ETH Price: $2,595.60 (-1.72%)

Transaction Decoder

Block:
12312968 at Apr-26-2021 01:27:02 AM +UTC
Transaction Fee:
0.00201111 ETH $5.22
Gas Used:
46,770 Gas / 43 Gwei

Emitted Events:

301 MatryxToken.Approval( owner=[Sender] 0x74f8bdc26e6f4e38b79f0e884f91bbf181fd8d32, spender=0xd9e1cE17...a9C378B9F, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )

Account State Difference:

  Address   Before After State Difference Code
0x0AF44e27...03A8f0c6A
0x74f8Bdc2...181FD8D32
0.01538194 Eth
Nonce: 12
0.01337083 Eth
Nonce: 13
0.00201111
(F2Pool Old)
4,765.843146731596057128 Eth4,765.845157841596057128 Eth0.00201111

Execution Trace

MatryxToken.approve( _spender=0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F, _value=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
/**
 * @title SafeMath
 * @dev Math operations with safety checks that throw on error
 */
library SafeMath {
  function mul(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a * b;
    assert(a == 0 || c / a == b);
    return c;
  }

  function div(uint256 a, uint256 b) internal constant returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    return c;
  }

  function sub(uint256 a, uint256 b) internal constant returns (uint256) {
    assert(b <= a);
    return a - b;
  }

  function add(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a + b;
    assert(c >= a);
    return c;
  }
}

/**
 * @title Ownable
 * @dev The Ownable contract has an owner address, and provides basic authorization control
 * functions, this simplifies the implementation of "user permissions".
 */
contract Ownable {
  address public owner;


  /**
   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
   * account.
   */
  function Ownable() {
    owner = msg.sender;
  }


  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(msg.sender == owner);
    _;
  }


  /**
   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param newOwner The address to transfer ownership to.
   */
  function transferOwnership(address newOwner) onlyOwner {
    require(newOwner != address(0));      
    owner = newOwner;
  }

}

/**
 * @title ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/20
 */
contract ERC20 is Ownable {
  function allowance(address owner, address spender) constant returns (uint256);
  function transferFrom(address from, address to, uint256 value) returns (bool);
  function transfer(address to, uint256 value) returns (bool);
  function approve(address spender, uint256 value) returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);
  event Approval(address indexed owner, address indexed spender, uint256 value);
}

/**
 * @title ERC20Basic
 * @dev Simpler version of ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/179
 */
contract ERC20Basic {
  uint256 public totalSupply;
  function balanceOf(address who) constant returns (uint256);
}


/**
 * @title Basic token
 * @dev Basic version of StandardToken, with no allowances. 
 */
contract BasicToken is ERC20Basic {
  using SafeMath for uint256;

  mapping(address => uint256) balances;

  /**
  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of. 
  * @return An uint256 representing the amount owned by the passed address.
  */
  function balanceOf(address _owner) constant returns (uint256 balance) {
    return balances[_owner];
  }

}


/**
 * @title Standard ERC20 token
 *
 * @dev Implementation of the basic standard token.
 * @dev https://github.com/ethereum/EIPs/issues/20
 * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
 */
contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) allowed;

  /**
  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  */
  function transfer(address _to, uint256 _value) returns (bool) {
    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    Transfer(msg.sender, _to, _value);
    return true;
  }

  /**
   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amout of tokens to be transfered
   */
  function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
    var _allowance = allowed[_from][msg.sender];

    // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
    // require (_value <= _allowance);

    balances[_to] = balances[_to].add(_value);
    balances[_from] = balances[_from].sub(_value);
    allowed[_from][msg.sender] = _allowance.sub(_value);
    Transfer(_from, _to, _value);
    return true;
  }

  /**
   * @dev Aprove the passed address to spend the specified amount of tokens on behalf of msg.sender.
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
   */
  function approve(address _spender, uint256 _value) returns (bool) {

    // To change the approve amount you first have to reduce the addresses`
    //  allowance to zero by calling `approve(_spender, 0)` if it is not
    //  already 0 to mitigate the race condition described here:
    //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
    require((_value == 0) || (allowed[msg.sender][_spender] == 0));

    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;
  }

  /**
   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifing the amount of tokens still available for the spender.
   */
  function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
    return allowed[_owner][_spender];
  }

}

/**
 * Define interface for releasing the token transfer after a successful crowdsale.
 */
contract ReleasableToken is StandardToken {

  /* The finalizer contract that allows unlift the transfer limits on this token */
  address public releaseAgent;

  /** A crowdsale contract can release us to the wild if ICO success. If false we are are in transfer lock up period.*/
  bool public released = false;

  /** Map of agents that are allowed to transfer tokens regardless of the lock down period. These are crowdsale contracts and possible the team multisig itself. */
  mapping (address => bool) public transferAgents;

  /**
   * Limit token transfer until the crowdsale is over.
   *
   */
  modifier canTransfer(address _sender) {
    require(released || transferAgents[_sender]);
    _;
  }

  /** The function can be called only before or after the tokens have been releasesd */
  modifier inReleaseState(bool releaseState) {
    require(releaseState == released);
    _;
  }

  /** The function can be called only by a whitelisted release agent. */
  modifier onlyReleaseAgent() {
    require(msg.sender == releaseAgent);
    _;
  }

  /**
   * Set the contract that can call release and make the token transferable.
   *
   * Design choice. Allow reset the release agent to fix fat finger mistakes.
   */
  function setReleaseAgent(address addr) onlyOwner inReleaseState(false) public {

    // We don't do interface check here as we might want to a normal wallet address to act as a release agent
    releaseAgent = addr;
  }

  /**
   * Owner can allow a particular address (a crowdsale contract) to transfer tokens despite the lock up period.
   */
  function setTransferAgent(address addr, bool state) onlyOwner inReleaseState(false) public {
    transferAgents[addr] = state;
  }

  /**
   * One way function to release the tokens to the wild.
   *
   * Can be called only from the release agent that is the final ICO contract. It is only called if the crowdsale has been success (first milestone reached).
   */
  function releaseTokenTransfer() public onlyReleaseAgent {
    released = true;
  }

  function transfer(address _to, uint _value) canTransfer(msg.sender) returns (bool success) {
    // Call StandardToken.transfer()
   return super.transfer(_to, _value);
  }

  function transferFrom(address _from, address _to, uint _value) canTransfer(_from) returns (bool success) {
    // Call StandardToken.transferForm()
    return super.transferFrom(_from, _to, _value);
  }

}

/**
 * @title Mintable token
 * @dev Simple ERC20 Token example, with mintable token creation
 * @dev Issue: * https://github.com/OpenZeppelin/zeppelin-solidity/issues/120
 * Based on code by TokenMarketNet: https://github.com/TokenMarketNet/ico/blob/master/contracts/MintableToken.sol
 */

contract MintableToken is ReleasableToken {
  event Mint(address indexed to, uint256 amount);
  event MintFinished();

  bool public mintingFinished = false;

  modifier canMint() {
    require(!mintingFinished);
    _;
  }

  /**
   * @dev Function to mint tokens
   * @param _to The address that will recieve the minted tokens.
   * @param _amount The amount of tokens to mint.
   * @return A boolean that indicates if the operation was successful.
   */
  function mint(address _to, uint256 _amount) onlyOwner canMint returns (bool) {
    totalSupply = totalSupply.add(_amount);
    balances[_to] = balances[_to].add(_amount);
    Mint(_to, _amount);
    Transfer(0x0, _to, _amount);
    return true;
  }

  /**
   * @dev Function to stop minting new tokens.
   * @return True if the operation was successful.
   */
  function finishMinting() onlyOwner returns (bool) {
    mintingFinished = true;
    MintFinished();
    return true;
  }
}

/**
 * Upgrade agent interface inspired by Lunyr.
 *
 * Upgrade agent transfers tokens to a new contract.
 * Upgrade agent itself can be the token contract, or just a middle man contract doing the heavy lifting.
 */
contract UpgradeAgent {

  uint public originalSupply;

  /** Interface marker */
  function isUpgradeAgent() public constant returns (bool) {
    return true;
  }

  function upgradeFrom(address _from, uint256 _value) public;

}


/**
 * A token upgrade mechanism where users can opt-in amount of tokens to the next smart contract revision.
 *
 * First envisioned by Golem and Lunyr projects.
 */
contract UpgradeableToken is StandardToken {

  /** Contract / person who can set the upgrade path. This can be the same as team multisig wallet, as what it is with its default value. */
  address public upgradeMaster;

  /** The next contract where the tokens will be migrated. */
  UpgradeAgent public upgradeAgent;

  /** How many tokens we have upgraded by now. */
  uint256 public totalUpgraded;

  /**
   * Upgrade states.
   *
   * - NotAllowed: The child contract has not reached a condition where the upgrade can bgun
   * - WaitingForAgent: Token allows upgrade, but we don't have a new agent yet
   * - ReadyToUpgrade: The agent is set, but not a single token has been upgraded yet
   * - Upgrading: Upgrade agent is set and the balance holders can upgrade their tokens
   *
   */
  enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading}

  /**
   * Somebody has upgraded some of his tokens.
   */
  event Upgrade(address indexed _from, address indexed _to, uint256 _value);

  /**
   * New upgrade agent available.
   */
  event UpgradeAgentSet(address agent);

  /**
   * Do not allow construction without upgrade master set.
   */
  function UpgradeableToken(address _upgradeMaster) {
    upgradeMaster = _upgradeMaster;
  }

  /**
   * Allow the token holder to upgrade some of their tokens to a new contract.
   */
  function upgrade(uint256 value) public {

      UpgradeState state = getUpgradeState();
      if(!(state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading)) {
        // Called in a bad state
        throw;
      }

      // Validate input value.
      if (value == 0) throw;

      balances[msg.sender] = balances[msg.sender].sub(value);

      // Take tokens out from circulation
      totalSupply = totalSupply.sub(value);
      totalUpgraded = totalUpgraded.add(value);

      // Upgrade agent reissues the tokens
      upgradeAgent.upgradeFrom(msg.sender, value);
      Upgrade(msg.sender, upgradeAgent, value);
  }

  /**
   * Set an upgrade agent that handles
   */
  function setUpgradeAgent(address agent) external {

      if (agent == 0x0) throw;
      // Only a master can designate the next agent
      if (msg.sender != upgradeMaster) throw;
      // Upgrade has already begun for an agent
      if (getUpgradeState() == UpgradeState.Upgrading) throw;

      upgradeAgent = UpgradeAgent(agent);

      // Bad interface
      if(!upgradeAgent.isUpgradeAgent()) throw;
      // Make sure that token supplies match in source and target
      if (upgradeAgent.originalSupply() != totalSupply) throw;

      UpgradeAgentSet(upgradeAgent);
  }

  /**
   * Get the state of the token upgrade.
   */
  function getUpgradeState() public constant returns(UpgradeState) {
    if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent;
    else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade;
    else return UpgradeState.Upgrading;
  }

  /**
   * Change the upgrade master.
   *
   * This allows us to set a new owner for the upgrade mechanism.
   */
  function setUpgradeMaster(address master) public {
      if (master == 0x0) throw;
      if (msg.sender != upgradeMaster) throw;
      upgradeMaster = master;
  }


}

/**
 * Matryx Ethereum token.
 */
contract MatryxToken is MintableToken, UpgradeableToken{

  string public name = "MatryxToken";
  string public symbol = "MTX";
  uint public decimals = 18;

  // supply upgrade owner as the contract creation account
  function MatryxToken() UpgradeableToken(msg.sender) {

  }
}