Transaction Hash:
Block:
12312968 at Apr-26-2021 01:27:02 AM +UTC
Transaction Fee:
0.00201111 ETH
$5.22
Gas Used:
46,770 Gas / 43 Gwei
Emitted Events:
301 |
MatryxToken.Approval( owner=[Sender] 0x74f8bdc26e6f4e38b79f0e884f91bbf181fd8d32, spender=0xd9e1cE17...a9C378B9F, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x0AF44e27...03A8f0c6A | |||||
0x74f8Bdc2...181FD8D32 |
0.01538194 Eth
Nonce: 12
|
0.01337083 Eth
Nonce: 13
| 0.00201111 | ||
0x829BD824...93333A830
Miner
| (F2Pool Old) | 4,765.843146731596057128 Eth | 4,765.845157841596057128 Eth | 0.00201111 |
Execution Trace
MatryxToken.approve( _spender=0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F, _value=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
approve[ERC20 (ln:77)]
/** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal constant returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal constant returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal constant returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal constant returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) onlyOwner { require(newOwner != address(0)); owner = newOwner; } } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is Ownable { function allowance(address owner, address spender) constant returns (uint256); function transferFrom(address from, address to, uint256 value) returns (bool); function transfer(address to, uint256 value) returns (bool); function approve(address spender, uint256 value) returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/179 */ contract ERC20Basic { uint256 public totalSupply; function balanceOf(address who) constant returns (uint256); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint256 representing the amount owned by the passed address. */ function balanceOf(address _owner) constant returns (uint256 balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) allowed; /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint256 _value) returns (bool) { balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); Transfer(msg.sender, _to, _value); return true; } /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint256 the amout of tokens to be transfered */ function transferFrom(address _from, address _to, uint256 _value) returns (bool) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // require (_value <= _allowance); balances[_to] = balances[_to].add(_value); balances[_from] = balances[_from].sub(_value); allowed[_from][msg.sender] = _allowance.sub(_value); Transfer(_from, _to, _value); return true; } /** * @dev Aprove the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint256 _value) returns (bool) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require((_value == 0) || (allowed[msg.sender][_spender] == 0)); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint256 specifing the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) constant returns (uint256 remaining) { return allowed[_owner][_spender]; } } /** * Define interface for releasing the token transfer after a successful crowdsale. */ contract ReleasableToken is StandardToken { /* The finalizer contract that allows unlift the transfer limits on this token */ address public releaseAgent; /** A crowdsale contract can release us to the wild if ICO success. If false we are are in transfer lock up period.*/ bool public released = false; /** Map of agents that are allowed to transfer tokens regardless of the lock down period. These are crowdsale contracts and possible the team multisig itself. */ mapping (address => bool) public transferAgents; /** * Limit token transfer until the crowdsale is over. * */ modifier canTransfer(address _sender) { require(released || transferAgents[_sender]); _; } /** The function can be called only before or after the tokens have been releasesd */ modifier inReleaseState(bool releaseState) { require(releaseState == released); _; } /** The function can be called only by a whitelisted release agent. */ modifier onlyReleaseAgent() { require(msg.sender == releaseAgent); _; } /** * Set the contract that can call release and make the token transferable. * * Design choice. Allow reset the release agent to fix fat finger mistakes. */ function setReleaseAgent(address addr) onlyOwner inReleaseState(false) public { // We don't do interface check here as we might want to a normal wallet address to act as a release agent releaseAgent = addr; } /** * Owner can allow a particular address (a crowdsale contract) to transfer tokens despite the lock up period. */ function setTransferAgent(address addr, bool state) onlyOwner inReleaseState(false) public { transferAgents[addr] = state; } /** * One way function to release the tokens to the wild. * * Can be called only from the release agent that is the final ICO contract. It is only called if the crowdsale has been success (first milestone reached). */ function releaseTokenTransfer() public onlyReleaseAgent { released = true; } function transfer(address _to, uint _value) canTransfer(msg.sender) returns (bool success) { // Call StandardToken.transfer() return super.transfer(_to, _value); } function transferFrom(address _from, address _to, uint _value) canTransfer(_from) returns (bool success) { // Call StandardToken.transferForm() return super.transferFrom(_from, _to, _value); } } /** * @title Mintable token * @dev Simple ERC20 Token example, with mintable token creation * @dev Issue: * https://github.com/OpenZeppelin/zeppelin-solidity/issues/120 * Based on code by TokenMarketNet: https://github.com/TokenMarketNet/ico/blob/master/contracts/MintableToken.sol */ contract MintableToken is ReleasableToken { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } /** * @dev Function to mint tokens * @param _to The address that will recieve the minted tokens. * @param _amount The amount of tokens to mint. * @return A boolean that indicates if the operation was successful. */ function mint(address _to, uint256 _amount) onlyOwner canMint returns (bool) { totalSupply = totalSupply.add(_amount); balances[_to] = balances[_to].add(_amount); Mint(_to, _amount); Transfer(0x0, _to, _amount); return true; } /** * @dev Function to stop minting new tokens. * @return True if the operation was successful. */ function finishMinting() onlyOwner returns (bool) { mintingFinished = true; MintFinished(); return true; } } /** * Upgrade agent interface inspired by Lunyr. * * Upgrade agent transfers tokens to a new contract. * Upgrade agent itself can be the token contract, or just a middle man contract doing the heavy lifting. */ contract UpgradeAgent { uint public originalSupply; /** Interface marker */ function isUpgradeAgent() public constant returns (bool) { return true; } function upgradeFrom(address _from, uint256 _value) public; } /** * A token upgrade mechanism where users can opt-in amount of tokens to the next smart contract revision. * * First envisioned by Golem and Lunyr projects. */ contract UpgradeableToken is StandardToken { /** Contract / person who can set the upgrade path. This can be the same as team multisig wallet, as what it is with its default value. */ address public upgradeMaster; /** The next contract where the tokens will be migrated. */ UpgradeAgent public upgradeAgent; /** How many tokens we have upgraded by now. */ uint256 public totalUpgraded; /** * Upgrade states. * * - NotAllowed: The child contract has not reached a condition where the upgrade can bgun * - WaitingForAgent: Token allows upgrade, but we don't have a new agent yet * - ReadyToUpgrade: The agent is set, but not a single token has been upgraded yet * - Upgrading: Upgrade agent is set and the balance holders can upgrade their tokens * */ enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading} /** * Somebody has upgraded some of his tokens. */ event Upgrade(address indexed _from, address indexed _to, uint256 _value); /** * New upgrade agent available. */ event UpgradeAgentSet(address agent); /** * Do not allow construction without upgrade master set. */ function UpgradeableToken(address _upgradeMaster) { upgradeMaster = _upgradeMaster; } /** * Allow the token holder to upgrade some of their tokens to a new contract. */ function upgrade(uint256 value) public { UpgradeState state = getUpgradeState(); if(!(state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading)) { // Called in a bad state throw; } // Validate input value. if (value == 0) throw; balances[msg.sender] = balances[msg.sender].sub(value); // Take tokens out from circulation totalSupply = totalSupply.sub(value); totalUpgraded = totalUpgraded.add(value); // Upgrade agent reissues the tokens upgradeAgent.upgradeFrom(msg.sender, value); Upgrade(msg.sender, upgradeAgent, value); } /** * Set an upgrade agent that handles */ function setUpgradeAgent(address agent) external { if (agent == 0x0) throw; // Only a master can designate the next agent if (msg.sender != upgradeMaster) throw; // Upgrade has already begun for an agent if (getUpgradeState() == UpgradeState.Upgrading) throw; upgradeAgent = UpgradeAgent(agent); // Bad interface if(!upgradeAgent.isUpgradeAgent()) throw; // Make sure that token supplies match in source and target if (upgradeAgent.originalSupply() != totalSupply) throw; UpgradeAgentSet(upgradeAgent); } /** * Get the state of the token upgrade. */ function getUpgradeState() public constant returns(UpgradeState) { if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent; else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade; else return UpgradeState.Upgrading; } /** * Change the upgrade master. * * This allows us to set a new owner for the upgrade mechanism. */ function setUpgradeMaster(address master) public { if (master == 0x0) throw; if (msg.sender != upgradeMaster) throw; upgradeMaster = master; } } /** * Matryx Ethereum token. */ contract MatryxToken is MintableToken, UpgradeableToken{ string public name = "MatryxToken"; string public symbol = "MTX"; uint public decimals = 18; // supply upgrade owner as the contract creation account function MatryxToken() UpgradeableToken(msg.sender) { } }