge: Only ED25519 and SECP256K1 signatures are supported"); } } struct OptionalSignature { bool none; Signature signature; } function decodeOptionalSignature(Borsh.Data memory data) internal pure returns (OptionalSignature memory sig) { sig.none = (data.decodeU8() == 0); if (!sig.none) { sig.signature = data.decodeSignature(); } } struct LightClientBlock { bytes32 prev_block_hash; bytes32 next_block_inner_hash; BlockHeaderInnerLite inner_lite; bytes32 inner_rest_hash; OptionalValidatorStakes next_bps; OptionalSignature[] approvals_after_next; bytes32 hash; bytes32 next_hash; } struct InitialValidators { ValidatorStake[] validator_stakes; } function decodeInitialValidators(Borsh.Data memory data) internal view returns (InitialValidators memory validators) { validators.validator_stakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < validators.validator_stakes.length; i++) { validators.validator_stakes[i] = data.decodeValidatorStake(); } } function decodeLightClientBlock(Borsh.Data memory data) internal view returns (LightClientBlock memory header) { header.prev_block_hash = data.decodeBytes32(); header.next_block_inner_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.inner_rest_hash = data.decodeBytes32(); header.next_bps = data.decodeOptionalValidatorStakes(); header.approvals_after_next = new OptionalSignature[](data.decodeU32()); for (uint i = 0; i < header.approvals_after_next.length; i++) { header.approvals_after_next[i] = data.decodeOptionalSignature(); } header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); header.next_hash = sha256(abi.encodePacked(header.next_block_inner_hash, header.hash)); } struct BlockHeaderInnerLite { uint64 height; /// Height of this block since the genesis block (height 0). bytes32 epoch_id; /// Epoch start hash of this block's epoch. Used for retrieving validator information bytes32 next_epoch_id; bytes32 prev_state_root; /// Root hash of the state at the previous block. bytes32 outcome_root; /// Root of the outcomes of transactions and receipts. uint64 timestamp; /// Timestamp at which the block was built. bytes32 next_bp_hash; /// Hash of the next epoch block producers set bytes32 block_merkle_root; bytes32 hash; // Additional computable element } function decodeBlockHeaderInnerLite(Borsh.Data memory data) internal view returns (BlockHeaderInnerLite memory header) { header.hash = data.peekSha256(208); header.height = data.decodeU64(); header.epoch_id = data.decodeBytes32(); header.next_epoch_id = data.decodeBytes32(); header.prev_state_root = data.decodeBytes32(); header.outcome_root = data.decodeBytes32(); header.timestamp = data.decodeU64(); header.next_bp_hash = data.decodeBytes32(); header.block_merkle_root = data.decodeBytes32(); } } pragma solidity ^0.6; interface INearProver { function proveOutcome(bytes calldata proofData, uint64 blockHeight) external view returns (bool); }